A Appendix

A.1 Full experimental results

In this section we provide the full experimental results that extend the results demonstrated in the
Section 4.2. Table [ demonstrates the evaluation on 16 robustly trained CIFAR10 models from
RobustBench [28] that was summarized in the Table 2. We consider four configurations of the
attack for each of the models. SA and AA correspond to the update size schedules proposed by
Andriushchenko et al. [1] and Croce and Hein [2] respectively. "Uni" denotes sampling the color
for the update uniformly. MSA ;+MSA . is a combination of an update size controller with the color
sampling controller that we denoted as MSA in the Section 4.2. MSA ;+Uni is an ablated version in
which we only use an update size controller MSA ;. The clean and robust accuracy of the models are
taken from https://robustbench.github.io/l

Table 8: We compare the update size controller MSA to the schedules from the SA [1] and the
AA [2] in the ¢, threat model with ¢ = 8/255 on 1000 CIFAR10 test images. We also compare the
uniform color sampling denoted as "Uni" to our color controller MSA .. Averaged across at least 3
runs with different random seeds.

Model Accuracy (%) Square Color Query budget
Clean Robust size 500 1000 2500 5000
SA Uni 6974015  63.540.10  55.14004  50.840.08
AA Uni 6954021  639+0.10 5744007  53.6+0.06
Wong etal. [51] 8334 4321 | \isA, | Uni 63.940.11 5984010 5404016  51.140.08
MSA. | MSA, | 639+0.12 59.140.09 53.0+0.16  49.8+0.08
SA Uni 6874020 6324028  578+0.13  54.940.17
, AA Uni 6664018  62240.14  57540.12  55.040.20
Ding etal. [3] 8436 4l44 ) NigaL | Uni 62440.15 5944009  56.140.10  54.6:£0.06
MSA. | MSA, | 62240.14 59.140.16  559+40.15  54.140.15
SA Uni 7284019 6744021  599+40.17  56.340.07
AA Uni 719401 6794014 6164012  580-+0.06
Engstrom etal. [56] | 87.03 4925 | \iga | gpi 67.940.12  64240.15 5894005  564+0.12
MSA, | MSA. | 6784012 634+0.18 5824006  55.9+0.04
SA Uni 8064000 7674006 7084014  67.540.07
AA Uni 80.040.17 768+0.11 7224010 6924008
Gowal etal. [62] 89.48 6276 | \isA, | Uni 7694005 7374005  69.8+0.13  67.6:£0.04
MSA. | MSA, | 7694007 7344013  69.0£0.08  67.2+0.04
SA Uni 7904015 7604014 6824007  65.4:0.09
AA Uni 7804010  74540.11  69.640.04  67.140.05
Carmon et al. [63] 89.60 3953 | Nisa, | Uni 7444009 7084006 6754007  65.640.07
MSA. | MSA, | 74.640.10 7034007  67.040.07  65.4+0.08
SA Uni 723401 6664016 6054009  57.340.08
AA Uni 7064010 6654007 6124010  58.5+0.11
Huang et al. [52] 8348 5334 | NigAL | Uni 6644012 6344008  59240.07  57.440.15
MSA, | MSA. | 6614010 629+0.15 5874005  56.8+0.08
Andriushchenko SA Uni 6604022 6054024 5404006  50.240.03
and osa 4303 | AA Uni 64640.12 6024022 5574010  52.140.15
Flammarion : ' MSA, | Uni 6044009 5704007 5254019  50.0-£0.06
[64] MSA. | MSA, | 60.140.07 56.8+0.15  S5L9+0.15  49.4+0.22
SA Uni 7234003 6724019 6204009  59.0-£0.06
AA Uni 7084022 6724017 6274010  60.3+0.17
Zhang et al. [65] 8492 5308 1 NigA, | Uni 6754006 6424018 6084007  59.040.07
MSA. | MSA, | 6684009 6394007 60.4:£0.06  58.7+0.13
SA Uni 7534030 6984019 6424015  60.8-40.00
AA Uni 7474017 7054026 6474012  62.8+0.15
Hendrycks etal. [66] | 87.11 5492 | y\iga | g 7114007  66.6+0.15  63240.12  61.0+0.07
MSA. | MSA. | 70.64017 66.1+40.12 6274013  60.4+0.15
SA Uni 7774012 7224003 6584015  62.240.03
AA Uni 7674006 7284012  67.64020  64.040.17
Wang etal. [67] 8750 5629 | \isA, | Uni 7314018 6984009 6494015  62.340.03
MSA. | MSA, | 7274007 6954009  643+0.18  62.0+0.07
SA Uni 7554022 6964009 6294020  59.240.15
‘ AA Uni 7424013 7024007 6484007  61.140.23
Cui et al. [54] 8822 5286 | MigA, | Uni 7014007 6674018  61.840.12  59.740.03
MSA. | MSA, | 7004£0.15 6624025  60.8£0.09  59.0+0.06
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Model Accuracy (%) Square Color Query budget
Clean Robust size 500 1000 2500 5000
SA Uni 7344006  66440.10  61.14007  57.440.12
o AA Uni 7204020 6684023 6234020  59.4+£0.12
Sitawarin etal. [68] | 86.84 5072 | g | yy 6674006 6364003  603+0.17  57.540.03
MSA. | MSA, | 6694000 63.140.09  593+0.12  57.0+0.00
SA Uni 7504019 6974021  638+0.12  60.440.07
AA Uni 7364003 6954025 6454007  62.340.07
Wuetal. [53] 8536 5617 | \isA, | Uni 6964009  66.14020  63.140.17  60.740.07
MSA. | MSA, | 6944023 6574012  62.6+0.12  60.340.03
SA Uni 7964027 7464003 6694007  64.040.07
AA Uni 7844006 7534003 6894006  65.6-0.03
Zhang et al. [69] 8936 3964 1 NigA, | Uni 7514009 7144009 6624020  64.340.06
MSA. | MSA, | 75.040.19 704+0.17  65.610.09  63.8-£0.10
SA Uni 7344003 6754009 6154012  58.9-0.09
AA Uni 7234006 6774000 6234006  60.4-£0.06
Zhang et al. [70] 8452 3351 1 MgA,L | Uni 6744009 6364025 6124003  59.3+40.10
MSA. | MSA, | 67.64£006 635+0.09  60.6+£0.10  59.0+0.10
SA Uni 7314000 6624026 5654015  52.540.12
AA Uni 7184023  66540.07 5924009  547+0.12
Zhang etal. [71] 8720 4483 | \isA, | Uni 66940.18 6194009 5524015  52.6:£0.09
MSA. | MSA, | 664006 60.8+0.15  54.6:+0.09  51.9+0.12

