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A Other Related Work

The Nash Welfare mechanism is classic approach to finding equitable allocations, and achieves
fairness via the notion of market clearing [5, 9, 42]. It was shown in [23] that this objective finds
the solution to the special case of the Fisher market [9]. Given linear valuation functions of agents
and equal initial budgets, this market computes equilibrium prices for the items, such that when
each agent buys their value maximizing allocation subject to exhausting their budget, then each item
with positive price is fully allocated. This concept is also called competitive equilibrium with equal

incomes (CEEI) and is widely studied as a fair allocation rule [35, 11, 49]. The Fisher market with
linear valuation functions satisfies the Gross Substitutes property [33], which states that if the prices
of some items increase, the demand for the other items cannot go down. This implies adding (resp.
removing) an agent weakly reduces (resp. increases) the value obtained by the other agents. This
property is also called competition monotonicity [36].

Though our results about the externality induced by Nash Welfare appear superficially similar to
Gross Substitutes, we cannot find a formal connection. This is because our setting considers the
same set of agents but adds constraints, and these constraints do not preserve the Gross Substitutes
property. Furthermore, in contrast to the Gross Substitutes property that holds in a strict sense for
linear valuation functions, in Section 3, we present a lower bound showing any welfarist allocation
rule must result in some negative externality.

Our work considers the pure allocations problem with additional diversity constraints. In some
settings such as online advertising, it is also possible to consider allocations with prices and budgets.
For instance, if the utility of an agent is its value minus the price it pays (called quasi-linear), then
the dual of the social welfare maximizing allocation also yields an equilibrium [5, 33]. Similarly, the
online algorithms literature [38, 20, 21, 3, 6] considers the model where the total value derived by
an agent is constrained by its budget, while auction literature [41, 12, 14, 16, 32] finds allocations
and prices where agents do not have incentive to misreport. As mentioned before, though some of
these mechanisms suffer from the same drawbacks as welfarist allocation rules, we leave a deeper
examination of rules with prices and budgets (from the perspective of robustness) as an interesting
open question.

B Omitted Proofs

Our proofs will extensively use the following property of the optimal allocation under welfarist rule
f . Let ~V ⇤ denote the values of the agents in the optimal solution, and let ~V be the values in any other
feasible allocation. Since the valuation function is concave and continuous and so is f , the space of
feasible ~V is convex. This implies the following gradient optimality property:

rf( ~V ⇤) · (~V � ~V ⇤)  0 (2)

B.1 Proof of Theorem 1

Proof. Consider agents 1 and 2, and items a and b. Set v1a = ↵, v2b = �, and v1b = v2a = 0. (We
can set the latter values to be any small ✏ > 0 as well.) In the absence of diversity constraint, we
clearly have x1a = x2b = 1. So V2 = �.

Now, agent 1 expresses a diversity constraint and requires x1a = x1b. Set x1a = x1b = x. Then, we
optimize:

max `(x) = f(↵x) + f(�(1� x)), x 2 [0, 1].

We will show that `0(1� �) > 0. Since ` is concave, this implies that the optimal solution x̃ > 1� �,
which in turn implies that V2 < ��, which thus shows that the allocation rule is not q-NNE for q = �.

To show this, we observe:

`0(1� �) = ↵f 0(↵(1� �))� �f 0(��) � g(↵)� g(��)

�
,
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where the final inequality follows since f 0(↵(1 � �)) < f 0(↵) by the concavity of f . We now set
↵ = argmaxyg(y) and � = y�

� , where g(y�) = �maxy g(y). This yields `0(1� �) > 0, completing
the proof.

B.2 Proof of Corollary 1

Proof. For �-Fairness, note that g(y) = x� and is monotonically increasing and unbounded if
� 2 (0, 1] and is monotonicially decreasing and unbounded when � < 0. Therefore, in either case, it
is not �-scaled for any � > 0, which shows that there is no constant q > 0 for which the allocation is
q-NNE.

B.3 Proof of Theorem 2

Proof. Suppose agent i imposes a diversity constraint. Let ~A denote the values of the agents in the
optimal allocation if the constraint is not enforced, and ~B the vector of values in the allocation if the
constraint is enforced. Let rk = Ak

Bk
. Consider an agent ` 6= i.

