
A Algorithms

Below we include detailed pseudocode for algorithms described in the main text.

Algorithm 2 Parameter Free DeltaShift
Input: Implicit matrix-vector multiplication access to A1, ..., Am ∈ Rn×n, positive integer `.
Output: t1, . . . , tm approximating tr(A1), . . . , tr(Am).

Draw ` random ±1 vectors g1, . . . , g` ∈ Rn
z1 ← A1g1, . . . , z` ← A1g`
N ← 1

`

∑`
i=1 z

T
i zi (estimate for ‖A1‖2F)

Initialize t1 ← 1
`

∑`
i=1 g

T
i zi and v1 ← 2

`N
for j ← 2 to m do

Draw ` random ±1 vectors g1, . . . , g` ∈ Rn
z1 ← Aj−1g1, . . . , z` ← Aj−1g`, w1 ← Ajg1, . . . , w` ← Ajg`
N ← 1

`

∑`
i=1 z

T
i zi, M ← 1

`

∑`
i=1 w

T
i wi, C ← 1

`

∑`
i=1 w

T
i zi

(
estimate for tr(ATj−1Aj−1),

tr(ATj Aj)&tr(ATj−1Aj)
)

γ ← 1− 2C
`ṽj−1+2N (optimal damping factor)

tj ← (1− γ)tj−1 + 1
`

∑`
i=1 g

T
i (wi − (1− γ)zi)

vj ← (1− γ)2vj−1 + 2
`

(
N + (1− γ)2M − 2(1− γ)C

)
end for

Algorithm 3 Dynamic Trace Estimation w/ Restarts
Input: Implicit matrix-vector multiplication access to A1, ..., Am ∈ Rn×n, positive integers
`0, `, q ≤ m.
Output: t1, . . . , tm approximating tr(A1), . . . , tr(Am).

Draw `0 random ±1 vectors g1, . . . , g`0 ∈ Rn

Initialize t1 ← 1
`0

∑`0
i=1 g

T
i A1gi

for j ← 2 to m do
if j ≡ 1 (mod n) then

Draw `0 random ±1 vectors g1, . . . , g`0 ∈ Rn

tj ← 1
`0

∑`0
i=1 g

T
i Ajgi

else
Draw `0 random ±1 vectors g1, . . . , g` ∈ Rn
tj ← tj−1 + 1

`

∑`
i=1 g

T
i (Aj −Aj−1)gi

end if
end for

B High Probability Proofs

In this section, we give a full proof of Theorem 1.1 with the correct logarithmic dependence on 1/δ.
Before doing so, we collect several definitions and results required for proving the theorem.

Definition 1. [42] A random variable X with E[X] = µ is sub-exponential with parameters (ν, β) if
its moment generating function satisfies:

E[eλ(X−µ)] ≤ e ν
2λ2

2 for all |λ| < 1

β
.

Claim B.1. [42] Any sub-exponential random variable with parameters (ν, β) satisfies the tail bound

Pr [|X− µ| ≥ t] ≤

2e
−t2

2ν2 if 0 ≤ t ≤ ν2

β

2e
−t
2β for t > ν2

β .

13

Claim B.2. Let X1,X2, . . . ,Xk be independent random variables with mean µ1, ..., µk and sub-
exponential parameters (ν1, β1), ...(νk, βk), then

∑k
i=1 aiXi is sub-exponential with parameters

(ν∗, β∗) where,

ν∗ =

√√√√ k∑
i=1

a2
i ν

2
i and β∗ = max

i=1,...,k
aiβi

Proof. The proof is straight-forward by computing the moment generating function of
∑k
i=1 aiXi

using the independence of X1,X2, . . . ,Xk. Specifically, for |λ| < 1/(maxi=1,...,k aiβi) we have:

E[eλ
∑k
i=1 ai(Xi−µi)] =

k∏
i=1

E[eλai(Xi−µi)]

≤
k∏
i=1

e
λ2a2i ν

2
i

2 = e
λ2ν2∗

2 .

