
Organization of the appendix

We provide a map of the results in the appendix.

1. In section A we provide formal statements of theorems 1 and 2. We also discuss the more
general spectral gap condition maxi |λi(A)| < 1 instead of the stronger condition ∥A∥ < 1
and its impact on the results.

2. In section B we construct the coupled process X̃t and setup notations used in the rest of
the paper. The coupled process has the additional property that the successive buffers are
independent.

3. In section C we show that the SGD− RER iterates generated using the coupled process are
close to ones generated by the actual data. After this, we only deal with the coupled iterates.

4. In section D we provide the bias-variance decomposition
5. In section E we provide the proof of the parameter error bound of theorem 1. Required

intermediary results are discussed in section L.
6. In section F we present the bounds on the bias and variance terms separately (for last and

average iterates), which are necessary to prove theorem 6. Most of the proofs are relegated
to sections H, I, J, K and N.

7. In section G we prove theorem 2.
8. In section M, we prove the lower bounds for the prediction error given in theorem 4.
9. In section O we discuss the scenario of VAR(A∗, µ) where A∗ is sparse with known sparsity

pattern. We provide a proof sketch of the bound on prediction error in terms of sparsity.

A Formal Results and Proof Sketch

In this Section, we formally state the full results and sketch the outline of our proof. Recall
the definitions of Lop and Lpred from section 2. For all the theorems below, we suppose that
Assumptions 1, 2 and 3 hold. Assume that u, γ,B, α and R are as chosen in section 4.

Let t > a and let Âa,t be the tail averaged output of SGD − RER after buffer t − 1. Further let
Tα/2 > cdκ(G).

Theorem 5. Suppose we pick the step size γ = min
(

C
Bσmin(G) ,

1
8BR

)
for some constant C

depending only on Cµ. Then, there are constants C, ci > 0, 0 ≤ i ≤ 4 such that if a >

c0 (d+ α log T ) then with probability at least 1− C
Tα , we have:

Lop(Âa,t, A
∗, µ) ≤ c1

√
(d+ α log T )σmax(Σ)

(t− a)Bσmin(G)
+ βb ∥A0 −A∗∥+ c4

T 2

B2
∥A∗u∥ (9)

where

βb = c3
dκ(G) log T

t− a
e−c2

a
dκ(G) log T (10)

The techniques for the proof is developed in Section L and the Theorem 5 is proved in Section E.
Theorem 6. Let R,B, u, α be chosen as in section 4. Let γ = c

4RB ≤
1
2R for 0 < c < 1. Then there

are constants c1, c2, c3, c4 > 0 such that for Tα/2 > c1
√
M4

σmin(G) the expected prediction loss Lpred is
bounded as

E
[
Lpred(Âa,t;A

∗, µ)
]
− Tr(Σ) ≤ c2

[
dTr(Σ)

B(t− a)
+

d2σmax(Σ)

B(t− a)

√
κ(G)

B

]
+

c3

[
d2σmax(Σ)

B2(t− a)2
(κ(G))3/2dB log T+

βb Tr(G) ∥A0 −A∗∥2 +(
T 3

B3
∥A∗u∥+ dσmax(Σ)

R

T 2

B2

1

Tα/2

)
Tr(G)

]
(11)
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where βb is defined in (10).

The above theorem is proven only for the case t = N . The proof for general t is almost the same. The
proof follows by first considering E

[
Lpred(Âa,N ;A∗, µ)1

[
D0,N−1

]]
(D0,N−1 is defined in B.1)

and using theorem 20 and theorem 21 along with lemma 12 in the appendix sections G.1, G.2 and C.
Then noting that if the norm of any of the covariates Xt exceed

√
R the algorithm returns the zero

matrix we have that E
[
Lpred(Âa,N ;A∗, µ)1

[
D0,N−1,C

]]
≤ c ∥A∗∥Tr(G) 1

Tα .

Remark.

(1) In theorem 6 the term d2σmax(Σ)
B(t−a)

√
κ(G)

B is strictly a lower order term compared to dTr(Σ)
B(t−a)

when ∥A∗∥ < c0 < 1. To see this note that σmax(G) ≤ σmax(Σ)

1−∥A∗∥2 and σmin(G) ≥ σmin(Σ).

Hence κ(G) ≤ κ(Σ)

1−∥A∗∥2 = O(τmixκ(Σ)). By the choice of B in the section 4 we see that
√

κ(G)

B = o(1) and it does not depend on condition number of A∗.

(2) If a = Ω
(
dκ(G) (log T )

2
)

the βb is a lower order term. Further choosing u and α as in

section 4 we see that the terms depending on ∥A∗u∥ and 1
Tα/2 are strictly lower order.

(3) Thus for the choice of a as in the previous remark such that a < (1 + c)t (for some c > 0),

we get minimax optimal rates: dTr(Σ)
Bt for Lpred and up to log factors,

√
dσmax(Σ)
Tσmin(G) for Lop

A.1 Spectral Gap Condition

In Assumption 1, we could have used the more general spectral radius condition ρ(A∗) =
supi |λi(A

∗)| < 1 rather than the one on the operator norm. We have the Gelfand formula for
spectral radius which shows that limk→∞ ∥A∗k∥1/k = ρ(A∗). Now, if A∗ is such that ρ(A∗) < 1
but ∥A∗∥ > 1 (a case studied by [5]), then we need to make u as large as Cd log T which would lead
to a relatively large buffer size B of d log T . To see this, we verify the proof by [50] (by replacing A

with A
∥A∥ and ρ(A) with ρ

∥A∥ in the proof) to show that ∥A∗k∥ ≤ (2k∥A∗∥)d ρk−d whenever k ≥ d.
Therefore, in the worst case, we can pick u = O

(
(log (Tσmax(G)) + d log d∥A∥) / log 1/ρ

)
.

In the case of ρ < 1 but ∥A∗∥ > 1, κ(G) can grow super linearly in d. For instance, consider A∗

to be nilpotent of order d (i.e. A∗d−1 ̸= 0 but A∗d = 0). Here σmax(G) can grow like ∥A∗∥d. So
we need exponentially (in d) many samples for bias decay. However, in many cases of interest (ex:
symmetric matrices, normal matrices etc) the spectral radius is the same as the operator norm.

B Basic Lemmas and Notations

Since the covariates {Xτ}τ≤T are correlated, we will introduce a coupled process such that we
have independence across buffers and that Euclidean distance between the covariates of the original
process and the coupled process can be controlled.
Remark. Note that the coupled process is imaginary and we do not actually run the algorithm with
the coupled process. We construct it to make the analysis simple by first analyzing the algorithm
with the imaginary coupled process and then showing that the output of the actual algorithm cannot
deviate too much when run with the actual data.
Definition 1 (Coupled process). Given the covariates {Xτ : τ = 0, 1, . · · ·T} and noise {ητ : τ =

0, 1, · · · , T}, we define {X̃τ : τ = 0, 1, · · · , T} as follows:

1. For each buffer t generate, independently of everything else, X̃t
0 ∼ π, the stationary

distribution of the VAR(A∗, µ) model.
2. Then, each buffer has the same recursion as eq (2):

X̃t
i+1 = A∗X̃t

i + ηti , i = 0, 1, · · ·S − 1, (12)

where the noise vectors as same as in the actual process {Xτ}.

With this definition, we have the following lemma:
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Lemma 7. For any buffer t, ∥Xt
i − X̃t

i∥ ≤ ∥A∗i∥∥Xt
0 − X̃t

0∥, a.s.. That is,

∥Xt
iX

t
i
T − X̃t

i X̃
t
i

T ∥ ≤ 2 ∥X∥ ∥Xt
i − X̃t

i∥ ≤ (2 ∥X∥)2∥A∗i∥. (13)
Here ∥X∥ denotes supτ≤T ∥Xτ∥.
Lemma 8. Suppose µ obeys Assumption 2 and A∗ obeys Assumption 1. Suppose X ∼ π, which is
the stationary distribution of VAR(A∗, µ). ⟨X,x⟩ has mean 0 and is sub-Gaussian with variance
proxy Cµx

⊤Gx

Proof. Suppose η1, . . . , ηn, . . . is a sequence of i.i.d random vectors drawn from the noise distribution
µ. We consider the partial sums

∑n
i=0 A

∗iηi. Call the law of this to be πn. Clearly πn converges
in distribution to π as n → ∞ since πn is the law of the n + 1-th iterate of VAR(A∗, µ)
chain stated at X0 = 0. By Skorokhod representation theorem, we can define the infinite
sequence X(1), . . . , X(n), . . . , and another random variable X such that X(i) ∼ πi, X ∼ π and
limn→∞ X(n) = X a.s. Define Gn =

∑n
i=0 A

∗iΣ(A∗i)T . Clearly, Gn ⪯ G =
∑∞

i=0 A
∗iΣ(A∗i)T .

A simple evaluation of Chernoff bound for ⟨X(n), x⟩ by decomposing it into the partial sum of noises
shows that:

E exp(λ⟨X(n), x⟩) ≤ exp

(
λ2Cµ

2
⟨x,Gnx⟩

)
≤ exp

(
λ2Cµ

2
⟨x,Gx⟩

)
We now apply Fatou’s lemma, since X(n) → X almost surely, to the inequality above to conclude
that:

E exp(λ⟨X,x⟩) ≤ exp

(
λ2Cµ

2
⟨x,Gx⟩

)
.

Hence ⟨x,Xt⟩ is subgaussian with mean 0 and variance proxy Cµσmax(G) ∥x∥2. This will provide
uniform variance for all x such that ∥x∥2 = 1.

From subgaussianity and standard ϵ-net argument we have the following lemma.
Lemma 9. For any β > 0 there is a constant c > 0 such that

P
[
∃τ ≤ T : ∥Xτ∥2 > cTrG log T

]
≤ d

T β
(14)

Thus as long as d < Poly(T ), for every α > 0 there is a c > 0 such that

P
[
∃τ ≤ T : ∥Xτ∥2 > cTrG log T

]
≤ 1

Tα
(15)

B.1 Notations

Before we analyze this algorithm, we define some notations. We work in a probability space (Ω,F ,P)
and all the random elements are defined on this space. We define the following notations:

Xt
−i = Xt

(S−1)−i, 0 ≤ i ≤ S − 1, G =

∞∑
s=0

A∗sΣ(A∗⊤)s, Gt =

t−1∑
s=0

A∗sΣ(A∗⊤)s,

P̃ t
i =

(
I − 2γX̃t

i X̃
t,⊤
i

)
, H̃t

i,j =

{∏j
s=i P̃

t
−s i ≤ j

I i > j
,

γ̂ = 4γ(1− γR), Ct−j =
{
∥Xt

−j∥2 ≤ R
}
, C̃t−j =

{
∥X̃t

−j∥2 ≤ R
}
,

Dt
−j =

{
∥Xt

−i∥2 ≤ R : j ≤ i ≤ B − 1
}
=

B−1⋂
i=j

Ct−i,

Ds,t =

{⋂t
r=sDr

−0 s ≤ t

Ω s > t
, D̃t

−j =
{
∥X̃t

−i∥2 ≤ R : j ≤ i ≤ B − 1
}
=

B−1⋂
i=j

C̃t−i,

D̃s,t =

{⋂t
r=s D̃r

−0 s ≤ t

Ω s > t
, D̂t

−j = Dt
−j ∩ D̃t

−j , D̂s,t = Ds,t ∩ D̃s,t.
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Lastly c and ci for i = 0, 1, · · · denote absolute constants that can change from line to line in the
proofs.

C Initial Coupling

We consider the coupled process introduced in Definition 1 and run SGD− RER with the fictitious
coupled process X̃τ instead of Xτ in order to obtain the iterates Ãt

i instead of At−1
i . Using Lemma 7,

we can show that Ãt−1
i ≈ At−1

i . It is easier to analyze the iterates Ãt
i due to buffer independence.

Lemma 10. Let γ ≤ 1
2R . Under the event D0,N−1, for every t ∈ [N ] and 0 ≤ i ≤ B − 1 we have:

∥At−1
i ∥ ≤ 2γRT .

Lemma 11. Suppose γ < 1
2R . Under the event D̂0,N−1 we have for every t ∈ [N ] and 0 ≤ i ≤ B−1.

∥At−1
i − Ãt−1

i ∥ ≤ (16γ2R2T 2 + 8γRT ) ∥A∗u∥

We can now just analyze the iterates Ãt−1
i and then use Lemma 11 to infer error bounds for At−1

i .
Henceforth, we will only consider Ãt−1

i .

Lemma 12. Consider the algorithmic iterates obtained from the actual process and coupled process
(At

j) and (Ãt
j). Then

E
[(
At−1

j −A∗)⊤ (At−1
j −A∗) 1 [D0,t−1

]]
⪯ E

[(
Ãt−1

j −A∗
)⊤ (

Ãt−1
j −A∗

)
1
[
D̃0,t−1

]]
+ c

(
γ3R3T 3 ∥A∗u∥+ γ2dσmax(Σ)RT 2 1

Tα/2

)
I (16)

for some constant c. Furthermore, the same conclusion holds for the average iterates. That is let

Âa,N =
1

N − a

N∑
t=a+1

At−1
B

ˆ̃Aa,N =
1

N − a

N∑
t=a+1

Ãt−1
B

Then

E
[(

Âa,N −A∗
)⊤ (

Âa,N −A∗
)
1
[
D0,N−1

]]
⪯ E

[(
ˆ̃Aa,N −A∗

)⊤ ( ˆ̃Aa,N −A∗
)
1
[
D̃0,N−1

]]
+ c

(
γ3R3T 3 ∥A∗u∥+ γ2dσmax(Σ)RT 2 1

Tα/2

)
I (17)

Remark. The above lemma holds as is when At−1
j , Ãt−1

j is replaced by At−1,v
j , Ãt−1,v

j respectively.

We refer to Section N for the proofs of the three lemmas.

D Bias Variance Decomposition

Now, we can unroll the recursion in (6), but for the coupled iterates Ãt−1
i as

Ãt−1
B −A∗ =

(
Ãt−1,b

B −A∗
)
+
(
Ãt−1,v

B

)
, (18)

where (
Ãt−1,b

B −A∗
)
= (A0 −A∗)

t−1∏
s=0

H̃s
0,B−1 (19)
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is the bias term, and the variance term is given by:(
Ãt−1,v

B

)
= 2γ

t∑
r=1

B−1∑
j=0

ηt−r
−j X̃t−r,⊤

−j H̃t−r
j+1,B−1

1∏
s=r−1

H̃t−s
0,B−1 (20)

Here we use the convention that whenever r = 1, the product
∏1

s=r−1 is empty i.e, equal to 1.
The ‘bias’ term is obtained when the noise terms are set to 0, and captures the movement of the
algorithm towards the optimal A∗ when we set the initial iterate far away from it. The ‘variance’
term

(
At,v

B −A∗) capture the uncertainty due to the inherent noise in the data. Our main goal is
to understand the performance (estimation and prediction) of the tail-averaged iterates output by
SGD− RER. Here, we consider just the last iterate, but the same technique applies to all the outputs
of SGD − RER. That is, ˆ̃Aa,N = 1

N−a

∑N
t=a+1 Ã

t−1
B , for a = ⌈θN⌉ with 0 < θ < 1. We can

decompose the above into bias and variance as: ˆ̃Aa,N = ˆ̃Av
a,N + ˆ̃Ab

a,N , with,

ˆ̃Av
a,N =

1

N − a

N∑
t=a+1

Ãt−1,v
B (21)

ˆ̃Ab
a,N =

1

N − a

N∑
t=a+1

Ãt−1,b
B . (22)

Similarly, we can decompose the final error into ‘bias’ and ‘variance’ as in Lemma 13 below.
Lemma 13 (Bias-Variance Decomposition). We have the following decomposition:(

Ãt−1
B −A∗

)⊤ (
Ãt−1

B −A∗
)
⪯ 2

[(
Ãt−1,b

B −A∗
)⊤ (

Ãt−1,b
B −A∗

)
+(

Ãt−1,v
B

)⊤ (
Ãt−1,v

B

)]
.

