Supplementary Material (Appendix)

PCA Initialization for Approximate Message Passing
in Rotationally Invariant Models

A Free Probability Background

A.1 Symmetric Square Matrices

Let X be a random variable of finite moments of all orders, and denote its moments by m;, = E{X*}.
In this paper, X represents either the empirical eigenvalue distribution of the noise matrix W € R"*",
or its limit law A (in the latter case, the moments and free cumulants are denoted by {m;°}x>1 and
{K¢°}r>1, respectively). For the model (L.I), note that the empirical eigenvalue distribution of W
coincides with the empirical eigenvalue distribution of X after excluding the largest eigenvalue of
X, since we consider the case o > . The free cumulants {x, }1>1 of X are defined recursively by

the moment-cumulant relations
me= Y []#s (A.D)
weNC(k) Sem

where NC(k) is the set of all non-crossing partitions of {1,..., k}, and |S| denotes the cardinality
of S. Furthermore, by exploiting the connection between the formal power series with coefficients
{mg}r>1 and {ki }x>1, each free cumulant y, can be computed from my, ..., my and k1, . .., Kr—1
as [47, Section 2.5]
k—1 ‘
R = My — [Zk] Z Rj (Z + m1z2 + m223 + -+ mk,lzk)J 5 (A2)
j=1

where [2¥](¢(2)) denotes the coefficient of z* in the polynomial ¢(z).

Consider now the random variable A representing the limiting spectral distribution of W, and recall
that b < oo denotes the supremum of the support of A. Then, for z > b, the Cauchy transform G(z)

of A is given by
1
G(Z)E{Z—A}' (A3)

Another transform that will be useful in our analysis is the R-transform R(z) of A, which can be
defined by the convergent series:

R(z) =Y K%, 7, (A4)
1=0

where {k7°};>1 are the free cumulants of A. The derivative of the R-transform is denoted by R’(z)
and given by

e} oo o)
R(2) =) (i+1)r502" =Y > kjriar’ T, (A5)

i=0 §=0 k=0
where the second equality follows from a double-counting argument. The series in (A.4) and (A.3)
are well-defined and converge to a finite value for z < 1/ag, where as = 1/G(b") is the spectral
threshold [[10]. The R-transform can also be expressed in terms of the Cauchy transform, see e.g.

Theorem 12.7 of [46]:
1

mgzaﬂ@—;. (A.6)
By taking the derivative on both sides of (A.3), we have
1 1
R'(2) +=. (A7)

T GG (z) | 22

If W follows a Marcenko-Pastur distribution (i.e., W = %GnGZ € R™ " where the entries of
G,, € R"*P arei.i.d. standard Gaussian), then it is well known that kK° = ¢ & p/nfork > 1, see

15



e.g. [40L Chap. 2, Exercise 11]. This corresponds to the setting (a) in the numerical results of Section
If the eigenvalues of W are i.i.d. and uniformly distributed in the interval [—1/2,1/2], the free
cumulants £2° have also a simple form. In fact, by explicitly computing the expectation in (A.3)), we
have that

2z+1
=1 . A.
G(z) = log 57— 1 (A.8)
Thus, by applying (A.6), we deduce that
1 z 1
R(z) = 5 coth (5) - (A.9)

By comparing the series expansion (A.4) with that of the hyperbolic cotangent, we conclude that

0, if k is odd,

Kk =14 B (A.10)
IT:C’ if k is even,

where Bj; denotes the k-th Bernoulli number. This corresponds to the setting (b) in the numerical
results of Section [

A.2 Rectangular Matrices

Let X be a random variable of finite moments of all orders, and denote its even moments by
mar = E{X?F}. In this paper, X? represents either the empirical eigenvalue distribution of

WWT e R™*™ or its limit law A? (in the latter case, the moments and rectangular free cumulants
are denoted by {m3; }x>1 and {k3} }x>1, respectively). For the model (I.2)), note that the empirical

eigenvalue distribution of WWT coincides with the empirical eigenvalue distribution of X X T after

excluding the largest eigenvalue of X X T, since we consider the case & > . The rectangular free
cumulants {kof }r>1 of X are defined recursively by the moment-cumulant relations [9] Section 3]

mok =7 ) rsi II misis (A1)

TeENC/(2k) Sem sem
min S is odd min S is even
where NC'(2k) is the set of non-crossing partitions 7 of {1, ..., 2k} such that each set S € 7 has

even cardinality. Furthermore, by exploiting the connection between the formal power series with
coefficients {mqy }r>1 and {Koy }r>1, each rectangular free cumulant ko can be computed from

ma, ..., Mok and kg, ..., Kok—1) as [9, Lemma 3.4]
k—1 ‘
Kok = Maog — [2"] Z roj (2(yM(2z) + 1)(M(2) + 1)), (A.12)
j=1

where M (z) = Y"72, moxz" and [2¥](g(2)) denotes again the coefficient of z* in the polynomial
q(2)-
Consider now the random variable A representing the limiting distribution of the singular values

of W, and recall that b < oo denotes the supremum of the support of A. Then, for z > b, the
D-transform D(z) of A is given by

D(z) = ¢(2) - ¢(2), (A.13)

where

o0 =B{ 2 a6 =0+ 12 (a9

22 — A2

Another transform that will be useful in our analysis is the rectangular R-transform R(z) of A, which
can be defined by the convergent series:

R(z) =Y k2, (A.15)
=1
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where {k37 }r>1 are the rectangular free cumulants of A. The derivative of the rectangular R-
transform is denoted by R/(z) and given by

R = S+ Uy = 300 kg™ w16
i=0 §=0 k=0

where the second equality follows from a double-counting argument. By combining (A.13)) and
(A:16), we also obtain the useful identities

DD hagerin? T = 2R/ (2) - R(2), (A17)
j=0 k=0
Z(z + 1)n§?i+2)zi =2 'R'(2) — 272R(2). (A.18)
i=0
The series in (A.15)-(A-T8) are well-defined and converge to a finite value for z < 1/(as)?, where
as = 1/4/D(bT) is the spectral threshold [[T1]]. The rectangular R-transform can also be expressed
in terms of the D-transform, see e.g. [L1, Section 2.5]:

YR?*(2) + (v + 1)R(2) + 1 = (D7 (2))% (A.19)

B Proof of Theorem /1]

This appendix is organized as follows. In Appendix we present the state evolution recursion
associated to the artificial AMP iteration defined in (5.1)) and (5.3). In Appendix[B.2} we prove that
the first phase of this state evolution admits a unique fixed point. Using this fact, in Appendix[B.3] we
prove that the artificial AMP iterate at the end of the first phase approaches the PCA estimator. Then,
in Appendix [B.4] we show that (i) the iterates in the second phase of the artificial AMP are close to
the true AMP iterates, and (ii) the related state evolution parameters also remain close. Finally, in
Appendix [B.5] we give the proof of Theorem I

B.1 State Evolution for the Artificial AMP

Consider the artificial AMP iteration defined in (5.1)) and (5.3)), with initialization

- -1 - -

@' = pau* + /1 —p2n, f =Xu' —rkal (B.1)
Then, its associated state evolution recursion is expressed in terms of a sequence of mean vectors
R = (fit)efo,x) and covariance matrices X = (Gs,t)s,e(0,x] defined recursively as follows. We
initialize with

fio = QPas Goo=0a*(1—p2), Got=010=0, fort>1. (B.2)

Given i and b K, let

(Fo,...,Fr) = iU, + (Zo,...,Zxg), where (Zy,...,Zx) ~N(0,Xg), and
x/ay 1<t<T+1,

ue—r(x), t>T+2. (B.3)

ﬁt = ﬁt(ﬁt_1), where L~lt($) = {

Then, the entries of fiy, , are given by ji; = oE{U,U.} (fort € [1, K + 1]), and the entries of
Y41 (fors,t € [1, K + 1]) are given by

s—1t—1 s t
Goa=>.> w5 | I E{di(F-)} ( I1 E{a;@_l)}) E{U,_;U;—i}. (B.4)
j=0 k=0 i=s—j+1 i=t—k+1

Proposition B.1 (State evolution for artificial AMP — symmetric square matrices). Consider the
setting of Theorem([l} the artificial AMP iteration described in (5.1) and (5.3) with the initialization
given in (B.1)), and the corresponding state evolution parameters defined in (B.2)-(B-4). Then, for
t > 1 and any PL(2) function v : R?*12 — R, the following holds almost surely:

.1 " . ~1 41 71 B\ 3 J [ 3
nh_}rrgoniz_gzb(u“ui,...,ui ,fi,...fi)—E{w(U*,Ul,...,Ut+17F1,...,Ft)}. (B.5)
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The proposition follows directly from Theorem 1.1 in [20] since the initialization @' of the artificial
AMP is independent of W.

B.2 Fixed Point of State Evolution for the First Phase
From (B.2)-(B-4), we note that the state evolution recursion for the first phase (¢ € [1,T + 1]) has
the following form:

it = apy, fortel[l,T+1],
s—1t—1

i 1)/ i
Tst = Z Z K% kt2 <a> ((ozpa)2 + (Ts_j_lvt_k_l) , fors,te[l,T+1].

=0 k=0

(B.6)

In this section, we prove the following result concerning the fixed point of the recursion (B-6).
Lemma B.2 (Fixed point of state evolution for first phase — Square matrices). Consider the state
evolution recursion for the first phase given by (B.6), initialized according to (B.2). Assume that
K > 0 foralli > 2, and that o > o Pick any £ < 1 such that o€ > o. Then,

li max(s,t) |~ B = 2 1— 2 =0. B.7
T%s,g%{{ﬂg |67 41—s,7+1—t — (1 — p, )| (B.7)

To prove the claim, we consider the space of infinite matrices © = (x5 : s,¢ < 0) indexed by the
non-positive integers and equipped with the weighted ¢,-norm:

|z)le = sup gmaxUshltl |z ). (B.8)
s,t<0
We define X = {z : ||z||s < oo}, and note that X is complete under || - ||¢. For any compact set
I C R, we also define
Xp={x:z,, €Iforalls,t <0} CX. (B.9)

Then, X; is closed in X and therefore it is also complete under || - ||c. We embed the matrix 37 as
an element x € X" with the following coordinate identification:

&37t = xsff,tffa
Tor =0, ifs< —Tort<-T.

The idea is to approximate the map 2:,11 — ET with the limit map h* defined as

1 J+k+2
hZy(x Zzn+k+2( > ((pa)? + Ts—j k) - (B.10)

7=0 k=0

The map h* has a similar structure to the embedding of the map ¥+_; — X+ into X. However,
comparing (B.6) and (B.I0), we highlight two important differences. First, the indices of x_; ;s
are shifted wrth respect to the indices of 65_;_1,+——1. This difference is purely technical and
it simplifies the proof of the subsequent Lemma [B.6] - whrch shows that h* is close to the map
Y7, — X7 Second, the map h*> is fixed, in the sense that it does not depend on s, ¢. In fact, note
that the sums over j and k run from 0 to oo in (B.10). This is in contrast with @ where the two
sumsrununtil j =s—land k =¢ — 1.

The approach of approximating the state evolution map with a fixed limit map was first developed
in [20]. The key difference is that, in [20], it is assumed that « is sufficiently large, which allows to
simplify the analysis. On the contrary, our result holds for all o > a4, o being the spectral threshold
for PCA. This is because of two main reasons. First, the expressions for the state evolution recursion
are simplified by considering linear denoisers in the first phase of the artificial AMP. Second, we
crucially exploit the form (and the strict positivity) of the correlation between the signal and the PCA
estimate, in order to prove that the limit map (B.I0) is a contraction (cf. (B.I4) in Lemma[B.5).

First, we show that hE(X 1+) C X~ for a suitably defined compact set I*.

Lemma B.3 (Image of limit map — Square matrices). Consider the map h™ defined in (B-10). Assume
that k° > 0 for all i > 2, and that o > «. Then, there exists I* = [—a*, a*| such that, if € € Xp«,
then h*(zx) € XJ-.
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Proof. Let x € Xr-. Then, the following chain of inequalities holds:

. () ) 1 0o o0 1 J+k+2
|hs,t(w) = paR/ (O[) + szﬁk+2 (O[) Ls—j,t—k

=0 k=0

1 [eSHNe'S] 1 Jj+k+2
PR R G) e

7=0 k=0

2
1 1 1
v (o)|rer(G) ()
a a) \a
Here, (a) follows from (B.10) and (A23); (b) follows from the hypothesis that x$° > 0 for i > 2; and
(c) uses again (AJ) and the fact that © € X-.

Now, recall from (2:2) that above the spectral threshold, namely, when o > «, the PCA estimator
upca has strictly positive correlation with the signal w*:

b
(S) 2

¢ P

(upca,u*)? as, -1

n Pa = 026" (G-1(1/a))’

which immediately implies that
1

@TG L)
Thus, by combining (B-T1)) with (A7), we deduce that

2
R (1> <1> <1. (B.12)
(6% (0%

Hence, as R’ (1) < oo, there exists an a* such that

e () e

which implies the desired claim. O

<0. (B.11)

o2

Next, we compute a fixed point of h*>.

Lemma B.4 (Fixed point of limit map — Square matrices). Consider the map h* defined in (B.10),
and let x* = (x%, : s,t < 0) with x}, = (1 — p2). Assume that o > os. Then, x* is a fixed
point of h*.

Proof. Note that, for z = 1/, the power series expansion (A.3) of R’ converges to a finite limit as
a > ay. Hence, by using the definition (B:I0), we have that

1
hi(x") =R = ).
s,t (:13 ) < a >
Then, the claim follows from (A7) and the definition p, = ./ WM, which together show
that R' (1) = a?(1 - p2). O

1
«

Let I* be such that > : X7 — X;- (the existence of such a set I* is guaranteed by Lemma B.3)).
Then, the next step is to show that h* : X7« — Xj- is a contraction. We remark that, by the Banach
fixed point theorem, this result implies that the fixed point «* defined in Lemma [B-4]is unique.
Lemma B.5 (Limit map is a contraction). Consider the map h™ : X« — Xp- defined in and
where I* is given by Lemma@ Assume that k5° > 0 for all © > 2, and let £ < 1 be such that
af > ag. Then, for any x,y € Xr-,

2
1h5(@) — W) < R (;) (;) Il — ylle. (B.13)

2
R (;a) (;) < 1. (B.14)
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Proof. First of all, for any s,¢ < 0, we have that

. . @ | & 1 G+k+2
|hs,t( T) — hst = ZZ j+k+2 (xsfj,tfk_ysfj,tfk)
j=0 k=0

® S & 1\ IE2
= ZZ’%MH ( ) |Ts—jt—t — Ys—j t—k]|-

7=0 k=0

(B.15)

Here, (a) follows from (B:10), and (b) follows from the hypothesis that x° > 0 for ¢ > 2. Further-
more, we have that

[@s—jt—t = Ys—ge—n] < [l —ylleg™ e mIbIRD, (B.16)
Thus, by using (B:13)) and (B:16), we obtain
1h* (@) = h*(y)lle = sup €max(‘sl’|t‘)|h§,t(w) — hy(y)l

1 J+k+2 )
< sup ¢max(ls ||t\)||x yHEZZHJ-&-k+2 ( ) g~ max(ls—illt—k])

s,t<0 =0 k=0
(B.17)

Note that, as £ < 1,
& max(|s—jl,[t—k|) <& maX(\8|7lt|)—j—k—27

which implies that the RHS of (B.17) is bounded above by

1 J+k+2 1 1 2
Hsc—yHgZme <§a) =R (w) (w) lz—yle,  (B.18)

=0 k=0

where the equality follows from (A-3)). This shows that (B.13) holds. The proof of (B:14)) follows the
same argument as (B:12), since S > a. O

At this point, we show that the state evolution of ET can be approximated via the fixed map h*.

