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Abstract
We study personalization of supervised learning with user-level differential privacy.
Consider a setting with many users, each of whom has a training data set drawn from
their own distribution Pi. Assuming some shared structure among the problems Pi,
can users collectively learn the shared structure—and solve their tasks better than
they could individually—while preserving the privacy of their data? We formulate
this question using joint, user-level differential privacy—that is, we control what is
leaked about each user’s entire data set.

We provide algorithms that exploit popular non-private approaches in this domain
like the Almost-No-Inner-Loop (ANIL) method, and give strong user-level privacy
guarantees for our general approach. When the problems Pi are linear regression
problems with each user’s regression vector lying in a common, unknown low-
dimensional subspace, we show that our efficient algorithms satisfy nearly optimal
estimation error guarantees. We also establish a general, information-theoretic
upper bound via an exponential mechanism-based algorithm.

1 Introduction
Modern machine learning techniques are amazingly successful but come with a range of risks to the
privacy of the personal data on which they are trained. Complex models often encode exact personal
information in surprising ways—allowing, in extreme cases, the exact recovery of training data from
black box use of the model [7, 8]. The emerging architecture of modern learning systems, in which
models are trained collaboratively by networks of mobile devices using extremely rich, personal
information exacerbates these risks.

The paradigm of model personalization, a special case of multitask learning, has emerged as one
way to address both privacy and scalability issues. The idea is to let users train models on their own
data—for example, to recognize friends’ and family members’ faces in photos, or to suggest text
completions that match the user’s style—based on information that is common to the many other
similar learning problems being solved by other users in the system. Even a fairly limited amount of
shared information—a useful feature representation or starting set of parameters for optimization, for
example—can dramatically reduce the amount of data each user requires. But that shared information
can nevertheless be highly disclosive.

In this paper, we formulate a model for reasoning rigorously about the loss to privacy incurred by
sharing information for model personalization. In our model, there are n users, each holding a dataset
of m labeled examples. We assume user j’s data set Dj is drawn i.i.d. from a distribution Pj ; the
user’s goal is to learn a prediction rule that generalizes well to unseen examples from Pj . Ideally, the
user should succeed much better than they could have on their own. We give new algorithms for this
setting, analyze their accuracy on specific data distributions, and test our results empirically.
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We ask that our algorithms satisfy user-level, joint differential privacy (DP) [28] (called task-level
privacy, in the context of multi-task learning [32]). In this setting, each user provides their data set
Dj as input to the algorithm and receives output Aj = Aj(D1, ..., Dn). We require that for every
choice of the other data sets D−j = (D1, ..., Dj−1, Dj+1, ..., Dn) and for every two data sets Dj

and D′j , the collective view of the other users A−j be distributed essentially identically regardless of
whether user j inputs Dj or D′j . The standard model of differential privacy doesn’t directly fit our
setting, since the model ultimately trained by user j will definitely reveal information about user j’s
data set. That said, the algorithms we design can ultimately be viewed as an appropriate composition
of modules that satisfy the usual notion of DP (an approach known as the billboard model). For
simplicity, we describe our algorithms in a centralized model in which the data are stored in a single
location, and the algorithm A is run as a single operation. In most cases, we expect A to be run
as a distributed protocol, using either general tools such as multiparty computation or lightweight,
specialized ones such as differentially private aggregation to simulate the shared platform.

Intuitively, strong privacy requirement at user level, while still demanding that users share some
common information is significantly challenging. For one, as each user individually has a small
amount of data, it has to share information about it’s model/data to learn a meaningful representation.
Furthermore, in practical personalization settings, there is feedback loop between the common or
pooled knowledge of all users and the personalized models for each user. That is, starting with
reasonable personalized models for each user, leads to a better pooled information, while good pooled
information then helps each user learn better personal model. Now, requirement of strong privacy
guarantees forces the pooled information quality to degrade up to some extent, which can then lead
to poorer personalized model and form a negative feedback loop.

1.1 Contributions
We consider two types of algorithms for DP model personalization: inefficient algorithms (based on
the exponential mechanism [35]) that establish information-theoretic upper bounds on achievable error,
and efficient ones based on popular iterative approaches to non-private personalization [40, 26, 51, 52].
These latter approaches are popular for their convergence speed and low communication overhead.
As is often the case, those same features make them attractive starting points for DP algorithms.

Problem Setting: Consider a set of n users, and suppose each user j ∈ [n] holds a data set of m
records Dj = {(xij , yij)}i∈[m] where xij ∈ Rd, yij ∈ R. The goal is to learn a personalized model
fj(·) = f(·; θj) : Rd → R for each user j, where θj is a vector of parameters describing the model.