E Parameter Error Bound–Proof of Theorem 5

In this section, we formally prove the bounds on Lop(;A
∗, µ), by combining several operator norm

inequalities that we prove in Section L. As mentioned previously, we will just focus on the algorithmic
iterates from the coupled process (Ãt−1

j ). Recall the output Ãt−1
B after the t − 1-th buffer from

Equation (18). For any initial buffer index a ∈ {0, 1, . . . , N − 1}, the tail averaged output of our
algorithm is:

ˆ̃Aa,N :=
1

N − a

N∑
t=a+1

Ãt−1
B .

Recall the quantities Ãt−1,v
B and Ãt−1,b

B as defined in (19) and (20). We can use this decomposition
to write:

ˆ̃Aa,N −A∗ = ˆ̃Ab
a,N −A∗ + ˆ̃Av

a,N .

Here ˆ̃Ab
a,N − A∗ := 1

N−a

∑N
t=a+1

(
Ãt−1,b

B −A∗
)

denotes the bias part and ˆ̃Av
a,N :=

1
N−a

∑N
t=a+1

(
Ãt−1,v

B

)
denotes the variance part.

E.1 Variance

Note that

ˆ̃Av
a,N =

N

N − a

(
ˆ̃Av
0,N

)
− a

N − a

(
ˆ̃Av
0,a

)
(23)

Now, we apply Theorem 33 with δ in the definition of M̃0,N−1 to be 1
Tυ for some fixed υ ≥ 1. We

conclude that conditioned on the event M̃0,N−1 ∩D̃0,N−1, with probability at least 1− 1
Tυ , we have:
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∥ ˆ̃Av
0,N∥ ≤ C

√
γ(d+ υ log T )2σmax(Σ)

N
+ C

√
(d+ υ log T )σmax(Σ)

NBσmin(G)
.

Similarly, applying Theorem 33 with N = a shows that with probability at least 1− 1
Tυ conditioned

on the event M̃0,N−1 ∩ D̃0,N−1:

∥ ˆ̃Av
0,a∥ ≤ C

√
γ(d+ υ log T )2σmax(Σ)

a
+ C

√
(d+ υ log T )σmax(Σ)

aBσmin(G)
.

Here, the constant C depends only on Cµ. We also note that when we pick γBR ≤ C0 where
R ≳ Tr(G) + υ log T , the first term in the equations above becomes smaller than the second term.
Therefore, under this assumption we can simplify the expressions to:

∥ ˆ̃Av
0,N∥ ≤ C

√
(d+ υ log T )σmax(Σ)

NBσmin(G)
. (24)

∥ ˆ̃Av
0,a∥ ≤ C

√
(d+ υ log T )σmax(Σ)

aBσmin(G)
. (25)

Applying Equations (24) and (25) to Equation (23) we conclude that conditioned on the event
M̃0,N−1 ∩ D̃0,N−1, with probability at least 1− 2

Tυ , we have:

∥ ˆ̃Av
a,N∥ ≤

N

N − a
∥
(
ˆ̃Av
0,N

)
∥+ a

N − a
∥
(
ˆ̃Av
0,a

)
∥

≤ CN

N − a

√
(d+ υ log T )σmax(Σ)

NBσmin(G)
+

Ca

N − a

√
(d+ υ log T )σmax(Σ)

aBσmin(G)
. (26)

Choose a < N/2. Since

P
[
M̃0,N−1 ∩ D̃0,N−1

]
≥ 1− (

1

T υ
+

1

Tα
)

we have

P

[
∥ ˆ̃Av

a,N∥ > C

√
(d+ υ log T )σmax(Σ)

(N − a)Bσmin(G)

]
≤ 1

Tα
+

3

T υ
(27)

E.2 Bias

We now consider the bias term: ˆ̃Ab
a,N −A∗ := 1

N−a

∑N
t=a+1

(
Ãt−1,b

B −A∗
)

. First note that, from
equation (19), we have∥∥∥ ˆ̃Ab

a,N −A∗
∥∥∥ ≤ 1

N − a

N∑
t=a+1

∥A0 −A∗∥

∥∥∥∥∥
t−1∏
s=0

H̃s
0,B−1

∥∥∥∥∥ (28)

Now from lemma 31, if a > c1
(
d+ log N

δ

)
then conditional on D̃0,N−1 with probability at least

1− δ, for all a+ 1 ≤ t ≤ N we have∥∥∥∥∥
t−1∏
s=0

H̃s
0,B−1

∥∥∥∥∥ ≤ 2 (1− γBσmin(G))
c2t (29)

Note that in lemma 31 we only condition on D̃0,t−1 but due to buffer independence and that
P
[
D̃0,N−1

]
≥ 1− 1

Tα we can condition on D̃0,N−1.
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Note that in the proof of lemma 31 the constant c2 is actually at most 1 i.e., 0 < c2 ≤ 1. Hence from
Bernoulli’s inequality, for x < 1

(1− x)c2 ≤ 1− c2x

Thus conditional on D̃0,N−1 with probability at least 1− δ∥∥∥ ˆ̃Ab
a,N −A∗

∥∥∥ ≤ ∥A0 −A∗∥
N − a

∞∑
t=a+1

2 (1− γBσmin(G))
c2t

= 2
∥A0 −A∗∥
N − a

(1− γBσmin(G))
c2a

c2γBσmin(G)

≤ c3
∥A0 −A∗∥
N − a

e−c2aγBσmin(G)

γBσmin(G)
(30)

Hence choosing δ = 1
Tυ we have for a > c1

(
d+ log N

δ

)
P
[∥∥∥ ˆ̃Ab

a,N −A∗
∥∥∥ > c3

∥A0 −A∗∥
N − a

e−c2aγBσmin(G)

γBσmin(G)

]
≤ 1

Tα
+

1

T υ
(31)

Define βb as

βb = c3
1

N − a

e−c2aγBσmin(G)

γBσmin(G)
(32)

Thus by union bound and equations (27) and (31) we get

P

[∥∥∥ ˆ̃Aa,N −A∗
∥∥∥ > C

√
(d+ υ log T )σmax(Σ)

(N − a)Bσmin(G)
+ βb ∥A0 −A∗∥

]
≤ 2

Tα
+

4

T υ
(33)

Now from lemma 11 we see that on the event D̂0,N−1∥∥∥Âa,N − ˆ̃Aa,N

∥∥∥ ≤ cγ2R2T 2 ∥A∗u∥ (34)

Since P
[
D̂0,N−1

]
≥ 1− 1

Tα , we obtain

P
[∥∥∥Âa,N − ˆ̃Aa,N

∥∥∥ ≤ cγ2R2T 2 ∥A∗u∥
]
≥ 1− 1

Tα
(35)

Therefore choosing δ = 1
Tυ we have for N/2 > a > c1

(
d+ log N

δ

)
P

[∥∥∥Âa,N −A∗
∥∥∥ > C

√
(d+ υ log T )σmax(Σ)

(N − a)Bσmin(G)
+ βb ∥A0 −A∗∥+ c4γ

2R2T 2 ∥A∗u∥

]
≤ 3

Tα
+

4

T υ
(36)

where βb is defined in (32).

The theorem follows by adjusting the constants (in choosing δ) such the above probability is at most
3
Tα + 1

2Tυ and then choosing υ such that 3
Tα ≤ 1

2Tυ .

F Bias Variance Analysis of Last and Average Iterate

In this section, our goal is to provide a PSD upper bound on

E
[(

Ãt−1
B −A∗

)⊤ (
Ãt−1

B −A∗
)]

,E
[(

ˆ̃Aa,N −A∗
)⊤ ( ˆ̃Aa,N −A∗

)]
using the bias variance decomposition in (18) and (22). This bound leads to Theorem 15 which is
critical for our parameter error proof (Theorem 5).
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F.1 Variance of the Last Iterate

The goal of this section is to bound error due to
(
Ãt−1,v

B

)
. For brevity, we will introduce the

following notation:

Ṽt−1 = E
[(

Ãt−1,v
B

)⊤ (
Ãt−1,v

B

)
1
[
D̃0,t−1

]]
. (37)

The following proposition is the main result of this section.
Proposition 1. Let γ ≤ 1

2R . Let the noise covariance be E
[
ηtη

T
t

]
= Σ. Then,

Ṽt−1 ⪯ γ Tr(Σ)

1− γR

[
I − E

[(
t∏

s=1

H̃t−s,⊤
0,B−1

)(
1∏

s=t

H̃t−s
0,B−1

)
1
[
D̃0,t−1

]]]
+ c1γ

2dσmax(Σ)(Bt)2
1

Tα/2
I,

Ṽt−1 ⪰ γ Tr(Σ)

[
I − E

[(
t∏

s=1

H̃t−s,⊤
0,B−1

)(
1∏

s=t

H̃t−s
0,B−1

)
1
[
D̃0,t−1

]]]
− c4γ

2dσmax(Σ)(Bt)2
1

Tα/2
I,

for some absolute constants ci > 0, 1 ≤ i ≤ 4.

We refer to Section H in the appendix for a full proof. Note that we have, 1
1−γ∥X∥2 ≤ 2.

Corollary 1. In the same setting as Proposition 1, we have:

Ṽt−1 ⪯ c1γ Tr(Σ)I + c2γ
2dσmax(Σ)(Bt)2

1

Tα/2
I, (38)

for some constants c1, c2 > 0. If Tα/2 > T 2, then Vt,1 ⪯ cγdσmaxI , for some constant c > 0.

F.2 Variance of the Average Iterate

In this section we are interested in bounding: E
[(

ˆ̃Av
a,N

)⊤ ( ˆ̃Av
a,N

)
1
[
D̃0,N−1

]]
, for a = θN with

0 ≤ θ < 1, where,

ˆ̃Av
a,N =

1

N − a

N∑
t=a+1

Ãt−1,v
B , (39)

and further, recall that T = N(B + u). The main bound in this section is given in Proposition 2.
Note that we have,

E
[(

ˆ̃Av
a,N

)⊤ ( ˆ̃Av
a,N

)
1
[
D̃0,N−1

]]
=

1

(N − a)2

N∑
t=a+1

E
[(

Ãt−1,v
B

)⊤ (
Ãt−1,v

B

)
1
[
D̃0,N−1

]]
+

1

(N − a)2

∑
t1 ̸=t2

E
[(

Ãt1−1,v
B

)⊤ (
Ãt2−1,v

B

)
1
[
D̃0,N−1

]]
(40)

Proposition 2. Let γ ≤ min{ c
6RB

1
2R} for 0 < c < 1. Then for ˆ̃Av

a,N defined in (39), there are
constants c1, c2 > 0 such that if Tα/2 > c1

√
M4

σmin(G) , then:

E
[(

ˆ̃Av
a,N

)⊤ ( ˆ̃Av
a,N

)
1
[
D̃0,N−1

]]

⪯ 1

(N − a)2

N∑
t=a+1

Ṽt−1

(
N−t∑
s=0

Hs

)
+

(
N−t∑
s=0

Hs

)⊤

Ṽt−1

+ c2δI (41)

=
1

(N − a)2

N∑
t=a+1

[
Ṽt−1 (I −H)−1

+
(
I −H⊤)−1

Ṽt−1

]
+ c2δI +

1

(N − a)2

N∑
t=a+1

[
Ṽt−1 (I −H)−1HN−t+1 +

(
H⊤)N−t+1 (

I −H⊤)−1
Ṽt−1

]
(42)
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and,

δ ≡ δ(N,B,R) = γ2T 2Rdσmax(Σ)
1

Tα/2
(43)

andH is given by,

H = E

B−1∏
j=0

(
I − 2γX̃0

−jX̃
0,⊤
−j

)
1
[
∩B−1
j=0

{
∥X̃0

−j∥2 ≤ R
}] , (44)

with X̃0 sampled from the stationary distribution π and X̃t follows the VAR(A∗, µ).

See section I in the appendix for the proof.

F.3 Bias of the Last Iterate

In this we will analyze the bias term of the last iterate. That is we want to bound:

E
[(

Ãt−1,b
B −A∗

)⊤ (
Ãt−1,b

B −A∗
)
1
[
D̃0,t−1

]]
.

Where
(
Ãt−1,b

B −A∗
)

is defined in (19).

Theorem 14. Let γRB ≤ c
6 for some 0 < c < 1 with B such that γR ≤ 1

2 . Then there are constants

c1, c2, c3 > 0 such that if Tα/2 > c1
√
M4

σmin(G) (where M4 = E
[
∥X̃0

−0∥4
]
) then

E
[(

Ãt−1,b
B −A∗

)⊤ (
Ãt−1,b

B −A∗
)
1
[
D̃0,t−1

]]
⪯ ∥A0 −A∗∥2 (1− c2γBσmin(G))

t
I (45)

See section J for the proof.

F.4 Bias of the Tail-Averaged Iterate

We define the tail averaged bias as

ˆ̃Ab
a,N =

1

N − a

N∑
t=a+1

Ãt−1,b
B (46)

Theorem 15. Let γRB ≤ c
6 for some 0 < c < 1 and B such that γR ≤ 1

2 . There exist constants
c1, c2 > 0 such that if T = N(B + u) satisfies Tα/2 > c1

√
M4

σmin(G) then for a = θN with 0 < θ < 1
we have ∥∥∥∥E [( ˆ̃Ab

a,N −A∗
)⊤ ( ˆ̃Ab

a,N −A∗
)
1
[
D̃0,N−1

]]∥∥∥∥ ≤
c2

1

B(N − a)

e−c3Bγσmin(G)a

γσmin(G)
∥A0 −A∗∥2 (47)

See section K for the proof.

G Prediction Error

Recall the definition of the prediction error at stationarity.

Lpred(Â;A∗, µ) := EXt∼π∥Xt+1 − ÂXt∥2 (48)

where π is the stationary distribution.