As discussed, a tight analysis of Hutchinson’s estimator, and also our DeltaShift algorithm, relies
on the Hanson-Wright inequality [18], which shows that any quadratic form involving a vector with
i.i.d. sub-Gaussian entries is a sub-exponential random variable. Thanks to existing concentration
results for sub-exponential’s this allows us to obtain a better dependence on the failure probability
than given by the cruder Chebyshev’s inequality presented in the paper’s main text. Specifically, we
use the following version of the inequality:

Claim B.3. [Corollary of Theorem 1.1, [35]] For A ∈ Rn×n, let h`(A) be Hutchinson’s estimator
as defined in Section 2, implemented with Rademacher random vectors. h`(A) is a sub-exponential
random variable with parameters

ν =
c1‖A‖F√

`
and β =

c2‖A‖2
`

,

where c1, c2 are absolute constants.

Proof. Recall that h`(A) is an average of ` independent random variables, each of the form gTAg,
where g ∈ Rn is a vector with independent ±1 Rademacher random entries. We start by decoupling
gTAg in two sums involving diagonal and off-diagonal terms in A:

gTAg =

n∑
i=1

g2
iAii +

n∑
i,j:i 6=j

Aijgigj .

Here gi denotes the ith entry of g. Since each gi is sampled i.i.d. from a ±1 Rademacher distribution,
the first term is constant with value

∑n
i=1Aii = tr(A). [35] derive a bound on the moment generating

function for the off-diagonal term, which they denote S =
∑n
i,j:i 6=j Aijgigj . Specifically, they show

that

E
[
eλS
]
≤ ec21‖A‖2Fλ2/2, for all |λ| < 1

c2‖A‖2
,

where c1, c2 are positive constants. As S is mean zero, we conclude that it is sub-exponential with
parameters (c1‖A‖F , c2‖A‖2) (refer to Definition 1), and thus gTAg (which is just S added to a
constant) is sub-exponential with same parameters. Finally, from Claim B.2, we immediately have
that h`(A) is sub-exponential with parameters

(
c1‖A‖F√

`
, c2‖A‖2`

)
. Note that, while we only consider

±1 Rademacher random vectors, a similar analysis can be performed for any i.i.d. sub-Gaussian
random entries by showing that the diagonal term is itself subexponential (it will no longer be
constant). The result will involve additional constants depending on the choice of gi. In the case
when gi are i.i.d. standard normals, the diagonal term is a scaled chi-squared random variable.

14

Now, we are ready to move on to the main result.

Theorem 1.1 (Restated). For any ε, δ, α ∈ (0, 1), Algorithm 1 run with γ = α, `0 = O
(

log(1/δ)
ε2

)
,

and ` = O
(
α log(1/δ)

ε2

)
solves Problem 1. In total, it requires

O

(
m · α log(1/δ)

ε2
+

log(1/δ)

ε2

)
matrix-vector multiplications with A1, . . . , Am.

Proof. The proof is by induction. Let t1, . . . , tm be the estimators for tr(A1), . . . , tr(Am) returned
by Algorithm 1. We claim that, for all j = 1, . . . ,m, tj is sub-exponential with parameters

νj ≤
ε

2
√

log(2/δ)
, βj ≤

ε2

4 log(2/δ)
. (11)

If we can prove (11), the theorem immediately follows by applying Claim B.1 with t = ε to the
random variable tj . Recall that E[tj] = tr(Aj)

First consider the base case, t1 = hl0(A1). By Claim B.3, hl0(A1) is sub-exponential with parameters(
c1√
`0
, c2‖A1‖2

`0

)
. Noting that ‖A1‖2 ≤ ‖A1‖F ≤ 1 and setting constants appropriately on `0 gives

the bound.

Next consider the inductive case. Recall that tj = (1− γ)tj−1 + h`(∆̂j), where ∆̂j = Aj − (1−
γ)Aj−1. As shown in Section 3.1, ‖∆̂j‖F ≤ 2α. So by Claim B.3, h`(∆̂1) is sub-exponential with

parameters
(

2c1α√
`
, 2c2α

`

)
. As long as ` = c · α log(2/δ)

ε2 for sufficiently large constant c, we therefore
have by Claim B.2 that

βj = max

[
(1− γ)βj−1,

2c2α

`

]
≤ ε2

4 log(2/δ)
.

Note that above we used the ‖∆̂j‖2 ≤ ‖∆̂j‖F ≤ 2α. Setting γ = α, we also have

ν2
j = (1− α)2ν2

j−1 +

(
2c1α√
`

)2

≤ (1− α)ν2
j−1 + αν2

j−1 = ν2
j−1.

