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1 Proofs of Theorems

1.1 Proof of Theorem 1

We first prove the theorem over C, then we transfer the statement over R. We note here that there is
nothing special about R and C with regards to the problem. Indeed, the same proof applies if one
replaces R with any infinite field F and C with the algebraic closure I of F. Set

Mc={XeC™Mrankc X <1}

and note that since M is irreducible, the intersection of finitely many non-empty open sets in
M is itself non-empty and open, and thus dense. Here irreducibility means that M can not be
decomposed as the union of two proper subvarieties of Mc.

Lemma 1. There is an open dense set Uy in Mc such that for any X € Uy and any m =
(T« « oy TTn) € [ Ticin) Pm, every m x v submatrix of t(X) has rank .

Proof. First, fix some T = (TTq,...,TT,) € Hie[n] Pm and then some index set J = {j1,...,jr} C
[n]. The submatrix 7t(X) s := [TT5,%;,,---,TTj,%;,] of @(X) has rank less than r if and only if
all of its r x T minors are zero. For each subset Z = {i1,...,1;} C [m] we have a polynomial
dett(Z)z,7 € C[Z] where 1t(Z)z, 7 is the row-submatrix of 71(Z) 7 obtained by selecting the rows
with index in Z. The set of matrices in C™*™ for which the evaluation of this polynomial is non-zero
is an open set, call it Uy 7, 7. Then 7t(X) 7 has rank r if and only if X € Uy, 7 = J; Ux 1,7, Where
7 ranges over all subsets of [m] of cardinality r. As a union of finitely many open sets, Uy, 7 is open.
Moreover, every m x 1 submatrix of 7t(X) has rank r if and only if X € Uy := [ ; Uy, 7, where now
J ranges over all subsets of [n] of cardinality . U, is open because it is the finite intersection of
open sets. Finally, every m x r submatrix of 7t(X) has rank r for any 7t if and only if X is in the open
setUy = ﬂﬂ U, where the intersection is taken over all 7t’s.

The proof will be complete once we show that U/ is non-empty. By what we said above about
intersections of finitely many non-empty open sets in an irreducible variety, it is enough to show
that each Uy, 7 is non-empty. We do this by constructing a specific X € Uy, 7. Recall here that
any IT € Py, is diagonalizable over C with non-zero eigenvalues. It is an elementary fact in linear
algebra that there exists a choice of eigenvector vy of TT;, for every k € [r] such that vy,...,v;
are linearly independent. Now our X is taken to be the matrix with vy at column ji for every
k € [r] and zero everywhere else. Clearly X € Mc and moreover 7t(X) 7 = [TT5,%;, - -+, TTj, xj,] =
0T, vi -+, T3, v+] = Ay - - Axvy], where A is the corresponding eigenvalue of vi. Since none
of the Ay’s is zero, this matrix has rank 7, that is X € Uy, 7. O

Denote by C(X) the column-space of X and I;,, the identity matrix of size m x m. Note also that
whenever p is a non-zero polynomial in v variables with coefficients in C, there is always some
& € CY such that p(&) # 0.
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Lemma 2. There is an open dense set Uy in Mc such that for any X € U, we have that TTx; & C(X)
SJorany T1 € Py \{lin} and any j € [n].

Proof. TIx; ¢ C(X) if and only if rank[X TTx;] = v+ 1. As in the proof of Lemma 1, this condition
is met on an open set Uy j of M¢ where some (14 1) x (r + 1) determinant of [X TTx;] is non-zero.
Then the statement of the theorem is true on the open set U2 = (\ep, . jem) Un,j- As in the proof
of Lemma 1, to show that I/, is non-empty it suffices to show that each Uy ; is non-empty. We show
the existence of an X € Uy ;. Let Z = (zix) be an m x 1 matrix of variables over C and consider the
polynomial ring C[Z]. Let us write zj for the kth column of Z. Since TT is not the identity, there exists
some i € [m] such that z; is different from the ith element of T1z;, where z; is the first column of
Z. Instead, suppose that the variable z;7 appears in the i’th coordinate of TTz; with i’ # 1. Now take
any Z C [m] with cardinality T + 1 such that 1,1’ € Z and consider det[Z TTz1]z where [Z TTz;]7 is
the submatrix of [Z TTz;] obtained by selecting the rows with index in Z. This is a polynomial of
C[Z] that has the form :l:ziz1 det[z; - - - zy]7\fi,i/y + - - - where the remaining terms do not involve z?
for v > 1. Since the entries of Z are algebraically independent, det[z; - - - Zr]I\{i,i’} 1S a non-zero
polynomial. We conclude that det[Z TTz;]7 is also a non-zero polynomial. Hence there exists some
Z' € C™*7 such that det[Z’ T1z{]z # 0. Now define X by setting x; = z1, xj, = zy, k € [r] for
any choice of jy’s distinct from j, and zeros everywhere else. By construction X € Uty ;. O

Let f : C™*T x C™™ — M be the surjective map given by f(B’,C’) = B'C’.