Note that the prediction loss is a function of possibly random estimator Â. Hence the expectation
in (48) is only with respect to the process (Xt) (which is considered independent of Â). Letting
G = E

[
XtX

⊤
t

]
as the covariance matrix of the process at stationarity, we can write

Lpred(Â;A∗, µ) = Tr(G(Â−A∗)⊤(Â−A∗)) + Tr(Σ) (49)
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We are interested in bounding the expected prediction loss of the estimator which is the average
iterate Âa,N of our algorithm SGD− RER (with a = θN ). Note that Âa,N = Âb

a,N + Âv
a,N where

the superscripts b and v correspond to bias and variance respectively (c.f. (22))

Hence

E
[
Lpred(Âa,N ;A∗, µ)

]
= Tr(Σ) + Tr

(
G1/2E

[(
Âa,N −A∗

)⊤ (
Âa,N −A∗

)]
G1/2

)
≤ Tr(Σ) + 2Tr

(
G1/2E

[(
Âv

a,N

)⊤ (
Âv

a,N

)]
G1/2

)
+ 2Tr

(
G1/2E

[(
Âb

a,N −A∗
)⊤ (

Âb
a,N −A∗

)]
G1/2

)
(50)

But we will only bound E
[
Lpred(Âa,N ;A∗, µ)1

[
D0,N−1

]]
so that we have a tight upper bound on

the conditional expectation of Lpred over a high probability event.

As before we will just focus on the prediction error obtained using the algorithmic iterates from the
coupled process, i.e., we will bound E

[
Lpred(

ˆ̃Aa,N ;A∗, µ)1
[
D̃0,N−1

]]
G.1 Variance of prediction error

In this section we will focus on analyzing the variance part of the expected prediction loss under the
coupled process

L̃v = Tr

(
G1/2E

[(
ˆ̃Av
a,N

)⊤ ( ˆ̃Av
a,N

)
1
[
D̃0,N−1

]]
G1/2

)
(51)

where T = N(B + u).

We begin with few lemmata which would be useful in bounding L̃v . Recall the definition ofH

H = E

B−1∏
j=0

(
I − 2γX̃0

−jX̃
0,⊤
−j

)
1[D̃0

−0]

 (52)

with X̃0 sampled from the stationary distribution π.

Lemma 16. Let γ ≤ 1
8RB . Then

H+H⊤ ⪯ 2

(
I − 4

3
γBG

)
+

8

3
γB
√
M4

1

Tα/2
I (53)

where M4 = E
[
∥X̃0

−0∥4
]
. For simplicity, we just say that for γRB < c

4 with 0 < c < 1 then

H+H⊤ ⪯ 2 (I − c1γBG) + c2γB
√
M4

1

Tα/2
I (54)

for some absolute constants c1, c2 > 0.

The proof is similar to the combined proofs of Lemmas 28 and 29. We therefore skip it.

Next we will bound Tr(G(I −H)−1).

Lemma 17. Let γRB < c1
4 with 0 < c1 < 1. Then for T such that Tα/2 > c2

√
M4

σmin(G) we have

Tr
(
G(I −H)−1

)
≤ c

d

γB
(55)

for some absolute constant c > 0.
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Proof. First note that

Tr
(
G(I −H)−1

)
) = Tr

(
G1/2(I −H)−1G1/2

)
)

= Tr

((
G−1 −G−1/2HG−1/2

)−1
)

≤ d

∥∥∥∥(G−1 −G−1/2HG−1/2
)−1

∥∥∥∥
=

d

σmin

(
G−1 −G−1/2HG−1/2

) (56)

Let Q =
(
G−1 −G−1/2HG−1/2

)
. Let Sym (Q) = Q + Q⊤. We will relate σmin(Q) with

σmin

(
Sym(Q)

2

)
. From AM-GM inequality, for any θ > 0, we have

Q⊤Q

θ
+ θI ⪰ Sym (Q) (57)

Also
σ2
min(Q) = inf

x:∥x∥=1
x⊤Q⊤Qx (58)

Further, from lemma 16 we have

Sym (Q) = G−1 −G−1/2H+HT

2
G−1/2

⪰ c1γBI − c2γB
√
M4

1

Tα/2
G−1

⪰ c1γBI − c2γB
√
M4

1

Tα/2

1

σmin(G)
I (59)

Hence combining equations (57), (58) and (59) we have:
σ2
min(Q)

θ
+ θ ⪰ c1γB − c2γB

√
M4

1

Tα/2

1

σmin(G)
. (60)

Now choosing θ = 1
2c1γB we get:

σ2
min(Q) ≥ c21

4
γ2B2 − c2c1

2
γ2B2

√
M4

1

Tα/2

1

σmin(G)
. (61)

Now choose T large enough such that c2c1
2

√
M4

1
Tα/2

1
σmin(G) ≤

c21
8 . Then, σ2

min(Q) ≥ c3γ
2B2, for

some constant c3 > 0. Hence from (56),

Tr
(
G(I −H)−1

)
≤ c4

d

γB
.

Next we bound Tr(∆(I −H)−1G) for any symmetric matrix ∆. Let κ(G) =
σmax(G)

σmin(G) denote the
condition number of G.
Lemma 18. Let γRB ≤ c1

4 with 0 < c1 < 1. Then for T such that Tα/2 > c2
√
M4

σmin(G) we have∣∣Tr (∆(I −H)−1G
)∣∣ ≤ c

d

γB
∥∆∥

√
κ(G) (62)

for some absolute constant c > 0.

Proof. We have∣∣Tr (∆(I −H)−1G
)∣∣ = ∣∣∣Tr(G1/2∆G−1/2G1/2(I −H)−1G1/2

)∣∣∣
≤ d

∥∥∥G1/2∆G−1/2
∥∥∥∥∥∥G1/2(I −H)−1G1/2

∥∥∥
≤ d
√
κ(G) ∥∆∥

∥∥∥G1/2(I −H)−1G1/2
∥∥∥ (63)
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From the proof of lemma 17, we know that∥∥∥G1/2(I −H)−1G1/2
∥∥∥ ≤ c

1

γB
(64)

for T satisfying the condition the statement of the lemma.

Hence: ∣∣Tr (∆(I −H)−1G
)∣∣ ≤ c

√
κ(G) ∥∆∥ d

γB
(65)

Our goal is to bound Tr(Ṽt−1(I −H)−1G). From proposition 1 we can decompose Ṽt−1 as:

Ṽt−1 = γ Tr(Σ)I + (Ṽt−1 − γ Tr(Σ)I), (66)

and hence,

Tr(Ṽt−1(I −H)−1G) = γ Tr(Σ)Tr((I −H)−1G) +Tr
(
(Ṽt−1 − γ Tr(Σ))(I −H)−1G

)
. (67)

To bound the second term in (67) we want to use lemma 18. Hence we need to bound the norm of
Ṽt−1 − γ Tr(Σ).
Lemma 19. Let γ ≤ min

{
c

4RB , 1
2R

}
for 0 < c < 1. Then there are constants c1, c2, c3 > 0 such

that for Tα/2 > c1
√
M4

σmin(G) we have∥∥∥Ṽt−1 − γ Tr(Σ)
∥∥∥ ≤ c2γdσmax

[
1

B
+ (1− c3γBσmin(G))

t

]
(68)

for some constant c1 > 0.

Proof. From proposition 1 we have∥∥∥Ṽt−1 − γ Tr(Σ)I
∥∥∥ ≤ γ Tr(Σ)

γR

1− γR
+

c1γ Tr(Σ)

∥∥∥∥∥E
[(

t∏
s=1

H̃t−s,⊤
0,B−1

)(
1∏

s=t

H̃t−s
0,B−1

)
1
[
D̃0,t−1

]]∥∥∥∥∥
+ c2γdσmax(Σ)T

2 1

Tα/2
. (69)

From lemma 26 equation (111) we can show that∥∥∥∥∥E
[(

t∏
s=1

H̃t−s,⊤
0,B−1

)(
1∏

s=t

H̃t−s
0,B−1

)
1
[
D̃0,t−1

]]∥∥∥∥∥ ≤ (1− c3γBσmin(G))
t
. (70)

Hence ∥∥∥Ṽt−1 − γ Tr(Σ)I
∥∥∥ ≤ c4γdσmax(Σ)

[
γR

1− γR
+ (1− c3γBσmin(G))

t

]
≤ c5γdσmax

[
γR+ (1− c3γBσmin(G))

t
]
≤ c6γdσmax

[
1

B
+ (1− c3γBσmin(G))

t

]
. (71)

Now we have all required ingredients for the main theorem of this section
Theorem 20. Let γ ≤ min

{
c

4RB , 1
2R

}
for 0 < c < 1. Then there are constants c1, c2, c3, c4 > 0

such that for Tα/2 > c1
√
M4

σmin(G) the variance part of the expected prediction loss L̃v (defined in (51))
for a = θN is bounded as

L̃v ≤ c1
dTr(Σ)

NB(1− θ)
+ c2

d2σmax(Σ)

NB(1− θ)

√
κ(G)

B
+ c3

d2σmax(Σ)

(NB)2(1− θ)2

√
κ(G)

1

γσmin(G)

+ c4γ
2Rdσmax(Σ)T

2 1

Tα/2
Tr(G) (72)
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Proof. From (51) and proposition 2 equation (42) we have

L̃v ≤ 2

(N − a)2

N∑
t=a+1

Tr
(
Ṽt−1(I −H)−1G

)
(73)

+
2

(N − a)2

N∑
t=a+1

Tr
(
Ṽt−1(I −H)−1HN−t+1G

)
(74)

+ cδTr(G) (75)
where δ = γ2T 2Rdσmax(Σ)

1
Tα/2 as defined in (43)

For the first term (73) we have from (67), lemma 17, lemma 18 and lemma 19

Tr
(
Ṽt−1(I −H)−1G

)
≤ c1γ Tr(Σ)

d

γB
+

c2
d

γB

√
κ(G)γdσmax(Σ)

[
1

B
+ (1− c3γBσmin(G))

t

]
= c1

dTr(Σ)

B
+ c2

d2σmax(Σ)

B

√
κ(G)

B
+

c4
d2σmax(Σ)

B

√
κ(G) (1− c3γBσmin(G))

t (76)

Therefore

2

(N − a)2

N∑
t=a+1

Tr
(
Ṽt−1(I −H)−1G

)
≤ c1

dTr(Σ)

NB(1− θ)
+ c2

d2σmax(Σ)

NB(1− θ)

√
κ(G)

B
+

c5
d2σmax(Σ)

N2B(1− θ)2

√
κ(G)

(1− c3γBσmin(G))
a+1

γBσmin(G)
(77)

Similarly, for the second term (74), from corollary 1, lemma 18, lemma 26 and the fact that (I−H)−1

andHN−t+1 commute, we get∣∣∣Tr(Ṽt−1(I −H)−1HN−t+1G
)∣∣∣ ≤ c1

d

γB

√
κ∥Ṽt−1∥∥HN−t+1∥

≤ c2
d

γB

√
κ(G)γdσmax(Σ) (1− c3γBσmin(G))

(N−t+1)

= c2
d2σmax(Σ)

B

√
κ(G) (1− c3γBσmin(G))

(N−t+1) (78)

Therefore∣∣∣∣∣ 2

(N − a)2

N∑
t=a+1

Tr
(
Ṽt−1(I −H)−1HN−t+1G

)∣∣∣∣∣ ≤ c
d2σmax(Σ)

N2B(1− θ)2

√
κ(G)

1

γBσmin(G)
(79)

Hence we obtain,

L̃v ≤ c1
dTr(Σ)

NB(1− θ)
+ c2

d2σmax(Σ)

NB(1− θ)

√
κ(G)

B
+

c3
d2σmax(Σ)

N2B2(1− θ)2

√
κ(G)

1

γσmin(G)
+ c4γ

2Rdσmax(Σ)T
2 1

Tα/2
Tr(G). (80)

G.2 Bias of prediction error

In this section we will focus on analyzing the (tail-averaged) bias part of the expected prediction loss
from the coupled process

L̃b = Tr

(
G1/2E

[((
ˆ̃Ab
a,N −A∗

))⊤ (( ˆ̃Ab
a,N −A∗

))
1
[
D̃0,N−1

]]
G1/2

)
(81)

where T = N(B + u) and a = θN for 0 < θ < 1.
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Theorem 21. Let γRB ≤ c
6 for some 0 < c < 1 and B such that γR ≤ 1

2 . There exist constants
c1, c2, c3, c4 > 0 such that if T satisfies Tα/2 > c1

√
M4

σmin(G) then for a = θN with 0 < θ < 1 we have

L̃b ≤ c2
1

NB(1− θ)

Tr(G)

γσmin(G)
e−c3NBγσmin(G)θ ∥A0 −A∗∥2 (82)

Proof. Proof follows directly from (81) and theorem 15.

G.3 Overall Prediction Error

Combining theorem 20 and theorem 21 along with lemma 12 we obtain the main theorem on
prediction error of SGD− RER

Theorem 22. Let R,B, u, α be chosen as in section 4. Let γ = c
4RB ≤

1
2R for 0 < c < 1. Then

there are constants c1, c2, c3, c4 > 0 such that for Tα/2 > c1
√
M4

σmin(G) the expected prediction loss L
(defined in (49)) is bounded as

E
[
Lpred(Âa,N ;A∗, µ)1

[
D0,N−1

]]
≤ c2

[
dTr(Σ)

B(N − a)
+

d2σmax(Σ)

B(N − a)

√
κ(G)

B

]
+

c3

[
d2σmax(Σ)

B2(N − a)2

√
κ(G)

1

γσmin(G)
+

1

B(N − a)
dκ(G)RBe−c4

σmin(G)

R a ∥A0 −A∗∥2 +(
T 3

B3
∥A∗u∥+ dσmax(Σ)

R

T 2

B2

1

Tα/2

)
Tr(G)

]
(83)

Hence, if ∥A∗∥ < c0 < 1 then choosing a ≥ C R log T
σmin(G) such that B(N − a) = Θ(T ) and B, u as in

section 4 we get

E
[
Lpred(Âa,N ;A∗, µ)1

[
D0,N−1

]]
≤ c2

dTr(Σ)

T
+ o

(
1

T

)
(84)

H Proof of Proposition 1

Proof of Proposition 1. First note that(
Ãt−1,v

b

)⊤ (
Ãt−1,v

b

)
=

t∑
r=1

B−1∑
j=0

D̃g(t, r, j) +
t∑

r1,r2=1

B−1∑
j1,j2=0

C̃r(t, r1, j1, r2, j2) (85)

where

D̃g(t, r, j) = 4γ2
∥∥ηt−r

−j

∥∥2 ·(
r−1∏
s=1

H̃t−s,⊤
0,B−1

)
H̃t−r,⊤

j+1,B−1X̃
t−r
−j X̃t−r,⊤

−j H̃t−r
j+1,B−1

(
1∏

s=r−1

H̃t−s
0,B−1

)
(86)

C̃r(t, r1, j1, r2, j2) = 4γ2

(
ηt−r1
−j1

X̃t−r1,⊤
−j1

H̃t−r1
j1+1,B−1

1∏
s=r1−1

H̃t−s
0,B−1

)⊤

·(
ηt−r2
−j2

X̃t−r2,⊤
−j2

H̃t−r2
j2+1,B−1

1∏
s=r2−1

H̃t−s
0,B−1

)
(87)

denote the diagonal and cross terms respectively.