We aim to learn a shared, low-dimensional representation for the features that allows users to train
good predictors individually. For concreteness, we consider a linear embedding specified by a d× k
matrix U , where k � d. We may think of U either as providing a k-dimensional representation of
the feature xij (as U>xij) or, alternatively, as a compact way to specify a d-dimensional regression
vector θj = Uvj where vj is vector of length k. In both cases, user j’s final predictor has the form

fj(xij) = f ′(〈xij ,Uvj〉) = f ′(〈U>xij ,vj〉)
One may view this as a model as a two-layer neural network, where the first layer is shared across
all users and the second layer is trained individually. A useful setting to have in mind is one where
k � m � d—so users do not have enough data to find a good solution on their own, but they do
have enough data to find the best vector vj once an embedding U has been specified. Without loss of
generality, we assume U ∈ Rd×k to be an orthonormal basis and refer to it as embedding matrix. For
brevity, we will define the matrix V = [v1| · · · |vn] ∈ C ⊆ Rk×n with vjs as columns.

Measure of Accuracy: Let LPop(U ;V ) = E(i,j)∼u[m]×[n],(xij ,yij)∼Pj

[
`
(
〈U>xij ,vj〉; yij

)]
,

where the loss function takes the form ` : R × R → R. We will focus on excess population
risk defined in (1). The privately learned models are denoted by

(
Upriv,V priv

)
. The error measures

are defined with respect to any fixed choice of parameters (U∗,V ∗).

RiskPop(
(
Upriv,V priv

)
; (U∗,V ∗)) = LPop(Upriv,V priv)− LPop(U∗,V ∗). (1)

Alternating Minimization Framework: We develop an efficient framework based on alternating
minimization [46, 29, 23]: starting from an initial embedding map U0, the algorithm proceeds in
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rounds that alternate between users individually selecting the model v(t)
j that minimizes the error of

the predictor f ′(〈·,U (t)v
(t)
j 〉), and then running a DP algorithm, for which user j provides inputs

Dj ,v
(t)
j , to privately select a new embedding U (t+1) that minimizes the error of the predictor

f ′(〈·,U (t+1)v
(t)
j 〉). In both steps, the optimization to be performed is convex when the loss being

optimized is convex. This helps us handle the inherent non-convexity in the problem formulation.

Instantiation and Analysis for Linear Regression with Gaussian Data: For the specific case of
linear regression with the squared error loss, we show that our framework can be fully instantiated with
an efficient algorithm which converges quickly to an optimal solution. For simplicity, we consider the
case where the feature vectors and field noise are normally distributed and independent of each user’s
“true” model θ∗j , and furthermore that the θ∗j vectors admit a common low-dimensional representation
U∗ ∈ Rd×k, so that θ∗j = U∗v∗j . We show that careful initialization of U0 followed by alternating

minimization converges to a near-optimal embedding as long as m = ω(k2) and n = ω
(
k2.5d1.5

ε

)
.

Notice that non-privately, one would require n = ω(dk) users to get any reasonable test error. For
standard private linear regression in dk dimensions, current state-of-the-art results (Theorem 3.2, [3])
have a sample complexity similar to what we achieve.

Theorem 1.1 (Special case of Theorem 4.2). Suppose the output for point xij ∼ N (0, 1)d of user
j is given by yij ∼ 〈(U∗)>xij ,v∗j 〉 +N (0, σ2

F) where U∗ ∈ Rd×k is an orthonormal matrix that
describes the shared representation, and suppose v∗j ∼ N (0, 1)k. Let σF ≤

√
k and ε ≤ 1. Then,

assuming the number of users n is at least (kd)1.5/ε, and the number of points per user m is at least
k2, with high probability Algorithm 1 learns an embedding matrix Upriv such that the average test
error of a linear regressor learned over points embedded by Upriv is at most Õ

(
d3k5

ε2n2 + σ2
F · km

)
.

Our instantiation of the framework in this case has two major components: The initial embedding
U0 is derived from users’ data by a single noisy averaging step which roughly approximates the
d× d projector onto the k-dimensional column space of U∗. The idea is that given two data points
(xij , yij) and (x(i+1)j , y(i+1)j), the expected value of the rank-one matrix yijy(i+1)jxijx

>
(i+1)j is

(when rescaled) a projector onto the space spanned by the regression vector θj . Adding these rank-one
matrices across many data points and users produces a matrix with high overlap with the desired
projector U∗(U∗)>. This is similar to the approach taken by [13] to design a non-private algorithm
for a related, less general setting.

The DP minimization step, which fixes the vj’s and seeks a near-minimal U , can be performed using
any DP algorithm for convex minimization [9, 4]. In this particular case, one can view this step as
solving a linear regression problem in which U represents a list of dk real parameters: once x and v
are fixed, 〈U>x,v〉 = x>Uv is a linear function of U .