Lemma 3. There is an open dense set Us in M such that for any X € U3, we have that for any
jeml,any T ={1,...,jrt C Ml withj & J and any Ty, ..., Tl € Py, not all identities, it holds
that rank[x; TTyx;, -« Tlex, ] =74+ 1.

Proof. With j,J and Tly’s fixed, the set U 7 11,,...m, of X’s in M¢ for which the rank of
[xj TT1xj, ---TTyx5,] is v + 1, is open. Indeed, this is defined by the non-simultaneous vanish-
ing of all (r+ 1) x (r + 1) minors of [z; TTyz;, - - - Tl,z; ], where z; is the kth column of the matrix
of variables Z from the proof of Lemma 2. We note that these are polynomials in Z with integer
coefficients. Set U3 = nj,J,Th T U5, 7., ,...,m, where the intersection is taken over all choices
of j, J,TT,...,TI, as in the statement of the lemma. As in the proof of Lemma 1, the set I/3 is open
and to show that it is non-empty is suffices to show that each U 7 r1,,... i1, is non-empty.

Let U;,U> be the open sets of Lemmas 1 and 2. Since M is irreducible and U/,U, are open
and non-empty, we have that 2/; N, is non-empty. Since f is surjective, f~' (U N U;) is also
non-empty. Take any (B’, C’) € f~'(U; NU>). By definition, the rank of [TT; Blc/ - -TIB'cj Jis
1. By hypothesis, there is some k € [r] such that TTy is not the identity and thus again by definition
we have rank[B’ TTyB’c{ ] =1+ 1. Consequently, TTxB’c;, & C(B’) and so the two r-dimensional
subspaces C(B’) and C([Th B'cj’] .- 'ﬂrB’cj'T]) are distinct. Thus there exists some ¢’ € C" such
that B’c” ¢ C([T1B’c{, ---TI,B'c] ]). Define C"" € C"™™ by setting ¢}/ = c/, for every v # j and
cj” = c”. Then by construction B'C" € U, 7 11,,....11,- O
Take X* = [x}---x%] € Uz and let X = [Tyx}-- - TTux%). Now rankX = rankTT;'X =
rank[x} ﬁ?lﬁzxﬁ e ﬁflﬁnx;]. If there is some k > 2 such that TT4 #* M, by Lemma 3 any
m x (r+ 1) submatrix of ﬁﬂ X that contains columns 1 and k will have rank r + 1. On the other

hand, when all TTy.’s are equal for k € [n], the rank of X is r by Lemma 1. This concludes the proof
of the theorem over C with the claimed open set being /3, which we denote in the sequel by Uc.

Set Mg = {X € R™*™|rankg X < r }. There is an inclusion of sets i : Mg — M where for
X € Mg we view 1(X) as the complex matrix associated to X. The reason for this inclusion is that if
the columns of X generate an r-dimensional subspace over R, then they generate an r-dimensional
subspace over C. To finish the proof, it suffices to show the existence of a non-empty open set U in
Mg such that i(Ug) C Uc. This comes from two key ingredients. The first one is the observation
that the polynomials that induce U, i.e. the polynomials of C[Z] whose non-simultaneous vanishing
indicates membership of a point X € M in Ug, they have integer and thus real coefficients. This
can be seen by inspecting the proof of Lemma 3. Call the set of these polynomials p;; C Z[Z]. For
the second ingredient, let ppq C Z[Z] be the set of all (r+ 1) x (r + 1) minors of the matrix of
variables Z. It is a matter of linear algebra that Mp and M are the common roots of the polynomial
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system p o over R™*™ and C™*™ respectively. What is instead a difficult theorem in commutative
algebra is that the following algebraic converse is true; see section 2.6 in [7]: a polynomial q € R[Z]
vanishes on every point of My if and only if it is a polynomial combination of elements of p o4, that
isifandonlyif g = .,  cpp forsome cp’s in R[Z]. This statement also holds true if we replace
R with C. Now the set Uc consists of those points of M that are roots of the polynomial system
p.a but not of py,. Since Ug is non-empty, not all polynomials in p;, are polynomial combinations of
p . But then, by what we just said, not all points of Mg are common roots of pz;. This means that
the open set of Mp defined by the non-simultaneous vanishing of all polynonials in p, is non-empty.
This open set is the claimed U/.