We begin by noting the following two facts about
(
Ãt−1,v

b

)
:
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• It has zero mean

E
[(

Ãt−1,v
B

)]
= 0 (88)

• Let (r1, j1) ̸= (r2, j2). Then

E
[
C̃r(t, r1, j1, r2, j2)

]
= 0 (89)

This follows because, assuming r1 > r2, the term ηt−r1
−j1

X̃t−r1,⊤
−j1

H̃t−r1
j1+1,B−1 is independent of

everything else in that expression, and that ηt−r1
−j1

is independent of X̃t−r1,⊤
−j1

H̃t−r1
j1+1,B−1. A similar

argument can be made for the case when r1 = r2 but j1 ̸= j2.

But we are interested in expectation on the event D̃0,t−1.

We will bound the expectation of cross terms in the following lemma.

Lemma 23. We have∥∥∥∥∥∥E
∑
r1,r2

∑
j1,j2

C̃r(t, r1, j1, r2, j2)

 1
[
D̃0,t−1

]∥∥∥∥∥∥ ≤ 8(Bt)2γ2RTr(Σ)
1

Tα/2
(90)

Proof. Let

Consider a single cross term: C̃r(t, r1, j1, r2, j2) and without loss of generality, assume that either
r1 > r2 or r1 = r2 but j1 < j2. In either case, we note that ηt−r1

−j1
is unconditionally independent

of all other terms present in C̃r(t, r1, j1, r2, j2). The main problem here is to bound the expectation
over the event D̃0,t−1. For the sake of convenience, only in this proof, we will define the following
notation:

C̃r(t, r1, j1, r2, j2) = E1η
t−r1,⊤
−j1

ηt−r2
−j2

E2

Where E1 and E2 are random matrices defined according to the definition of C̃r(t, r1, j1, r2, j2)
and are unconditionally independent of ηt−r1,⊤

−j1
. Let FE = σ(E1, E2, η

t−r2
−j2

). Note that when
conditioned on the event D̃0,t−1, we must have the eventM := {∥E1∥ ≤ 4γ2

√
R}∩{∥E2∥ ≤

√
R}

almost surely. Therefore, we conclude:

E
[
C̃r(t, r1, j1, r2, j2)1

[
D̃0,t−1

]]
= E

[
C̃r(t, r1, j1, r2, j2)1

[
D̃0,t−1

]
1 [M]

]
= E

[
1 [M]E1E

[
ηt−r1,⊤
−j1

1
[
D̃0,t−1

]∣∣∣∣FE

]
ηt−r2
−j2

E2

]
≤ E

[
1 [M] ∥E1∥

∥∥∥∥E [ηt−r1,⊤
−j1

1
[
D̃0,t−1

]∣∣∣∣FE

]∥∥∥∥ ∥∥ηt−r2
−j2

∥∥ ∥E2∥
]

≤ 4γ2RE
[∥∥∥∥E [ηt−r1,⊤

−j1
1
[
D̃0,t−1

]∣∣∣∣FE

]∥∥∥∥ ∥∥ηt−r2
−j2

∥∥] (91)

In the third step, we have used the fact that under the eventM, the norms ∥E1∥, ∥E2∥ are bounded.

We will now bound E
[
ηt−r1,⊤
−j1

1
[
D̃0,t−1

]∣∣∣∣FE

]
. Clearly, due to the unconditional independence, we

must have:

E
[
ηt−r1,⊤
−j1

∣∣∣∣FE

]
= 0

=⇒ E
[
ηt−r1,⊤
−j1

1
[
D̃0,t−1

]∣∣∣∣FE

]
= −E

[
ηt−r1,⊤
−j1

1
[
D̃0,t−1,C

]∣∣∣∣FE

]
=⇒

∥∥∥∥E [ηt−r1,⊤
−j1

1
[
D̃0,t−1

]∣∣∣∣FE

]∥∥∥∥ ≤ √TrΣ
√
P
(
D̃0,t−1,C

∣∣∣∣FE

)
(92)
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In the last step, we have used Cauchy Schwarz inequality and the fact that ηt−r1,⊤
−j1

is independent of
FE . We combine the Equation above with Equation (91) and apply Jensen’s inequality once again to
conclude:∥∥∥E [C̃r(t, r1, j1, r2, j2)1 [D̃0,t−1

]]∥∥∥ ≤ 4γ2RTr(Σ)

√
P
[
D̃0,t−1,C

]
≤ 4γ2R

Tr(Σ)

Tα/2
(93)

In the last step, we have used Lemma 9 to bound P
(
D̃0,t−1,C

)
. Summing over all the indices

(r1, j1, r2, j2), we conclude the statement of the lemma.

Lemma 24. We have:

E

 t∑
r=1

B−1∑
j=0

D̃g(t, r, j)1
[
D̃0,t−1

] ⪯ 4γ2 Tr(Σ)E

 t∑
r=1

B−1∑
j=0

(
r−1∏
s=1

H̃t−s,⊤
0,B−1

)
H̃t−r,⊤

j+1,B−1X̃
t−r
−j ·

X̃t−r,⊤
−j H̃t−r

j+1,B−1

(
1∏

s=r−1

H̃t−s
0,B−1

)
1
[
D̃0,t−1

]]
+ δDgI (94)

and

E

 t∑
r=1

B−1∑
j=0

D̃g(t, r, j)1
[
D̃0,t−1

] ⪰ 4γ2 Tr(Σ)E

 t∑
r=1

B−1∑
j=0

(
r−1∏
s=1

H̃t−s,⊤
0,B−1

)
H̃t−r,⊤

j+1,B−1X̃
t−r
−j ·

X̃t−r,⊤
−j H̃t−r

j+1,B−1

(
1∏

s=r−1

H̃t−s
0,B−1

)
1
[
D̃0,t−1

]]
− δDgI (95)

where

δDg ≡ δDg(T,Σ, R, µ4) = 4γ2(Bt)R
√
µ4

1

Tα/2
(96)

Proof. The evaluation of expectations is clear when there is no indicator 1
[
D̃0,t−1

]
within the

expectation. We will now deal with it just like in the proof of Lemma 23. Consider D̃g(t, r, j). For
the sake of convenience, only in this proof, we will use the following notation:

D̃g(t, r, j) = 4γ2
∥∥ηt−r

−j

∥∥2 E .

Where the random PSD matrix E is unconditionally independent of ηt−r
−j . LetM = {∥E∥ ≤ R}.

Conditioned on the event D̃0,t−1, the eventM holds almost surely. Let FE = σ(E).

Now consider:

E
[
D̃g(t, r, j)1

[
D̃0,t−1

]]
= E

[
D̃g(t, r, j)1

[
D̃0,t−1

]
1 [M]

]
= 4γ2E

[∥∥ηt−r
−j

∥∥2 E1
[
D̃0,t−1

]
1 [M]

]
= 4γ2E

[
E
[∥∥ηt−r

−j

∥∥2 1 [D̃0,t−1
]
|FE

]
E1 [M]

]
(97)

It can be easily shown via similar techniques used in Lemma 23 that:

Tr(Σ)−√µ4

√
P
(
D̃0,t−1,C

∣∣FE

)
≤ E

[∥∥ηt−r
−j

∥∥2 1 [D̃0,t−1
]
|FE

]
≤ Tr(Σ)

Using this in Equation (97), we conclude:
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E
[
D̃g(t, r, j)1

[
D̃0,t−1

]]
⪯ 4γ2 Tr(Σ)E [E1 [M]]

= 4γ2 Tr(Σ)E
[
E1 [M] 1

[
D̃0,t−1

]
+ E1 [M] 1

[
D̃0,t−1,C

]]
= 4γ2 Tr(Σ)E

[
E1
[
D̃0,t−1

]
+ E1 [M] 1

[
D̃0,t−1,C

]]
⪯ 4γ2 TrΣE

[
E1
[
D̂0,t−1

]]
+ 4γ2 Tr(Σ)R

I

Tα
(98)

In the third step, we have used the fact that D̃0,t−1 ⊆M. In the last step we have used the fact that
E is PSD and over the eventM, E ⪯ RI . We have used Lemma 9 to bound P(D̃0,t−1,C). Using a
similar technique as above, we can show that:

E
[
D̃g(t, r, j)1

[
D̃0,t−1

]]
⪰ 4γ2 TrΣE

[
E1
[
D̃0,t−1

]]
− 4γ2

√
µ4R

Tα/2
I (99)

Note that
√
µ4R

Tα/2 ≥ Tr(Σ)R
Tα . Summing over r, j and combining Equations (99) and (98), we conclude

the result.

For convenience, define Ks :=
∑B−1

j=0 H̃s,⊤
j+1,B−1X̃

s
−jX̃

s,⊤
−j H̃s

j+1,B−1

Claim 1. Suppose γ < 1
R . Under the event D̃0,t−1, for every s ≤ t− 1 we must have:

I − H̃s,⊤
0,B−1H̃

s
0,B−1

4γ
⪯ Ks ⪯

I − H̃s,⊤
0,B−1H̃

s
0,B−1

γ̂

Where γ̂ = 4γ(1− γR)

Proof. In the entire proof, we suppose that the event D̃0,t−1 holds. Consider:

H̃s,⊤
j,B−1H̃

s
j,B−1 + 4γH̃s,⊤

j+1,B−1X̃
s
−jX̃

s,⊤
−j H̃s

j+1,B−1

= H̃s,⊤
j+1,B−1

(
I −

(
4γ − 4γ2∥X̃s

−j∥2
)
X̃s

−jX̃
s,⊤
−j

)
H̃s

j+1,B−1 + 4γH̃s,⊤
j+1,B−1X̃

s
−jX̃

s,⊤
−j H̃s

j+1,B−1

= H̃s,⊤
j+1,B−1

(
I + 4γ2∥X̃s

−j∥2X̃s
−jX̃

s,⊤
−j

)
H̃s

j+1,B−1

⪰ H̃s,⊤
j+1,B−1H̃

s
j+1,B−1 (100)

Using the recursion in Equation (100), we show that:

H̃s,⊤
0,B−1H̃

s
0,B−1 + 4γKs ⪰ I .

This establishes the lower bound. To establish the upper bound, we consider

H̃s,⊤
j,B−1H̃

s
j,B−1 + γ̂H̃s,⊤

j+1,B−1X̃
s
−jX̃

s,⊤
−j H̃s

j+1,B−1 .

Following similar technique used to establish Equation (100), using the fact that under the event
D̃0,t−1 we have ∥X̃s

−j∥2 ≤ R we show that:

H̃s,⊤
j,B−1H̃

s
j,B−1 + γ̂H̃s,⊤

j+1,B−1X̃
s
−jX̃

s,⊤
−j H̃s

j+1,B−1 ⪯ H̃s,⊤
j+1,B−1H̃

s
j+1,B−1 .

Using a similar recursion as before, we establish that:

H̃s,⊤
0,B−1H̃

s
0,B−1 + γ̂Ks ⪯ I .
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We are now ready to bound the first term in (94):

E

[
t∑

r=1

(
r−1∏
s=1

H̃t−s,⊤
0,B−1

)
Kt−r

(
1∏

s=r−1

H̃t−s
0,B−1

)
1
[
D̃0,t−1

]]
(101)

It is easy to show via. telescoping sum argument that:

t∑
r=1

(
r−1∏
s=1

H̃t−s,⊤
0,B−1

)(
I − H̃t−r,⊤

0,B−1H̃
t−r
0,B−1

)( 1∏
s=r−1

H̃t−s
0,B−1

)
= I−

(
t∏

s=1

H̃t−s,⊤
0,B−1

)(
1∏

s=t

H̃t−s
0,B−1

)
(102)

We then use Claim 1 to show that under the event D̃0,t−1, we must have:

I −
(∏t

s=1 H̃
t−s,⊤
0,B−1

)(∏1
s=t H̃

t−s
0,B−1

)
4γ

⪯
t∑

r=1

(
r−1∏
s=1

H̃t−s,⊤
0,B−1

)
Kt−r

(
1∏

s=r−1

H̃t−s
0,B−1

)
(103)

And:

t∑
r=1

(
r−1∏
s=1

H̃t−s,⊤
0,B−1

)
Kt−r

(
1∏

s=r−1

H̃t−s
0,B−1

)
⪯

I −
(∏t

s=1 H̃
t−s,⊤
0,B−1

)(∏1
s=t H̃

t−s
0,B−1

)
γ̂

(104)

Finally, combining Lemma 23, Lemma 24, claim 1, Equations (103), (104) and the bound on µ4

(stated after assumption 3 in section 2) along with γ̂ = 4γ(1 − γR) we get the statement of the
proposition.

I Proof of Proposition 2

Before delving into the proof, we note some useful results below.
Lemma 25. For any random matrix B ∈ Rd×d we have that

E
[
B⊤]E [B] ⪯ E

[
B⊤B

]
(105)

Hence
∥E [B]∥ ≤

√
∥E [B⊤B]∥ (106)

Proof. Note that for any vector x ∈ Rd we have

x⊤E
[
B⊤]E [B]x = ∥E [Bx]∥2 ≤ E

[
∥Bx∥2

]
= x⊤E

[
B⊤B

]
x (107)

Lemma 26. Let γRB ≤ c
6 for 0 < c < 1. The there are constants c1, c2 > 0 such that for

Tα/2 > c1
√
M4

σmin(G) we have

∥H∥ ≤
√
1− c2γBσmin(G) ≤ 1− c2

2
γBσmin(G) (108)

with 1− c2γBσmin(G) > 0.

Proof. Note thatH can be written asH = E
[
H̃0

0,B−11[D̃0
−0]
]
. First we use Lemma 25 to get

∥H∥ ≤
√∥∥∥E [H̃0,⊤

0,B−1H̃
0
0,B−11[D̃0

−0]
]∥∥∥ (109)
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Then, from Lemma 29 we can show that there are constants c1, c2 > 0 such that∥∥∥E [H̃0,⊤
0,B−1H̃

0
0,B−11[D̃

0
−0]
]∥∥∥ ≤ (1− c1γBσmin(G) + c2γB

√
M4

1

Tα/2

)
(110)

Now choosing T such that Tα/2 > c2
√
M4

2c1σmin(G) we get∥∥∥E [H̃0,⊤
0,B−1H̃

0
0,B−11[D̃

0
−0]
]∥∥∥ ≤ (1− c3γBσmin(G)) (111)

where c3 is such that the RHS in (111) is positive. Hence the claim follows.

Proof of Proposition 2. We will prove the proposition only for a = 0. The arguments for general a
are exactly the same.

For simplicity, we denote
ˆ̃Av
N ≡

(
ˆ̃Av
0,N

)
(112)

From recursion (6) we have the following relation between
(
Ãt2−1,v

B

)
and

(
Ãt1−1,v

B

)
for t2 > t1(

Ãt2−1,v
B

)
=
(
Ãt1−1,v

B

)( 1∏
s=t2−t1

H̃t2−s
0,B−1

)
+

2γ

t2−t1∑
r=1

B−1∑
j=0

ηt2−r
−j X̃t2−r,⊤

−j H̃t2−r
j+1,B−1

(
1∏

s=r−1

H̃t2−s
0,B−1

)
. (113)

Hence we have(
Ãt1−1,v

B

)⊤ (
Ãt2−1,v

B

)
=
(
Ãt1−1,v

B

)⊤ (
Ãt1−1,v

B

)( 1∏
s=t2−t1

H̃t2−s
0,B−1

)
+

2γ
(
Ãt1−1,v

B

)⊤ t2−t1∑
r=1

B−1∑
j=0

ηt2−r
−j X̃t2−r,⊤

−j H̃t2−r
j+1,B−1

(
1∏

s=r−1

H̃t2−s
0,B−1

)
. (114)

The second term in (114) is bounded in claim 2

The first term in (114) can be analyzed using independence as follows.