Lemma B.6 (Limit map approximates state evolution map — Square matrices). Consider the map
h> : Xp. — Xr. defined in (B10), where I* is given by Lemma[B.3| Assume that k¢° > 0 for all
1> 2, and let £ < 1 be such that o€ > ag. Then, for any © € Xj~,

- e 1\°
20 - 1@l < & (o) (o) 180 alle+ P, (B.19)
where
lim F(T) =0, (B.20)

Proof. Throughout the proof, we consider ET, XNIT,l as embedded in X. First, we write

17 — k¥ ()|l = sup e EHD|(S7), - Y, (2)]

s,t<0

= max sup gmax(sLlth) (54, — h?,t(ﬁc”,
5,6<0 (B.21)

max(|s[.[¢))<T

sup LN (S7), 0 — by (a )I>,
s,t<0
max(|s|,[t])>T

where (37),; = Goipayrifs>—Tandt > T, and (24)s.+ = 0 otherwise.
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Let us look at the case max(|s|, |t|) < T, and define I} = {(j,k) : j > s+ T or k >t + T}. Then,

(B7)st = hiy(x)| =

s

s+T—1t4+T—1 1
<a

oo
Z Z Kjtk+2
j=0 k=0
oo oo 1 Jj+k+2
[e%s) 2 2
Y () @R e

§=0 k=0

jt+k+2
22, = _ )
) (05 Po T JsfjJrTfl,tkarTfl)

s+T—1t4+T—1 1 jAk42
D I S
j=0 k=0
1\ IHe+2
J.kel
(B.22)
The term 7} can be upper bounded as follows:
(a)s+T—1t+T—1 1 j+k+2
T < Z Z K?j—k-t,-Q (a) ’&sfjJrTfl,tkarTfl_xs—jﬂf—k
j=0 k=0
s+T—1t+T—1 1 jHk+2
S - —jl,lt—k
< i (1) i el et
j=0 k=0
(b)s+T—1t+T—1 1 Jtk+2 B B.23
< DD Kk (@é) 127y — a]|gg™mxsbiD) (829
j=0 k=0
(2)OO o 1\ T2 ~ max(Js],t])
7zzﬁj+k+2 ta X171 — €
§=0 k=0

(d) 1 1 ? < — max(|s
O (L) (&) 1802 - el

Here, (a) and (c) follows from the hypothesis that «£$° > 0 for ¢ > 2; (b) uses that £ < 1; and (d) uses
(AZ3). The term 75 can be upper bounded as follows:

2 2 * o] 1 Tkt
(e®pe +a”) Z Rjt+k+2

T, —
i «
j,kely

IN

(B.24)

oo

a’pf +a* oo (s 1’
= 2 Z Ko+ 1) (> )

« _ «
i=— max(|s,|t)+T

where the first inequality uses that & € X~ and the second inequality uses that, if (j, k) € Iy, then
j + k> —max(|s], |t|) + T. By combining (B:22), (B:23) and (B:24), we obtain that
sup D) (B), 0 — hT ()]

s,t<0 B
max([s,|¢)<T

5 2 2 * e’} + i
1 1 - X P T > ‘ 1
<R <) (> 17y —2lle + —25— sup ¢ Ky <> |
T2 fa T—1 3 a? o<t<T .5, " ¢
(B.25)

Let us now look at the case max(|s|, [¢]) > T'. Recall that |h3, ()| < a*, Go,0 = (1 — p2)a? and
6o+ = 0fort € [1,T]. Thus,
(Bg)st — hii(@)] < e,
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where c; is a constant independent of s, ¢, T'. This immediately implies that

sup  gmUb D (5) 4 — hT (@) < er€T
s,t<0 B
max(|s|,[t])>T

which combined with (B:23)) allows us to conclude that

. 1 1)’
20 - 1@l < 7 (g ) (5) 1B ol

; B.26)
a?p? + a* 1\’ T (
+ 2 sup & ; z—|—1)< ) + €.
a? 0<t<T Fz: . 2 =

As a > ag and the series in (A.3) is convergent for z < 1/as, one readily verifies that

lim sup & Z Ko (i + 1) <) =0, (B.27)
T— 00 0<t<T Ty o

which concludes the proof. O

Finally, we can put everything together and prove Lemma [B.2]

Proof of Lemma[B.2} Fix ¢ > 0 and denote by (hZ)TO the Tp-fold composition of h*. Recall from
Lemmasandthat x* is the unique fixed point of h* : Xj- — X;.. Then, for any € X,

I 03)™ (@) =2l = 11 (0%) " (@) = (%)™ (@) < (R’ (&) (&) ) =2
(B.28)

where the inequality follows from Lemma Note that R’ ( ) (é) < 1 (see (B:T4)) and that
x,x* € Xr-. Thus, we can make the RHS of lLﬂjb smaller than €/2 by choosing a sufficiently large

Tp. Furthermore, an application of Lemma B.6| gives that, for all sufficiently large T,

. e 132\ ¢
B, — ()" (@) < (R () (=) ) IBrale+ S ®29)

Note that © € X7~ implies that ||z||¢ < a*. In addition, by following the same argument as in Lemma
one can show that |G, ;| < a* for all s,¢, which in turn implies that | X7 < a*. As aresult,
we can make the RHS of (B:29) is smaller than €/2 by choosing sufficiently large 7. As the RHS of
both (B.28) and (B:29) can be made smaller than €/2, an application of the triangle inequality gives
that

limsup |27 —x*||¢ <, (B.30)
T—00
which, after setting T=T+1, implies the desired result. O

B.3 Convergence to PCA Estimator for the First Phase

In this section, we prove that the artificial AMP iterate at the end of the first phase converges to the
PCA estimator in normalized ¢5-norm.

Lemma B.7 (Convergence to PCA estimator — Square matrices). Consider the setting of Theorem
and the first phase of the artificial AMP iteration described in (5.1)), with the initialization given in
(B:I). Assume that k3° > 0 for all i > 2, and that o > «. Then,

~T41

lim lim —|| — Vnupca| = 0 almost surely. (B.31)

T— 00 n—00
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Proof. Consider the following decomposition of & "

@'t = (rupca + T (B.32)

~T+1

where (71 = (@' 7' upca) and (rTT upca) = 0. Define

eltl = (X —-G! (1) In> attl, (B.33)
(0%

where G~ ! is the inverse of the Cauchy transform of A. Then, using (B.32), can be rewritten

as
<X -Gt (1) In> pTHl = T+l (X -Gt (1) In> Cry1UpCA- (B.34)
(0% (0%

First, we will show that
x-c (L))
a n

where ¢ > 0 is a constant (independent of n,T’). We start by observing that the matrix X —
G! (é) I, is symmetric, hence it can be written in the form QAQ", with Q orthogonal and A

diagonal. Furthermore, the columns of @ are the eigenvectors of X — G ! (é) I,, and the diagonal
T+1

> cf|rT, (B.35)

entries of A are the corresponding eigenvalues. As r is orthogonal to upca, we can write

(X e (;) In> T+ = QA'QTr T+, (B.36)

where A’ is obtained from A by changing the entry corresponding to A\ (X) — G~! (i) to any other

value. For our purposes, it suffices to substitute A (X) — G~* (1) with A2(X) — G~' (1). Note
that '

~/ . ~1/
QA QTr™ > > [r™|> min QA Q"s|?

silal=1
. & 2
- ||rT+1||2s_ﬂr;1Hril<s,Q (A) Q"s) (B.37)

= [ A (@ (A) Q1.

N SN2
where Apin(Q (AI) QT) denotes the smallest eigenvalue of Q (A/) Q" and the last equality
follows from the variational characterization of the smallest eigenvalue of a symmetric matrix. Note

that
Amin (Q (A’)2QT) = Anin ((A’)Q) = _min ((G—l (;) - /\i(X))2> . (B3%)

.....

Recall that, for a > g, A1 (X) =% G=1(1/) and A (X) 2% b < G~1(1/a), see [10, Theorem
2.1]. Thus, the RHS of (B.38) is lower bounded by a constant independent of n, T'. By combining
this result with and (B.37), we deduce that (B.33) holds.

Next, we prove that a.s.

1 1
lim lim — ||ef+! — <X -Gt <) In> Crp1upcall = 0. (B.39)
T—00Nn—00 4/MN (0%
An application of the triangle inequality gives that
1 1
et — (X -G (a) In> (r+1upcal| < ’|€T+1||+H (X -G (a) In) (r+1upPCA ’ :
(B.40)
The second term on the RHS of (B.40) is equal to
_ 1
[Cr1] M (X) =G (a) ‘ . (B.41)
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By using Theorem 2.1 of [10], we have that, for a > a4, almost surely,

lim [\ (X)—-G! (1) ‘ =0. (B.42)
n—oo (6%
Furthermore,
- ~T
Jlral € @ = =) 7).

By Proposition[B-T] we have that

_ 2. /2 4
Jim a\fllf = \/ﬂT +or,
which, for sufficiently large T, is upper bounded by a constant independent of n, T, as fir = apq
and 67,7 converges to a?(1 — p2) as T' — oo by Lemma[B.2} By combining this result with (B-42),

we deduce that
1
(X -Gt (a) In> (T+1UupPCA

To bound the first term on the RHS of (B:40), we proceed as follows:
2
1 1 1
lim —|le > = lim - (X -Gt () In) a’ !
n—oo N n—oo N (67
_ 2
T+1 T—i+1
@ . 1 ~T+1 1 = (LY s
D Jim = ; e (=
f T S () o)

T+1 T—it1
by .. 1| -~T+1 oo 1 i 11\
® lim —||f Ty E KT 19 <a) ' — G <> a’

: (%
=1

© i T+1 DN+ N 2
=E (FT+1 + Z KT it2 <a> U -G (a) UT+1>

i=1

—=0. (B.43)

lim lim —
T—o0on—00 /N

(B.44)

Here, (a) uses the itera~ti0n @) of the first phgse of the artificial AMP, and (c) follows from
Proposition where U, for t € [1,T + 1] and Fr4 are defined in (B23). To obtain (b), we write

T+1 1 T—i+1 2
lim fH Z KT—it2 — KT _it2) () i
n—oo N

(B.45)
T+1 1 2T —i—j5+2 <~@ i >
= nlgr;o ,Zl(HTiiH — Kp_ir2)(KT—j42 — KT ji2) (a) 0
ij=
Using the state evolution result of Proposition[B.T]and (B.3)), we almost surely have
o ) L a s
RILH;O = @(a pa+6i5) <1, (B.46)

where the last inequality uses 7; ; < 69,0 = a2(1 — pi) (This can be deduced from the recursion

(B-6) using the formula (Z.2) for p2, and the relations (A.3) and (A.7).) Therefore, since r; —3 £5°
for ¢ € [1,T + 1] (by the model assumptions), we almost surely have that (b) holds.

Next, by the triangle inequality, (B:44) is upper bounded by

T4+1 |\ T-it z
3-E (a - < > Z KT—it2 (> ) Uz
T41 T—it+1 2
1 - - B.47)
+3-E (Z KT—it2 <a) (Ui = UT+1)>
i=1
+ 3-E {(Fqurl — OéifTJrl)z} = S1 4+ S5 + 55.
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The term S5 can be expressed as
S5 =3-E{(Pro1 = Pr)*} = 36rs1.041 = 200410+ 61,7).

Thus, by Lemma [B.2] we have that
Tlim S; =0. (B.48)
— 00

The term .Sy can be expressed as

. 2
T+1 T—i+1 2 9 ~
1 a“py, +orr
51::3'<“ ( ) E:’”“2*2< ) ) —E

By Lemma we have limr_, o 67,7 = @*(1 — p,2), and hence

N 2
1 NN
1 — . — -1 — oo — =
Thm S1=3 (a G (a) + 2_0 Kyl (a) ) 0, (B.49)

where the last equality follows from (A:4) and (A.6). Finally, consider the term So, which after
expanding the square and some manipulations, can be expressed as

3 1 i+J
Sy = " Z KiT1R531 (a) (Gr—jr—i + 01,7 — 01 7—i — 0T, 7)) - (B.50)
1,j=0
The expression above can be bounded above as

T i+j
e’} e’} 1 ~ 2 2 ~ 2 2
— K 1K — or—jr—i — o (1 —p,)| +|orr —a” (1 —pg,
2 S it () (rmsr -t s nr —atam
+or i —a®(1 = p2)| + |orr—j — (1 = p2)]).
We now apply Lemma[B.2]to bound each of the four absolute values on the RHS of (B-5T). Fix any
¢ € (%,1). Then, by Lemma|[B.2} for any e > 0 there exists 7 (e) such that for T > T*(¢), we
have
T

1\ . , ,
SQSE 72 Z 1KJ]+1 ( ) -(g_max(17])+1+§_l+§—])

(a) 12 1 i+J
<e- el Z Kip1Kj91 (>

i.j=0 (B.52)

- 1
§e~ Z Kig1Ki91 (504)

,7=0

c 2
26}2(R<;)>'

Here, (a) uses that £ < 1, (b) uses that ;° > 0 for 7 > 2, and (c) uses the power series expansion
(A) of R(-), which converges to a finite limit as {a > «. Since e can be arbitrarily small, we have

lim S; = 0. (B.53)
T— o0
By combining (B.44), (B.47), (B-48), (B.49) and (B.53)), we have that
: : Lo ey _
i = llet =0, (B-54)

which, combined with (B:43), gives (B-39). Finally, by using (B:33) and (B.39), we have that
|77t = 0. (B.55)

lim lim —|
T— 00 n—0c0 n

Thus, from the decomposition (B.32), we conclude that, as n — oo and T' — oo, altt

with upca. Furthermore, from another application of Proposition [B.I] we obtain

1
. . Tl _ 1
i ) = i o = (536

which implies that limp_, » lim,, o (741 = 1 and concludes the proof. O

is aligned
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B.4 Analysis for the Second Phase

We first define a modified version of the true AMP algorithm, in which the memory coefficients
{bt,i}icp1,g in B.I)-(3.2) are replaced by deterministic values obtained from state evolution. The

iterates of the modified AMP, denoted by @, are given by:
~1 _
@' =vnupca, f =Xa'—bya', (B.57)
t
Wt = (), F=Xa' =Y bual,  t>2 (B.58)

where

o0
h o) —1
bi,1 = E :’fiﬂa )

bey = k5%, btl_ZnZ+tcx H]E{ug Fpoq)}, (B.59)
=0
bei—j = K5, H E{u}(F;_,)}, for (t—j)e[2,t—1].
i=t—j+1

We recall that {k$°} are the free cumulants of the limiting spectral distribution A, and the random
variables { F; } are given by (3:4).

The following lemma shows that, as 7' grows, the iterates of the second phase of the artificial AMP
approach those of the modified AMP algorithm above, as do the corresponding state evolution
parameters.

Lemma B.8. Consider the setting of Theoremm Assume that k3° > 0 for all 1 > 2, and that o > .
Consider the modified version of the true AMP in (B.57)- Sg) and the artificial AMP in (5.1)-(5.3)
along with its state evolution recursion given by (B.2)-(B.4). Then, the following results hold for
s, t>1:

1.

lim [LT—',-t = ¢, lim &T+57T+t = Os,t- (B60)
T—o0 T—o0
2. For any PL(2) function ¢ : R?**2 — R, we have

. . T+ ~Tt4+1 FT+1 ST+t
lim lim Zd} +7~-ui++afi+a"'fi+)

z 9
T — 00 Nn—00 Ui

(B.61)

n

1 R
- *5 ¢(Ufaﬁ}w~f§+1,f},. fH| =0 almost surely.
n
i=1

Proof. Proof of (B.60). We prove by induction. Consider the base case t = 1. The formula in
([B-6) for fi; shows that fi; = ap, = py for t € [1,T + 1]. Furthermore, Lemma B.2] shows that
limr oo 0741741 = a?(1 — p2), which equals 011 (defined right before (3.4)).