1.2 Proof of Theorem 2

Let U, be the open set of Theorem 1. Let U be the set of X’s for which C(X) does not drop dimension
under projection onto any r coordinates. This set is open in M because X € U if and only if for any
Z C [m] of cardinality T not all X r minors of Xz are zero, Xz being the row-submatrix of X obtained
by selecting the rows with index in Z. Set U = Uy NU;. Then for any X* € U and any TT € P,
there exists a unique factorization TTX* = Bj; C}; with the top r x T block of Bf; € R™*" being the

identity. Since f)g‘j()N() =Pe,j(X*) = Pej(TTX*) = Ppe,;(Bf; Cf;) we have that (Byy, Cfy) € Yx- for
every Tl € Py,. For the reverse direction we recall a fundamental fact:

Lemma 4. Fix anyj € [n]. Suppose that &1,&, € R™ are such that pe;(&1) = Pe,j(&2) for every
€ € [m]. Then &; =TI, for some T1 € Py,

Proof. See proof of Lemma 2 in [6]. O

Now let (B, C’) € Yx~ and write c].’ for the jth column of C’. For a fixed j € [n] the equations
qe,j(B’, C") = 0 are equivalent to Pe,j(B’c]) = Pe,j(x]) for every € € [m]. By Lemma 4 there
must exist some TT; € Py, such that B’ cj’ =TIj x]?k. This is true for every j € [n] so that B'C’ =
[TTyx3 - - - TTyx3]. This implies that rank[TT;x7 - - - TTyx}] = r. Since X* € U, Theorem 1 gives that
all TT;’s must be the same permutation TT € Py, so that B’C’ = TTX*. Since by construction for any
(B”,C") € Yx~ the top r x 1 block of B” is the identity, we have that B’ = Bj; and thus necessarily
C'=Cf.

1.3 Proof of Theorem 3

We first notice #{X; [X; € S*;j € n]} > w(lyn) > v+ 1. Now we suppose Xj,,...,%j,,%j, .,
are T + 1 points in X such that not all TTj,, ..., TT;,TT;, ,, are the identity I,. Since u(TT) < v
for TT # I, it is impossible that TT;, = --- =TI; =TI ;. According to Theorem 1, the points
%5,y.+-y%;,,%;, ., span a subspace of dimension r + 1. Hence, for any subspace S # S* with
dim(S) <1, we have #{X; |X; € S;j € [n]} <. O
2 Implementation Details in Experiments

Robust-PCA methods in Section 4.1. In Self-Repr and CoP, S is taken to be the subspace spanned
by the top T %;’s with largest inlier scores. We use the Iteratively-Reweighed-Least-Squares method
proposed by [9, 4] for solving the DPCP problem. The output subspace S of OP is obtained as
the rth principal component subspace of the decomposed low-rank matrix. For Self-Expr we use
A=0.95 & =10and T = 1000, see section 5 in [12]. For DPCP we use Tpax = 1000, € = 107
and 5 = 10712, see Algorithm 2 in [10]. Finally, OP uses A = 0.5 in Algorithm 1 of [11], while the
parameter T of the augmented Lagrangian is 1.

Unlabeled sensing methods. For AIEM, we use the customized Grobner basis solvers of [8],
developed for r < 4, which solve the polynomial system in milliseconds, and the maximum number
iterations in the alternating minimization procedure is Ty, = 1000. For r = 5, the design of such
solvers is an open problem', thus we use the generic solver Bertini ([1]), which runs within a few

"The fast solver generator of [3] is an improved version of the one used by [8] for r = 3,4. However, we
found that for r = 5 it suffers from numerical stability issues.



127
128
129

130
131
132
133
134

135

136
137

138
139
140
141
142

seconds. For r > 6 though, AIEM remains as of now practically intractable. For CCV-Min the
precision is 0.001, Ty = 50, and the maximum depth is 12 for r = 3 and 14 for v = 4, 5. For {;-RR

we use A = 0.01y/log(n)/n in (13) of [5].

Face Images. We compute S as follows. With X = UZVT the thin SVD of X, where U € R32256x64,
DPCP fits a 4-dimensional subspace S to the columns of X = U TX, a process which takes about a
tenth of a second. Then S is embedded back into R322%¢ via the map U : R®* — R3225¢ to yield

S. To compute K from S and X we use the custom algebraic solver of AIEM as well as £1-RR, PL,
Algorithm 2, with a proximal subgradient implementation of ¢;-RR using the toolbox of [2].

3 Additional Figures

First, we provide two more rows of o« = 0.6,0.2 of Figure 1 in the paper, see Figure 1 in this
supplemental manuscript.

Second, we provide one more evidence that the estimated subspace Sis satisfactory, which is
computed by DPCP with the same settings in Figure 3 of the paper. Figure 2 in this supplemental
manuscript additionally shows the estimation error in Figures 2e-2g when S* is used instead of S.
Evidently, the performance is nearly identical regardless of whether S or S* is used. This is justified
by Figure 2a, which shows that the maximal principal angle between Sand S always stays below 2°.

Self-Repr CoP op DPCP

random
outliers

ddiii

0103050709 0103050709 0103050709 0.1030.50.709
outlier ratio

Figure 1: Same setting of Figure 1 in the paper but with an additional row & = 0.6, 0.2.
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1234506 1234506 123456
2 25 o (e} (e}
19 (b) (1-RR(S) (c) PL(S) (d) Algorithm 2(5)
rH T3
7 25
0 1 19

1234506 1234506 1234506
o « «
(e) &1-RR(S*) (f) PL(S*) (g) Algorithm 2(S*)

Figure 2: Same settings of Figure 3 in the paper but with 2e-2g: Relative estimation error for the
same setting with X computed from X and S*.
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