Since ~B corresponds to the values in a feasible allocation even without agent i’s constraint, by the
gradient optimality condition (Eq (2)), we have:

X

k

✓
g(Ak)

1

rk
� g(Ak)

◆
=
X

k

f 0(Ak)(Bk �Ak)  0,

which can be rewritten as:

g(A`)
1

r`
+
X

k 6=`

g(Ak)
1

rk

X

k

g(Ak). (3)

Similarly, suppose we take the allocation without agent i’s constraint and remove agent i’s allocation
from it, the resulting allocation is feasible for the problem where agent i has a constraint. This is
because the empty allocation is feasible for agent i’s constraints. Applying Eq (2) again, we have:

�g(Bi) +
X

k 6=i

(g(Bk)rk � g(Bk)) = f 0(Bi)(0�Bi) +
X

k 6=i

f 0(Bk)(Ak �Bk)  0,

which can be rewritten as:

g(B`)r` +
X

k 6=i,`

g(Bk)rk 
X

k

g(Bk). (4)

Since g is non-increasing, so is g(x)/x. Therefore, by the Rearrangement inequality, we have for all
k 6= i, `:

g(Ak)
1

rk
+ g(Bk)rk =

g(Ak)

Ak
Bk +

g(Bk)

Bk
Ak � g(Ak)

Ak
Ak +

g(Bk)

Bk
Bk = g(Ak) + g(Bk). (5)

We now have the following, where the first inequality follows from Eq (5),and the final inequality
follows by adding Equations (3) and (4):

g(A`)
1

r`
+ g(B`)r` +

X

k 6=i,`

(g(Ak) + g(Bk))



0

@g(A`)
1

r`
+
X

k 6=`

g(Ak)
1

rk

1

A+

0

@g(B`)r` +
X

k 6=i,`

g(Bk)rk

1

A


X

k

(g(Ak) + g(Bk)).

Simplifying, this further gives:

g(A`)
1

r`
+ g(B`)r`  g(A`) + g(B`) + g(Ai) + g(Bi).
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Dividing both sides by g(B`) gives:

r`  1 +
g(A`)

g(B`)
+

g(Ai)

g(B`)
+

g(Bi)

g(B`)
 1 +

3

�
.

i.e. A`
B`

= r`  1 + 3
� . Therefore, A`  B`

�
1 + 3

�

�
, showing q-NNE for q � �

�+3 .

B.4 Proof of Theorem 3

Proof. Consider the following example: There are 2 items a, b and two agents 1, 2. The values are
v1a = v2a = v2b = 1, and the rest of the values are zero. Agent 2 enforces the proportionality
constraint ✏x2a = x2b. First consider the setting with no proportionality constraint. Suppose a rule
allocates x1a = 1� x, so that her value is V1 = 1� x. Then x2a = x and x2b = 1 so that the value
of agent 2 is V2 = 1 + x. Since the allocation rule satisfies (PD), this forces x = 0, so that V1 = 1.
Now suppose agent 2 enforces the proportionality constraint and as before, let x2a = x. This forces
x2b = ✏x, so that V2 = (1 + ✏)x. As before V1 = 1� x. If x < 1

2+✏ , this allocation cannot satisfy
(PD). Therefore V1  1+✏

2+✏ for any allocation satisfying (PO) and (PD). Now taking ✏ ! 0 shows that
the allocation cannot be q-NNE for any constant q > 1

2 .

B.5 Proof of Corollary 3

Proof. Let ` /2 S denote the agent whose value we are bounding. The inequalities obtained by
generalizing Eq (3) and (4) to omit the set S instead of a single agent i now yields:

g(A`)
1

r`
+
X

k 6=`

g(Ak)
1

rk

X

k

g(Ak), g(B`)r` +
X

k/2S[{`}

g(Bk)rk 
X

k

g(Bk).

The same line of reasoning gives:

g(A`)
1

r`
+ g(B`)r` 

X

k2S[{`}

(g(Ak) + g(Bk)) .

Dividing both sides by g(B`) gives:

r`  1 +
g(A`)

g(B`)
+
X

k2S

✓
g(Ak)

g(B`)
+

g(Bk)

g(B`)

◆
 1 +

2k + 1

�
,

thus showing q-NNE for q � �
2k+�+1 .

B.6 Proof of Corollary 4

Proof. The lower bound follows by extending Theorem 3. There is an item a such that for agent
1, v1a = 1. For i 2 {2, 3, . . . , k + 1}, there is an item i such that agent i has vii = 1. For
i 2 {2, 3, . . . , k + 1}, we also have via = 1. All other values are zero. Without the diversity
constraint, suppose x2a = x3a = · · · = x and x1a = 1 � kx, then V2 = V3 = · · · = 1 + x and
V1 = 1� kx. Then (PD) implies x = 0 so that V1 = 1.

Now suppose each agent i 2 {2, 3, . . . , k + 1} express the proportionality constraint ✏xia = xii.
If x1a = 1 � ky, then by anonymity, we have xia = y and xii = ✏y for all i 2 {2, 3, . . . , k + 1}.
Therefore, V1 = 1� ky and V2 = V3 = · · · = (1 + ✏)y. Now, any allocation with y < 1

k+1+✏ does
not satisfy (PD). Therefore, any allocation satisfying (PO), anonymity, and (PD) has V1  1+✏

k+1+✏ .
This completes the proof.