For t > 2, assume towards induction that limp_, o fiz4¢ = ¢ and oy 11¢ = Ok, for k, £ €
[1,¢ — 1]. From (B23)-(B-4), we have

firit = aB{ut(firse—1Us + Zrii—1) Us}. (B.62)

Recalling that Zp4 1 ~ N(0,67r41—17+¢—1) and Zy—1 ~ N(0,04-1+-1), by the induction
hypothesis and the continuous mapping theorem, the sequence of random variables {us(fir4+—1Us +
ZTH_l)U*} converges in distribution as 7' — 00 to ug(p¢—1Ux + Z¢—1) U,. We now claim that the
sequence {uy(fi74e—1Ux + ZT+t71) U.} is uniformly integrable, from which it follows that [12]

Tlljl(l)o fryr = oB{u(pe—1Us + Zi—1) Ui} = s (B.63)
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We show uniform integrability by showing that supy E{|u;(firqi—1Us + Zpye—1)Us|'T/2} is
bounded, where we recall that € > 0 is any constant such that E{U2*¢} exists. Using L; > 1 to
denote a Lipschitz constant of u;, we have

1+e/2 }

E{lus(fir4e—1Us + Z~T+t—1)U*|1+E/2}

< LiJrg/Z]E {’|ﬂT+t1 U2 + | Zr i 1Us] + |ur (0)U.|

(a) . .

< (3Lt)1+8/2<|/1T+t1|1+ PE{U*) + (B{| 2 [} + |Ut(0)|1+6/2)E{|U*|1+6/2}>
b

(<)oo, (B.64)

where (a) is obtained using Holder’s inequality, and (b) holds because fipy:—1 — p¢—1 and
OT+t—1,T+t—1 — 0t—1,t—1 by the induction hypothesis.

Next, consider 745 74 for s € [1,¢]. From (B:4),

T4+s—1T+t—1 T+s
~ 00 ~1 (T
OT+s, T+t = E E: Rjtk+2 H E{ui(Fi-1)}
J=0 k=0 i=T+s—j+1

T+t ~ _ _

: ( H ]E{G;(FZ—l)}> E{Urys—Ur ik}
i=T+t—k+1

= A1+ Az + Az + Ay, (B.65)

where the four terms correspond to the sum over different subsets of the indices (j, k). By using the
definition of %, (+) in (B.3), those terms can be written as

s§—21t—2 s t
A =33k | T E{ui(Fre-1)} ( II E{U;(FT-H—I)})
7=0 k=0 1=s—j+1 i=t+1—k
EB{Ur s jUrti—i}, (B.66)
s—2T+t—1 s t
1y (h=t41) . .
A= > (a) Ko | TT E{ui(Froi)} (HE{UQ(FTH—l)})
§=0 k=t—1 i=s—j+1 i=2
EB{Ur4s—jUrsi—i}, (B.67)
T+s—1t-2 . s t
1\G=s+1) - -
Ag= 33 (2) T K (H E{u;<FT+i_1>}> ( I1 E{u;<FT+i_1>}>
j=s—1 k=0 i=2 i=k—t+1
EB{Ur 45— jUrse—r}, (B.68)

T4+s—1T+t—1

A4 _ Z Z (é)(j+k757t+2)ﬁﬁk+2 (H E{UQ(FT_H'_l)}) (H E{U;(FT-i-i—l)})

j=s—1 k=t—1 i=2

B{Urss—iUrsi—}. (B.69)

For i € [2,1], the induction hypothesis implies that Fpy;_1 = firri—1Us + Zpii1 4 F =
wi—1Uyx + Z;—1. Since u; is Lipschitz and continuously differentiable, Lemmaimplies that

A B{uj(Fryi1)} = B{uj(Fi1)}, i€ (2,4 (B.70)

Next, note that
o _ {“S—j(FT-&-s—j—l)a 0<j<s-2,
TH+s—j3 — ~

Fris i 1/a, s—1<j<T+s—1,

T4s=j=1/ (B.71)
U _ UNt—k(FT+t—k—1)7 0<k<t-2,
THAF T Frag—p—1/a, t—1<k<T4+t—1.
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We separately consider E{Ur,, ;Ur.; 1} for the four cases of (j,k), corresponding to
Ay, Ag, A3, Ay. First, for j € [0,t — 2], k € [0, s — 2], we have

B{Urts—jUrsi—n} = Bl{us_j(Froys—j—1) u—n(Frii—x_1)}. (B.72)

By the induction hypothesis and the continuous mapping theorem, the sequence
{us—j(Fris—j—1)us—g(Fryt—k—1)} converges in distribution to us—;(Fs—j_1)us—p(Fr_r—1)
as T — oo From an argument similar to (B.64), we also deduce that
{us—j(Frys—j—1)ut—k(Fryt—x—1)} is uniformly integrable, from which it follows that

Thjﬂm E{us—j(Froys—j—1)u—k(Frye—p—1)} = E{us—; (Fs—j_1)us—r(Fi—p—1)},

(B.73)
jef0,t—2, kelo,s— 2.
Egs. (B-70) and (B.73) imply that
s—2t—2 s t
Am A = Yo ke | II Elui(Fi1)} ( 11 E{UQ(Fil)}> E{Us—;Ur—r}-
=0 k=0 i=s—j+1 i=t+1—k
(B.74)

Next consider the case where j € [s — 1, T+ s—1]and k € [t — 1, T + ¢ — 1]. Here,

- - 1 -~ = L
E{Urys—jUrst—n} = @E{FTf(jJrlfs)FTf(kJrlft)} =+ 20T —(j+1-8),T—(k+1-1)-
(B.75)
From Lemma[B.2] for any § > 0, for sufficiently large 7", we have

67— (41— T— (kt1—1) — 07 (1 = p2)| < 8¢~ MU HL=s kH1=0) (B.76)

for some & > 0 such that & > «a,. Combining (B.73)-(B.76) and noting from (3.4) that
E{U,_;Ui—r} = HE{F{} = 1, we obtain, for sufficiently large T":

) ) 5 .
|B{Urts—jUryi—r} —E{Us—;Us_1}| < ?5_ max(jH1=s, kH1=t " for j > (s—1), k> (t—1).
(B.77)
Now we write A, in (B:69) as
s t
Ay = <H ]E{U;(FT-H—l)}) (HE{UQ(FTH—O})
i=2 i=2
(B.78)

TesITH-T 4 (Gihos—t42) N
> > (a) Ritnre B{Us— Ui} + A

j=s—1 k=t—1

where

TH+s—1T+t—-1

=¥ X (3

j=s—1 k=t—1

(Gth—s—t+2) . -
) K52 kss [B{Ur4aeiUr—i} — E{U Uik} (B79)

Using (B:77), for sufficiently large T we have

(J+k—s—t+2)
o0
) Kjtkt2

(G+k+s+t) (B.80)
> ’fﬁk+s+t
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for a positive constant C ; since the double sum is bounded for £ > i, (see (AJ3)). Since 6 > 0 is
arbitrary, this shows that Ay — 0 as 7' — oc. Using this in (B.78) along with (B.70), we obtain

Am Ag = <EE{U;(F1—1)}> (Z_HQE{U;(Fz—l)}>

PP (5> e K55 k2 B{Us— ;Ui }-

j=s—1k=t—1

(B.81)

Next consider j € [0,s — 2], k € [t — 1, T+t — 1]. Here
- N 1 _ .
E{Urts—jUrqi—i} = EE{Usfj(FT+sfj71)FT7(k+1ft)}

1 ~ - 1 - - -
= aE{Us—j(FT+s—j—1)FT+1} + E]E{Us—j(FT+s—j—1)(FT+1 — Fr_o41-1))}.  (B.82)
By the induction hypothesis and the uniform integrability of {u,_;(Fr. s ;_ 1)}, we have

. 1 ~ ~ 1
lim a]E{Us—j(FT-&-s—j—l)FT-&-l} = EE{Us—j(Ee—j—l)Fl} =E{U,—;U;_1}. (B.83)

T—o0
The second term in can be bounded as follows, using the Cauchy-Schwarz inequality:
B{us—j(Fris—j—1)(Fri1 = Fr_gei1-n)}
S Li(if g j1 +674s—j1.01s—j-1 + )2 (B{(Fry1 — FT—(k+1—t))2})l/2~ (B.84)
Using Lemma|[B.2] for any § > 0 and T sufficiently large, we have
E{(Fri1 — Fr_ge+1-0)%} < lorgi,re1 — (1= p3)|
+lor- -0 01—t — (1= p2)| + 2lor_ (10741 — a*(1 = pl)|
< g k1=t (B.85)
Combining (B-82)-(B-84), we deduce that for any 6 > 0, the following holds for sufficiently large 7°:
E{Ur s jUrye 1} — B{U._ U} < 66~ *H1D forje[0,s — 2], ke[t —1,T+1t—1].

(B.86)
We write As in (B.67) as
i 5—2 s
Ay = (HE{U;(FTJMI)}) T E{vi(Fre-)}
=2 =0 \i=s—j+1
R NGV
3 (E) Kt ke B{U— Uk} + Do (B.87)
k=t—1
where
T+t-1
1\ (k—t+1) ~ )
A2,j = Z (a) Hﬁk+2 (E{UT+sijT+t7k} — ]E{US,jUt,k)}). (B.88)
k=t—1
From (B-86)), for any 6 > 0 and sufficiently large 7' we have
I Y B A
|A2,j| < 6(50{)]4»15«‘,»1 Z <£Oé) K;)j-k—‘rt < Cs,j67 (B89)
k=1

for a positive constant Cy ; since the sum over k is bounded (see (A-4)). Using this in (B:87) along
with (B.70), we obtain

s—2 [e’s) s

) 1\ k=t41)

Jm A=Y 3 (=) R BU U | [ ElE-)}
j=0 k=t—1 i=s—j+1

: (HE{U;(Fi—l)}> . (B.90)
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Using a similar argument, we also have

oo t—2 (j—s+1) s
dm A= 3 3 () LR U ) (HE{uxFi_l)})
j=s—1k=0 =2
t
( 1T E{u;(FH)}). (B.91)
i=t—k+1

Noting that the sum of the limits in (B274)), (B:8T), (B:90) and (B.91) equals o ; (defined in (3.6)),

we have shown that limrp_, oo 0745 74+ = 05 1.

Proof of (B.61). Since ¢ € PL(2), for some universal constant C' > 0 we have

~T+1 ~T+t+1 FT+1 Tt ~1 ~t+1 £1 £t
Zdj :7 z+a' . U’i++ afi+ + - Z¢ r7 17"' +7fi7"'fi)

t+1

OZ(HI%HZ (lal ™) + |af]) +Z(Iff”|+ffl)>
=1

(@ =B e T AR (T R (T )

[N

* i+ THL)2 N t 2T+¢ 9 A 3
w2 [ U [ P
<20(t+2) |1 ) ( )+ ( )
<20(t+2) [1+ +H - - +H —
1
~T.|.1 A1 2 ~ T4+l ~t+112 ~T+1 »lig ~T+t 22\ 2
u -—u - —
<| [ (AR RS F AN & G
n n n n
(B.92)

where the last inequality is obtained by using Cauchy-Schwarz inequality (twice).

We will inductively show that in the limit 7', n — oo (with the limit in n taken first): i) the terms
TH—al? nfT“ -F'2 nfT“ s -
Yo o all converge to 0 almost surely, and ii) each of the

terms within the square brackets in converges to a finite deterministic value.

llz

Base case: t = 1. From Lemma[B.7] we have

Ja™" — a2
lim lim ——
T— 00 n—00 n

=0. (B.93)

T 1
From the definitions of f “and f in (3.I) and (B:57), we have

T4+1

ST+ 4l . R . PN

[ i HX(UTH — ) — ( E bryiu’ — b1,1U1)H
=1

o (B.94)

< AX Nl =P + || 3 s it — B "

From [0, Theorem 2.1], we know that the || X ||op = |A1(X)| "= |G~1(1/a)| almost surely.
Therefore, from (B:93), we almost surely have

T+1 1”2

lim lim [ X2, &
T— 00 n—»00

=0. (B.95)
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For the second term in (B:94), recalling that by 1 71— ; = kj 17 for j € [0,T] (see (5.1)), and
b1 =Y 2o K53 077 (see (BST)), we write

T T
_ 00 \—j=T+1—j oo —j=T+1—j  ~T+1
—Z(’ij—&-l — Kjj)au +Z’fj+10¢ !(u —u )
i=0 =0
T 00
—&-Zfiﬁla_J(ﬁTH—'&l)— Z ﬁﬁla_jﬂl. (B.96)
3=0 j=T+1
Hence,
1 T
F TH+1—
EH Z bT+1 U *HZ :‘ﬂ?]+1 J+1)a Ta +1—yj
i=1
2
(@17 — gT+y al+l _ gl
DR ) *HZ%Q -4
7=0
4 L
+5H Z K220 H .— Ry + Ry + Rs + Ry. (B.97)
J=T+1

First, by using passages analogous to (B:45)-(B.46), we almost surely have limy_, o lim,, oo R1 = 0.
Considering R; next, Proposition [B.I]implies that almost surely

2
nh—>Holo EH ZHJ-HO‘ T+1 -J _ ~T+1 H (Z ﬁj+1a E{UT_H -5 — UT+1}>
7=0

T T ~
=3 > KRS o=t L SE{( Ursi-i — Ur1)(Urs1—j — Urs1)}

=0 j=0

T T
a oo .00 —(i+7) (& ~ ~ ~
(:) Z Z Hi+1,‘{j+1a ( +])(UTfj,T7i + or, T —O0T—i,T — UT,ij). (B.98)

i=0 j=0

Here, (a) is obtained from the definition Uy = F;_; /o from (B3), for £ € [1,T + 1]. As T — oo, it
was shown in (B:50)-(B.33)) that the sum on the RHS of (B:98) converges to 0. Therefore

2
lim lim fHZﬁ ot @l ~T+1)H = 0 almost surely. (B.99)

T—oon—oon

For the third term in (B:97), recalling that @' = \/nupca, we almost surely have
~T+1 ~112
-

: o —7 2 . : ||’LL
dim (Do) im fim S =0 (®.100

where we use Lemma and the fact that Y77 ) k35,077 = R(1/a) is 4c0nvergent (see (A4)). The
convergence of this series also implies that limp_, o, Z J=T+1 Kj+1077 = 0, and hence the fourth
term in (B297) goes to 0. We have therefore shown that

lim lim *H Zbﬂl A — byt H (B.101)

T—oon—o0o N

almost surely. Using (B.93) and (B-101) in m shows that almost surely

lim lim f||f oI =o. (B.102)

T— 00 n—>00
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Recalling that @’ 2 = uy (@’ )

ST+l 4l
Lo\ f e f ||, where L, is the Lipschitz constant. Eq. (B.102) therefore implies

T+2 A2|| <

1
,@* = uy(f ) and that uy is Lipschitz, we have ||@” T2 — @

lim lim —||uTJr2 @?||? = 0 almost surely. (B.103)

T—oon—oo N

By the triangle inequality, we have for ¢ > 1:

™| = @ = ] < flaf] < Attt - Al (B.104)
Therefore, from (B.93)), Proposition B.1} (3:4) and (3:5), we almost surely have
N [ 1 @1 o
A A, T = i (i orern) S gl o) =1,

(B.105)

where (a) is due to (B-:60). Similarly using (B-102), (B-103), Proposition[B.1] and (3-3), we almost

surely have

O N £ 2
lim = Thm lim = E{ug(p2Us + Z2)°},
P 2T+1 o (B.106)
PP i i P o e
n—o0 n T— 00 n—00 n

Using (B.93), (B-102), (B:103), (B-103)), and (B:106) in (B.92), we conclude

Z 1 5
7/} za 1T+17~;F+27fT+1) - E l[}(uz‘ar&zl ’[1;12, z) =0 almostsurely. (B107)
n
i=1

Induction step: For ¢ > 2, assume towards induction that almost surely

~T+0—1 ~l—1 1
i lim SF T S F 220, Gim dim Sl@™t — a2 =0, for2<l<t,
T—ocon—oo 1 T—ocon—oo n

1 — N

I I 1 « STHL oTHL FT+1 -1
Jim Tim n;w(u“uz N TS PR )

p

—727721 whal, . al fh Kl) 0, for 2<¢<t.
(B.108)

Using the definitions of }TH and ft in (3.3)) and (B-38) and applying the Cauchy-Schwarz inequality,
we have

1, T+t ot (t+1) . -
~lIr —f||2<n<||X( T a2+ ) llbrye e’ — byl

=2
T+1 _ . _ 2
+ || 3 brya’ — b ) (B.109)
=1

For the first term on the right, we have || X (a" " —a)||2 < | X |2, [|a" " — a2 Since || X [|op —
|G=1(1/a)|, using the induction hypothesis we obtain

lim lim f||X(~T+t a')||> =0 almost surely. (B.110)

T—oon—o0 N
Next consider 2 [|bys7oa” ™ — by 4’||?, which, for £ € [2,] can be bounded as

~ [
]
n

la™" — af)?