For the analysis to be tractable, we restrict our attention to linear regression with independent,
normally-distributed features. However, the framework we provide is more general, and can be
applied to a wider class of models. Developing mathematical tools to analyse the behavior of noisy
alternating minimization algorithms in more general settings remains an important open question.

Additionally, we run simulations on synthetic data to demonstrate the effectiveness of our proposed
algorithm. Our algorithm reaches a significantly better privacy-utility tradeoff compared to two
baselines: i) each user uses their own data, and ii) all users jointly learn a single model under
differential privacy.

Information-theoretic Upper Bounds: In addition to developing efficient algorithms for particular
settings, we give upper bounds on the achievable error of user-level DP model personalization
via inefficient algorithms. Specifically, we consider the natural approach of using the exponential
mechanism [35] to select a common structure that provides low prediction error on average across
users. For the specific case of a shared linear embedding (a generalization of the linear regression
setting above), when the feature vectors are drawn i.i.d. from N (0, 1)d, and when the v∗j ’s are drawn

i.i.d. from N (0, 1)k, we provide an upper bound showing that n = ω
(
k1.5d1.5

ε

)
users suffice to learn

a good model, assuming m is sufficiently large for users to train the remaining parameters locally
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(Theorem 5.2). In comparison to alternating minimization, the sample complexity is better by a factor
of k.

In summary, we initiate a systematic study of differentially private model personalization in the
practically important few-shot (or per-user sparse data) learning regime. We propose using users’
data to learn a strong common representation/embedding using differential privacy, that can in turn be
used to learn sample efficient models for each user. Using a simple but foundational problem setting,
we demonstrate rigorously that this technique can indeed learn accurate common representation as
well as personalized models, despite users housing only a small number of data points.

1.2 Related Work

Personalization Frameworks: Model personalization is a special case of multitask or few-shot
learning [10, 25] where the goal is to leverage shared structure amongst multiple tasks to better learn
the individual tasks. There are many different frameworks for multi-task learning, each capturing a
different kind of shared structure. In the context of model personalization, where tasks correspond to
users, two broad approaches stand out.

“Neighboring models”. This approach assumes that while each user learns their own model, all or a
fraction of the models are close to each other thus can be learned together [18, 25].

“Common representation”. This approach, which we adopt in this paper, assumes a low-dimensional
shared subspace where all points can be represented and now each user/task can learn a sample
efficient model to solve the individual task [47, 38]. A common instantiation is a DNN architecture in
which the weights in the last layer are user-specific but other weights are shared. Algorithmically, this
second approach is more complex since it entails simultaneously finding an accurate representation
of data and models building upon those representations. But several studies [38, 47] have shown it to
be significantly more effective than other approaches like neighboring models.

Recent works on this approach (e.g. [44, 47, 22, 40]) follow a similar training strategy to ours—
that is, they alternatively update the shared representation using gradient descent and then finetune
individual classifiers [38, 30, 47]. In particular, the Almost-No-Inner-Loop (ANIL) method by [38]
is most similar to the alternating optimization method that we adopt (see Algorithm 1). Theoretical
understanding of these methods generally lag significantly behind their empirical success. However,
several interesting recent results explain the effectiveness of these methods on simple tasks [13,
46]. Most of the papers in this domain focus on the linear regression problem with a shared low-
dimensional representation that we study [46, 11, 48]. They show that one can provide much better
estimates for the shared representation, and overall prediction error, by pooling information than
would be possible for individual users acting alone. These existing analyses do not allow for noise
in the iterations. In fact, for the general problem, the noise can lead to suboptimal solutions. Thus,
a key contribution of our work is to show that in a widely studied setting, alternating minimization
converges even when the minimization of U is noisy.

Privacy: In our setting, the data set is made up of users’ individual data sets D1, ..., Dn, where
each Dj potentially contains many records (labeled training examples). Users interact via a central
algorithm, which we assume for simplicity to be implemented correctly and securely (either by a
trusted party or using cryptographic techniques like multiparty computation). This algorithm provides
output to each of the users. We aim to control what those outputs leak about the users’ input data.

That is, presence/absence of user and its entire data should not affect the outputs significantly. This
notion is known as user-level or task-level privacy and has been widely studied in the literature
[34, 31], albeit mostly without personalization component. The only works we are aware of that look
at personalization (or multitask learning more generally) with user-level guarantees are [19] and [24].
Geyer et al. [19] consider the “neighboring models” approach, which cannot work in the setting we
study. Jain et al. [24] consider matrix completion, which can be viewed as a version of our setting in
which training examples are limited to indicator vectors (items from a known discrete set).

A few studies attempt to provide only record-level privacy – a significantly weaker notion of privacy
where presence/absence of only single record should be undetected by the output of the model.
While the notion has been studied extensively for the standard non-personalized models [27, 9], for
personalized models the literature is somewhat limited [21, 32]. The work of [32] discusses both task-
and record-level privacy, but ultimately provides only algorithms that satisfy the weaker guarantee.
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As mentioned above, our goal is to provide strong user-level privacy guarantees so such methods do
not apply in our case.