B.7 Proof of Theorem 4

Proof. We first present the upper bound. The allocation maximizes
P

i
1
�V

�
i . As in the proof of

Theorem 2, let ~A denote the vector of values of the agents if agent i did not have a diversity constraint,
and let ~B denote the vector of values if the constraint is enforced. Assume by scaling all values by
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the same amount that Ai = 1, and denote Bi = x. Our goal is to upper bound x, which will yield the
value of p. We will assume below that � 6= 0, and present the proof for � ! 0 separately.

The gradient optimality condition Equation (2) now simplifies to:
X

i

Vi(V
⇤
i )

��1 
X

i

(V ⇤
i )

� . (6)

Consider the unconstrained allocation, but set agent i’s allocation to zero. This is feasible for the
constrained version whose optimal solution is ~B. Applying Eq (6), we have:

x� +
X

k 6=i

B�
k �

X

k 6=i

Ak

B1��
k

. (7)

Similarly, the constrained allocation ~B is feasible for the unconstrained problem. Applying Eq (6),
we have:

1 +
X

k 6=i

A�
k � x+

X

k 6=i

Bk

A1��
k

. (8)

Combining Equations (8) and (7), we have

x� x�  1 +
X

k 6=i

 
A�

k +B�
k � Ak

B1��
k

� Bk

A1��
k

!
. (9)

We will now show that
A�

k +B�
k � Ak

B1��
k

� Bk

A1��
k

 0.

This is equivalent to:  
1

A1��
k

� 1

B1��
k

!
(Ak �Bk)  0.

It is easy to check that for any � 2 (�1, 1], we have Ak � Bk iff A1��
k � B1��

k . This proves the
inequality. Plugging it into Eq (9), we have

x� x�  1.

It is easy to check that for � 2 (�1, 1], x is maximized when x = 1 + x� , completing the proof.

Nash Welfare. When � ! 0, the above proof does not directly apply. Nevertheless, we can obtain
the bound p = 1

2 as follows. We follow the same outline as the proof of Theorem 2, but do not fix
another agent `. For NW rule, Eq (3) can be rewritten as:

1

ri
+
X

k 6=i

1

rk
 n.

and Eq (4) implies X

k 6=i

rk  n.

Our goal now is to upper bound 1
ri

. Therefore, we solve:

min
X

k 6=i

1

rk
s.t.

X

k 6=i

rk  n, rk � 0.

This implies rk = n
n�1 in the optimal solution, so that

P
k 6=i

1
rk

� (n�1)2

n . Therefore

1

ri
 n�

X

k 6=i

1

rk
 n� (n� 1)2

n
 2.

Therefore, Ai � 1
2Bi, which shows p-MON for p � 1

2 .
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Tight Lower Bound. There are n + 1 of agents {0, 1, 2, . . . , n} where n ! 1 and let c = �n,
where � 2 (0, 1) is a constant to be determined later. There are 2n+ 1 items {0, 1, 2, . . . , 2n}. We
have v00 = c; for each i 2 {1, 2, . . . , n} we have v0i = vii = 1; and vi(i+n) = c � 1. All other
values are zero. Agent 0 expresses the proportionality constraint x00 = x01 = · · · = x0n.

We always have xi(i+n) = 1 for i 2 {1, 2, . . . , n}. In the absence of the diversity constraint, we have
x00 = 1. Suppose x01 = x02 = · · · = x0n = x and x11 = x22 = · · · = xnn = 1� x. The optimal
allocation solves

max n
(c� x)�

�
+

(nx+ c)�

�
x 2 [0, 1].

It is easy to check that x = 0 in this solution, so that V0 = nx+ c = c = �n.

When agent 0 adds the diversity constraint, we have x00 = x01 = · · · = x0n = x and x11 = x22 =
· · · = xnn = 1� x. Again, the optimization problem is:

max n
(c� x)�

�
+

((n+ c)x)�

�
x 2 [0, 1].

This yields

x = min

 
1, c

(n+ c)
�

1��

n
1

1�� + (n+ c)
�

1��

!
.

We will constrain c so that
(c� 1)(n+ c)

�
1�� � n

1
1�� , (10)

so that at the optimal solution, we have x = 1 implying V0 = (n + c)x = n + c. This will show
p = c

n+c = �
1+� .

The constraint Eq (10) can be written as (c� 1)1��(n+ c)� � n. Dividing by n and observing that
when � > 0 and n ! 1, c�1

n ! �, this constraint reduces to:

�1��(1 + �)� � 1.

Setting ✓ = �
1+� , this implies that this instance is not p-MON for p > ✓, where ✓ is constrained by

✓1�� + ✓ � 1, completing the proof.
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