E

[(
Ãt1−1,v

B

)⊤ (
Ãt1−1,v

B

)
1
[
D̃0,t1−1

]( 1∏
s=t2−t1

H̃t2−s
0,B−1

)
1
[
D̃t1,N−1

]]

= Ṽt1−1E

[(
1∏

s=t2−t1

H̃t2−s
0,B−1

)
1
[
D̃t1,N−1

]]

= Ṽt1−1E

[(
1∏

s=t2−t1

H̃t2−s
0,B−1

)
1
[
D̃t1,t2−1

]]
E
[
1
[
D̃t2,N−1

]]
= Ṽt1−1

(
1∏

s=t2−t1

E
[
H̃t2−s

0,B−11
[
D̃t1,t2−1

]])
E
[
1
[
D̃t2,N−1

]]
= Ṽt1−1Ht2−t1E

[
1
[
D̃t2,N−1

]]
= Ṽt1−1Ht2−t1 − Ṽt1−1Ht2−t1E

[
1
[
D̃t2,N−1,C

]]
. (115)

Note that, (
Ãt1−1,v

B

)⊤ (
Ãt1−1,v

B

)
⪯ 4γ2(Bt1)

t1∑
r=1

B−1∑
j=0

∥∥ηt1−r
−j

∥∥2 ·(
r−1∏
s=1

H̃t1−s,⊤
0,B−1

)
H̃t1−r,⊤

j+1,B−1X̃
t1−r
−j X̃t1−r,⊤

−j H̃t1−r
j+1,B−1

(
1∏

s=r−1

H̃t1−s
0,B−1

)
. (116)
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From equation (116), we have: ∥∥∥Ṽt1−1

∥∥∥ ≤ cγ2(Bt1)
2Rdσmax, (117)

and further, ∥H∥ < 1 from Lemma 26. Hence,∥∥∥Ṽt1−1Ht2−t1E
[
1
[
D̃t2,N−1,C

]]∥∥∥ ≤ ∥∥∥Ṽt1−1Ht2−t1
∥∥∥ 1

Tα
≤ cγ2(Bt1)

2Rdσmax
1

Tα
.

For brevity, given a matrix Q ∈ Rd×d, let,

Sym (Q) = Q+Q⊤. (118)

Combining everything so far, we have, for t2 > t1:

Sym

(
E
[(

Ãt1−1,v
B

)⊤ (
Ãt2−1,v

B

)
1
[
D̃0,N−1

]])
⪯ Sym

(
Ṽt1−1Ht2−t1

)
+ c1γ

2(Bt1)
2Rdσmax

1

Tα
I +(

c3γ
2B2t1t2Rdσmax

1

Tα/2

)
I (119)

Since Bt2 ≤ T we get:

Sym

(
E
[(

Ãt1−1,v
B

)⊤ (
Ãt2−1,v

B

)
1
[
D̃0,N−1

]])
⪯ Sym

(
Ṽt1−1Ht2−t1

)
+

c3γ
2T 2Rdσmax

1

Tα/2
I. (120)

Therefore we have,

1

N2

∑
t1 ̸=t2

E
[(

Ãt1−1,v
B

)⊤ (
Ãt2−1,v

B

)]
⪯ 1

N2

N−1∑
t1=1

Sym

(
Ṽt1−1

(∑
t2>t1

Ht2−t1

))

+c3γ
2T 2Rdσmax

1

Tα/2
I.

Next observe that,

1

N2

N∑
t=1

Ṽt−1 +
1

N2

N−1∑
t1=1

Sym

(
Ṽt1−1

(∑
t2>t1

Ht2−t1

))

=
1

N2

N∑
t=1

Ṽt−1 +
1

N2

N−1∑
t1=1

Sym

(
Ṽt1−1

(
N−t1∑
s=1

Hs

))

⪯ 1

N2

N∑
t=1

Sym

(
Ṽt−1

(
N−t∑
s=0

Hs

))
.

Hence, substituting in (40), we obtain:

E
[(

Âv
N

)⊤ (
Âv

N

)
1
[
D̃0,N−1

]]
⪯ 1

N2

N∑
t=1

Sym

(
Ṽt−1

(
N−t∑
s=0

Hs

))
+ (121)

c3γ
2T 2Rdσmax

1

Tα/2
I. (122)

From Equations (121)-(122) we obtain (41).

Now
∑N−t

s=0 Hs = (I −H)−1(I −HN−t+1) since from Lemma 26 we know that ∥H∥ < 1 for large
T . Thus we get (42).

33



I.1 Claims

Claim 2. For γ ≤ 1
2R we have∥∥∥∥∥∥E

2γ (Ãt1−1,v
B

)⊤ t2−t1∑
r=1

B−1∑
j=0

ηt2−r
−j X̃t2−r,⊤

−j H̃t2−r
j+1,B−1

(
1∏

s=r−1

H̃t2−s
0,B−1

) 1
[
D̃0,N−1

]∥∥∥∥∥∥
≤ c1γ

2B2t1t2Rdσmax
1

Tα/2
(123)

for some constant c1 > 0.

Proof. The proof is similar to the proof of Lemma 23.

J Proof of Theorem 14

Proof of Theorem 14. We start with the following(
Ãt−1,b

b −A∗
)⊤ (

Ãt−1,b
b −A∗

)
=

(
t∏

s=1

H̃t−s,⊤
0,B−1

)
(A0 −A∗)⊤(A0 −A)

(
1∏

s=t

H̃t−s
0,B−1

)

⪯ ∥A0 −A∗∥2
(

t∏
s=1

H̃t−s,⊤
0,B−1

)(
1∏

s=t

H̃t−s
0,B−1

)
(124)

From Lemma 29 we can show that there are constants c1, c2 > 0 such that∥∥∥∥∥E
[(

t∏
s=1

H̃t−s,⊤
0,B−1

)(
1∏

s=t

H̃t−s
0,B−1

)
1
[
D̃0,t−1

]]∥∥∥∥∥
≤
(
1− c1γBσmin(G) + c2γB

√
M4

1

Tα/2

)t

. (125)

Now choosing T such that Tα/2 > c2
√
M4

2c1σmin(G) we get,∥∥∥∥∥E
[(

t∏
s=1

Ĥt−s,⊤
0,B−1

)(
1∏

s=t

Ĥt−s
0,B−1

)]∥∥∥∥∥ ≤ (1− c3γBσmin(G))
t
. (126)

Thus we get the theorem.

K Proof of Theorem 15

Proof of Theorem 15. We use the following inequality that is obtained from Lemma 25(
ˆ̃Ab
a,N −A∗

)⊤ ( ˆ̃Ab
a,N −A∗

)
⪯ 1

N − a

N∑
t=a+1

(
Ãt−1,b

B −A∗
)⊤ (

Ãt−1,b
B −A∗

)
(127)

Therefore

E
[(

ˆ̃Ab
a,N −A∗

)⊤ ( ˆ̃Ab
a,N −A∗

)
1
[
D̃0,N−1

]]
⪯ 1

N − a

N∑
t=a+1

E
[(

Ãt−1,b
B −A∗

)⊤ (
Ãt−1,b

B −A∗
)
1
[
D̃0,N−1

]]

⪯ 1

N − a

N∑
t=a+1

E
[(

Ãt−1,b
B −A∗

)⊤ (
Ãt−1,b

B −A∗
)
1
[
D̃0,t−1

]]
(128)
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Now using theorem 14, we get

E
[(

ˆ̃Ab
a,N −A∗

)⊤ ( ˆ̃Ab
a,N −A∗

)
1
[
D̃0,N−1

]]
⪯(

1

N − a

(1− c1γBσmin(G))
a+1

c1γBσmin(G)

)
∥A0 −A∗∥2 I (129)

Hence using 1− x ≤ e−x we get∥∥∥∥E [( ˆ̃Ab
a,N −A∗

)⊤ ( ˆ̃Ab
a,N −A∗

)
1
[
D̃0,N−1

]]∥∥∥∥
≤ c

1

B(N − a)

e−cBγσmin(G)a

γσmin(G)
∥A0 −A∗∥2 (130)

L Operator Norm Inequalities

In this section, we develop the concentration inequalities necessary to obtain bounds on Lop. Consider
Equation (20)

(
Ãt−1,v

B

)
= 2γ

t∑
r=1

B−1∑
j=0

ηt−r
−j X̃t−r,⊤

−j H̃t−r
j+1,B−1

1∏
s=r−1

H̃t−s
0,B−1 (131)

Splitting the sum into r = 1 and r = 2, . . . , t, it is easy to show the following recursion:

(
Ãt−1,v

B

)
= 2γ

B−1∑
j=0

ηt−1
−j X̃t−1,⊤

−j H̃t−1
j+1,B−1 +

(
Ãt−2,v

B

)
H̃t−1

0,B−1 (132)

We will consider the matrix ∆t−1 := 2γ
∑B−1

j=0 ηt−1
−j X̃t−1,⊤

−j H̃t−1
j+1,B−1. Recall the sequence of

events D̃t−1
−j for j = 0, 1, . . . , B − 1 as defined in Section B.1. We will pick R as in Section 4 so that

P(D̃t−1
−0 ) is close to 1.

For the sake of clarity, we drop the dependence on t while stating and proving some of the technical
results since the events and random variables considered there are identically distributed for every t.
That is, consider D̃−j instead of D̃t−1

−j and

∆ := 2γ

B−1∑
j=0

η−jX̃
⊤
−jH̃j+1,B−1

We will bound the exponential moment generating function of ∆:
Lemma 27. Suppose Assumption 2 holds and that γR < 1. Let λ ∈ R and x, y ∈ Rd are arbitrary.
Then, we have:

1.

E
[
exp(γλ2Cµ⟨x,Σx⟩⟨y, H̃⊤

0,B−1H̃0,B−1y⟩+ λ⟨x,∆y⟩)|D̃−0

]
≤

exp
(
γλ2Cµ⟨x,Σx⟩∥y∥2

)
P(D̃−0)

2.

E
[
exp(λ⟨x,∆y⟩)|D̃−0

]
≤

exp
(
γλ2Cµ⟨x,Σx⟩∥y∥2

)
P(D̃−0)

Where Cµ is as given in Assumption 2
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Proof. We will just prove item 1 since item 2 follows from it trivially as

γλ2Cµ⟨x,Σx⟩⟨y, H̃⊤
0,B−1H̃0,B−1y⟩ ≥ 0 .

For the sake of clarity, we will take:

Ξ0 := γλ2Cµ⟨x,Σx⟩⟨y, H̃⊤
0,B−1H̃0,B−1y⟩

and more generally,
Ξk = γλ2Cµ⟨x,Σx⟩⟨y, H̃⊤

k,B−1H̃k,B−1y⟩

Consider ∆−k := 2γ
∑B−1

j=k η−jX̃
⊤
−jH̃j+1,B−1. We will first prove the following claim before

bounding the exponential moment:

Claim 3. Whenever ∥X̃−k∥2 ≤ R and γR < 1/2, we have:

Ξk + 2γ2λ2Cµ⟨x,Σx⟩⟨y, H̃⊤
k+1,B−1X̃−kX̃

⊤
−kH̃k+1,B−1y⟩ ≤ Ξk+1

Proof. We use the fact that H̃⊤
k,B−1H̃k,B−1 = H̃⊤

k+1,B−1(I − 2γX̃−kX̃
⊤
−k)

2H̃k+1,B−1 to conclude
that:

Ξk + 2γ2λ2Cµ⟨x,Σx⟩⟨y, H̃⊤
k+1,B−1X̃−kX̃

⊤
−kH̃k+1,B−1y⟩

= γλ2Cµ⟨x,Σx⟩⟨y, H̃⊤
k+1,B−1

(
I − 2γX̃−kX̃

⊤
−k + 4γ2∥X̃−k∥

2X̃−kX̃
⊤
−k

)
H̃k+1,B−1y⟩

≤ γλ2Cµ⟨x,Σx⟩⟨y, H̃⊤
k+1,B−1H̃k+1,B−1y⟩ = Ξk+1 (133)

In the second step we have used the fact that when γ∥X̃−k∥2 ≤ 1/2, we have that

I − 2γX̃−kX̃
⊤
−k + 4γ2∥X̃−k∥

2X̃−kX̃
⊤
−k ⪯ I

First note that ∆ = 2γη0X̃
⊤
0 H̃1,B−1 +∆−1. Now,

E
[
exp(Ξ0 + λ⟨x,∆y⟩)|D̃−0

]
=

1

P(D̃−0)
E
[
exp(Ξ0 + λ⟨x,∆y⟩)1

(
D̃−0

)]
=

1

P(D̃−0)
E
[
exp

(
Ξ0 + 2λγ⟨x, η−0⟩⟨X̃−0, H̃1,B−1y⟩+ λ⟨x,∆−1y⟩

)
1

(
D̃−0

)]
≤ 1

P(D̃−0)
E
[
exp

(
Ξ0 + 2γ2λ2Cµ⟨x,Σx⟩⟨y, H̃⊤

1,B−1X̃−0X̃
⊤
−0H̃1,B−1y⟩+ λ⟨x,∆−1y⟩

)
1

(
D̃−0

)]
≤ 1

P(D̃−0)
E
[
exp (Ξ1 + λ⟨x,∆−1y⟩)1

(
D̃−0

)]
≤ 1

P(D̃−0)
E
[
exp (Ξ1 + λ⟨x,∆−1y⟩)1

(
D̃−1

)]
(134)

In the first step we have used the definition of conditional expectation, in the third step we have
used the fact that η−0 is independent of D̃−0, ∆−1, X̃⊤

−0H̃1,B−1, and ∆−1 and have applied the sub-
Gaussianity from Assumption 2. In the fourth step, using the fact under the event D̃−0, ∥X̃−0∥2 ≤ R

we have applied Claim 3. In the final step, we have used the fact that D̃−0 ⊆ D̃−1. We proceed by
induction over Equation (134) to conclude the result.

We now consider the matrix H̃0,B−1 under the event D̃−0.