E||BT+t7T+€u f—byett"||* < 2brss 7 +2 (brjs,r4e—bre)? (B.111)
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By the induction hypothesis, we almost surely have
"~ at)?

Tlgr;o nh_{lgo - =0, and (B.112)

N ~T4L4)12
i 10 = it B = i o) = o BA1)
where the last equality is due to @) Furthermore, BT+t T4t = K1 — I<L1 = Bt,t asn — oo.
For ¢ € [2,t — 1], from (5.4) we have bT+t T+€ = rr o1 [ 041 (U (fTJr ). Proposition
implies that the empirical distribution of f - converges almost surely in Wasserstein-2 distance

to the law of Frry;_1 = firgi—1Us + Zr1i_1. Therefore, applying Lemma we almost surely
have
. t
Jim bryrpe =670 [T E{ui(Frea-n})- (B.114)
i=0+1

Since FT+i—1 converges in distribution to F;_1 = p;—1U, + Z;—1 as T — oo, applying Lemma
once again, we obtain

Th_r}]f;O Jim byt e = K501 '_1}_1 E{u}(F;_1)}. (B.115)
Using (B112), m and m in (B.TTT)), we obtain
Thm lim f||bT+t ryeu’t — by at]? =0  almost surely for £ € [2, 1. (B.116)
—00 N—00 N,
To bound the last term in (B.109), we write it as
T+1 o ) T )
H > byt — bt,lulH = H S brierial T~ (B.117)
i=1 =0
where from (5.4) we have
~T+1 1 .
bratri1—j = kipjo H ),  0<j<T. (B.118)
=2
Using this together with the formula for b, ; in (B.39), we have
T+1
1 - i 12
7H Z bTH,iu — bt,lulH
nll &
~T+Z 1 i > T
SN DS [ B0} Y ito™a!|
J=0 = 1=0
1 T+l 1 j T+1 j j T+1 7
<3 H Z/@Ha HE{UZ Fy 1}Zﬁt+j04
7=0
1 HE{umfl)}Zn;ﬁ-a-j @ )+
nll L = J
fHHE{ué (Fi1)} Z K220 H ) 3(S1 + Sz + Ss). (B.119)
i=T+1

Considering the second term Sy first, we have

1T
0o o~ (=TH+l—j 1
EHE hagtel (@ —u)
Jj=0

1) — P EPENTE = N
<9 f\(zngja—ﬂ (@7 — gl >H + (Zﬁgja—a) Il = = 17} (B.120)
n n
j=0 =0

2

33



By an argument similar to @) (B99), we have

—i (T =i _ gTH||" =
Tlg%o nl;rrgo - H ZO Kig a7 ( )H =0 almost surely. (B.121)
j

Moreover, since R(1/a) < oo, from (A.4) we have

Tlg%oznt""] T =a ( (1/a) — ZnH_la Z)

Combining this with @, we have that almost surely

lim lim Sy =0. (B.122)
T— 00 n—00

Next consider S3. Since the series Z;io /{fj_ja*j converges, limy_,0 Yooy 41 /{ﬁia*i = 0.
lim lim S3=0. (B.123)

T — 00 n—00

Finally, we consider the term .S; in (B:IT9). We have

¢ ST \2 1w : j||?
S, < 2(H<u2(f ))) EH > (kg — K% ﬁT-i-l—JH
7=0

=2

t t T
gl =1 ’ 21 o i ~T+1-j|?
+ 2 TTweE™ ) - T Fe0}) | o msje @™ | @24
=2 =2 §=0
~ .
Proposition implies that for £ € [2, 1], the empirical distribution of f et converges almost
surely in Wasserstein-2 distance to the law of Fr,_1, which converges in distribution to F;_; (due

to (B260)). Therefore, applying Lemma [D.T|twice (as in (B-1T4)-(B-113)) we almost surely have
t t
H<U2(fT+e—1)> = HE{UQ(FE—I)}- (B.125)

(=2
Next, we have already shown that lim7_, o, hm,Hoo 1] ZJ (bt — K5 a2 = 0
almost surely. (See (B.45)-(B.46) and the subsequent argument.) This, together with (B.T25) implies

that that limr_, o, lim,,_,oo S1 = 0 almost surely. Thus, using (B:122)) and (B-123) in (B.T119), we
have

lim  lim *H Z brsi@’ — byt H — 0 almost surely. (B.126)

T—oon—oo N

Using (B-110), (B:116)), and m m we conclude

At
lim lim f||f —F =0 almost surely . (B.127)
T— 00 n—00
Since @’ Tt = ut+1(fT+t) and @'t = ut+1(ft), with uz41 Lipschitz, (B:127) implies that

1
lim lim —[a’ ™ — a2 =0
T—oon—oo N

Using the arguments in (B.104)-(B-106)), we also have almost surely:

almost surely . (B.128)

~t+T 9

lim lim ”'f ” ”f ” E{Ft2}v

T—00 n—00 n NHOO (B.129)
a2 ||”“||2 ) ’

li i = lim —— =FE F: .

PR k(R

Using these together with the induction hypothesis (]m_vg[) i @) completes the proof that
“T4+1 ST4t4l FTH1 FTHt -1 StHl 71 it
Z¢ :(7 z+a"'7ui++afi+7"'fi+ - ZZ/J r7 Usyoony 1+7f17 z)

= O almost surely.
(B.130)
O
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B.5 Proof of Theorem[Il

We will first use Lemma [B-§] to prove that the state evolution result holds for the iterates of the
modified AMP, i.e., for ¢ € PL(2):

.1 . i1 A
nlgr;oﬁzzp(ui,u},...,ugﬂ, LY =E{(U,, Uy, ..., Uy, Fr,...,F)}. (B.131)

Using the triangle inequality, for 7" > 0 we have the bound

12” ~1 t+1 f£1 £
ﬁ ;k, ,”... ’LL-+, i,...,fit)—E{l/)(U*,Ul,...,Ut+1,F1,...,Ft)}
§ ~t+1 £1 t 2: ~T+1 ~T+t+1 FT+1 rT+t
d} 17 zu”'v 1+ iv"‘vf - "/} rv 1+ R ui++7qu+7"'afi+)
E: ~T+1 ~T+t+1 FT+1 T+t
+|— 1/J :(7 7,+ cet 7,++ﬂf7j+7"'7fi+)

E{ww*,ﬁm...,UMH,FM,...,m)}\

HE{p(Us, Uryry oo, Urgisn, Froay oo Frad)} — B{p(U., Uy, .. Upyr, Fry o )}

=51 + 55 + Ss.
(B.132)

First consider S3. From (B:60), (U, Ur+1, ..., Uryit1, Fria, ..., Fry.)) converges in distribu-
tion to the the law of (U, Uy, ..., ui41, F1,..., Fy) as T — oo. By Skorokhod’s representation
theorem [12]], to compute the expectatlons in S3, we can take the sequence of random vectors
(U, UT+17 .. UT+t+1, FT+17 .. FT+t) to be such that they belong to the same probablhty space
and converge almost surely to (U*7 Ui,..., U1, F1, ..., F) as T — oo. Then, using the pseudo-
Lipschitz property of ¢ and using Cauchy—SchwarZ inequality (twice, as in @)), we obtain

t+1 t 1/2
S3 < 2C(t+2) <2 + Y (B{UF.0} +B{UZ}) + D _(B{FF,} + E{FE})>

=1 = (B.133)

- , 1/2
: (ZE{(UT+e ~ U0} + D E{(Fre - Fé)2}> :
=1 /=1

From Lemma we have limy_, oo E{F2, ,} = E{F?} and lim7_,o E{U2,} = E{U2}. More-
over, since for each ¢,

E{(Fri¢— F0)*} <2B{F},,} +2E{F}} <0 VT, (B.134)
by dominated convergence we have limy_, o B{(Ur_s — Up)?} = limp_, o0 E{(Fros — Fy)?} = 0.
Therefore limp_, o, S3 = 0. Furthermore, by Lemma and Proposition [B.1} we also have

limyeo limy, 00 S1 = limp oo limy, oo S2 = 0 almost surely. This proves the state evolution result
(B-13T)) for the modified AMP.

We now prove the result of Theorem [I|by showing that for ¢ > 1, almost surely:

1 <& . .
t+1 gl ¢ 1 Athl A1 t
lim E (uy, Z,...,ui"_, ,7,f1)—EE ¢(U;‘,ui,...,ui+, i,...,fi)‘:
i=1

n—oo [N
(B.135)
2 t+1 _ ot+1)2
lim [Far —0, qm TR (B.136)
n— 00 n n—00 n

35



The proof of (B-133)-(B-136) is by induction and similar to that of (B-61). Noting that u' = @' =
V/nupca, assume towards induction that (B:133)-(B.136) hold with ¢ replaced by ¢ — 1. Since
1 € PL(2), by the same arguments as in (B.92) we have

n n

1 * 1 * A ~ P
Ezw(uiau%a'--7u§+17fi17--'fzt)_Ezw(uivu%w-w f+1alea--~fit)
i=1 i=1
w2 1 02 2 t 2 2 z
u u u
<aciy [1o E SR Py S AP >]
=1 n =1 n
1
wll]? t+1 _ st+1p2 1 g2 t 22\ 2
( 7 A e G f||> B
n n n n

Using the definitions of £ and f "in (32) and (B:38), and applying the Cauchy-Schwarz inequality,
we have

1 b t+1 R . oo
Lt 7 < T (it a1 + 3 o — b’ |P)

n
(=1
< ¢+ 1)(IX]2 lIlu‘f—ff||2+§t:3||bm/—BMMH“’ beuu — by, |?). (B.138)
- o Z:ln ’ ’ .

Recall that || X [|o,, converges almost surely to [G~*(1/a)| and by the induction hypothesis, - |ju* —
@) = 0,forl € [1, t] Next, we note that by ; = k1 — K$° = by asn — oo. For £ € [2,t—1], we
have by y = ki— e+1 M., 1 (ul(f71)). The induction hypothesis (B-I33) implies that the empirical

distribution of £*~* converges almost surely in Wasserstein-2 distance to the law of F;_; fori € [1,¢].
Therefore, applying Lemma [D.T| we almost surely have

lim byy = k%44 H E{u}(F;_1)}. (B.139)

n—00
i=0+1

~t
This shows that lim, oo 2 || f* — f ||*> = 0 almost surely. Since w'™' = u;y1(f") with ugyy

Lipschitz, we also have lim,, o + ||u’™" — @'™!||2 = 0 almost surely. Moreover using a triangle

inequality argument similar to (B.104), for £ € [1,¢], we almost surely have
w2 a2

£)12 2
lim £ M =E{F}}, lim ——— = lim —— = E{u,(F)?}.

n— 00 n n—)oo n— 00 n n— 00 n
(B.140)

Using this in (B:137), we conclude that

1 . il A
lim Zw wvug,oult LD = D g AT f f>‘=

n—oo [N —
(B.141)
which combined with (B:I3T)) completes the proof of the theorem. O

C Proof of Theorem

This appendix is organized as follows. In Appendix [C.I} we present the artificial AMP for the
rectangular model (T.2), and provide a sketch of the proof. In Appendix we present the state
evolution recursion associated with the artificial AMP iteration. In Appendix we prove that the
first phase of this state evolution admits a unique fixed point. Using this fact, in Appendix [C.4] we
prove that the artificial AMP iterate at the end of the first phase approaches the left singular vector
produced by PCA. Then, in Appendix [C.5] we show that (i) the iterates in the second phase of the
artificial AMP are close to the true AMP iterates, and (ii) the related state evolutions also remain
close. Finally, in Appendix[C.6] we give the proof of Theorem 2]

36



C.1 Proof Sketch
First phase. We consider the following artificial AMP algorithm. We initialize with

~1
= VApcau" +1—Apcan, §'=XTa', o'=2gl, F =Xv' -kl
(8] @]

(C.1)

Here, n has i.i.d. standard Gaussian components and Apcy is the (limiting) normalized squared
correlation of the left PCA estimate, given in (2.3). As in the square case, the initialization of the
artificial AMP is impractical. However, this is not a problem, as the artificial AMP is only used as a
proof technique. Then, for 2 < ¢t < T + 1, the artificial AMP iterates are

=1
L 2i- - _ Fog
af Qt =X"a' - Z: bt 0",
(C.2)
S Pt Ns
o= agta f=Xv" - Zat,iul,
where by ;_; = KoL (%)j_l forj € [l,t 1], and &y 4—j = Kagj41)L (a2) for j € [0,t — 1].

We claim that, for sufficiently large 7', altt approaches the left PCA estimate upca, that is,
limr_ o0 limy, o0 \/—% |[a” ' — /mupca|| = 0. This result is proved in Lemmain Appendix

Here we give a heuristic sanity check. Assume that the iterates u T+1 and o1 converge to

the limits @°° and ©°° respectlvely, in the sense that limp_, o lim, o0 \/» @™+ — 4| = 0and
1 ~ oo _ [e%e] :
= || = 0. Then, from (C.2), the limits %> and 2> satisfy

limTﬁoo i

u>* = fX'v ZHQZ (—) ,

' (C.3)
~00 __ 1 Tr~o0o . l ! oo
v _aX u ’y;ﬁgl(az) v,
By using (A.13)), we can re-write (C.3) as
1
(1 ()= Lxem
a @ (C4)
(1 +9R (%)) 7 = L XTa>,
Q@ «
which leads to
(1 YR (12)) (1 IR (lz)) @ = LxxTa>. (C.5)
@ Q@ «@

As a result, 4> is an eigenvector of X X '. Furthermore, by using (A19), the eigenvalue
%2 (1 + YR (%)) (1 + R (%)) can be re-written as (D’1 (%))2 Recall that, for & > &g, X

exhibits a spectral gap and its largest singular value converges to D~} (%) Thus, ©*° must be
aligned with the left principal singular vector of X, as desired.