1.3 Notation
We denote all matrices with bold upper case letters (e.g., A), and all vectors with bold lower case
letters (a). Unless specified explicitly, all vectors are column vectors. We denote the clipping
operation on a vector a as clip (a; ζ) = a ·min

{
1, ζ
‖a‖2

}
.

2 Background on Privacy

Billboard model: In this paper, we operate in the billboard model [20] of differential privacy [15,
14, 36]. Consider n users, and a computing server. The server runs a differentially private algorithm
on sensitive information from the users, and broadcasts the output to all the users. Each user j ∈ [n]
can then use the broadcasted output in a computation that solely relies on her data. The output of
this computation is not made available to other users. A block schematic is shown in Figure 1. One
important attribute of the billboard model is that it trivially satisfies joint differential privacy [28].

User-level privacy protection: In this work, we provide user-level privacy protection [16]. I.e.,
from the output of the algorithm available to an adversary, they will not be able to detect the
presence/absence of all the data samples belonging to a single user. Correspondingly, in the definition
of differential privacy below (Definition 2.1), a “record” consists of all the data samples belonging to
a single user. Furthermore, we adhere to the replacement model of privacy, where the protection is
with respect to the replacement of a user with another, instead of the presence/absence of a user.

Definition 2.1 (Differential Privacy [15, 14, 36]). A randomized algorithm A is (ε, δ)-differentially
private if for any pair of data sets D and D′ that differ in one record (i.e., |D4D′| = 1), and for all
S in the output range of A, we have

Pr[A(D) ∈ S] ≤ eε ·Pr[A(D′) ∈ S] + δ,

where probability is over the randomness of A. Similarly, an algorithm A is (α, ρ)- Rényi differ-
entially private (RDP) if Dα (A(D)||A(D′)) ≤ ρ, where Dα is the Rényi divergence of order α.

3 Model Personlization via Private Alternating Minimization

User 1 User 2 User 3 User n

Compute embedding  

Differentially Private Global Computation

T rounds

Sensitive 
data

Output of 
DP compute

Broadcast

...

Figure 1: User-compute interaction in the
billboard model. Shaded boxes represent
privileged computation. U refer to the com-
mon embedding function, and vj refers to the
model for user j ∈ [n].

In this section, we first provide a generic/meta al-
gorithm for private model personalization (Algo-
rithm 1 (Algorithm APriv-AltMin)). The main idea is
to alternate between two states for T iterations, i.e.,
for t ∈ [T ], (i) Estimate the best embedding ma-
trix U (t) based on the current personalized models[
v

(t)
1 , . . . ,v

(t)
n

]
while preserving user-level (α, ρ)-

RDP, and (ii) update the personalized modes based
on the updated embedding matrix U (t). Finally, out-
put Upriv ← U (T+1), which will be used by each
user j ∈ [n] to train her final personalized model
vprivj . While Algorithm APriv-AltMin is a fairly nat-
ural method for model personalization, to the best
of our knowledge, this is the first work that formally
studies the privacy/utility trade-offs under user-level
privacy. Prior works [40, 37] have used similar ideas
in the non-private meta-learning setting. The estima-
tion of the embedding matrix can be implemented by
any differentially private convex optimization algorithm (e.g., DP-SGD [42, 4, 1]). As discussed
in Section 4, for specific case of linear regression, we can perturb the sufficient statistics to obtain
differential privacy guarantee, and then optimize over it. A similar idea was used in [41, 39].

We provide a formal description in Algorithm 1. In Section 4, we instantiate it in the context of
personalized linear regression. There, we also provide formal excess population risk guarantees under

5



Algorithm 1 APriv-AltMin: Differentially Private Alternating Minimization Meta-algorithm

Require: Data sets from each user j ∈ [n]: Dj = {(xij ∈ Rd, yij ∈ R) : i ∈ [m]} for m
mod 4 = 0, rank of the projector: k, privacy parameters: (α, ρ), number of iterations: T , initial
rank-k subspace matrix: Uinit, loss function: `.

1: Initialize U (1) ← Uinit.
2: Randomly permute the users j ∈ [n] via permutation π ∼unif [n]. Set j ← π(j),∀j ∈ [n].
3: for t ∈ [T ] do
4: St ←

[
1 + d (t−1)n

T e, d tnT e
]
.

5: Each user j ∈ [St] independently solves v(t)
j ← arg min

‖v‖2≤Rk
4
m

∑
i∈[m/4]

`
(
〈(U (t))>xij ,v〉; yij

)
.