The inequality
(

2c1α√
`

)2

≤ αν2
j−1 follows as long as ` = c · α log(2/δ)

ε2 for sufficiently large constant
c. We have thus proven (11) and the theorem follows.

C DeltaShift++ Analysis

In this section, we prove Theorem 4.3. Before doing so, we include pseudocode for the DeltaShift++
algorithm. We let h++

` (A) denote the output of the Hutch++ algorithm from [30] run with ` matrix-
vector multiplications – we refer the reader to that paper for details of the method.

Algorithm 4 DeltaShift++
Input: Implicit matrix-vector multiplication access to A1, ..., Am ∈ Rn×n, positive integers `0, `,
damping factor γ ∈ [0, 1].
Output: t1, . . . , tm approximating tr(A1), . . . , tr(Am).

Draw `0 random ±1 vectors g1, . . . , g`0 ∈ Rn
Initialize t1 ← h++

`0
(A1)

for j ← 2 to m do
tj ← γ · h++

` (Aj) + (1− γ)
(
tj−1 + h++

` (Aj −Aj−1)
)

end for

15

Theorem 4.3 (Restated). For any ε, δ, α ∈ (0, 1), DeltaShift++ (Algorithm 4) run with `0 =

O(
√

1/δ/ε), ` = O(
√
α/δ/ε), and γ = α, solves Problem 2 with

O

(
m ·

√
α/δ

ε
+

√
1/δ

ε

)
total matrix-vector multiplications involving A1, . . . , Am.

Proof. DeltaShift++ is based on a slightly different formulation of the recurrence in (6) that was used
to design DeltaShift. In particular, rearranging terms, we see that Equation (6) is equivalent to:

tr(Aj) = (1− γ) (tr(Aj−1) + tr(∆j)) + γtr(Aj), where ∆j = Aj −Aj−1. (12)

Following this equation, DeltaShift++ approximates tr(Aj) via:

tj = γh++
` (Aj) + (1− γ)

(
tj−1 + h++

` (Aj −Aj−1)
)
. (13)

As in the analysis of DeltaShift, we bound the variance of tj recursively, showing that it is less than
δε2. We start with the base case. From Fact 4.2 and our assumption in Problem 2 that ‖A1‖∗ ≤ 1, we
have the Var[t1] ≤ ε2δ as long as `0 = 4√

δε
. Then the recursive case:

Var[tj] = γ2Var[h++
` (Aj)] + (1− γ)2Var[h++

` (∆j)] + (1− γ)2Var[tj−1]

≤ 16γ2‖Aj‖2∗
`2

+
16(1− γ)2α2

`2
+ (1− γ)2δε2

≤ 16α2

`2
+

16α2

`2
+ (1− α)δε2

≤ α

2
δε2 +

α

2
δε2 + (1− α)δε2 = δε2,

where the last inequality holds as long as ` =
4
√

2α/δ

ε . Given a bound on the variance of t1, . . . , tm,
we then just apply Chebyshev’s inequality to obtain the required guarantee for Problem 2.

Choosing γ in practice. As in Section 3.2, we would like to choose γ automatically without the
knowledge of α. We can do so in a similar way as before by minimizing an approximation to the
variance of tj over all possible choices of γ. This is a bit trickier than it was for DeltaShift because
the stated variance of Hutch++ in Fact 4.2 depends on the nuclear norm of the matrix being estimated,
which is not easy to approximate using stochastic estimators. However, it turns out that this variance
is simply an upper bound provided by the analysis in [30]: the precise variance bound depends
on ‖A − PA‖2F where P is a low-rank projection matrix obtained when running Hutch++. This
quantity can be computed via stochastic trace estimation, and by doing so we obtain an expression
for a near optimal choice of γ, exactly as in Section 3.2. This near optimal γ is what is used in our
experimental evaluation. Note that obtaining this γ is what necessitated the reformulated recurrence
of (13), as we only require the variance of Hutch++ run on two fixed matrices at each iteration: Aj
and ∆j = Aj −Aj−1 DeltaShift on the other hand involved a matrix ∆̂j = Aj − (1− γ)Aj−1 that
depended on γ. It would not be possible to easily obtain a direct equation for the variance of Hutch++
applied to this matrix as the matrix P computed by Hutch++ would change dependeing on γ.