A key step in our analysis is to show that, as 7' — oo, the state evolution of the artificial AMP in the
first phase has a unique fixed point. This is established in Lemma[C.2} proved in Appendix [C.3] As
for the square case, we follow the approach of [20, Section 7]. The crucial difference with [20] is
that we provide a result for all & > &5, while the analysis of [20] requires that & is sufficiently large.
To achieve this goal, we exploit the expression (2.3) of the limit correlation between upca and w*,
and show that, as soon as the left PCA estimate is correlated with the signal w*, state evolution is
close to a limit map which is a contraction. For this approach to work, we need the rectangular free
cumulants to be non-negative.
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~T+k
T«Hc7 f )

Second phase. The second phase is designed so that the iterates (g are close to

(g*, £*), for k > 2. Fort > (T + 2), the artificial AMP computes
- —t—1 ~ ~ ooo~i
' =ur(f ), g=XTa =) b,

=1

t (C.6)
~ ~ -t ~ -~ o~
' =v,_7(g"), F =X - Z EPRTAN
Here, the functions {vj, us}r>2 are the ones used in the true AMP (3.10). Additionally, letting
ui(z) = x/a and vy (x) = v/ a, the coefficients {a; ;} and {b; ;} are given by:

(T+1—(t—5))+ ¢ i _
s = o ir @) () [T e N0 @),
i=max{t—j+1, T+2}

(t _j) € [Lt]v (C7)
t—1 -
I1 Vi (@) (F),

i=max{t—j+1,T+1}
(t—7) €1t 1l. (C.8)

bri—j = v i (F ) (25

Since the artificial AMP is initialized with @' that is correlated with «* and independent of the noise
matrix W, a state evolution result for it can be obtained directly from [20, Theorem 1.4]. We then
show in Lemma|[C.9]in Appendix [C.3]that the second phase iterates in (C.6) are close to the true AMP
iterates in (3.10), and that their state evolution parameters are also close. This result yields Theorem

2] as shown in Appendix[C.6]

C.2 State Evolution for the Artificial AMP

Consider the artificial AMP iteration defined in (C:2) and (C.6), with initialization @' = \/Apcau* +
v 1 — Apcan. Then, its associated state evolution recursion is expressed in terms of a sequence of

mean vectors fiy = (fit)ie[o,x]» VK = (Pt)teq, k] and covariance matrices X i = (Gs,¢) s te[0, K]
Qr = (Qs,t)s,te(1, k] defined recursively as follows. We initialize with

flo = a\/Apca, Go0 = *(1 — Apca), Gox=010=0, fort>1. (C.9)
Given fiy, Xk, Vi, Q. let

(Fo, ..., Fr) = iU, + (Yo, ..., Yg), where (Yo, ..., Yg) ~ N(0,Zg), (C.10)
== - x/a, 1<t<(T+1),

= F_ h = .11
Ut Ut( t 1) whnere Ut(l‘) {ut_T(x), " Z T—|—2, (C )
(él, . ,GK) = I)KV* + (Zl, ce ,ZK), where (Zl, ey ZK) ~ N(O,QK), (C12)
- z/a 1<t<T+1,
Vi = 0:(Gt) where 0:(z) = {jt—/T( ) th:_ N (C.13)

Given i and X, the entries of U, are given by 7, = aR{U,U,} (fort € [1, K + 1]), and the
entries of Qg1 (for s+ 1,t + 1 € [1, K + 1]) are given by

Ws+1t+17ii( Sﬁ E{d; (Fi1) JE{V;_ ( )( ﬁ Fio1) YE{V;_1 (G 1)})
0 k=0 i=s—j+2 1=t—k+

[“2(]+k+1)E{Us+l JUf—H k}+’f2(]+k+2)E{Ue+1 ]( s— )}E{ut-H k(Ft k)}]E{Ve JVt k}}
(C.14)

(We use the convention that VO = 0.) Next, given V1 and Q r+1 for some K > 1, the entries
of iy are given by fiy = SE{V;V.} (for t € [0, K + 1]), and the entries of X1 (for s, €
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[0, K + 1]) are given by

s—1t—1 s t
o= > ( TI E@E-DEEG))( I EEE-DIEEG)))
j=0k=0 i=s—j+1 i=t—k+1
o S 1 A S R NS A ()7 /A (R ) T i 7

(C.15)

Proposition C.1 (State evolution for artificial AMP). Consider the setting of Theorem[2] the artificial
AMP iteration described in (C.2) and (C.6), with initialization given by (C.1), and the corresponding

state evolution parameters defined in (C.9)-(C.13).

Then, for t > 1 and any PL(2) functions ¢ : R?**t2 — R and ¢ : R?**T1 — R, the following hold
almost surely:

_— - . ~1 _t41 71 Fty _ 7 J 3 3
Agnoom;w(ui,uiw“aui 7fi7"‘fi)_E{w(U*lew"aUtJrlvFl?"'aFt)}v (C16)

1 . b~ - ~ ~ = ~
nl;rréoﬁz:@(vi,vg,...,vf,gil,...g,f):E{(p(V*,Vl,...,Vt,Gl,...,Gt)}. (C.17)

i=1

The proposition follows directly from Theorem 1.4 in [20] since the initialization &' of the artificial
AMP is independent of W.

C.3 Fixed Point of State Evolution for the First Phase

From (C.9)-(C.13), we note that the state evolution recursion for the first phase (¢ € [1,7 + 1]) has
the following form:

fit = i = an/Apca, forte[l,T+1],

s—1t—1

- TV o 7\? -
DD (ﬁ) <“2(j+k+1) (a) (0 Apca +@s—ji—r)
§=0 k=0
e’} Y 2 2 ~
+"$2(j+k+2) (?) (a APCA"—O—sfjfl,tfk:fl) , fors,te [1,T+1}. (C.18)

s—1t—1 .
N v \Itk 1 .
Dat =1 (@) <“5?j+k+1>og(a2APCA +Gsj14-k-1)

=0 k=0

2
+ Hg?j+k+2) (%) (OéQAPCA =+ afs—j—l,t—k—l)), for s,t € [1, T+ 1]

In this section, we prove the following result characterizing the fixed point of state evolution for the
first phase in the rectangular setting.

Lemma C.2 (Fixed point of state evolution for first phase — Rectangular matrices). Consider the
setting of Theorem|[2} and the state evolution recursion for the first phase given by (C18). Assume
that K5 > 0 for all i > 2, and that & > &s. Pick any & < 1 such that &\/€ > &. Then,

. max(s,t)| ~ *| —
Am {rel%xﬂé 061 s i1 — a®| =0,
S’ 9

: max(s,t) |~ % (Clg)
Tll_rgos,?el%)fﬂ‘f Pori1-sri1-¢ — b =0,
where
CL* = a2(1 — APCA),
. Apcaya®(zR'(z) — R(z)) + yR'(z) . ~ (C.20)
b* = , with © = —.
1+~yR(z) — vz R/ (x) a?
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As for the case of square matrices, we consider the space of infinite matrices © = (x5 : s,t < 0)
equipped with the weighted {.-norm defined in (B:8). Let X = {x : ||z||¢ < oo} and, for any
compact set I C R, define X7 as in (B.9). Recall that both X’ and X are complete under || - ||¢. We

embed the matrices ET, QT as elements x, y € X with the following coordinate identification:

Osit = Ts_Tt—-Ts Wst=Ys—Tt-T>
2540 =0, ysy=0, ifs<-Tort<-T

The idea is to approximate the maps (X7, Qz_;) — Q7 and (Z7_,, Q7) — X7 with the fixed
limit maps h*> and h*’, respectively, which are defined as

j+k 1
=7 Z Z (az) (“2(J+k+1) (a®Apca + Ts—ji—k)

7=0 k=0

o 7 \2
T Ra(jtkt2) (@) (@*Apca + ys—j,t—k))

N (Vs 72
W@ y) = (@) <”2(j+k+1) (a) (a?Apca + Ys—ji—k)
=0 k=0

(C.21)

+

0% 2
R3(j+k+2) ( ) (®Apca + wsj,tk)>~

a2

First, we show that (h}(X. T, X1 ), hZ (X Tz X, 16)) C(Xx Tz X, Ig) for suitably defined compact sets
15, I3,

Lemma C.3 (Image of limit maps — Rectangular matrices). Consider the maps h'*, h™ defined in

(CZ21). Assume that k35 > 0 for all i > 1, and that & > . Then, there exist I, = [—aq, aq| and
I} = [—ax, as] such that, if (x,y) € X1z X Xp=, then (K (x,y), h*(x,y)) € Xpz x Xy

Proof. Let (x, y) € Xy x Aps. Then, the following chain of inequalities holds:

Jtk 1
1% st(T,Y)] < WZ Z <a2) (“2(;+k+1) (@®Apca + [@s—ji—k])
7=0 k=0

o0 7Y
T Ro(jrk+2) (7) (@*Apca + |ys—j7t_k)>

b A& jt+k 1
S D> <a2) <H2(j+k+1) (a®Apca + ax)

7=0 k=0

oo 7Y
T R2(j+k+2) (ﬁ) (o®Apca + aﬂ))

© ((APCA + —) R (%) + (a®Apca + ag) ( B (az) R (%))) '
(C.22)

Here, (a) follows from the hypothesis that x7° > 0 for ¢ > 2; (b) holds since (z,y) € X Iy X X 55
and (c) uses (A.T6)-(AT7). With similar passages, we also obtain that

|h§t($,y)| < <’)’ Apca + 2 aﬂ) R’ (%) + (a®Apca +ayx) ( R <a2> 7R<l>) )

o2

(C.23)

Set z = ~/a?. Then, by using (C.22) and (C.23), we obtain that the desired result holds if the
following pair of inequalities is satisfied:

Apca (YR (z) + va? (2R (z) — R(x))) + asz R/ (z) + agy(zR' (z) — R(z)) < ag,
Apca(V?R (z) + o?(zR'(z) — R(x))) + as (xR (z) — R(z)) + agyz R/ (z) < ax
Set 3 = ax./aq. Then, (C.24) can be rewritten as
Apca (YR (2) + 70 (a2 R/ (z) = R(2))) + ag (BaR'(z) + (2R (z) — R(2))) < aq,
Apca(y’R'(2) + o® (2R (z) - R(2))) + ag (B(zR'(z) — R(z)) + 2R/ (z)) < faq.

(C24)
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This pair of inequalities holds for a sufficiently large aq if
PR (z) +y(zR'(z) - R(z)) <1,
B(zR'(z) — R(z)) + vz R/ (z) < B.

Recall that, above the spectral threshold, namely, when & > &, the PCA estimator upca has strictly
positive correlation with the signal u*:

(C.25)

<UPCA3 u* > 2
n

a.s,
— Apca > 0.

Furthermore, from [20, Eq. (7.32)], we have that Apca can be expressed as
T(R(z)) — «T'(R(x))R'(x)

A =
pea 1+7R() ’
where T'(z) = (1 + z)(1 + ~yz). We therefore obtain that
T(R(z)) — 2T'(R(z))R'(x) > 0. (C.26)

By using (C.26), one can readily verify that 1 — xR’(z) + R(z) > 0. Furthermore, we have that
2R/ (z) > 0, as > 0 and the rectangular free cumulants are non-negative. Since xR’(z) > 0 and
1 —zR'(x) + R(z) > 0, (C:23) can be rewritten as

YR ()
1—zR'(z)+ R(x)

These above inequalities can be simultaneously satisfied for some value of [ if

1 —yaR'(x) + yR(z)
zR'(z) '

<p<

1- :c’;ia’jfvl)@j—) R(x) < — ’ymilf(;’c()z—;_ ) ' (€27)

By using again that zR’(z) > 0 and 1 — 2R’ (x) + R(x) > 0, (C:27) can be rewritten as
1— (14 7)(zR(z) — R(z)) + v(zR'(z) — R(z))* > y(zR'(z))*. (C.28)
The inequality (C.28) can be readily obtained from (C.26), and the proof is complete. O

Next, we compute a fixed point of (h*, h*?).

Lemma C.4 (Fixed point of limit maps — Rectangular matrices). Consider the maps h’*, h> defined
in (C21). Let x* = (%, :5,t <0)and y* = (yi, : s,t < 0) withx} , = a* and y; , = b*, where
a* and b* are defined in (C.20). Assume that & > é&. Then, (x*,y*) is a fixed point of (h*, hSt).

Proof. Note that, for z = /a?, the power series expansion (A.T6) of R’ converges to a finite limit
as & > as. Hence, by using the definition (C.21)), we have that

ey (s ) 7 () tanen o0 (G () - ().

hit(w*)y*) = (’YQAPCA + 7;?) R (%) + (o®Apca + a*) (%R’ (%) R <%)) .
(C.29)

Since a fixed point should satisfy S, (x*,y*) = b* and hZ (x*,y*) = a*, writing = 7/a?,

(C29) becomes

{ YApea (R (z) + 02(xR/(x) — R()) + a*zR/(x) + by (xR (x) - R(x)) = b",

APCA(nyR/(JU) + 042(CCR/(.1:) — R(2))) + a*(zR'(z) — R(z)) + b*yaR'(z) = a*. (C.30)

Solving (C.30) for a* and b*, and using the expression for Apca given in [20}, Eq. (7.32)], we obtain
the formulas for (a*, b*) given in (C.20). O

The next step is to show Lipschitz bounds on the maps 1>, h'.
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Lemma C.5 (Lipschitz bounds on limit maps). Consider the map (h¥}(z,y), h*(x,y)) : X, Ty X
ng — st*z X ng defined in @ and where 1§, I3 are given by Lemma@ Assume that k55 > 0
foralli > 1, and let £ < 1 be such that &\/€ > ds. Then, for any (x,y) € Xz x X,

1h* (2, y) = h*(2', g )le < 2R/ (@)]lx — 2'[le + (TR'(Z) - R(2)) lly —y'lle,  (C3D)

1" (2, y) = h¥ (2, y)le < @R @)y — ol + @R () - R@)) & — 2'lle,  (C32)

where we have set T = ~y/(£a?).

Proof. Since k57 > 0 fors > 1, we have

[h2 (. y) = hiy(@',y)| < ZZ (a2) ("‘2(y+k+1 5 |Tajik = gl
(C.33)
o0 7 ,
+ ’iz(j+k+2)g|y8*j,t7k - ysj,tk|>'
Note that
e T B e 1 e [ [ ©34)
Ys—gimte — Yo il < lly — 3/l &7 X UsmILIRD < gy )| g7 max(lsl It ==k
Thus, by combining (C.33)) and (C34), we have
~ oo oo ~ itk
Q
R RIEr B (az) (Somenlee e Slv-le)
(C.35)
By usin and to compute the sums in , we deduce that
y g p
2 Y
I1(a.) = 1 e < B (g ) e - 'l
(C.36)

e (@) () wo i

Recall that ¢ < 1 and note from (A:T7) that #R'(Z) > R(Z) > 0 with Z = ~/(£a?). Thus, the claim
(C30) readily follows from (C-36).

The proof of (C32) is analogous. First, we use that £5° > 0 for i > 1 and obtain

P by o o Y Itk e 72 /
|h5’t(:c7y) - hs,t(w Y| < ZZ (?) Ko(j+k+1) |ys git—k — ys,j,t,kl
=0 k=0 (C.37)

72

oo /
+ "92(j+k+2)g|wsfj,tfk — T4kl

Thus, by using (C-34), we have

Jtk 2 2
0 g ) Y
[P (2, y)—h™ (@', y") e < E > :<£a2> <'€2(j+k+1)a2||y_yl||§+'{2(j+k+2)a4”m_wl|§>'

=0 k=0

(C.38)

Finally, by using (A.16) and to compute the sums in (C:38), we deduce that

b = 7 gl
I15(e) ~ 1@ e < (s ) o - ol

(C.39)

2 / 2 v ’

R(-L)-r(L -
+¢ (5042 <£a2> (£a2>)”$ x'[|e,

which readily leads to (C.32). O
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Let us consider the map G*>** obtained by the successive composition of (x,y) +— (x, h*(x,y))
and (z,y) = (h™(z,y),y), ie.,

G2 (2,y) = (G (2, y), G (2,9) = (B (2, h% (@, ), h* (2, ) (C.40)
Given 8 > 0, define the norm || - ||¢ s as

(@, y)lle.s = ll2lle + Bllylle- (C41)

We now use the Lipschitz bounds of Lemmato prove that G*>* is a contraction for a certain
value of f3.