6: Estimate U (t+1) ← arg min
U∈K

4
m·|St|

∑
i∈[m/4+1,m/2],j∈St

`
(
〈U>xij ,v(t)

j 〉; yij
)

under (α, ρ)-

RDP, where K is the set of all rank-k matrices with orthonormal columns in Rd×k.
7: end for
8: Upriv ← U (T+1).

some data generating assumption. Since Line 6 guarantees (α, ρ)-RDP, and disjoint sets of users are
used in each iteration, we can conclude that the whole algorithm guarantees (α, ρ)-RDP.

4 Instantiating Algorithm APriv-AltMin with Linear Regression

In this section, we instantiate Algorithm APriv-AltMin (Algorithm 1) in the context of linear regression.
While our privacy guarantees hold for any instantiation of the training data, the utility guarantees
hold under the following data generating assumption.

Data generation: We instantiate the problem description in Section 1.1 as follows. There is a
fixed model v∗j ∈ Rk for each user j ∈ [n], and a fixed rank-k matrix with orthonormal columns
U∗ ∈ Rd×k across all users. Let V ∗ := [v∗1| · · · |v∗n]. For each feature vector xij ∈ Rd, the response
yij is given by:

yij = 〈(U∗)>xij ,v∗j 〉+ zij , zij ∼ N (0, σ2
F). (2)

In Theorem 4.2, we provide the privacy and utility guarantee for an instantiation of Algorithm 1

(Algorithm APriv-AltMin) where the loss function is `
(
〈U>xij ,v〉; yij

)
=
(
yij − 〈U>xij ,v〉

)2

.
We will adhere to Assumptions 4.1 for the utility analysis.

Assumption 4.1 (Assumptions for Utility Analysis). Let λi > 0 be the i-th eigenvalue
of 1

n

(
V ∗ (V ∗)

>
)

, and let µ := max
j∈[n]

∥∥v∗j∥∥2
/
√
kλk be the incoherence parameter. Let

Noise-to-signal ratio be NSR = σF√
λk

. We assume: (i) ∀i ∈ [m], j ∈ [n],xij ∼iid

N (0, 1)d, and corresponding yij be generated using (2), (ii) m = Ω̃
(
(1 + NSR) · k + k2

)
, (iii)

n = Ω̃

(
λ1

λk
· µ2dk +

(
λ1

λk

)2
d
k2 ·

(
NSR2 + µ2k

)2
+ λ1

λk
·∆(ε,δ) ·

(
NSR2 + µ2k

)
d3/2

)
. Here, Ω̃(·)

hides polylog (n,m, k).

Theorem 4.2 (Main Result. Bound on Excess Risk). Let V priv = [vpriv1 , . . . ,vprivn ] with

vprivj ← arg min
v∈Rk

2

m

∑
m
2 <i≤m

(
yij − 〈(Upriv)>xij ,v〉

)2
.

Let Assumption 4.1 hold. Then, Algorithm APriv-AltMin with parameters in Lemma 4.4 and ∆(ε,δ) :=√
16 log(1/δ)

ε outputs Upriv such that i) it is (ε, δ)-differentially private, and ii) it has the following
excess population risk w.p. at least 1 − 1/n9 (over the randomness of data generation and the
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Algorithm 2 Instantiating Line 6 of Algorithm 1 ( Algorithm APriv-AltMin)

Require: Set of users at time step t ∈ [T ]: St. Current models:
{
v

(t)
j : j ∈ St

}
, data samples:

{(xij , yij) : j ∈ St, i ∈ [m]}, privacy parameter: ∆(ε,δ), clipping threshold for model: η, clip-
ping threshold for response: ζ.

1: W ij = clip
(

#          »

xijv
>
j ; η

)
and ỹij = clip (yij ; ζ) for all i ∈ [m/4 + 1,m/2], j ∈ St.

2: W priv ←
∑

j∈St,i∈[m/4+1,m/2]

W ijW
>
ij +Nsym

(
0,m2η4∆2

(ε,δ)/4
)dk×dk, and

bpriv ←
∑

j∈St,i∈[m/4+1,m/2]

ỹijW ij +N
(
0,m2ζ2η2∆2

(ε,δ)/4
)dk

3:
#»
Z(t+1) ← arg min

u∈Rdk

4
m·|St|

(
u>W privu− 2u>bpriv

)
4: return U (t+1) ← Q part of the QR-decomposition of Z(t+1)

algorithm):

RiskPop(
(
Upriv,V priv

)
; (U∗,V ∗)) ≤

= O

(
∆(ε,δ)(σ

2
F + µ2k2dλk)(µ4k3d2)

n2
+
σ2
Fµ

4k2d

nm

)
· polylog (d, n) +

k

m
· σ2

F.

See supplementary material for the proof.