Table 9] provides an extended version of the Table 4 in which we additionally provide the results for
the ablated version MSA ;+Uni to demonstrate that the update size controller on its own provides
better results than the considered baselines SA [1] and AA [2]. However, if we add a color sampling
controller MSA ., we manage to further improve the robust accuracy estimate.

Table [10] demonstrates the the results for the /5 threat model for five /5 robust models from Robust-
Bench [28]. We have chosen the models for which Croce and Hein [2] provide their evaluation of the
Square Attack. They evaluate on the whole CIFAR10 test set and we evaluate on a subset of 1000
test images. Therefore their estimate is not identical to our entry AA+Uni. But we still provide it as
Sq AA [2] in the Table @for additional reference.

A.2 Meta-training the Controllers

The meta-training of controllers was described in Section 3 and Section 4.1. We summarize it
schematically for the case of general random-search based black-box attack (Figure[3) and for the
Meta Square Attack (Figure[). We provide some additional details and illustrate the learning curves.

Table 9: Results of attacking 1000 ImageNet validation set images with /., threat model and
e = 4/255 as in Croce and Hein [2]. For the SA update size schedule, we use the parameter
p° = 0.05 as suggested in Andriushchenko et al. [1]. AA and Uni are defined as in Table 1. MSA,
and MSA . are meta-trained on CIFAR10 (see Section 4.1 for details). We report mean and standard
error of robust accuracy for different queries budgets across 3 runs with different random seeds.

Model Accuracy (%) | Square Color Query budget
Clean Robust | size 500 1000 2500 5000
SA Uni 50.6£1.43 48.1£1.18 43.9+£1.00 40.3+1.21
resnetl8 Salman 505 25.0 AA Uni 45.2+1.09 43.5+0.86 41.0£1.07 39.0+1.21
et al. [55] ’ ’ MSA; Uni 4344094 41.7+1.13 39.5+1.07 38.3£1.33

MSA; MSA. | 43.3£1.00 41.7+£0.94 39.1+1.23 37.8£1.36
SA Uni 59.840.64 57.2£0.79 529+1.11 48.6£1.31

fEeS“ettSO al G4 276 AA Uni 54.640.99 52.841.09 5034143 48.141.18
[S%g]sr"me al : : MSA, Uni 52.6+1.07 5124140 483+1.22 45.8+1.26