Lemma C.6 (Composition of limit maps is a contraction). Consider the map G** defined in (C.40),
and let 1§, I3, be the sets given by Lemma Assume that k5 > 0 forall i > 1, and let £ < 1
be such that &\/€ > Gs. Then, if (x,y) € X1z x X1z, we have that GV®(z,y) € Xps X Xz
Furthermore, there exists 3* > 0 and T < 1 such that, for any (x,y) € Xrz X Xz,

G (2, y) — G252y )le.p- < 7ll(9) — (@, 9) .- (C.42)
Proof. The claim that G2 x s X X Ty — X Tz X X 5 follows directly from Lemma We now
show that (C:42) holds. By using the definition’ (C-40) and the Lipschitz bounds (C.3T] @) of
Lemmal[C.3} we obtain that
IG5 (2, y) = G (@ Y )ep < |z — 2’|l (FR'(7) - R() +

V(ZR
+ly—y'lle (V@ER(2)* - xR( )R(Z) +

where we have set & = 7/(£a?). Hence, the claim of the lemma holds if there exists 3* > 0 and
7 < 1 such that

B'IR'(Z) + (2R (7))* — R(Z) + 2R'(Z) <

By (IR () — R(#)) +7* (2R (2))* = SER( )R/( ) <78
We note that, as /€ > s, (C.26) holds with Z in place of z. Hence, one readily verifies that
1 —~ZR' (%) + R(Z) > 0. Furthermore, we have that ZR'(Z) > 0, as Z > 0 and the rectangular free

cumulants are non-negative. Thus, the two inequalities in (C.44) can be satisfied simultaneously if
there exists 8* > 0 such that

V(ER(2))? — y*IR(@)R (%)

1 =~ZR!(Z) + yR(Z)

These last two inequalities can be satisfied simultaneously if
V(ER(#)? — VIR@R(F) _ 1-y(@R(2)* — TR/ (7) + R(z)

1 —yZR/(Z) + yR(Z) ZR(T) '

By using again that 1 — yZR'(z) + R(Z) > 0 and ZR'(Z) > 0, (C43) can be rewritten as
(1 —=7(@R'(2))* = 2R'(2) + R(x)) (1 - viR'(Z) + yR(7))

> iR'(%) (v*(2R'(2))* — v ZR(@)R' (),
which again follows from (C.26) with & in place of x. Thus, there exists 3* > 0 and 7 < 1 such that
(C4d) is satisfied, completing the proof. O

(C.44)

V(@R (7))* - 2R (%) + R(x)
iR (7) '

1
< p* <

(C.45)

At this point, we show that the state evolution of if, ﬁf can be approximated via the fixed maps
h¥= RSt

Lemma C.7 (Limit maps approximate SE maps — Rectangular matrices). Consider the map
(W (z,y), h™(x,y)) © X1z X Xig — Xz x Xpy defined in (C21), where Iy, I are given by
Lemma Assume that k55 > 0 for all i > 1, and let £ < 1 be such that /€ > . Then, for any
(z,y) € Xy x X,

127 — 1% (@, y)lle < TR (2)|Z71 — @l¢ + (TR (2) = R(@)) Q271 — ylle + Fu(T),
(C.46)
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B2 — 1™ (@, y)lle < V2R (@)1 —ylle + @ER' (&) — R@))IZ7_, — @l|e + Fo(T),
(C47)

where & = v/(£a?) and ~ ~
lim Fy(T)=0, lim Fy(T)=0. (C.48)

T—o0 T—o0

Proof. First, we write
1927 — 1 (2, y) e = sup 6”’“' D[ Qr)s — hY (2, y)]

= max sup  ¢LN|(Q), - 1S ()],
s,t<0
max(|s|,|t])<T

sup Smax(\ sl, |t|)|( ) it h?’t(wfy))?
s,t<0
max(|s|,|¢t))>T

where (Q7).; = @er iy if s> —Tandt > —T, and (27)s.¢ = 0 otherwise.
Let us look at the case max(|s|, [t|) < T, and define I = {(j,k) : j > s+ T or k >t + T}. Then,
(27)s, = h(@, )

‘ s+T—-1t4+T-1 ’Y>J+k<

1
00 2 jod _ _
Ra(j+k+1) o2 (AP ApcA + Gy jid1—piT-1)

2
[e'e) ,y 2 ~ _ _
+ ”2(j+k+2)@ (O‘ Apca + Ws—j+T—1,t—k+T—1) )

oy \itE o 1
153 ()™ (e @8rer + o)
o) ﬁ QA .
+ Ko(jrk+2) ! (a PCA + ys—]:t_k) (C.49)

i+k
l It IQOO 1 (.’L‘ )
2(j+k+1)a2 s—jit—k — Os—j+T—1,t—k+T—1

2
~
+“2(1+k+2) (ys Jit—k T Wej4T—1t—k+T— 1))‘

v NItk 1
T ’7 > (?) K2(j+h+1) o2 (0®Apca + woji—r)
Jkel

2
T ’“;?j+k+2)§ (0®Apca +ys—ji-t) ) ‘ =T+

The term T} can be upper bounded as follows:
(a) stT-1t4T-1

j+k
oo
L=y Z Z ( ) (“2(J+k+1 —5 [Tk = G jpro1—krr1]

2
g
+K2(g+k+2 4 ’ys git—k — Wej4T—1t—k4+T— 1‘

s+T—1t+T-1 4k 1
< HET 1 _fBH & max(s Htl)7 Z Z (§a2) ﬁg?ﬂ*’@“)?
j=0 =
B s+ T Jj+k v
+ 11271 —ylle§™ max(|s],[t).y Z Z (foﬂ) “g?j+k+2)£
j k=0
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0 < — max(|s — 1
i) 9 B (1 =

§j=0 k=0

oo 0o Jj+k
e — max(|¢ 2
FIry —yleemH S (gaz) S a2) o
=0 k=0

(C) d ~ ~ e — max(|s ~ =, =
< By — @lle M ENDER (F) + | Q7 — ylleg™ ™MDy (ER () - R(3)),
(C.50)

where & = 7/(£a?). Here, (a) and (b) follow from the hypothesis that x5¢ > 0 for i > 1, (c) uses

(AT6), (A.T7) and that £ < 1. By using that (x,y) € X7z x A7, the term T; can be upper bounded
as follows:

YN o0
T, <Cy Z (?) (K3(j4ht1) T B2(itht2))s (C.51)
J.kel

where (1 is a constant independent of s, ¢, T'. Note that, if (4, k) € Iy, then j +k > — max(|s|, [¢|) +
T. Consequently, the RHS of (C.31)) can upper bounded by

Gy Y (%) (i + 1)K3(1 41y €2
i=T—max(|s|,|t])

where C5 is a constant independent of s, ¢, T. By combining (C49), (C.50), (C51) and (C.52), we
obtain that

sup ¢axsbit|( Q) — b (e, y)| < By — 2| 2R/ (2)
max(|s|}|t])<T

~ 5 B 5 e Y\, o
+ 19271~ ylev@ER @) - R@) +C2 sw &8 > () i+ Vi,
ost<T  Zpl,

(C.53)
Let us now look at the case max(|s|, [t|) > T Recall that |hs [z, y)| < aq,d0,0 = (1 — Apca)a?
and 60, = 0 for t € [1,T]. Thus,
|(QT)S¢ - hgt(wa y)| < 037
where (3 is a constant independent of s, ¢, T. This immediately implies that

sup frnax(\s|v\t|)|(ﬁq__‘>s’t _ hgt(ma y)| < C3fT,
s,t<0 B
max(|s|,|t])>T
which combined with (C.33)) allows us to conclude that

197 — bz, y)|le < 18-, — z||c2R(7)

- o ~ > YN\ - _
+ 19271 ~ ylley@R @)~ R@) +Ca sup & > () i+ D) + Cae”
ost<T Zpl,
(C.54)
As & > @5 and the series in (A.16) is convergent for z < 1/(as)?, one readily verifies that
lim sup ¢ (—) (i + 1)K,y =0, (C.55)
T—r00 g<t<T ZT_; o2 2(i41)

which concludes the proof of (C.46).
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The proof of (C:47) follows similar passages, and we outline them below. First, we write

%7 — h¥(z,y)|e = S‘;lfofmax(lsl"tl)|(2T)s,t —hZ,(z,y)|

= max sup  ¢MLI(S5), - BT (2, )],
5,t<0 ’
max(|s],|t])<T

sup D (B, — hit(w>y)>,
5,t<0

max(|s,[t)) >T
where (X7),; = Gyirair if s > =T andt > —T, and (X7)s+ = 0 otherwise. For the case
max(|s], [t|) < T, we have

(27)s = hi(@,y))

s+T—1t4+T—1 N .
SIS (?) (Hg?j‘i'k-s—l)az (Ys—jit—k = DsjyT 1)
j=0 k=0
2
+ “g?j+k+2)g (Tsmitmb = Tojur14-k7-1) > ’ (C.56)
v\ tE o 2
+ Z (@) “%‘MH)@ (a*Apca + Ys—jit—k)

J.kel

=15+ Ty.

2
o0 ,y
+ “2(j+k+2)§ (O‘QAPCA + wsfj,tfk> )

By using (A:16), (A7) and the non-negativity of the rectangular free cumulants, the term 7 can be
upper bounded as follows:

Ty < Q7 — ylleg™ ™Dz R (2) + |25y — afe& ™MD (ZR (2) — R(7)). (C.57)

Furthermore, the term 7 can be upper bounded as

<Y (%) (i + DRS00 (C.58)

i=T—max(|s], t])
where Cj is a constant independent of s, , T. For the case max(|s|, |t|) > T, we have

sup gD |(B7), - b (2, y)] < CseT, (C.59)
s,t<0
max(\s|,|t\)2f

where Cs is a constant independent of s, ¢, 7. By combining (C.56), (C.57), (C.58) and (C.39), we
conclude that

=7 — 1= (@, y)le < 197 — yllerER'(2)

+ |51 — 2ll(@R @) = R@) + Ca swp & 3 () (4 Vi) +CseT,
ost<T 250,

which, together with (C.33)), concludes the proof of (C.47). O

Finally, we can put everything together and prove Lemma[C.2}

Proof of Lemma[C.2] Fix € > 0 and denote by (G**) " the Ty-fold composition of the map G*>

defined in (CADQ). Note that Lemma|C.4]implies that (z*,y*) is a fixed point of G, and Lemma
implies that this fixed point is unique. Then, for any (z,y) € X7z x X,

To - To To /s« o«
1(G*2) (2, y) — (@, y")e.p» = || (GZF)° (m,y) — (GPF) " (x*,y7)
<7|(@,y) — (", y")|le. 5+

&8 (C.60)
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where the inequality follows from Lemma %})Note that 7 < 1 and X7; x X7y is bounded under

I - ll¢,3+- Hence, we can make the RHS of smaller than €/2 by choosing a sufficiently large
Ty. Furthermore, an application of Lemma [C.7| gives that

1(Z7,Q7) =GP (@,y)|lepr < 1B — olle (ER'(2) — R(E) +y(ER'(2))* + B*ZR/ (7))
+ Q71 — ylle (V(ER' (%)) — v*ER'(2)R(F) + B*y(iR'(2) — R(%))) + H(T)
<7(Br 1. Q1) — (@,y)|les + H(T),
(C.61)

where limg_, . H(T) = 0 and the inequality follows from (C.44). Therefore, for all sufficiently
large T,

< ~ T =~ €
1(EFsm, Qrim) — (GF) 7 (@ 9)lles <7027, Q7) — (@,9) e + 1 (€6

Note that (z,y) € X7z x X7 implies that ||z[|¢ < ax and ||ly[|¢ < aq. In addition, by following
the same argument as in Lemma one can show that |w; 1| < aq and |65 ;| < ax, which in turn
implies that | Q¢ < ag and |E7||¢ < ax. As a result, we can make the RHS of (C.62) smaller
than €/2 by choosing a sufficiently large Tp. As the RHS of both (C.60) and (C.62)) can be made
smaller than €/2, an application of the triangle inequality gives that

limsup (X, Q) — (@, y*)|e.5- <, (C.63)
T—o0
which, after setting T=T+1, implies the desired result. O

C.4 Convergence to PCA Estimator for the First Phase

In this section, we prove that the artificial AMP iterate at the end of the first phase converges in
normalized ¢5-norm to the left singular vector produced by PCA.

Lemma C.8 (Convergence to PCA estimator — Rectangular matrices). Consider the setting of
Theorem[2] and the first phase of the artificial AMP iteration described in (C.2), with initialization
given by (C.1). Assume that k3? > 0 for all i > 1, and that & > &s. Then,

1
lim lim —|[a’ ™ — Vmupcal =0 a.s. (C.64)
Vvm

T—ocon—00 v/

Proof. Consider the following decomposition of @’ ™

@™t = (rpupca + 0T (C.65)

T+

where (741 = (1 T+l

! upca) and (r**tH upca) = 0. Define

™! = (XX~ (D71 (1/a%)" L) @™, (C.66)
where D! is the inverse of the D-transform of A. Then, by using (C.63), (C.66) can be rewritten as
(XXT— (D71 (1/a%)" L) 174! = ™1 — (XXT = (D7 (1/3%))" L) Cryrupca.

(C.67)
Note that X (and consequently X X TYhasa spectral gap, in the sense that, almost surely, o1 (X) —

D~1(1/a?) and 02(X) — b < D~1(1/a?). Furthermore, 771 is orthogonal to the left singular
vector associated to the singular value o1 (X). Thus, by following passages analogous to (B.36)),

and (B238)), we obtain that
[(xXT = (071 (1/@)" 1) 7751 | = eflr T, (C.68)

where ¢ > 0 is a constant (independent of n, m,T).