Remark 1. Let us understand the bound above for a simple setting where the personal model for
each user v∗j ∼ N (0, 1)k. Assuming large enough n, this implies that λk ≈ 1 and µ ≈ Õ(1).
Now even when V ∗ is known a priori, to obtain a reasonable estimate of U∗, we need to solve the
following linear regression problem while ensuring DP: Upriv = min

U

∑
ij(yij − 〈xij(v∗j )>,U〉)2.

Note that xij(v∗j )
> is isotropic. Now, without differential privacy, the information theoretical

optimal estimation error is Θ
(
σ2
F · dknm

)
, where dk is the size of the linear regression problem

and mn is the number of samples. Now, if we were to solve the above regression problem with
DP, the best known algorithm [41] will have an additional error of Õ

((
κ · dknε

)2)
, where κ =

σF + maxij ‖xij(v∗j )>‖F · ‖U
∗‖F = Õ(σF +

√
dk2). Note that the first two terms in Theorem 4.2

indeed match O
((
κ · dknε

)2
+ σ2

F · dknm
)

up to an additional factor of k and up to polylog (d, n)

factors. Finally, the last error term in the above theorem is due to excess risk in estimating v∗ for a
given user with m samples, and is information theoretically optimal.

Remark 2. Under the assumption in Remark 1 and for σF = 0, the sample complexity for Theo-
rem 4.2 is n = ω̃(k2.5d1.5/ε + d) and m = ω̃(k2). Note that, for ε → ∞, the complexity is O(k)
worse than the information theoretic optimal. Furthermore, the sample complexity suffers from an
additional

√
d for constant ε compared to non-private case. Even for standard linear regression,

a similar additional
√
d factor is present in the sample complexity bound [41]; we leave further

investigation into the optimal sample complexity for future work.

In Section 4.1, we show an instantiation of AlgorithmAPriv-AltMin (Algorithm 1) s.t. if the embedding
matrix (Uinit) is initialized well, then Upriv

(
Upriv

)>
converges in ‖ · ‖F to U∗(U∗)>. In

Section 4.2, we provide an algorithm to obtain a good initialization of the embedding matrix (Uinit).
Combining these two results imply Theorem 4.2.

4.1 Local Subspace Convergence
In Algorithm 2, we instantiate Line 6 of Algorithm APriv-AltMin. For any matrix A ∈ Rd1×d2 ,
let

#»

A ∈ Rd1d2 be the vectorized representation with columns of A placed consecutively. Let
Nsym(0, σ2)d×d denote a Wigner matrix with entries drawn i.i.d. from N (0, σ2). The privacy
guarantee of Algorithm 2 is presented in Lemma 4.3 and the local subspace guarantee in Lemma 4.4.

Lemma 4.3 (Privacy guarantee). If we set ∆(ε,δ) =
√

8 log(1/δ)/ε, then instantiation of Algorithm
APriv-AltMin with Algorithm 2 is (ε, δ)-differentially private in the billboard model.
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Lemma 4.4 (Local Subspace Convergence). Recall Assumptions 4.1. In Algorithm 2, let model
clipping threshold η = Õ(µ

√
λkdk), and response clipping threshold ζ = Õ

(
σF + µ

√
kλk

)
. Let the

number of iterations of Algorithm 1 (Algorithm APriv-AltMin) be T = Ω
(

log
(

(λ1/λk)
NSR+∆(ε,δ)

))
. Finally,

assume Uinit be s.t. ‖(I − U∗ (U∗)
>

)Uinit‖F ≤ λk
32λ1

. We have the following for Algorithm 1
(Algorithm APriv-AltMin), instantiated with Algorithm 2, w.p. at least 1− 1/n10 (over the randomness
of data generation and the algorithm):

∥∥∥(I−U∗ (U∗)
>
)
Upriv

∥∥∥
F

= Õ

(
∆(ε,δ)(NSR + µ

√
dk2)µ

√
k2d2

n
+
NSR · µ

√
kd√

nm

)
.

Here, the noise-to-signal-ratio NSR = σF√
λk

and privacy parameter ∆(ε,δ) =

√
8 log(1/δ)

ε . In Õ(·),
we hide polylog (d, n).

See supplementary material for the proofs. The analysis of Lemma 4.4 roughly follows the analysis
of alternating minimization [46], while accounting for the noise introduced due to privacy. At each
iteration, we show that the embedding subspace gets closer in the Frobenius norm, and each of the
personalized models gets closer in the `2-norm.

4.2 Initialization Algorithm
In Algorithm 3, we describe a private estimator for the estimation of U∗. This estimator eventually
gets used in initializing the linear regression instantiation of Algorithm 1. We provide the privacy and
subspace closeness guarantees in Lemma 4.5 and 4.6, with proofs in supplementary material.