Lemma 28. Suppose that γRB < 1
6 . Then, under the event D̃−0, we have:

I − 4γ
(
1 + 2γBR

1−4γBR

)B−1∑
i=0

X̃−iX̃
⊤
−i ⪯ H̃⊤

0,B−1H̃0,B−1 ⪯ I − 4γ
(
1− 2γBR

1−4γBR

)B−1∑
i=0

X̃−iX̃
⊤
−i
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Proof. By definition, we have: H̃0,B−1 =
∏B−1

j=0 (I − 2γX̃−jX̃
⊤
−j). Expanding out the product, we

get an expression of the form:

H̃⊤
0,B−1H̃0,B−1 = I − 4γ

B−1∑
i=0

X̃−iX̃
⊤
−i + (2γ)2

∑
i,j

X̃−iX̃
⊤
−iX̃−jX̃

⊤
−j + . . . (135)

Here, the summation
∑

i,j is over all possible combinations possible when the product is expanded
and . . . denotes higher order terms of the form X̃−i1

X̃⊤
−i1

. . . X̃−ik
X̃⊤

−ik

Claim 4. Assume k ≥ 2 and i1, . . . , ik ∈ {0, . . . , B − 1}. Under the event D̃−0, for any x ∈ Rd,
we have: ∣∣∣∣x⊤X̃−i1

X̃⊤
−i1

. . . X̃−ik
X̃⊤

−ik
x

∣∣∣∣ ≤ Rk−1

2

[
x⊤X̃−i1

X̃⊤
−i1

x+ x⊤X̃−ik
X̃⊤

−ik
x
]

Proof. This follows from an application of AM-GM inequality. It is clear by Cauchy-Schwarz
inequality that |⟨X̃il

, X̃il+1
⟩| ≤ R, which implies:

∣∣∣∣x⊤X̃−i1
X̃⊤

−i1
. . . X̃−ik

X̃⊤
−ik

x

∣∣∣∣ ≤ Rk−1

∣∣∣∣ [x⊤X̃−i1
X̃⊤

−ik
x
]∣∣∣∣ ≤ Rk−1

2

[
⟨x, X̃−i1

⟩2 + ⟨X̃−ik
, x⟩2

]
.

Where the last inequality follows from an application of the AM-GM inequality.

From Claim 4, we conclude that:∑
i1,...,ik

X̃−i1
X̃⊤

−i1
. . . X̃−ik

X̃⊤
−ik
⪯ (2B)k−1Rk−1

B−1∑
i=0

X̃−iX̃
⊤
−i

Plugging this into Equation (135), we have that under the event D̃−0:

H̃⊤
0,B−1H̃0,B−1 ⪯ I − 4γ

B−1∑
i=0

B−1∑
i=0

X̃−iX̃
⊤
−i +

2B∑
k=2

(2γ)k(2B)k−1Rk−1
B−1∑
i=0

X̃−iX̃
⊤
−i

⪯ I − 4γ

B−1∑
i=0

B−1∑
i=0

X̃−iX̃
⊤
−i + 2γ

4γBR

1− 4γBR

B−1∑
i=0

B−1∑
i=0

X̃−iX̃
⊤
−i (136)

Here we have used the fact that 4γBR < 1 to convert the finite sum to an infinite sum. Using the
bound on γ, we conclude the upper bound. The lower bound follows with a similar proof.

Lemma 29. Suppose γBR < 1
6 . Let G := EX̃−iX̃

⊤
−i and M4 := E

∥∥X̃−i

∥∥4. Then, we have:

E
[
H̃⊤

0,B−1H̃0,B−1

∣∣D̃−0

]
⪯ I − 4γB

P(D̃−0)

(
1− 2γBR

1−4γBR

)
G+

4γB
√

M4(1− P(D̃−0))

P(D̃−0)

(
1− 2γBR

1−4γBR

)
I

Proof. The result follows from the statement of Lemma 28, once we show the following inequality
via Cauchy Schwarz inequality and the definition of conditional expectation:

E
[
X̃−iX̃

⊤
−i

∣∣D̃−0

]
⪰ G

P(D̃−0)
− I

√
E
∥∥X̃−i

∥∥4√1− P(D̃−0)

P(D̃−0)
.
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Now we will show that H̃0,B−1 contracts any given vector with probability at-least p0 > 0. For this
we will refer to lemma 8 where it is shown that if X ∼ π then ⟨X,x⟩ has mean 0 and is sub-Gaussian
with variance proxy Cµx

⊤Gx. Using this will show that the matrix H̃0,B−1 operating on a given
vector x contracts it with a high enough probability.
Lemma 30. Suppose γRB < 1

8 and that µ obeys Assumption 2. There exists a constant c0 > 0

which depends only on Cµ such that whenever 1− P(D̃−0) ≤ c0, then for any arbitrary x ∈ R2

P
(
∥H̃0,B−1x∥

2 ≥ ∥x∥2 −Bγx⊤Gx
∣∣D̃−0

)
≤ 1− p0 < 1 .

Where p0 > 0 depends only on Cµ.

Proof. Initially we do not condition on D̃−0. Consider the quantity: Y :=
∑B−1

i=0 ⟨x, X̃−i⟩2.

Claim 5.
P
(
Y ≥ 1/2Bx⊤Gx

)
≥ q0

where q0 > 0 depends only on sub-Gaussianity parameter Cµ

Proof. We consider the Payley-Zygmund inequality which states that for any positive random variable
Y with a finite second moment, we have:

P
(
Y > 1

2EY
)
≥ 1

4

(EY )2

EY 2
.

Note that EY = Bx⊤Gx. The statement of the lemma follows once we lower bound the quantity
(EY )2

EY 2 . Clearly, (EY )2 = B2x⊤Gx. Now,

EY 2 =
∑
i,j

E⟨x,Xi⟩2⟨x,Xj⟩2 ≤
∑
i,j

√
E⟨x,Xi⟩4

√
E⟨x,Xj⟩2 = B2E⟨x,Xi⟩4

≤ B2c1C
2
µ(x

⊤Gx)2 (137)

Here, the second step follows from Cauchy-Schwarz inequality. The third step follows from the fact
that Xi are all identically distributed. The fourth step follows from Lemma 8 and Theorem 2.1 from
[51]. The statement of the claim follows once we apply Payley-Zygmund inequality.

Now, by definition of conditional probabililty and Claim 5, we have:

P

(
B−1∑
i=0

⟨x, X̃−i⟩2 ≤
B

2
xTGx

∣∣∣∣D̃−0

)
≤ (1− q0)

P(D̃−0)

Now the statement of the lemma follows from an application of Lemma 28

Now we want to bound the operator norm of
∏a+b

s=a H̃
s
0,B−1 with high probability under the event

∩a+b
s=aD̃s

−0.
Lemma 31. Suppose the conditions in Lemma 30 hold. Let σmin(G) denote the smallest eigenvalue
of G. We also assume that P(D̃a,b) > 1/2. Conditioned on the event D̃a,b,

1. ∥
∏b

s=a H̃
s
0,B−1∥ ≤ 1 almost surely

2. Whenever b− a+ 1 is larger than some constant which depends only on Cµ, we have:

P

(
∥

b∏
s=a

H̃s
0,B−1∥ ≥ 2(1− γBσmin(G))c4(b−a+1)

∣∣∣∣D̃a,b

)
≤ exp(−c3(b− a+ 1) + c5d)

Where c3, c4 and c5 are constants which depend only on Cµ

Proof.
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1. The proof follows from an application of Lemma 28.
2. We will prove this with an ϵ net argument over the sphere in Rd dimensions.

Suppose we have arbitrary x ∈ Rd such that ∥x∥ = 1. Conditioned on the event D̃a,b,
the matrices H̃s

0,B−1 are all independent for a ≤ s ≤ b. We also note that H̃s
0,B−1 is

independent of D̃t for t ̸= s. Let Kv :=
∏b

s=v H̃
s
0,B−1. When v ≥ b + 1, we take

this product to be identity. Consider the set of events Gv := {∥H̃v
0,B−1Kv+1x∥2 ≤

∥Kv+1x∥2(1− γBσmin(G)}. From Lemma 30, we have that whenever v ∈ (a, b):

P(Gcv|D̃v, H̃s
0,B−1 : s ̸= v) ≤ 1− p0 (138)

Where p0 is given in Lemma 30
Let D ⊆ {a, . . . , b} such that |D| = r. It is also clear from item 1 and the definitions above
that whenever the event ∩v∈DGv holds, we have:

∥
b∏

s=a

H̃s
0,B−1x∥ ≤ (1− γBσmin(G))

r
2 . (139)

Therefore, whenever Equation (139) is violated, we must have a set Dc ⊆ {a, . . . , b} such
that |Dc| ≥ b− a− r and the event ∩v∈DcGcv holds. We will union bound all such events
indexed by Dc to obtain an upper bound on the probability that Equation (139) is violated.
Therefore, using Equation (138) along with the union bound, we have:

P

(
∥

b∏
s=a

H̃s
0,B−1x∥ ≥ (1− γBσmin(G))

r
2

∣∣∣∣D̃a,b

)
≤
(
b− a+ 1

b− a− r

)
(1− p0)

b−a−r

Whenever b − a + 1 is larger than some constant depending only on Cµ, we can pick
r = c2(b− a+ 1) for some constant c2 > 0 small enough such that:

P

(
∥

b∏
s=a

H̃s
0,B−1x∥ ≥ (1− γBσmin(G))

r
2

∣∣∣∣D̃a,b

)
≤ exp(−c3(b− a+ 1))

Now, let N be a 1/2-net of the sphere Sd−1. Using Corollary 4.2.13 in [52], we can choose
|N | ≤ 6d. By Lemma 4.4.1 in [52] we show that:

∥
b∏

s=a

H̃s
0,B−1∥ ≤ 2 sup

x∈N
∥

b∏
s=a

H̃s
0,B−1x∥ (140)

By union bounding Equation (140) for every x ∈ N , we conclude that:

P

(
∥

b∏
s=a

H̃s
0,B−1∥ ≥ 2(1− γBσmin(G))c4(b−a+1)

∣∣∣∣D̃a,b

)
≤ |N | exp(−c3(b− a+ 1))

= exp(−c3(b− a+ 1) + c5d) (141)

Now we will give a high probability bound for the following operator:

Fa,N :=

N−1∑
r=a

r∏
s=a+1

H̃s
0,B−1 (142)

Here, we use the convention that
∏a

s=a+1 H̃
s
0,B−1 = I

Lemma 32. Suppose c4γBσmin(G) < 1
4 for the constant c4 as given in Lemma 31. Suppose all the

conditions given in the statement of Lemma 31 hold. Then, for any δ ∈ (0, 1), we have:

P
(
∥Fa,N∥ ≥ C

(
d+ log

N

δ
+

1

γBσmin(G)

)∣∣∣∣D̃a,N−1

)
≤ δ

Where C is a constant which depends only on Cµ
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Proof. We consider the triangle inequality: ∥Fa,N∥ ≤
∑N−1

t=a

∥∥∥∏t
s=a+1 H̃

s
0,B−1

∥∥∥. By Lemma 31,

we have that whenever t− a ≥ c5d
c3

+
log N

δ

c3
:

P

(
∥

t∏
s=a+1

H̃s
0,B−1∥ ≥ 2(1− γBσmin(G))c4(t−a)

∣∣∣∣D̃a,N−1

)
≤ δ

N

Using union bound, we show that when conditioned on D̃a,N−1, with probability at least 1− δ the
following holds:

1. For all a ≤ t ≤ N − 1 such that t− a ≥ c5d
c3

+
log N

δ

c3
:

∥
N∏
s=t

H̃s
0,B−1∥ ≤ 2(1− γBσmin(G))c4(t−a)

2. For all t such that t − a < c5d
c3

+
log N

δ

c3
, we have: ∥

∏N
s=t H̃

s
0,B−1∥ ≤ 1. For this, we use

the almost sure bound given in item 1 of Lemma 31

Therefore, when conditioned on D̃a,N−1, with probability at least 1− δ we have:

∥Fa,N∥ ≤ C(d+ log
N

δ
) + 2

∞∑
j=0

(1− γBσmin(G))c4j

≤ C(d+ log
N

δ
) + 2

∞∑
j=0

exp(−c4jγBσmin(G))

≤ C(d+ log
N

δ
) +

2

1− exp(−c4γBσmin(G))

≤ C(d+ log
N

δ
) +

2

c4γBσmin(G)− c24γ
2Bσmin(G)

2

≤ C

(
d+ log

N

δ
+

1

γBσmin(G)

)
(143)

In the first step, we have used the event described above to bound the operator norm via. the infinite
geometric series. In the second step, we have used the inequality (1− x)a ≤ exp(−ax) whenever
x ∈ [0, 1] and a > 0. In the fourth step, we have used the inequality exp(−x) ≤ 1−x+ x2

2 whenever
x ∈ [0, 1]. In the last step, we have absorbed constants into a single constant C

We will now consider the averaged iterate of the coupled process as defined in Equation (21) with
a = 0.

ˆ̃Av
0,N :=

1

N

N∑
t=1

(
Ãt−1,v

B

)
(144)

We recall the definition of ∆t−1 from the beginning of the Section L and the recursion shown in
Equation (132). We combine these with Equation (144) to show:

ˆ̃Av
0,N =

1

N

N∑
t=1

∆t−1Ft−1,N (145)

Where Fa,N is as defined in Equation (142). Using the results in Lemma 27 and a similar
proof technique we show the following theorem. We define the following event as considered
in Lemma (32):

M̃t−1 :=

{
∥Ft−1,N∥ ≤ C

(
d+ log

N

δ
+ 1

γBσmin(G)

)}
Define the event M̃0,N−1 = ∩N−1

t=0 M̃t and recall the definition of the event D̃0,N−1.
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Theorem 33. We suppose that the conditions in Lemmas 27, 32 and 28 hold. We also assume that
P(M̃0,N−1∩D̃0,N−1) ≥ 1

2 . Define α := C(d+log N
δ + 1

γBσmin(G) ) as in the definition of the event

M̃t

P
(
∥ ˆ̃Av

0,N∥ > β

∣∣∣∣M̃0,N−1 ∩ D̃0,N−1

)
≤ exp

(
c1d−

β2N

16γCµσmax(Σ)(1 + 2α)

)
.