Next, we prove that almost surely

. . 1 _ 9y 2
Jim T — e = (XXT = (D71 (1/a%))" L) Crorurca || = 0. (C.69)
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An application of the triangle inequality gives that

HeTJrl - (XXT — (D! (1/072))21m> CT+1UPCAH

) (C.70)
S H6T+1|| —+ H (XXT _ (D*l (1/&2)) Im) CT+1uPCA" .
The second term on the RHS of (C.70) is equal to
_ o\ 2
(Croal (X XT) = (D71 (1/82))°). (C71)
By using Theorem 2.8 of [[1 1], we have that, for & > ag, almost surely,
. T -1 ~2\\2
Jim [M(XXT) = (D7 (1/a%)°] =o. (C.72)
Furthermore,
1 1 -7
Cria| < —= @™ = £l
i v o/

By Proposition[C.I} we have that

. 1 |},T||_ 1\/?
T 50 a\/ﬁ| - a MT orT,T,

lim

which, for sufficiently large T, is upper bounded by a constant independent of n,m, T, as jip =
av/Apca and 67 7 converges to (1 — Apca) as T — oo by Lemma By combining this
result with (C.72)), we deduce that

_ ~ 2
Jim Tim_ T |(XXT= (D71 (1/%))" L) Grsrupenl| = 0. (C.73)

In order to bound the first term on the RHS of (C.70), we proceed as follows:

1 2
lim — [T = lim — H(XXT — (D7 (1/a%))* L) aT“H
m—oo M

m—o0 M
T+1 T—i+1 T—1
a) .. 1 1 T+1 1 i
@ i ] (37 Do () s ()
i1 I 1 o2 -7 |
(a7 Z% (%) @) - @ e
T+1 T—i+1 T—i
(b) 1 1- T+1 1 X
n}gnooa a (a a2 ZHQ(T i+2) <d +7Z’€2(T i+1)
7 2

i—
' (NZ‘H T ZH?@ —j+1) (a2> ﬂj>> - (Dil (l/dQ))2ﬁT+l
T+1 T—i+1 T T—i

1 1 oy 1

(it () 03 (2

i=1
~ 1 00 1 i_j fnd -1 ~2 2 ~ 2

: Ui+1 + ? Z HQ(i*jJrl) @ U] — (D (1/0{ )) UT+1 .

j=1

Here, (a) uses the iteration (C.2) of the first phase of the artificial AMP; (b) uses that, for all i,
Ko; — KSY asm — oo, as well as an argument similar to (B.43)- @) and (c) follows from
Proposmonu where U, for t € [1,T + 1] and Frr ; are defined in (C.10) and (C.TT). After some

(C.74)
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manipulations we can upper bound the RHS of (C.74) by triangle inequality as

i T T—i itj
{(04 "‘Z“z(z-u <~2) ""72“2 z+1)< ) +W’ZZ"521/‘52(3+1)< >

i=1 =0

2
_ ~ 2 ~
-0 () vt
2

T T— 1 i+j R ~
+5-E (’YZ HS?HS?J-_,’_D <6z2> (Ur—i—j+1 — Uryq1)

T-1 1 i ) 2
(7 Z R3(i41) <&2> (Ur—it1 — UT+1)>

1=0

T 1 i 2
(Z RaGi+1) (dz) (Ur—it1 — UT+1)>

1. ) 2
+5'E{d4 ( T+1UT+1> }551+52+S3+S4+S5-

a
(C.75)
The term S5 can be expressed as
a? N .
S5 = 57(UT+17T+1 —26741,7 +01,7).
Thus, by Lemma|[C.2] we have that
lim S5 = 0. (C.76)
T—o0
The term S; can be expressed as
i T-1 i
A7 +orr (- o 1
S1=5 TT : ( Z Ka(it1) <~2> +7 Z Ra(i+1) (072>
i=0
T T—i itj 2\ 2
P S e () - (07 /@)
=1 5=0
Thus, by Lemma|[C.2] we have that
i 5 =5 (243 5 () +9 2w ()
(C.77)

PSS () - @7 W) <o

i=1 j=0
where the last equality follows from (A-T3) and (A-T9). The term S, can be expressed as
5 1\
Si=3 ‘ZO K2(i4+1)K2(j+1) (Og> (6r—jor—i+orr —Grr—i — o17-5),
,]=

which can upper bounded by

5 T 1 itj
a2 Z Fa(i+1)F2(j+1) (072)
3=0 , , (C.78)
(|67—jr—i — (1 = Apca)| + |67, — (1 — Apca)

+ 67,7 — &*(1 = Apca)| + |61,7—; — &*(1 — Apca)|).
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By Lemma|C.2} for any € > 0, there exists T (€) such that for all T’ > T*(¢), the quantity in (C-78)
is upper bounded by

Z Ka(it1)R2(j+1) < > 5 max(ig) 4] 4 &7+ 60 )

1,7=0

@ 920

1 ’L
SCT a5 ) <5d2>
1,7=0

(2) 20 < )
<e€e-— K7 f ~S? p
a? 5 2(i+1)"™2(5+1) £a2

© 20 1\)\?2
202

Here, (a) uses that £ < 1, (b) uses that ko; > 0 for ¢ > 1, and (c) uses the power series expansion
(AZT3) of R, which converges to a finite limit as \/§& > @s. Since € can be taken arbitrarily small,
we deduce that

—_

lim Sy =0. (C.79)
T—o0

By using the same argument, we also have that
lim S3 =0. (C.80)
T—o0

Finally, the term .S is upper bounded by

T T—i T T—k 1 i+j+k4L
VS S e oo ()

i=1 j=0 k= 1@20 , (C81)
(Jor,r — a?*(1 = Apca)| + lor,r—i—j — (1 — Apca)

+lorr—k—e — a*(1 — Apca)| + |or—i—jr—k—e — &*(1 — Apca)])-

By Lemma|C.2} for any € > 0, there exists 7 (¢) such that for all T’ > T*(e), the quantity in (C-81)
is upper bounded by

2072 &
€ o2 Z —
” o 1\ iritkee
S5 ) W IE I

i=1 j=0 k=1 £=0
1

2072 4
<o % (#(gm))

where we use again that ko; > 0 for ¢ > 1 and the power series expansion (A:I3) of R. Since € can
be taken arbitrarily small, we deduce that

T—1i

T T—k 1 itj+k4e
>2 5 gy ()

j=0 k=1 ¢

s
Il
oo -
<.

Tlim Sy = 0. (C.82)
—00
By combining (C.74), (C.73), (C.76), (C.77), (C.79), (C.80) and (C.82), we conclude that
1
lim lim — |le"*!]| =0, (C.83)

T — 00 m—00 \/ﬁ

which, combined with (C.73)), gives (C.69). Finally, by using (C.68) and (C.69), we have that
1
lim lim — ||7"*!| = 0. (C.84)
T—o00m—00 /M
Thus, from the decomposition (C:63)), we conclude that, as m — oo and T — oo, @’
with upca. Furthermore, from another application of Proposition[C.I} we obtain

: : Loy Lo o —
A e = B GV o = €59

which implies that limp_, o lim,;,—, o0 (741 = 1 and concludes the proof. O

is aligned
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C.5 Analysis for the Second Phase

As in the proof of the square case, we define a modified version of the true AMP algorithm, in which
the memory coefficients {a ;, bt+1,i}i€[1’t] are replaced by deterministic values obtained from state
evolution. This modified AMP is initialized with

00 N 1
a = Vimupca, gl(lﬂzf@?(l)) XTal, o' =@ =1g' C86
=1

(&%

Then, for ¢t > 1, we iteratively compute:

t

~t N _ad R ~t ~ R — i N R

f ZXUt—Zat,iU7 Ut+1=Ut+1(f ) gtH:XUtH—thH,iv, Ut+1=Vt+1(9t+1)-
(C.87)

The deterministic memory coefficients are: a; 1 = « Z 1 k55 ( € ) and for t > 2:

a1 = E{V,(G, }HE{U VRV ( <Z K ( ) ) : (C.88)

=2

ari—j = B{vi(Gy)} H E{ui(Fim)}E{V; 1 (Gim1)}R55 40y, for (t—j) € [2,2].
i=t—j+1
’ (C.89)

Furthermore, for ¢t > 1,

t [e%e} .
W [e'e] [e'e] ’Y ‘
b1 = VE{u}y (F)} [ EVI(G)YE(W)(Fi-)) ( + Y o (25) ) . (©o)
i=2 i=1
B t
birriri—g = E{u(F)} [ BMVIG)IE{ui(F-)} gy,  for (t+1-)) €21
i=t4+2—j
(C91)

We recall that {x57} are the rectangular free cumulants of the limiting singular value distribution A,
and the random variables { F;, G, } are given by (3.15)-(3.17). The following lemma shows that, as
T grows, the iterates of the second phase of the artificial AMP (described in Section [C.T) approach
those of the modified AMP algorithm above, as do the corresponding state evolution parameters.

Lemma C.9. Consider the setting of Theorem|2| Assume that k55 > 0 forall i > 1, and that & > .
Consider the modified version of the true AMP in (C.86)- (C87), and the artificial AMP in (C-),
(C2), and (C.0) along with its state evolution recursion given by (C9)-(C.13). Then, the following
results hold for s, t > 1:

1.
lm firye = py, lim 14514 = 05y, (C.92)
T—o00 T—o0
lim DT-HE = V4, lim (:JT—FS,T—O—t = Ws,t, (C93)
T—o00 T—o0

2. For any PL(2) functions 1 : R?***2 — R and o : R?*'*1 — R, we almost surely have:

. . * ~T+1 gTHt+1 41 FT+-t
lim hm‘ § Pl al .l ST )
T—ocon—o0 | M

o (C.94)
- *Zw(uj,’l)%,,ﬂf—‘rl,f},ff) :Oa
m <
1=1
1 = * ~T+1 ~T+t ~T+1 ~T+t
it [ 135007
= (C.95)

=0.

1 n

* a1 At a1 At

- E (O N | EI |
i=1
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Proof. Proof of (C.92)- (C.93). For ¢t € [1,T + 1], from (C.I8) we have ji; = 7y = an/Apca =
w1 = vp. Next, Lemma shows that lim7_, o 671,741 = @* and limr_, oo O741,741 = b,
where a*, b* are defined in . We now verify that 01; = @™ and wy; = b*. Setting s =¢ = 01in
(3:19) and solving for wy;, we obtain:

Apcae? (@R (z) — R(x)) + yR'(x)
1+vR(z) — vz R/ (x)
Here, we have used (A16) and (A7) to express the double sums in terms of R(x) and R'(z).
Similarly, from (3:20)), we obtain
011 =yrR (2)(a?Apca +w11) + YR (z) — o®R(x), where z = vy/a?. (C.97)
Using the formula for Apcy in [20, Eq. (7.32)], it can be verified that the above expression for o1 ;
reduces to a* = a?(1 — Apca), as required.

Wiy = b = . where z = —=. (C.96)
@]

2

Assume towards induction that the following holds for 1 < k, ¢ < ¢:
lim ﬂT+g = H¢, lim 5'T+k,T+Z = Ok.0, lim DT-{-K = Uy, lim (:JT_Hf,T_i_g = Wk,¢-
T— o0 T— o0 T— 00 T— o0
3 } (C.98)
Consider U441 = B{Ur1+41U} = aE{utt1(Fr4+)Us}. By the induction hypothesis Frpy; =
fr+tUs + Yr, converges in distribution to F; = p,U, + Y;, and by arguments similar to (B.64),
the sequence of random variables {u;11(Fry+)U,} is uniformly integrable. Hence,
%LI}I;O l~/T+t+1 = a]E{utH(Ft)U*} = Vgy1- (C99)

Next, for s < ¢, consider Wy sy1,74¢41 Which is defined via @) We write Oy o1 74141 =
O1 + Oy + O3 + Oy , where
s—1t—1 s+1
00755 (1T Bl EbsGrei )
J=0k=0 i=s—j+2
t+1 ) i ] ]
H E{UQ(FTH_I)}E{Vg_l(GTﬂ_l)}) ' [Hg?jJrkJrl)E{UT-l—s—i-l—jUT+t+1—k}
i=t—k+2

+ 550 ) {1 (Frs—j)} ]E{u;-',-l—k(FT-&-t—k)}]E{VT-‘rS—jVT+t—k}:| , (C.100)

s—1T+t bt s+1
B ~ ~
0:=73 3 (%) ( II BliFre )IEW,y(Gra)})
J=0 k=t i=s—j+2
t+1
(H E{UQ(FT+FI)}E{V§*1(GTJFFI)}) ' [Kg?j+k+1)E{UT+s+1*jUT+t+1fk}
i—2
. 1 _ ) )
T Ro(jrk+2) a ]E{“;Jrl—j(FT+s—j)}E{VT+s—jVT+t—k}] ) (C.101)
Ttst—1 o \i-s s+1 i )
05=73 3 (L) (TT B (Freio)}EW: 1 (Graic)})
Jj=s k=0 i=2
t+1
11 E{UQ(FTH_I)}E{V;”(GT+i_1)}> ' {Hg?j-&-k—&-l)]E{UT—&-s-&-l—jUT+t+1—k}
i=t—k+2
. 1 _ . )
R +kt2) E{u;+1—k(FT+t—k)}E{VT-&-s—jVT-&-t—k}} , (C.102)
ThoTH ke 5 ) )
0:=733" () (TL B Fr i YEQ, 1 (Grein)))
Jj=s k=t i=2
t+1
(HE{UQ(FTH_l)}E{V;_l(GTH_l)}) ' {Kg?j+k+1)E{UT+s+1—jUT+t+1—k}
1=2
1 - -
+ Ro(j+k+2) 53 E{VT+sijT+t7k}] (C.103)
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By the induction hypothesis, for ¢ € [2,¢ + 1], we have FT_H-_l 4 F;_1 and GT+1'—1 LY Gi_1.
Since u; and v;_; are Lipschitz and continuously differentiable, Lemma [D.T]implies

lim E{uj(Frii—1)} =E{uj(Fi-1)},  lim E{vi_;(Grii-1)} = E{vi_1(Gi-1)},
T—o0 T—oo

(C.104)
for i € [2,¢t+1].
Next, note that
B ~ <u~s+lfj(F‘T+S~fj)a stj(éTJrsfj))v 0<j<s—1,
(Ursst1—js Vigs—j) = (Frys—j/a, Gris—jv/a), s<j<T+s—-1, (C.105)

(F()/O[,O), j:T+S

An analogous set of expressions holds for the pair (UT+t+1 ks VT+t k). For j € [0,s — 1] and
k € [0,t — 1], using an argument similar to that used to obtain (Im we deduce that the sequences

{usy1- ](FT+S U1 k(FT_H k) }and {vs_ j(GT+S Ve k(GT_H %)} are each uniformly inte-
grable. This, together with the induction hypothesis, implies that

s—1t—1 s+1
Jim 01 =533 (] Blui(F-)}EQ L (Gion)})
J=0 k=0 i=s—j+2
t+1
(C.106)
( TT E{W(FoD)}E A (Gim)}) - [R50 EAUt1- U1}
i=t—k+2
15y B (Fa ) E{U 1 (Fio) YE(Vi g Viei} -
Next consider the term Oy. In this case, for j € [s,T 4+ s —1]and k € [t,T +t — 1]:
- - 1 . - 1
E{Uryst1-jUrtir1-k} = S E{Fris—jFrii—k} = Apca + —507_(j—s), T—(k—1)5
“ “ (C.107)

) ) 2 ) 2
E{Vris—jVrgi—r} = %E{GTJrsijTthfk} = %(OCQAPCA + O (jms), T—(k—t))-

When j = T + s or k = T + t, the formula above for E{ﬁT+s+1_ UT+t+1_k} still holds, while the

one for JE{\N/TJFS, j f/;mrt, & } becomes 0 as Vy = 0. From Lemma for any 6 > 0, for sufficiently
large T' we have

. * — max{j+1—sk+1—t
| 0T s—j,T+i—k — a*| < 6& max{jHl=skl=t}

|U~}T—0—s—j,T+t—k _ b*| <6 max{j+175,k+17t}, je [S,T+ S], ke [t,T+t},
for some £ > 0 such that é\/€ > é. From (3.13)-(3-18), we note that E{U,_;U;_;,} = LSE{F§} =

Land E{V,_;Vi_x} = Z—ZE{G%} = ZTZ(aQAPCA + b*). Combining this with (C.107) and (C.108),
we have for sufficiently large 7":

(C.108)

7 7 4 —max{j+1—s —
IB{Ur4145—jUrs14t-k} — B{Ua_jUs_ }| < —5 &~ mextitimshtizth
@ C.109)
~ - ’}/2(5 ) ( .
|E{Vrys—jVrpi—i} —E{Vi;Vi_i}| < yf_ max{j+i=sk+1-t} forj > s,k >t.
We now write O, in (C.103) as

s+1 t+1

Oy = W( 11 ]E{UQ(FTHA)}]E{VQA(éTﬂ’*l)}) ( 11 E{UQ(FTHA)}]E{VQA(CNJTHA)})
i=2 11
T+s T+t
Y Jt+k—s—t .
[Z 2 ?> [KQ(”’““)E{USH iUtr1-k} + K3 (G+k+2) o2 5 B{Vi—;Vi- k}}
j=s k=t
+ A4U + A4V , (Cllo)
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where
T+s T+t

~ Jjt+k—s—t oo - -
Ay = Z Z (@) 5okt 1) BAUT 145 jUr 46—k} — E{Us 41U 11},
j=s k=t
Tps T+t ith—st ) )
A= 55() 555 sy BA Vo Vi) — E{Vi Vi ).
j=s k=t
(C.111)
Using (C.109), for sufficiently large T we have
J+k
1Aw] < — Z ( W) K5 akssrern) < 0Csi,
=0 k=0 (C.112)