MSA; MSA,. | 52.5+1.23 50.8+1.47 48.0+1.15 45.84+1.35
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Figure 3: Schematic illustration of the general meta-learning procedure described in Section 3.2 for
two subsequent steps of the random search attack (3). We describe forward (black) and backward (red)
pass. V f denotes gradient for scalar-valued functions f and Jacobian for vector-valued functions.
Differential expressions with search distribution D,, are informal and in need to be handled with
reparametrization trick or other methods when applying the method to particular attacks (for examples
see Section 3.3). Please note that the gradient with respect to £! is set to 0 for all ¢ (see Section 3.2).
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Figure 4: Illustration of Meta Square Attack described in Section 3.3. The search distribution D, )
depends on parameters s and « that are provided by the update size controller 7, and the color
controller 77, , respectively. Square positions (pz,p,) are sampled from the uniform distribution
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Table 10: MSAi is the update size controller trained for the /5 attack on a CIFAR10 model described
in the Section 4.1. MSAZ° denotes the update size controller meta-trained for the ., Square Attack
on CIFARI10. The color controller MSA.. is the same as for the /., case. We compare to the /5
versions of SA [1] and AA [2] with ¢ = 0.5 on 1000 CIFAR10 images.

Model Accuracy (%) Square  Color Query budget
Clean Robust Sq AA [2] | size 500 1000 2500 5000
SA Uni 85.5+0.06 83.9+0.08 81.1+0.00 78.7+0.06
AA Uni 82.840.09 81.4+0.06 79.2+0.00 77.7£0.15

MSAZ®  Uni 82.6+0.09 81.7£0.12 79.840.12 77.9£0.07

Ding etal. [3] 8802 66.09  76.99 MSA%  MSA, | 8254022 81.5£0.03 78.5£0.06 76.9+0.17
AA MSA, | 82.640.03 81.1+£0.17 78.240.10 76.5+£0.09
MSA2  MSA, | 82.3£0.03 8$0.9+0.07 77.4+£0.09 75.8:£0.19
SA Uni | 8634007 84.7+0.10 81.4+0.15 79.740.07
AA Uni | 83.7+0.12 81.4£0.09 79.9+0.09 78.6=0.18

. MSA®™  Uni | 83240.12 81.8+£0.07 80.1£0.07 79.1-£0.09

Rice etal. [61] 88.67 6768 79.01 MSA® MSA, | 83.0+0.15 81.240.06 79.6:+0.03 78.3:0.03
AA MSA, | 83.440.12 81.2+0.10 79.3+£0.09 78.0+0.06
MSAZ  MSA, | 82.6£0.09 $1.0+0.07 78.7+0.03 76.9:+0.25
SA Uni | 89.0 88.4 86.9 84.2
AA Uni | 87.840.03 86.840.09 84.8+0.17 83.3+0.17

MSAZ®  Uni 87.7£0.06 87.0£0.09 852+0.03 83.4+0.10

Augustinetal. [72] | 91.08 7291 83.10 MSA®  MSA, | 8744015 865+0.12 8414020 82.8-+0.13

AA MSA, | 87.7£0.12 86.6+0.09 83.9+0.13 82.74+0.09
MSA?  MSA,. | 87.5+0.12 86.3+0.06 83.4+0.03 81.8+0.07
SA Uni 87.3 86.1 84.0 80.8

AA Uni 85.3+0.06 83.7+0.15 81.5+0.24 79.5+0.18

MSAZ®  Uni 85.2+0.12 84.2+0.17 82.0+£0.09 79.9£0.07

Engstrom et al. [36] | 9083 6924 8092 MSA®  MSA, | 8514007 83.7+0.03 80.6+0.06 78.8+0.09

AA MSA. | 85.240.07 83.5+0.07 80.6+0.06 78.5+0.15
MSA?  MSA, | 84.740.09 83.1+0.06 79.74+0.13 77.440.00
SA Uni 85.4 83.5 80.5 78.3

AA Uni 82.0+0.10 80.8+£0.10 78.9+0.03 77.0£0.15

MSAY®  Uni 81.8+£0.03 81.0£0.10 79.1+0.15 77.7£0.07
MSAZ®  MSA, | 81.9£0.07 80.7+£0.06 78.5+0.17 76.54+0.03
AA MSA. | 81.9+0.09 80.6+0.12 78.340.07 76.240.03
MSA?  MSA, | 81.6+0.03 80.4+0.00 77.240.00 75.7+0.09

Rony et al. [73] 89.05 66.44  78.05

As discussed in Section 3.3, we maximize the following meta-objective:

T-1
1 t . st+l
R(F,D.w) =% Y > Llfizjy;s(€' +0), ©6)
fi (@j,y5) t=1
where 61 ~ D, (¢,£°,8°, ..., £, %), Recall from Section 3.1 that L(f, z,y, &) = I(f(a(x,£)),y).