Proof. Recall the events D̃t,N−1 and define M̃t,N−1 := ∩N−1
s=t M̃t. We recall that ∆t−1 is

independent of Ft−1,N and D̃t,N−1. Now consider arbitrary x, y ∈ Rd such that ∥x∥ = ∥y∥ = 1.
Define Γt−1,N−1 := 1

N

∑N
s=t ∆s−1Fs−1,N . For any λ > 0, consider the following exponential

moment:

E
[
exp

(
λ⟨x, ( ˆ̃Av

0,N )y⟩
)∣∣∣∣M̃0,N−1 ∩ D̃0,N−1

]

=
E
[
exp

(
λ⟨x, ( ˆ̃Av

0,N )y⟩
)
1

(
M̃0,N−1 ∩ D̃0,N−1

)]
P
(
M̃0,N−1 ∩ D̃0,N−1

)
=

E
[
exp

(
λ
N ⟨x,∆0F0,Ny⟩+ λ⟨x,Γ1,N−1y⟩

)
1

(
M̃0,N−1 ∩ D̃0,N−1

)]
P
(
M̃0,N−1 ∩ D̃0,N−1

) (146)

Here, we note that ∆0 is independent of M̃0,N−1, F0,N and D̃1,N−1. We integrate out ∆0 in
Equation (146) using item 2 of Lemma 27 by using the fact that D̃0,N−1 = D̃1,N−1 ∩ D̃0

−0 to show:

E
[
exp

(
λ⟨x, ( ˆ̃Av

0,N )y⟩
)∣∣∣∣M̃0,N−1 ∩ D̃0,N−1

]

≤
E
[
exp

(
γ
λ2Cµ

N2 ⟨x,Σx⟩∥F0,Ny∥2 + λ⟨x,Γ1,N−1y⟩
)
1

(
M̃0,N−1 ∩ D̃1,N−1

)]
P
(
M̃0,N−1 ∩ D̃0,N−1

) (147)

We use the fact that F0,N = I+H̃1
0,B−1F1,N to conclude: ∥F0,Ny∥2 = ∥y∥2+2⟨y, H̃1

0,B−1F1,Ny⟩+
⟨y, FT

1,N H̃1,⊤
0,B−1H̃

1
0,B−1F1,Ny⟩. Under the event M̃0,N−1 ∩ D̃1,N−1, we have: ∥H̃1

0,B−1∥ ≤ 1 and
∥F1,N∥ ≤ α. Therefore, ∥F0,Ny∥2 ≤ ∥y∥2(1 + 2α) + ⟨y, FT

1,N H̃1,⊤
0,B−1H̃

1
0,B−1F1,Ny⟩. Using this

in Equation (147), we conclude:

P
(
M̃0,N−1 ∩ D̃0,N−1

)
E
[
exp

(
λ⟨x, ( ˆ̃Av

0,N )y⟩
)∣∣∣∣M̃0,N−1 ∩ D̃0,N−1

]
≤ E

[
exp (Ω + λ⟨x,Γ1,N−1y⟩)1

(
M̃0,N−1 ∩ D̃1,N−1

)]
≤ E

[
exp (Ω + λ⟨x,Γ1,N−1y⟩)1

(
M̃1,N−1 ∩ D̃1,N−1

)]
, (148)

where Ω := γ
λ2Cµ

N2 ⟨x,Σx⟩(1 + 2α)∥y∥2 + γ
λ2Cµ

N2 ⟨x,Σx⟩⟨y, FT
1,N H̃1,⊤

0,B−1H̃
1
0,B−1F1,Ny⟩. In the

last step we have used the fact that M̃0,N−1 ∩ D̃1,N−1 ⊆ M̃1,N−1 ∩ D̃1,N−1. We continue
just like before but use item 1 of Lemma 27 instead of item 2 to keep peeling terms of the form
⟨x,∆t−1Ft−1,Ny⟩ to conclude:

E
[
exp

(
λ⟨x, ( ˆ̃Av

0,N )y⟩
)∣∣∣∣M̃0,N−1 ∩ D̃0,N−1

]
≤ 2 exp

(
γ
λ2Cµ

N
⟨x,Σx⟩(1 + 2α)∥y∥2

)
≤ 2 exp

(
γ
λ2Cµ

N
σmax(Σ)(1 + 2α)

)
(149)
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Where σmax(Σ) is the maximum eigenvalue of the covariance matrix Σ. Here we have used the
assumption that P

(
M̃0,N−1 ∩ D̃0,N−1

)
≥ 1

2 and the fact that ∥x∥ = ∥y∥ = 1. We apply Chernoff

bound to ⟨x, ( ˆ̃Av
0,N )y⟩ using Equation (149) to conclude that for any β, λ ∈ R+

P
(
⟨x, ( ˆ̃Av

0,N )y⟩ > β

∣∣∣∣M̃0,N−1 ∩ D̃0,N−1

)
≤ 2 exp

(
γ
λ2Cµ

N
σmax(Σ)⟩(1 + 2α)− βλ

)
(150)

Choose λ = Nβ
2γCµσmax(Σ)(1+2α) to conclude:

P
(
⟨x, ( ˆ̃Av

0,N )y⟩ > β

∣∣∣∣M̃0,N−1 ∩ D̃0,N−1

)
≤ 2 exp

(
− β2N

4γCµσmax(Σ)(1 + 2α)

)

We now apply an ϵ net argument just like in Lemma 31. Suppose N is a 1/4-net of the sphere in Rd.
By Corollary 4.2.13 in [52], we can choose |N | ≤ 12d. By Exercise 4.4.3 in [52], we conclude that:

∥ ˆ̃Av
0,N∥ ≤ 2 sup

x,y∈N
⟨x, ( ˆ̃Av

0,N )y⟩.

Therefore,

P
(
∥ ˆ̃Av

0,N∥ > β

∣∣∣∣M̃0,N−1 ∩ D̃0,N−1

)
≤ P

(
sup

x,y∈N
⟨x, ( ˆ̃Av

0,N )y⟩ > β

2

∣∣∣∣M̃0,N−1 ∩ D̃0,N−1

)
≤ |N |2 sup

x,y∈N
P
(
⟨x, ( ˆ̃Av

0,N )y⟩ > β

2

∣∣∣∣M̃0,N−1 ∩ D̃0,N−1

)
≤ 2(12)2d exp

(
− β2N

16γCµσmax(Σ)(1 + 2α)

)
≤ exp

(
c1d−

β2N

16γCµσmax(Σ)(1 + 2α)

)
(151)

M Lower Bounds

Consider the notations as defined in Section 4. The idea behind the proof is to consider an appropriate
Bayesian error lower bound to the minimax error. To construct such a prior distribution, we consider
binary tuples M = (Mij for i, j ∈ [d], i < j) ∈ {0, 1}d(d−1)/2 and ϵ ∈ (0, 1

4d ). We construct the
symmetric matrix corresponding to M , denoted by A(M) as:

A(M)ij =

{
1
2 if i = j
1
4d − ϵMij if i < j

(152)

For the sake of clarity, we denote Lpred(·;A(M),N (0, σ2I)) by Lpred(·;M). We use πM to denote
the stationary distribution of VAR(A(M),N (0, σ2I)) and the data co-variance matrix at stationarity
to be GM := EX∼πM

XX⊤. By (Zt) ∼ M , we mean (Z1, . . . , ZT ) ∼ VAR(A(M),N (0, σ2I)).
We will first list some useful results in the following Lemmas:

Lemma 34. Suppose Assumption 1 holds for VAR(A∗, µ) and let its stationary distribution be π.
Let G := EX∼πXX⊤. Then,

Lpred(A)− Lpred(A
∗) = Tr

[
(A−A∗)⊤(A−A∗)G

]
Lemma 35. For every M ∈ {0, 1}d(d−1)/2 we have:

σ2I ⪯ GM ⪯ 3σ2I
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Proof. First we note by Gershgorin circle theorem that ∥A(M)∥ ≤ 3
4 . Given a stationary sequence

(Z0, . . . , ZT ) ∼M and the corresponding noise sequence η0, . . . , ηT ∼ N (0, σ2I) i.i.d, we have by
stationarity definition: Zt+1 = A(M)Zt + ηt and Zt+1, Zt are both stationary. Therefore:

GM = EZt+1Z
⊤
t+1 = A(M)EZtZ

⊤
t A(M)⊤ + Eηtη⊤t = A(M)GMA(M)⊤ + σ2I .

From this we conclude that GM ⪰ σ2I . Now, expanding the recursion above, we have:

GM = σ2
∞∑
i=0

A(M)i(A(M)⊤)i ⪯ σ2
∞∑
i=0

(
9

16

)i

I =
16σ2

7
I (153)

In the second step we have the fact that ∥A(M)∥ ≤ 3
4 to show that A(M)i(A(M)⊤)i ⪯

(
9
16

)i
I

Suppose M and M ′ are such that their Hamming distance is 1 (i.e, A(M) and A(M ′) differ in
exactly two places). We want to bound the total variation distance between the corresponding
stationary sequences (Z0, Z1, . . . , ZT ) ∼ VAR(A(M),N (0, σ2I)) and (Z ′

0, Z
′
1, . . . , Z

′
T ) ∼

VAR(A(M ′),N (0, σ2I)).

Lemma 36. Let the quantities be as defined above. For some universal constant c, whenever
ϵ < cmin( 1√

T
, 1
d ), we have:

TV ((Z0, . . . , ZT ), (Z
′
0, . . . , Z

′
T )) ≤

1

2

By the existence of maximal coupling (see Chapter I, Theorem 5.2 in [53]), we conclude that we can
define (Z0, . . . , ZT ) and (Z ′

0, . . . , Z
′
T ) on a common probability space such that:

P((Z0, . . . , ZT ) = (Z ′
0, . . . , Z

′
T )) ≥

1

2

Proof. We will first bound the KL divergence between the two distributions and infer the bound on
TV distance from Pinsker’s inequality. Consider pM,T and pM ′,T to be the respective probability
density functions of (Z0, . . . , ZT ) ∼M and (Z ′

0, . . . , Z
′
T ) ∼M ′ respectively. In this proof, we will

use Zt,− to denote the tuple (Z0, . . . , Zt). Now, by definition of KL divergence, we have:

KL(pM,T ∥pM ′,T ) = EZ∼pM,T
log

pM,T (Z0, . . . , ZT )

pM ′,T (Z0, . . . , ZT )

= EZ∼pM,T
log

pM,T (ZT |ZT−1,−)

pM ′,T (ZT |ZT−1,−)
+ EZ∼pM,T

log
pM,T−1(Z0, . . . , ZT−1)

pM ′,T−1(Z0, . . . , ZT−1)

= EZ∼pM,T
log

pM,T (ZT |ZT−1,−)

pM ′,T (ZT |ZT−1,−)
+ KL(pM,T−1∥pM ′,T−1)

= EZ∼pM,T
log

pM,T (ZT |ZT−1)

pM ′,T (ZT |ZT−1)
+ KL(pM,T−1∥pM ′,T−1) (154)

The first 3 steps above follow from the definition of KL divergence and conditional density. In the
last step we have used the Markov property of the sequence Z0, . . . , ZT which in this case shows
that the law of ZT |ZT−1 is the same as the law ZT |ZT−1,−. Using Equation (154) recursively and
noting that (Zt, Zt−1) are identically distributed for every t ∈ {1, . . . , T}, we conclude:

KL(pM,T ∥pM ′,T ) = TE(Z0,Z1)∼pM,1
log

pM,1(Z1|Z0)

pM ′,1(Z1|Z0)
+ KL(πM∥πM ′) (155)

We will first bound E(Z0,Z1)∼pM,1
log

pM,1(Z1|Z0)
pM′,1(Z1|Z0)

. Conditioned on Z0, the law of Z1 under the

model M is N (A(M)Z0, σ
2I). Similarly, the conditional law of Z1 under the model M ′ is

N (A(M ′)Z0, σ
2I). Therefore, a simple calculation shows that:
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E(Z0,Z1)∼pM,1
log

pM,1(Z1|Z0)

pM ′,1(Z1|Z0)
= EZ0∼πM

∥ (A(M)−A(M ′))Z0∥2

2σ2

= EZ0∼πM
Tr

(
(A(M)−A(M ′))

⊤
(A(M)−A(M ′))

Z0Z
⊤
0

2σ2

)
=

1

2σ2
Tr
(
(A(M)−A(M ′))

⊤
(A(M)−A(M ′))GM

)
≤ 3

2
Tr
(
(A(M)−A(M ′))

⊤
(A(M)−A(M ′))

)
=

3

2
∥A(M)−A(M ′)∥2F = 3ϵ2. (156)

In the first step, we have used standard KL formula for Gaussians with different mean but same
variance. In the third step we have used the fact that Z0 ∼ πM . In the fourth step, we have used the
upper bound on GM from Lemma 35. In the last step we have used the definition of A(M) and the
fact that the Hamming distance between M and M ′ is 1. Now we consider: KL(πM∥πM ′)

Clearly, πM = N (0, GM ). By standard formula for KL divergence between Gaussians,

KL(πM∥πM ′) =
1

2

[
Tr(G−1

M ′GM )− d+ log
detGM ′

detGM

]
. (157)

First we consider Tr(G−1
M ′GM ). Clearly, GM = σ2(I−A(M)2)−1 and GM ′ = σ2(I−A(M ′)2)−1.

Therefore, G−1
M ′ = G−1

M + A(M)2−A(M ′)2

σ2 . We have:

Tr(G−1
M ′GM ) = Tr(I) + Tr

(
A(M)2 −A(M ′)2

σ2
GM

)
≤ d+ d

∥∥A(M)2−A(M ′)2

σ2 GM

∥∥
≤ d+ d

∥GM∥
σ2
∥A(M)2 −A(M ′)2∥ ≤ d+ 3d∥A(M)2 −A(M ′)2∥

= d+ 3d∥(A(M)−A(M ′))A(M) +A(M ′)(A(M)−A(M ′))∥
≤ d+ 3d [∥A(M)−A(M ′)∥∥A(M)∥+ ∥A(M ′)∥∥A(M)−A(M ′∥]

≤ d+
9

2
dϵ. (158)

In the second step we have used the fact that tr(B) ≤ d∥B∥. In the future steps, we have made use
of the sub-multiplicativity of the operator norm and the upper bound on ∥GM∥ given by Lemma 35.
We have also used the fact that by Gershgorin theorem ∥A(M)∥ ≤ 3

4 and ∥A(M)−A(M ′)∥ = ϵ.

Next, we will bound log detGM′
detGM

. Suppose µ1 ≥ · · · ≥ µd be the eigenvalues of A(M) and µ′
1 ≥

· · · ≥ µ′
d be the eigenvalues of A(M ′). We conclude that:

log
detGM ′

detGM
=

d∑
i=1

log

(
1− µ2

i

1− (µ′
i)

2

)
.

Now, ∥A(M)−A(M ′)∥ ≤ ϵ. Therefore, we conclude by Weyl inequalities that |µi − µ′
i| ≤ ϵ. By

Gershgorin circle theorem, we also conclude that 1
4 ≤ µ′

i ≤ 3
4

Plugging this into the equation above, we have:

log
detGM ′

detGM
=

d∑
i=1

log

(
1− µ2

i

1− (µ′
i)

2

)
≤

d∑
i=1

log

(
1− (µ′

i − ϵ)2

1− (µ′
i)

2

)
=

d∑
i=1

log

(
1 +

2µ′
i − ϵ2

1− (µ′
i)

2

)

≤
d∑

i=1

log (1 + 4ϵ) ≤ 4ϵd (159)

Combining Equations (158) and (159) along with Equation (157) we conclude:

KL(πM∥πM ′) ≤ 5ϵd.
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Using this along with Equations (156) and (155), we conclude:
KL(pM,T ∥pM ′,T ) = 3ϵ2T + 5ϵd. (160)

From this we conclude that when ϵ is as given in the statement of the lemma, we have:

KL(pM,T ∥pM ′,T ) ≤
1

8
. (161)

By Pinsker’s inequality, which states that TV ≤
√
2KL, we conclude the result of the lemma.

Theorem 4. We first note that when we choose σ2 such that dσ2 = β, we have
VAR(A(M),N (0, σ2I)) ∈M

for every M ∈ {0, 1}d(d−1)/2. We pick ϵ = cmin( 1√
T
, 1
d ) so that Lemma 36 is satisfied.

We draw M randomly from the uniform measure over {0, 1}d(d−1)/2 and lower bound the minimax
error by Bayesian error.