2

T T j+k
oY
[Agv| < o2 } :2 : ({oﬂ) Kg?j+k+s+t+2) < 0Csy,
j=0k

for a positive constant Cy ;, since each of the double sums in (C:112) is bounded as T — oo, for
€a? == ¢a?/y > a2. Therefore, Ayyr, Ayy both tend to 0 as T — oo. Using this in (C.I10) along

with (C.104), we obtain

s+1 t+1
A Oq =7 [T ECui(Fio)YE{V, 1 (Gimn)} [ B (Fima) YBAV, -1 (Gim1)}
=2 =2
O = Ay \Jtk—s—t
ZZ (?) [“2(;+k+1 E{Ust1-jUs+1-1} + K3( G+kr2) IEJ{VS Vi k}}
j=s k=t
(C.113)
Next, consider O in (C.I0T), which we write as
41 i i s—1 s+l ) )
0y = ’7(HE{UQ(FTJri*l)}]E{V;fl(GT+Z'*1)}) ST B{ui(Proim)YE{V, 1 (Gryio1)}
1=2 j=0i=s—7j+2
&R v\ kTt (+k+2)
[Z (2) " [ ke B Vi) + D B (B BV, V)]
k=t
Azp,j + Asyj|,
(C.114)
where
T4 ke ) )
Asyj = Z (ﬁ) 5501k 1) EAUT+s+1-jUrse41-1} — E{Ust1-U11-k}],
k=t
Locr  (F SV o
A3V,j = EE{US-&-I—j (FT+s—j)} Z <$> Ko(j+k+2) [E{VT+s—jVT+t—k} - ]E{Vs—th—k}]-
k=t
(C.115)
From (C.103)), we recall that for j € [0,s — 1], k € [t,T + t]:
N N 1 . .
E{Uris41-jUrqe41-1} = —Blusi1-j(Frys—j) Fr—g—n},
@ (C.116)

~ ~ ’Y ~ ~
E{Vris—iVrpi—i} = aE{stj(GT+sfj)GT7(k7t)}-
Using the induction hypothesis and arguments similar to (B-82)-(B-86)), for any 6 > 0 and sufficiently
large T" we have
. - O (ko
|E{Urts+1—jUrsiv1-k} — E{Ust1-;Uit1-k}| < Ef (k=t),

(C.117)
75 —(k—t)

BVt ss—iVrre-i} — B{VeejVeor}l < — €0s—1, kelt,T+1]
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Using this in (C:1T3)), following steps similar to (B-88)) and (B-89), and noting the convergence of the
power series defining R(7y/€a?), we have limp o0 Asyj = limp_,00 Agy,; = 0 for j € [0, — 1].
Using this in (C.I1T4) along with (C:104), we have

t+1 s—1 s+1

Jim 0, = (HE{U COMEN L (Gen}) Y T B ))EY 1 (G}

J=0 i=s—3742

Z(?) [“2(3+k+1)]E{U9+1 iUt1- k}+’iz(g+k+2) E{uiiq—;( s—j)}E{Vs—th—k}]-

k=t
(C.118)

Using a similar sequence of steps, we also have

s+1 t—1 t+1

Jim 0 = 7<HE{U COIEN (Gl Y [T (R )ME 1 (Gi))

k=0 i=t—k+2

(VT oo 1
Z (*) [’iz(j+k+1)E{Us+lfjUt+1fk} + Fa(j+k+2) E{ut 1y (Femi) E{Vs—jVioi}|-
(C.119)
Noting that the sums of the limits in (C.106), (C:113), (C.118) and (C.119) equals w1 ¢+1 (defined

in (3:19)), we have shown that limy_, oo W7 4s41,74+4+1 = Ws+1,t+1. The sequence of steps to show
that imy_ o0 07454+1,7+t4+1 = Ts41,¢+1 18 very similar, and is omitted to avoid repetition.

Proof of (C.94)-(C.95). Since ¢, ¢ € PL(2), using the Cauchy-Schwarz inequality (as in (B.92)),
for a universal constant C' > 0 we have

‘- . . " 1 L X .
‘mZd} T+1 "‘vug+t+17fg+1a"'ff+t)_Ezzp(uivuzla"w f+1alev"'f7;t)
=1
1
w2 tt+ T42)2 2 t w2 12
u u
< 20(t +2) L%HII+§:UI I H H)+§:UH |+|fH)]
=1 m =1 m
al+l _ b2 T+l at1)2 T+l 2lig Tttt tig
u —u — —
<| [ (SO AR o SO A A
m m m m
(C.120)
1 n 1 n
S (TG - LS et el g
=1 =1
1
* t ~T+012 2 t T+L)2 02 ]2
[|[v*||? o~ Hv I lg” ™"l ||g I
<20(t+2) |14+ 010 ( ) ( )
<20(t+2) |1+ + - - +Y -
/=1 /=1
A1 A1 ~
o7 — \P_+ +»HvT+t tH2 lg" " — |P_+ H9T+t g'l?
— . - - e
(C.121)

The proof strategy is similar to the square case. We inductively show that in the limit 7',n — oo
(with the limit in n taken first): i) the terms in the last line of (C.120) and (C.121)) all converge to 0
almost surely, and ii) each of the terms within the square brackets in (C.120) and (C.121)) converges
to a finite deterministic value.

Base case t = 1: Recalling that al = V/mupca, from Lemma we have

"t — )

lim lim
T — 00 Mm—>00 m

=0. (C.122)
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Writing = = /a2 for brevity, recall that 3°°, k592 = R(x). From the definitions of g* ' and g

in (C.2) and (C.86) and we have

T
- R 1 . . YR(x) . g
T+l _ a1 _ XT@l _al) o+ XTal* oS o i T+
e S TR TR ; & ’
where we have used BT+17T+1_]- = akg;a’ for j € [1,T). Therefore
||gT+l _g1H2 2 || H2 ||’U’T+1 _"11”2
n ~ (1 +vR(x))?
) R(x) T 2 (C.123)
yLrx T~T+1 j ~T+1—j
—||—=X"u -« Ko 27 T =: 2(S1 + S2).
1+ yR(x) ; % (S1+52)

n—oo

Since | X ||op — D~ !(z), from (C.122) we have limr ;0 S1 = 0. (Here and in the remainder
of the proof, limr ,_,. denotes the limit n — oo taken first and then 7' — oo.) Next, using the

definition of g” ™ in (C:2), we write the second term Ss as
1 YR(z) _r 1 ~T41—
S, = — + JmT+1—3
2= w1+ ~R@)?Y 1+7R Z@x
21| yR(z) STl ~T 20°
<= JpTHi=i|l 4~ A C.124
= | T R@ e Z*W +(1+vR<x>>2 s (G120
where
T T STl—i ~T+1—j
1 ~T+1—j 2 1 00 [e's) i -<'U y U ]>
= ﬁ‘ D (k35 —rzy)al ot ]H = Z (K55 — kai) (K55 — Kgg)a'™ -
Jj=1 1,j=1
(C.125)
Using the state evolution result of Proposition[C.I} we almost surely have
ST41—i ~TH1—j
) v , - -
lim < > :E{VT+1—iVT+1—j}
e " (C.126)

2
7 2 ~
= ﬁ(a Apca + @rq1—iT41—j) < C,

for some universal constant C' > 0. Here, &r41—;,7+1—; is defined in (C.14), and we recall from

CID-CTD that
VT+1,j = %éT+1,j with éTJrl,j = av/ApcaVi + ZTJrl,j, for j € [O,T] (C.127)

Since kg; — k39 asn — oo, for i € [1,T] (by the model assumptions), using (C.126) in (C123),
lim lim Ag, =0 almost surely. (C.128)

T—o00 n—0o0

Next, using Proposition [C.1] for any T > 0, the first term in (C.124) has the following almost sure
limit as n — oo:

1| ~vR(z) o d
. - ~T+1 00, . jnT+1—j
e TR 1+ 7R(z) ;'W !
2
YR(z) = @
{<1+7R( ) T+1 1+7R(m);@3x Vria J> }
@ 9 - - i
= _ STAYe 0.7 (3 e )
(1+’}/R(.I‘))2 E{ <(R({E) ;K%x )GT+1 +j§::1h:2jx (GT+1 GTJrlj)) }7

(C.129)
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where (a) is obtained using (C-127). From (A.13), we have lim7_, o0 3. =1 k53! = R(x). Further-
more, using (C.127)) we have

{(Z@J (Gra1 — Gm_j))z}

+
E 521 HQJ ! J wT+1 T+1 — WT+1 T+1—i — wT+1 T+1—j + wT+1 i, T+1— ])
3,j=1

— 0 as T — oo, (C.130)
where the 7" — oo limit is obtained using Lemma [C.2] and steps similar to (B.30)-(B.33). Using
(C128)-(C.130) in (C.124), we have

lim lim S; =0 almost surely. (C.131)

T— 00 n—00

T+1 A1||

Hence using (C-123), we have shown that lim7.,, o =g 2 = 0 almost surely.

. T
The proof that lim7,—cc = || f —f ||2 = 0 uses similar steps: from the definitions of f ! and

f in (C.2) and (C.87), we have

STHL a1y . Tl
f —f = EX(QTJrl ) drsirul T, (C.132)

M*ﬂ

—+ a1 1’11, —
7=0

where 5171 = Z;io Hg‘(’j+l)xj“ and a7 41, 741—j = ang(j+1):rj+1 for j € [0, T]. Therefore,

T+ 2 ~T41 1 2 Sl T2
n n ’ n
5 & Al & a2
+ - azﬁg?j+l)x3+l(&T+l —aTt | 5a2< Z K3 41) $g+1> -
Jj=0 j=T+1

T 2
fe%s) i+1~T+1—75

ol > (K5(41) — Fagn)2’

=0

(C.133)

We have shown lim7,, 00 21|77 — ¢'[|? = 0 and lim7 ;00 2[|@” ™' — @'||?, hence the first
two terms in (C:133) converge to 0. For the third term in (C.133), we first apply Proposition [C.1]to
express the n — oo limit in terms of state evolution parameters of the artificial AMP, which can
then be shown to converge to 0 as 7" — oo using Lemma [C.2] and steps similar to (B:50)-(B.33).
Since the power series > % #57; , 12/ "! = R(x) converges, and |@!||2/n = m/n = ~, the fourth
term converges to 0 as T',n — 00. AS kg(j41) — Iiz(]+1) as n — oo, by arguments similar to

(B:43)-(B-46), the final term in (C.133) also converges to 0.

Recalling that 977! — o' = %({]TJrl — g"), it follows that limy oo f|| 1||2 = 0 almost

surely. Finally, a triangle inequality sandwiching argument like the one used in (B.104)-
yields

~T+1

N o [
lim lim = lim lim = —2(a Apca +w1,1),
T— 00 n—00 n T~>oo n—o00 n e (C.l34)
N lat)?
lim lim = lim lim 1.
T—00 n—00 m T—>oo n—00 m
This completes the proof of (C.94)-(C.93) for ¢ = 1.
Induction step: For ¢ > 1, assume that the following hold almost surely for ¢ € [1,¢]:
A0 T2 ~0 =THL0))2 L0 ~T4e)2
lim lim M lim lim lg ! lim lim u =0.
T— 00 n—00 m T— 00 n—00 n T— 00 n—+00 n
(C.135)
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We now show that limr , e 2||f — f ||> = 0. We have already shown this for ¢ = 1 above.

For t > 2, using the definitions }'TH and f "in (C2) and (C.87), and applying the Cauchy-Schwarz
inequality, we have

t
1 ~T+t At t+ ~ - = al
Ly g <! )<||X< T2 13 e — adl|?

n
=2

T+1
+ H E aT+tzU — a1 H

(C.136)

The decomposition and the analysis of the three terms in (C:I36) is similar to that in (B:T09) for the
ST+ At
square case. Usmg arguments 51m11ar to (B-TT0)-(B-127), we obtain limr,, o 2| f* — f | =0
T+t

Recalling that o't = ut+1(f yand @7 = u (F ) with ugyy L1psch1tz we also have
M7 oo 2)@" T —a" |2 = 0 almost surely. The proof that limy ;o ]|g" T +" — g2 =
0 uses a decomposition similar to (C.I36) and is along the same lines. Slnce " = vy 1(g") and
T = v, (g7 ) with vy 1 Lipschitz, it follows that limz ,, s Lo pT T _ it 2 =0
almost surely.

Using these results together with a triangle inequality sandwich argument similar to (B.104)-
(B-T03), we have lim,,_,oc 2| At+1|\2 = limg oo @ T2 = E{upq(F)?}.  Similarly,

limy, 00 20772 = limr oo L[0T T2 = E{vi11(Gi11)?}. Using these results in (C-120)
and completes the inductive proof of (C:94)-(C93). O

C.6 Proof of Theorem

The proof is along the same lines as that for the square case in Section [B.3} to avoid repetition, we
only sketch the main steps. The first step is to show using Lemma [C.9]that the state evolution result
holds for the the modified AMP. That is, the following almost sure limits hold for ¢ > 1:

. 1 & £ A1 Lt41 71 Aty
n}gnOOEEdJ(ui,ui,...,ui S =E{0U,, U, ... U, Fr, ..., F)}, (C.137)
1 n

> 05,00, 0038 g0 = E{p(Vi, Vi, Vi, Ga,. . Gr) Y. (C138)

For each of (C.137) and (C.138)), we use a three-term decomposition as in (B:132). Using arguments
similar to those used to analyze (B.132), we can show that each of the terms goes to 0 as 7', n — 0.

The second part of the proof is to inductively show that the following statements hold almost surely
fort > 1:

. 1 % * 1 G EpS ~ £
mlgnoo EZ;d)(ui?uzl?"'? §+15f11"~'7fit)—Ezdj(ui’u%v“" f+17fzv"'7fz't) =
(C.139)
t_ 3h2 t+1 _ pt+12
lim uzo, lim Mzo’ (C.140)
m—o0 m—o0 m
1 n
li kgl - Laobal o ghl =0, (C.141
nLH;O nz@ 17 17 71]17917 ?gz nz:: 17 z7 77]1’917 ?gz) ) ( )
t_ aty2 t_ aty2
fim VI gy, =T (C.142)
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Since ¢ € PL(2), by the same arguments as in (B.137), we have

1 & . . o X
Ezw(uiaugv"'aug+lafilv' ff _721# za zlv"'auz+lafi17"' f)
i=1
1
* t+1 22 2 t 2 2
s '), | IF12 17
<20(t+2) |1 ( ) ( )
<20(t+2) |1+ +;1 - +Zl

m m m

1
ol o112 t+1 _ pt4+1)2 1 32 t g2\ 2
,(umun+”+m A N P o N ' fH>.@M$

Using ¢ € PL(2), an analogous bound holds for the term in (C.14T).

We then argue that lim,, o L || f* — f | = 0; this follows from a bound similar to (B-138)) and the
induction hypothesis. (In the argument, @', u’, {b; ¢, bs ¢ }eepr 4 in (B-I38) are replaced by o', v,

. . N ~t .
{at,e,at,0}oeq1,4)> respectively.) Then, recalling a'tt = U1 (F ) and wttt = ugyq (f1), since ugyq

Lipschitz, it follows that limy, o0 - [|u'™! — At+1||2 = 0. Using the triangle inequality sandwiching
argument in (B-104), the terms = || f*2, L ||f 1%, 75 llw'[?, and - @ *||? converge to deterministic

limits (analogous to (B-140)). This leads to (]C_B-Sﬁ a (C.143). The results (C.I141)-(C.142) are

obtained using a similar sequence of steps.

Combining (C.139) with (C:I37) and (C.141)) with (C.138) yields the result of Theorem 2] O

D An auxiliary lemma

The following result is proved in [[7, Lemma 6].

Lemma D.1. Let F': R — R be a Lipschitz function, with derivative F' that is continuous almost
everywhere in the first argument. Let U,, be a sequence of random variables in R converging in
distribution to the random variable U as m — oo. Furthermore, assume that the distribution of U is
absolutely continuous with respect to the Lebesgue measure. Then,

Tim E{F'(Un)} = E{F'(U)}.
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