Similar to DeltaShift, we choose γi at each step i that minimizes the variance of estimate at that
particular step. Specifically, letting KA = ‖A−Ak‖2F where Ak is a rank-k approximation to matrix
A, and vi be the variance of estimate at time step i, we obtain

γ∗i = min
γ

[
γ28KAi

`
+ (1− γ)2(vi−1 +

8K∆i

`
)

]
=

8K∆i + `vi−1

8KAi + `vi−1 + 8K∆i

(14)

Note that similar to DeltaShift, we can reuse the matrix-vector products to calculate near-optimal γi
at each step.

16

D Experimental details

Allocation of matrix-vector products for Restart and NoRestart methods: The rationale behind
the Restart method is using higher number of matrix-vector products for the first matrix in the
sequence, letting us use less for subsequent matrices, followed by restarts at set intervals. Note
that this still lets us take advantage of relatively small perturbations to the matrices. Following this
motivation, for a sequence of 100 matrices we restart every q = 20 time steps. The Q matrix-vector
multiplications (total matrix-vector products) were evenly distributed to each block of 20 matrices,
and then 1/3 of those used for estimating the trace of the first matrix in the block, and the rest split
evenly among the remaining 19. For NoRestart, the same number of vectors were allocated to A1 as
for Restart, and the rest evenly divided among all 99 remaining steps, which results in better accuracy
for A1 compared to Hutchinson’s and DeltaShift.

Synthetic data: For synthetic data experiments, we consider a random symmetric matrix A ∈
Rn×n and random perturbation ∆ ∈ Rn×n to A for 100 time steps, with n = 2000. We consider
two cases, one where the perturbations are small (Fig. 1(a)) and one where the perturbations are
significant (Fig. 1(b)). For both cases, A1 (first matrix in the sequence) is a symmetric matrix with
uniformly random eigenvectors and eigenvalues in [−1, 1]. For small perturbations, each perturbation
is a random rank-1 matrix: ∆j = 5e−5 · r · ggT where r is random ±1 and g ∈ Rn is random
Gaussian. For the large perturbation case, each ∆j is a random rank-25 positive semidefinite matrix.
As such, A’s trace and Frobenius norm monotonically increase over time, which is reflected in
increasing absolute error among all algorithms.

Estimating natural connectivity: Application of dynamic trace estimation to the problem dis-
cussed in [43] involves estimating the natural connectivity of a dynamic graph (which is tr(exp (B))
for an adjacency matrix B). We use Lanczos with 15 iterations to approximate the matrix-vector
product exp (B) · g and start with an accurate estimate for the first matrix in the sequence (using 5000
matrix-vector products with Hutchinson’s). For estimating the trace of ∆i matrices, we use ` = 50
for DeltaShift and DeltaShift++ across 100 time steps. Note that for estimating trace of matrix A,
Hutch++ allocates the number of matrix-vector products as `/3 for three separate purposes (refer
[30]). For estimating trace of ∆i, we can divide these matrix-vector products as `/5 instead of `/6
(for two matrices Ai+1 and Ai) as we can reuse one set of matrix-vector products.

Hessian spectral density: Approximating the spectral density of Hessian requires computing the
trace of polynomials of the Hessian. We consider the Chebyshev polynomials. The three term
recurrence relation for the Chebyshev polynomials of first kind is:

T0(H) = I T1(H) = H Tn+1(H) = 2HTn(H)− Tn−1(H) (15)

Here I is the identity matrix. As Chebyshev polynomials form orthogonal basis for functions in
range [−1, 1], as a first step we estimate the maximum eigenvalue of the Hessian using power
iteration and scale H̃ = H/λmax. Like trace estimation, power iteration requires computing Hessian-
vector products, which we compute approximately using the PyHessian library [48].2 For a given
neural network and loss function, PyHessian efficiently approximates Hessian-vector products by
applying Pearlmutter’s method to a randomly sampled batch of data points [32]. To compute matrix-
vector products with T0(H̃), T1(H̃), . . . , Tq(H̃), which are needed to approximate the trace of these
matrices, we simply implement the recurrence of (15) using PyHessian’s routine for Hessian-vector
products. Multiplying by Tq(H̃) requires q Hessian-vector products in total. As computing ground
truth values is impossible in this setting, we use Hutchinson’s with 500 matrix-vector products as the
ground truth values.

Experimental setup: All experiments were run on server with 2vCPU @2.2GHz and 27 GB main
memory and P100 GPU with 16GB memory.

2Available under an MIT license.

17