Algorithm 3 APriv-init: Private Initialization Algorithm for Algorithm APriv-AltMin

Require: Data sets from each user j ∈ [n]: Dj = {(xij ∈ Rd, yij ∈ R) : i ∈ [m]}, clipping bound
for response: ζ, noise standard dev. for privacy: ∆(ε,δ), and rank of the orthonormal basis: k.

1: W ij ← sym

(
x(2i)jx

>
(2i+1)j

‖x(2i)j‖2·‖x(2i+1)j‖2
· clip

(
y(2i)j ; ζ

)
· clip

(
y(2i+1)j ; ζ

))
for all i ∈ [m/2] and j ∈

[n]. Here, sym(W ) makes a matrix ∈Rd×d symmetric by replicating the upper triangle.

2: MNoisy ← 2
nm

( ∑
i∈[m/2],j∈[n]

W ij +Nsym

(
0,∆2

(ε,δ)ζ
4m2

)d×d)
.

3: Upriv ← Top-k eigenvectors of MNoisy as columns.

Lemma 4.5 (Privacy guarantee). If we set ∆(ε,δ) =
√

8 log(1/δ)/ε, Algorithm 3 (Algorithm
APriv-init) is (ε, δ)-differentially private.

Lemma 4.6 (Subspace closeness). Recall Assumptions 4.1. Let the clipping bound for response be
ζ = Õ(σF + µ

√
kλk). We have the following for Algorithm 3 (Algorithm APriv-init) w.p. at least

1− 1/n10:∥∥∥(I−U∗ (U∗)
>
)
Upriv

∥∥∥
2

= Õ

(
∆(ε,δ)

(
NSR2 + µ2k

)
d3/2

n
+

(NSR2 + µ2k)
√
d√

nm

)
.

Here, privacy parameter ∆(ε,δ) =

√
8 log(1/δ)

ε . In Õ(·), we hide polylog (d, n).

The proof goes via direct analysis of the distance between the estimated subspace from the training
examples, and the true subspace. While the convergence guarantee in Lemma 4.6 is unconditional, it
is weaker than Lemma 4.4, especially in its dependence on k and NSR.

Lemma 4.6 implies that under Assumption 4.1,
∥∥∥(I−U∗ (U∗)

>
)
Upriv

∥∥∥
F

= O
(
λk
λ1

)
, which

is sufficient to satisfy the initialization condition in Lemma 4.4. Hence, if we initialize U using
Algorithm 3 (Algorithm APriv-init) with a disjoint set of samples for each user, it immediately follows
that the the local convergence guarantee in Lemma 4.4 is indeed a global convergence guarantee.
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Algorithm 4 AExp: Joint Differentially Private ERM via Exponential Mechanism

Require: Data sets from each user j ∈ [n]: Dj = {(xij ∈ Rd, yij ∈ R) : i ∈ [m]} where m
mod 2 = 0; model `2-norm constraint C; clipping bound on the projected features Lf ; privacy
parameter ε; rank of the projection matrix k; net width φ, loss function ` : R×R→ R; Lipschitz
constant ξ of w.r.t. its first parameter.

1: Define a score function for any rank-k matrix with orthonormal columns U ∈ Rd×k as

score (U) =
∑
j∈[n]

(
min
‖vj‖2≤C

2
m

∑
i∈[m/2]

`
(
〈clip

(
U>xij ;Lf

)
,vj〉; yij

))
.

2: Define a net N φ of ‖ · ‖F -radius φ over matrices with orthonormal columns in Rd×k.
3: Sample Upriv ∈ N φ with Pr[Upriv = U ] ∝ exp

(
− εn

8LfCξ
· score (U)

)
.

4: Each user j ∈ [n] independently estimates vprivj ← arg min
‖v‖2≤C

2
m

m∑
i=m/2+1

`
(
〈
(
Upriv

)>
xij ,v〉; yij

)
.

5 Exponential Mechanism based Model Personalization
In this section, we take a more general approach towards outputting a projector Upriv that approxi-
mately minimizes the excess population risk without worrying about actually estimating the projector
onto U∗. Here, as we only care about low-excess risk, as opposed to subspace closeness, we can guar-
antee better convergence under milder assumptions. Recall the loss function LPop(U ,V ) from (1).

We want to optimize min
U∈K

(
min

V ∈Rd×n,‖vj‖2≤C
LPop(U ,V )

)
while ensuring ε-DP in the billboard

model. (Here K ∈ Rd×k is the set of matrices with orthonormal columns, and vj corresponds to
the j-th column of V .) To that end, we will use the exponential mechanism [35], over an `F -net of
radius φ over K. The algorithm is presented in Algorithm 4 (Algorithm AExp).

The privacy analysis of AlgorithmAExp follows from the standard analysis of exponential mechanism,
and the utility analysis goes via first proving an excess empirical risk bound, and then appealing to
uniform convergence to get to excess population risk bound.