As discussed in in Section 3.3, we use total loss improvement over attack as our meta-loss. Therefore,
we choose [ in a way that it represents loss improvement caused by the update £ i. e.

l(f(a(x,f)),y) = (h(f(a(x,f)),y) - hmaw)-{-a (7N

where (x) is positive part function, h(p, q) is cross-entropy loss and h,q; is the largest cross-
entropy value obtained so far. In our case at step ¢ we have h,q, = h(f(a(z,s(£Y)),y) by design
of the random search attack (3). Finally, instead of solving the problem of maximizing R(F, D, w),
we are solving the equivalent problem of minimizing — R(F, D, w). Therefore, the loss that we use
for training our controllers for Meta Square Attack is:

T-1
Rysa(F,D,w) = _%Z Z Z(h(fi(a(xj’Hs(ft+5t+1))),yj)—h(fi(a(xj,ﬂg(gt)),yj))+,
fi (2j,y;) t=1
(®)

As discussed in Section 4, we use 1000 CIFAR1O0 test set images for meta-training and different
1000 images for evaluation. We use the default order of CIFAR10 images (i. e., we do not shuffle).
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Figure 5: Meta-loss and robust accuracy on the training set during meta-training.

For meta-training we use images from 0 to 999 and for evaluation we use images from 9000 to
9999. Figuredemonstrates the minimization of Rps¢4(F, D,w) and corresponding behavior of
the accuracy on the training set. One can see that the proposed meta-loss Ryss4(F, D,w) serves
as a reasonable differentiable proxy for the robust accuracy. We observe that the loss reaches a
close-to-minimal value already after two epochs.

A.3 Square relaxation

In Section 3.3, we formalize update size and color controllers that we learn for Meta Square Attack.
Here we provide additional details on how we avoid blocking of gradient flow in our optimization
scheme using relaxed square sampling.

T-1
g= %Z Z vaL(fivmjayj7£t+5t+l)a (9)

fi (z5,y5) t=1

for simplicity assuming that projection operator IIs in Equation (5) is incorporated into L. Since
we rewrite Vo, L(f;, x5, y;, &+ 0'TY) = Vaerr L(fi, 2, v, € + 611 V,,0'7L, we need to compute
the Jacobian V,,0'*! of update vector 6! with respect to meta-parameters w.

Recall that in Section 3.3 we denote w = (ws,w.) and consider controllers 7}, and 7¢, for the
update size and color respectively. Since computing V,, 67! is done via Gumbel softmax [46, 47],
here we concentrate on computing V,, §'*1. Since . only controls update size, we assume its
position and color to be fixed when computing the gradient.

In SA [1] each update is parametrized by an integer square width from {1, ..., w} where w is image
width. This parameter is obtained by rounding real value s obtained from the update size schedule to
the closest integer in the feasible range. During meta-training we cannot round the output s of 7,
since in that case we get V,,.6'T! = 0 almost everywhere. Therefore, we propose a differentiable
relaxation (see Figure @) The inner part of the square with width odd(s) = 2 - Lsglj + 1is filled
with the sampled color ¢ completely. The color of pixels in the 1-pixel boundary is interpolated
between the background color ¢y and the new color c as: k - ¢ + (1 — k) - ¢o. The coefficient k of
the new color is equal to the fraction that the square of non-integer width s would occupy in the

respective pixel. Therefore, for the 4-neighborhood the new color fraction is k = 5=0dd(s) 4nd for
the pixel of 8-neighborhood that do not belong to 4-neighborhood k = (=342,

A.4 Additional analysis of the learned controllers

In this Section we provide some additional analysis of the meta-learned controllers that we have
started in the Section 4.3.
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(a) (b) ()

Figure 6: (a) illustration of a square with non-integer size s (red), size odd(s) (black), 4-neighborhood
(white) and 8-neighborhood pixels that do not belong to 4-neighborhood (green), (b) standard square
attack perturbation, (c) square attack perturbation with proposed square relaxation.
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Figure 7: Additional analysis of the meta-learned controllers. The plot of the (a) update size controller
MSA and (b) color controller MSA .. as functions of their inputs. (c) MSA adjustment to the target
schedules (averaged over 25 runs).

Since our controllers are functions of 2 inputs as described in the Section 3.3 we can illustrate the
dependence of their outputs on these inputs. We show it in Figure[7a] for the update size controller
and Figure [7b] for the color controller.