Lminmax(M) ≥ inf
f∈F

EME(Zt)∼MLpred(f(Z0, . . . , ZT );M)− Lpred(A(M);M) (162)

We will now uniformly lower bound EME(Zt)∼MLpred(f(Z0, . . . , ZT );M) − Lpred(A(M);M)
for every fixed choice of f ∈ F to conclude the statement of the theorem from Equation (162).
Henceforth, we will denote f(Z0, . . . , ZT ) by Â(M) whenever (Zt) ∼ M . By Lemma 34, we
conclude that:

Lpred(Â(M);M)− Lpred(A(M);M) = Tr
[
(Â(M)−A(M))⊤(Â(M)−A(M))GM

]
.

(Â(M)−A(M))⊤(Â(M)−A(M)) is a PSD matrix and by Lemma 35, GM ≥ σ2I for every M .
Therefore, we conclude that with probability 1 we have:

Lpred(Â(M);M)−Lpred(A(M);M) ≥ σ2 Tr
[
(Â(M)−A(M))⊤(Â(M)−A(M))

]
= σ2∥Â(M)−A(M)∥2F ≥ 2σ2

∑
i,j∈[d]
i<j

(Â(M)ij −A(M)ij)
2. (163)

Therefore, we conclude that:

EMEZt∼MLpred(Â(M);M)− Lpred(A(M);M) ≥ 2
∑

i,j∈[d]
i<j

EME(Zt)∼M (Â(M)ij −A(M)ij)
2.

(164)
We will now lower bound every term in the summation in the RHS of Equation (164). Fix (i, j). Let
M∼ij denote all the co-ordinates of M other than (i, j). We define M+,M− ∈ {0, 1}d(d−1)/2 so
that M+

∼ij = M∼ij and M+
ij = 1. Similarly, let M−

∼ij = M∼ij and M−
ij = 0. Therefore, we have:

EME(Zt)∼M (Â(M)ij −A(M)ij)
2 =

1

2
EM∼ij

E(Zt)∼M+(Â(M+)ij −A(M+)ij)
2

+
1

2
EM∼ij

E(Zt)∼M−(Â(M−)ij −A(M−)ij)
2. (165)

Now, M+ and M− differ in exactly one co-ordinate. We invoke Lemma 36 to show that there
exists a coupling between (Z+

t ) ∼ M+ and Z−
t ∼ M− such that P(Z+

t = Z−
t ) ≥ 1

2 . Call this
event Γ (we ignore the dependence on M∼ij for the sake of clarity). In this event, we must have
Â(M+) = Â(M−) since our estimator f ∈ F is a measurable function of the data. For any fixed
M∼ij , we have:

E(Zt)∼M+(Â(M+)ij −A(M+)ij)
2 + E(Zt)∼M−(Â(M−)ij −A(M−)ij)

2

≥ E(Zt)1(Γ)
[
(Â(M+)ij −A(M+)ij)

2 + (Â(M+)ij −A(M−)ij)
2
]

≥ P(Γ)(A(M−)ij −A(M+)ij)
2 ≥ 1

2
(A(M−)ij −A(M+)ij)

2 =
ϵ2

2
. (166)
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In the second line we have used the fact that under event Γ, Â(M+) = Â(M−). In the third line, we
have used the inequality (x− y)2 + (x− z)2 ≥ 1

2 (y − z)2. In the fourth line, we have used the fact
that P(Γ) ≥ 1/2. Using Equation (166) along with Equations (165) and (164), we conclude that for
every estimator f ∈ F the following holds:

EMEZt∼M [Lpred(Â(M);M)− Lpred(A(M);M)] ≥ d(d− 1)ϵ2σ2

4
.

Using above equation with Equation (162), we conclude the statement of the theorem.

Remark. We can show a similar lower bound by considering a discrete prior over the space of
orthogonal matrices. In particular taking A∗ to be an orthogonal matrix scaled by ρ, we can endow
the orthogonal (or special orthogonal) group with metric induced by the Frobenius norm. Then from
[54, Proposition 7], we can construct an ϵ-cover of cardinality d

d(d−1)
2 . But then from the proof of

[55, Proposition 3], for α ∈ (0, 1), there exists a local packing of the space with packing distance αϵ
and cardinality at least cd(d−1)/2 where c > 1. Further the diameter of this local packing is at most
2ϵ (in Frobenius norm). Now using standard arguments from Fano’s inequality (c.f.[55, Proposition
3]) or Birge’s inequality (c.f.[5, Lemma F.1]) we can get a similar lower bound on the prediction
error as Theorem 4 but with explicit dependence on ρ.

N Techincal Proofs

N.1 Proof of Lemma 10

Proof. Consider the SGD− RER iteration:

At−1
i+1 = At−1

i − 2γ(At−1
i Xt−1

−i −Xt−1
−(i+1))X

t−1,⊤
−i

= At−1
i (I − 2γXt−1

−i Xt−1,⊤
−i ) + 2γXt−1

−(i−1))X
t−1,⊤
−(i+1) (167)

Observe that for our choice of γ and under the event D0,N−1, we have ∥(I − 2γXt−1
−i Xt−1,⊤

−i )∥ ≤ 1

and ∥Xt−1
−(i+1)X

t−1,⊤
−i ∥ ≤ R. Therefore, triangle inequality implies:

∥At−1
i+1∥ ≤ ∥A

t−1
i ∥+ 2γR

We conclude the bound in the Lemma.

N.2 Proof of Lemma 11

Proof. We again consider the evolution equation: X̃t−1
−i

At−1
i+1 = At−1

i − 2γ(At−1
i Xt−1

−i −Xt−1
−(i+1))X

t−1,⊤
−i

= At−1
i − 2γ(At−1

i X̃t−1
−i − X̃t−1

−(i+1))X̃
t−1,⊤
−i +∆t,i (168)

Where

∆t,i = 2γAt−1
i

(
X̃t−1

−i X̃t−1,⊤
−i −Xt−1

−i Xt−1,⊤
−i

)
+ 2γ

(
Xt−1

−(i+1)X
t−1,⊤
−i − X̃t−1

−(i+1)X̃
t−1,⊤
−i

)
Using Lemmas 10 and 7, we conclude that:

∥∆t,i∥ ≤ (16γ2R2T + 8γR) ∥A∗u∥

Using the recursion for Ãt
i, we conclude:

At−1
i+1 − Ãt−1

i+1 = (At−1
i − Ãt−1

i )P̃ t
i +∆t,i

=⇒
∥∥∥At−1

i+1 − Ãt−1
i+1

∥∥∥ ≤ ∥∥∥At−1
i − Ãt−1

i

∥∥∥∥∥∥P̃ t
i

∥∥∥+ (16γ2R2T + 8γR) ∥A∗u∥

=⇒
∥∥∥At−1

i+1 − Ãt−1
i+1

∥∥∥ ≤ ∥∥∥At−1
i − Ãt−1

i

∥∥∥+ (16γ2R2T + 8γR) ∥A∗u∥ (169)

In the last step we have used the fact that under the event D̂0,N−1, we must have
∥∥∥P̃ t

i

∥∥∥ ≤ 1. We
conclude the statement of the lemma from Equation (169).
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N.3 Proof of Lemma 12

Proof. First we have

E
[(
At−1

j −A∗)⊤ (At−1
j −A∗) 1 [D0,t−1

]]
⪯ E

[(
At−1

j −A∗)⊤ (At−1
j −A∗) 1 [D̂0,t−1

]]
+ 4γ2(Bt)2R

√
µ4

1

Tα/2
I

⪯ E
[(
At−1

j −A∗)⊤ (At−1
j −A∗) 1 [D̂0,t−1

]]
+ cγ2dσmax(Σ)RT 2 1

Tα/2
I (170)

Next, we have ∥∥∥∥(At−1
j −A∗)⊤ (At−1

j −A∗)− (Ãt−1
j −A∗

)⊤ (
Ãt−1

j −A∗
)∥∥∥∥

≤
∥∥∥At−1

j − Ãt−1
j

∥∥∥(∥∥(At−1
j −A∗)∥∥+ ∥∥∥(Ãt−1

j −A∗
)∥∥∥)

≤
∥∥∥At−1

j − Ãt−1
j

∥∥∥(2 ∥A∗∥+
∥∥At−1

j

∥∥+ ∥∥∥Ãt−1
j

∥∥∥) (171)

Thus on the event D̂0,t−1, using lemma 11 and lemma 10 we get∥∥∥∥(At−1
j −A∗)⊤ (At−1

j −A∗)− (Ãt−1
j −A∗

)⊤ (
Ãt−1

j −A∗
)∥∥∥∥

≤ c(γ2R2T 2 + γRT )(γRT + ∥A∗∥+ ∥A0∥) ∥A∗u∥ ≤ cγ3R3T 3 ∥A∗u∥ (172)

for some constant c. (We have suppressed the dependence on A0 and A∗ since they are constants and
γRT grows with T ).

The proof follows by combining (170) and (172).

The proof of (17) follows similarly.

O Prediction error for sparse systems

In this section we consider the VAR(A∗, µ) model with sparse A∗ whose sparsity pattern is known.
We will present a modification of SGD−RER that takes into account the sparsity pattern information.
Formally, let Sl = {k : A∗

l,k ̸= 0} be support or sparsity pattern of row l of A∗. Further let sl = |Sl|
denote the sparsity of row j. We assume that Sl is known for each 1 ≤ l ≤ d. The claim is that
the excess expected prediction loss is of order

∑
l slσ

2
l

T . We will present only a sketch of the proof
highlighting the main steps. Detailed calculations follow similarly as in sections F and G.

The modification of the SGD − RER algorithm to use the sparsity pattern is as follows. Let a∗,⊤l

denote row l of A∗. The algorithmic iterates are given by (At−1
j ) where row l is at−1,⊤

j,l . Let
a00,l = 0 ∈ Rd. Let {el : 1 ≤ l ≤ d} denote the standard basis of Rd. Let PSl

: Rd → Rd denote
the (self adjoint) orthogonal projection operator onto the subspace spanned by {el : l ∈ Sl}. Then
update for row l is given by

at−1,⊤
j+1,l =

[
at−1,⊤
j,l − 2γ(at−1,⊤

j,l Xt−1
−j − ⟨el, X

t−1
−(j−1)⟩)X

t−1,⊤
−j

]
PSl

(173)

and at0,l = at−1
B,l . Since each iterate above has sparsity pattern Sl by construction, we can rewrite the

above as
at−1,⊤
j+1,l = at−1,⊤

j,l − 2γ(at−1,⊤
j,l Xt−1

−j − ⟨el, X
t−1
−(j−1)⟩)

(
PSl

Xt−1
−j

)⊤
(174)

Notice that at−1,⊤
j,l Xt−1

−j = at−1,⊤
j,l PSl

Xt−1
−j and

⟨el, Xt−1
−(j−1)⟩ = a∗,⊤l Xt−1

−j + ηt−1
−j,l
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Thus(
at−1
j+1,l − a∗l

)⊤
=
(
at−1
j,l − a∗l

)⊤ (
PSl
− 2γ

(
PSl

Xt−1
−j

) (
PSl

Xt−1
−j

)⊤)
+ 2γηt−1

−j,l

(
PSl

Xt−1
−j

)⊤
(175)

For a vector v ∈ Rd, let vSl
∈ Rsl be the vector corresponding to the support Sl i.e. entries in vSl

correspond to the entries in v whose indices are in Sl. So we can rewrite (175) completely in Rsl as(
at−1
j+1,l − a∗l

)⊤
Sl

=
(
at−1
j,l − a∗l

)⊤
Sl

(
Isl − 2γ

(
Xt−1

−j

)
Sl

(
Xt−1

−j

)⊤
Sl

)
+ 2γηt−1

−j,l

(
Xt−1

−j

)⊤
Sl

(176)

where Isl is the identity matrix of dimension sl.

Our goal is to bound the expected prediction error for this modified SGD− RER. To that end, we
will make some important observations.

(1) Since we focus on prediction error, the entire analysis can be carried out row by row. To see
this, if Â is any estimator, the

Lpred(Â;A∗, µ)− Tr(Σ) = Tr(G(Â−A∗)⊤(Â−A)) =

d∑
l=1

Tr(G(âl − a∗l )(âl − a∗l )
⊤)

where â⊤l is the row l of Â.
(2) If âl and a∗l have sparsity pattern Sl then

Tr(G(âl − a∗l )(âl − a∗l )
⊤) = Tr(PSl

GPSl
(âl − a∗l )(âl − a∗l )

⊤)

= Tr(GSl
(âl − a∗l )Sl

(âl − a∗l )
⊤
Sl
)

where GSl
∈ Rsl×sl is the submatrix of G obtained by picking rows and columns

corresponding to indices in Sl.
(3) Under the stationary measure, we have E

[(
PSl

Xt−1
−j

) (
PSl

Xt−1
−j

)⊤]
= PSl

GPSl
. Thus,

with high probability
∥∥PSl

Xt−1
−j

∥∥2 ≤ cslσmax(G) log T .
(4) Letting s0 = maxl sl, we can set R = cs0σmax(G) log T and use step size γ = O(1/RB).
(5) We can perform the same bias-variance decomposition as described in section D to obtain

at−1,v
B,l and at−1,b

B,l .
(6) From previous observations, the variance of last iterate corresponding to row l turns out to

be

γσ2
l (1− o(1))Isl ⪯ E

[(
at−1,v
B,l

)
Sl

(
at−1,v
B,l

)⊤
Sl

]
⪯ γ

1− γR
σ2
l (1 + o(1))Isl

where σ2
l = Σl,l.

(7) Similarly, the variance of the average iterate E
[
(âv0,N,l)(â

v
0,N,l)

⊤
]

corresponding to row l

can be bounded upto leading order by

1

N2

N∑
t=1

[
Vt−1,l(Isl −HSl

)−1 + (Isl −H⊤
Sl
)−1Vt−1,l

]
where Vt−1,l = E

[(
at−1,v
B,l

)
Sl

(
at−1,v
B,l

)⊤
Sl

]
and (with abuse of notation)HSl

is defined as

HSl
= E

B−1∏
j=0

(
Isl − 2γ(X̃0

−j)Sl
(X̃0

−j)
⊤
Sl

)
1

[
∩B−1
j=0

{∥∥∥(X̃0
−j)Sl

∥∥∥2 ≤ R

}]
where X̃0

0 ∼ π.
(8) Now, similar to lemma 16 we can boundHSl

+H⊤
Sl

by 2(Isl − cγBGsl) upto leading order.
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(9) Thus similar to lemma 17 we obtain

Tr(GSl
(I −HSl

)−1) ≤ c
sl
γB

(10) Finally as in section G.1 we can bound the variance of prediction error of row l upto leading
order by

Tr(GE
[
(âv0,N,l)(â

v
0,N,l)

⊤]) ≲ σ2
l sl
T

Thus summing over l we get

Tr
(
GE

[
(Âv

0,N )(Âv
0,N )⊤

])
≲

∑
l σ

2
l sl

T

(11) Bias can also be analyzed in a similar way and it will be of strictly lower order (using
suitable tail-averaging).

(12) Thus the excess prediction loss is given bounded as

E
[
Lpred(ÂN/2,N ;A∗, µ)

]
− Tr(Σ) ≲

∑
l σ

2
l sl

T

So the modified SGD− RER algorithm effectively utilizes the low dimensional structure in A∗.

49