Theorem 5.1 (Privacy guarantee). Algorithm 4 is ε-differentially private in the billboard model.

Theorem 5.2 (Utility guarantee). Suppose the loss function ` is ξ-Lipschitz in its first parameter,
and C is the bound on the constraint set. Set the net size φ = 1/(εn) and the clipping norm
Lf = 40

√
d · log(nm) in Algorithm 4. Assuming ε ∈ (0, 1) and that the feature vectors are drawn

i.i.d. from N (0, 1)d, we have (w.p. ≥ 1− 1/min{d, n}10):

RiskPop(
(
Upriv,V priv

)
; (U∗,V ∗)) = O

(
ξC ·

(
k · d1.5

εn
+

√
k√
m

))
· polylog (d, n) .

Here, U∗ and V ∗ are any fixed values of the common embedding matrix (orthonormal, in Rd×k) and
matrix of individual regression vectors (in Rn×k, with rows of norm at most C), respectively.

See supplementary material for the proofs of Theorems 5.1 and 5.2.

Comparison of the utility guarantee to Theorem 4.2: The utility guarantee for Algorithm AExp

(Theorem 5.2) is much more general than that in Theorem 4.2. Unlike Theorem 4.2, it allows
arbitrary Lipschitz loss function `, and any distribution over the feature vectors. However, for linear
regression with i.i.d. spherical normal feature vectors and setting the diameter of the constraint set
C =

√
k, one can make Theorems 4.2 and 5.2 comparable. Theorem 4.2 shows an excess population

risk Õ
(
k5d3

ε2n2 + k
m

)
whereas Theorem 5.2 gives Õ

(√
k3d3

εn +
√

k2

m

)
. Theorem 4.2 is tighter in the

regime where n = Ω(k3.5d1.5/ε). This difference is comparable to the so-called fast rates [43].
However, the sample complexity of Theorem 5.2 is better in terms of m by a factor of k1.5.

6 Numerical Simulation
In this section, we provide numerical simulations to validate our theoretical results. There are three
baselines: i) each user solves their problem using their own data without consulting with other
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Figure 2: MSE vs. per-user ε for linear regression.

users (called own data), and ii) a single differentially private global model trained on all users data
together (called single model), and iii) non-private variant of alternating minimization, trained up to
convergence. Overall, we observe that Algorithm 1 (Algorithm APriv-AltMin) outperforms the private
baselines by a significant margin.

We consider the linear regression problems on synthetic data and the alternating minimization
algorithm 1. We set the number of users n = 50, 000, number of samples per user m = 10, data
dimension d = 50 and rank k = 2. We sample x, U and v from Gaussian distributions, and the field
noise σF of target y is set to be 0.01. We normalize U to unit norm. We run Algorithm 1 with full
batch, i.e., T = 1 and for multiple epochs. The privacy risk will accumulate over epochs, and we use
the RDP sequential composition to account for that. We fix the clipping norm to be 10−4 and pick
the optimal the number of epochs in {1, 2, 5, 10}.
In Figure 2, we fix δ = 10−6 and plot the population mean squared error (MSE) computed based
on the groundtruth model for multiple ε. As a reference, the MSE for a purely random model is
around 4. In addition to (ε, δ)-differential privacy, we also report the value of Zero-Concentrated
Differential Privacy (zCDP) [5], as it better captures the privacy properties, especially for Gaussian
mechanism based algorithms. The definition can be found at Appendix A. In particular, privacy
parameter ε = {1, 2, 5, 10} corresponds to 0.009, 0.04, 0.23, 0.90-zCDP, respectively. We observe
that at ε ≈ 5, the population MSE for Algorithm 3 is comparable to the non-private baseline. In
contrast, the error for the single model baseline remains very high, even at high values of ε.

7 Conclusion
In this paper we studied the problem of personalized supervised learning with user-level differential
privacy. Through our framework and Algorithm 1, we demonstrated that we can indeed learn accurate
shared linear representation of the data, despite a limited number of samples-per-user and while
preserving each user’s privacy. Our error bounds and sample complexity bounds are nearly optimal
in key parameters and are in fact, comparable to the best known bounds available for a much simpler
linear regression problem.

This work leads to several interesting questions: (i) In our model, can we provide similar privacy/utility
trade-offs for deep networks based embedding functions instead of a linear embedding function, (ii)
Can we make a variant of the exponential mechanism algorithm computationally feasible?, and (iii)
Empirically validate the privacy/utility trade-offs on real world data sets.

As more and more ML models are personalized for user tastes, ensuring privacy of individuals’ data
is paramount to a fair, responsible system. We provide a rigorous framework to design such solutions,
which hopefully will motivate practitioners and researchers to make privacy as a first class citizen
while designing their personalization based ML system.
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