The Figure [7c]illustrates observed schedules for idealized (and untypical) target schedules: these
target schedules are unknown to the controller and are encoded in the success probabilities by setting
p(rt = 1) = 0.4 for update sizes smaller or equal to the value of the target schedules and to
p(rt = 1) = 0.1 otherwise. This abrupt change of the success probabilities and the shape of the target
schedules “constant” and “linear” are very unlike the behavior of the attacks during meta-training;
nevertheless the empirical schedules by the controller follow the target behavior reasonably good,
indicating that the learned square-size controller generalizes well.
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Figure 8: Perturbation of the /5 attack. Image source: Andriushchenko et al. [1]

A.5 Meta Square Attack for the ¢, threat model

To meta-learn the update size controller for the /5 threat model we use the same procedure as
discussed in Section 3.3. The only difference is the relaxation that we use to sample continous
updates since the update geometry is different. See Section[A3]for the /,, case.

The sampling procedure of the /5 Square Attack is described in detail in the Algorithm 3 in An-
driushchenko et al. [1]. On a high level the algoritm consists of 2 steps (Figure g):

1. Take the mass from W5
2. Update Wy

Let s be non-integer square size. odd(s) — the largest odd integer number not exceeding s, odd(s) =

2 [#51] 4 1. The performed update is a linear interpolation between the squares of size odd(s) and

odd(s) + 2. We denote frac(s) = %‘i(s) € [0; 1) that will be an interpolation coefficient.

For the step 1 we consider the window W» of size odd(s) and denote it’s 1-pixel outer boundary as
WPE. As in SA [1], we set the whole W5 to 0 and add ||W2||2 to the update budget. We also add
frac(s) - |[WE||2 to the budget, therefore taking frac(s) part of the norm. We update the boundary

as W30 = /1 = frac(s)? - Wy We get || W[5 = |[W3),c0l13 + frac(s)® - [|[WF][3.
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A.6 Used data

In this work we only use the data published under formal licenses. To the best of our knowledge, data
used in this project do not contain any personally identifiable information or offensive content.

For the CIFAR10 and CIFAR100 experiments in Table [§] we use pre-trained models from the
RobustBench [28]. Information about architecture of the models and licenses of the corresponding
model weights are in Table [TT] Full texts of the licenses are available under the following link:
https://github.com/RobustBench/robustbench/blob/master/LICENSE.

Table 11: Architecture and licenses of the models used in this work

Dataset | Model | Architecture | Model weights license
Wong et al. [51] ResNet-18 MIT
Ding et al. [3] WideResNet-28-4 Attribution-NonCommercial-
ShareAlike 4.0  International;
Copyright (c) 2020, Borealis Al
Engstrom et al. [56] ResNet-50 MIT
Gowal et al. [62] WideResNet-28-10 | Apache License 2.0; Copyright (c)
2021, Google
Carmon et al. [63] WideResNet-28-10 | MIT
Huang et al. [52] WideResNet-34-10 | MIT
Andriushchenko and | PreActResNet-18 MIT
Flammarion [64]
Zhang et al. [65] WideResNet-34-10 | MIT
CIFAR10 | Hendrycks et al. [66] | WideResNet-28-10 | Apache License 2.0; Copyright (c)
2019, Dan Hendrycks
Wang et al. [67] WideResNet-28-10 | MIT
Cui et al. [54] WideResNet-34-10 | MIT
Sitawarin et al. [68] WideResNet-34-10 | MIT
Wu et al. [53] WideResNet-34-10 | MIT
Zhang et al. [69] WideResNet-28-10 | MIT
Zhang et al. [70] WideResNet-34-10 | MIT
Zhang et al. [71] WideResNet-34-10 | MIT
Rice et al. [61] PreActResNet-18 MIT
Augustin et al. [72] ResNet-50 MIT
Rony et al. [73] WideResNet-28-10 | BSD 3-Clause License; Copyright
(c) 2018, Jerome Rony
Wu et al. [53] WideResNet-34-10 | MIT
CIFAR100 Cui et al. [54] WideResNet-34-10 | MIT
Salman et al. [55] ResNet-18 MIT
Engstrom et al. [56] ResNet-50 MIT
BSD-3-Clause License
ImageNet He et al. [58] ResNet-50 (torchvision [74])
Simonyan and Zisser- | VGG16-BN BSD-3-Clause License (torchvision

man [59]
Szegedy et al. [60]

Inception v3

(741
BSD-3-Clause License
(torchvision [74])
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