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A Future Directions

Our results heavily rely on the specific nature of the periodic activation function, so a natural question
is to which extent our results can be extended beyond the single periodic neuron class.

• For lower bounds, a challenging but very interesting generalization would be to establish
the cryptographic-hardness of learning certain family of GLMs whose activation function
does not need to be periodic. A potentially easier route forward on this direction, would
be to consider the Hermite decomposition of the activation function, similar to [A3], and
establish lower bounds on the performance of low-degree methods [A23], of SGD [A3], or
of local search methods methods [A15], for activation functions whose low-degree Hermite
coefficients are exponentially small.

• For upper bounds, we believe that our proposed LLL-based algorithm may be extended
beyond learning even periodic activation functions, such as the cosine activation, by appro-
priately post-processing the measurements, but leave this for future work. Furthermore, it
would be interesting to better understand (empirically or analytically) the noise tolerance
of our LLL-based algorithm for “low-frequency” activation functions, such as the absolute
value underlying the phase retrieval problem which has “zero” frequency.

B Formal Setup

In this section, we present the formal definitions of all problems required to state our hardness result
(Theorem 2.2). We begin with a description of average-case decision problems, of which the CLWE
decision problem is a special instance [A6].

B.1 Average-Case Decision Problems

We introduce the notion of average-case decision problems (or simply binary hypothesis testing
problems), based on [A17], where we refer the interested reader for more details. In such average-
case decision problems the statistician receives m samples from either a distribution D or another
distribution D0, and needs to decide based on the produced samples whether the generating distribution
is D or D0. We assume that the statistician may use any, potentially randomized, algorithm A which is
a measurable function of the m samples and outputs the Boolean decision {YES,NO} corresponding
to their prediction of whether D or D0 respectively generated the observed samples. Now, for any
Boolean-valued algorithm A examining the samples, we define the advantage of A solving the
decision problem, as the sequence of positive numbers

���Px⇠D⌦m [A(x) = YES]� Px⇠D0⌦m [A(x) = YES]

��� .

As mentioned above, we assume that the algorithm A outputs two values “YES” or “NO”. Further-
more, the output “YES” means that algorithm A has decided that the given samples x comes from
the distribution D, and “NO” means that A decided that x comes from the alternate distribution D0.
Therefore, naturally the advantage quantifies by how much the algorithm is performing better than
just deciding with probability 1/2 between the two possibilities.

Our setup requires two standard adjustments to the setting described above. First, in our setup we
consider a sequence of distinguishing problems, indexed by a growing (dimension) d 2 N, and for
every d we receive m = m(d) samples and seek to distinguish between two distributions Dd and D0

d
.

Now, for any sequence of Boolean-valued algorithms A = Ad examining the samples, we naturally
define the advantage of A solving the sequence of decision problems, as the sequence of positive
numbers

���P
x⇠D

⌦m
d

[A(x) = YES]� P
x⇠D0⌦m

d
[A(x) = YES]

��� .

As a remark, notice that any such distinguishing algorithm A required to terminate in at most time
T = T (d), is naturally implying that the algorithm has access to at most m  T samples.

Now, as mentioned above, we require another adjustment. We assume that the distributions Dd, D0
d

are each generating m samples in two stages: first by drawing a common structure for all samples,
unknown to the statistician (also usually called in the statistics literature as a latent variable), which
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we call s, and second by drawing some additional and independent-per-sample randomness. In
CLWE, s corresponds to the hidden vector w chosen uniformly at random from the unit sphere
and the additional randomness per sample comes from the Gaussian random variables xi. Now, to
appropriately take into account this adjustment, we define the advantage of a sequence of algorithms
A = {Ad}d2N solving the average-case decision problem of distinguishing two distributions Dd,s

and D0
d,s

parametrized by d and some latent variable s chosen from some distribution Sd, as
���P

s⇠Sd,x⇠D
⌦m
d,s

[A(x) = YES]� P
s⇠Sd,x⇠D0⌦m

d,s
[A(x) = YES]

��� .

Finally, we say that algorithm A = {Ad}d2N has non-negligible advantage if its advantage is at least
an inverse polynomial function of d, i.e., a function behaving as ⌦(d�c

) for some constant c > 0.

B.2 Decision and Phaseless CLWE

We now give a formal definition of the decision CLWE problem, continuing the discussion from
Section 2. We also introduce the phaseless-CLWE distribution, which can be seen as the CLWE
distribution Aw,�,� defined in (5), with the absolute value function applied to the labels (recall that we
take representatives in [�1/2, 1/2) for the mod 1 operation). The Phaseless-CLWE distribution is, at
an intuitive level, useful for stating and proving guarantees of our LLL algorithm in the exponentially
small noise regime for learning the cosine neuron (See Section 3.3 and Appendix E).
Definition B.1 (Decision-CLWE). For parameters �, � > 0, the average-case decision problem
CLWE�,� is to distinguish from i.i.d. samples the following two distributions over Rd

⇥ [�1/2, 1/2)
with non-negligible advantage: (1) the CLWE distribution Aw,�,� , per (5), for some uniformly
random unit vector w 2 Sd�1 (which is fixed for all samples), and (2) N(0, Id)⇥ U([�1/2, 1/2]).

Phaseless-CLWE. We define the Phaseless-CLWE distribution on dimension d with frequency �, �-
bounded adversarial noise, hidden direction w to be the distribution of the pair (x, z) 2 Rd

⇥ [0, 1/2]

where x
i.i.d.
⇠ N(0, Id) and

z = ✏(�hx,wi+ ⇠) mod 1 (9)

for some ✏ 2 {�1, 1} such that z � 0, and bounded noise |⇠|  �.

B.3 Worst-Case Lattice Problems

We begin with a definition of a lattice. A lattice is a discrete additive subgroup of Rd. In this work,
we assume all lattices are full rank, i.e., their linear span is Rd. For a d-dimensional lattice ⇤, a set
of linearly independent vectors {b1, . . . , bd} is called a basis of ⇤ if ⇤ is generated by the set, i.e.,
⇤ = BZd where B = [b1, . . . , bd]. Formally,

Definition B.2. Given linearly independent b1, . . . , bd 2 Rd, let

⇤ = ⇤(b1, . . . , bd) =

(
dX

i=1

�ibi : �i 2 Z, i = 1, . . . , d

)
, (10)

which we refer to as the lattice generated by b1, . . . , bd.

We now present a worst-case decision problem on lattices called GapSVP. In GapSVP, we are given
an instance of the form (⇤, t), where ⇤ is a d-dimensional lattice and t 2 R, the goal is to distinguish
between the case where �1(⇤), the `2-norm of the shortest non-zero vector in ⇤, satisfies �1(⇤) < t
from the case where �1(⇤) � ↵(d) · t for some “gap” ↵(d) � 1. Given a decision problem, it is
straightforward to conceive of its search variant. That is, given a d-dimensional lattice ⇤, approximate
�1(⇤) up to factor ↵(d). Note that the search version, which we call ↵-approximate SVP in the main
text, is harder than its decision variant, since an algorithm for the search variant immediately yields
an algorithm for the decision problem. Hence, the worst-case hardness of decision problems implies
the hardness of their search counterparts. We note that GapSVP is known to be NP-hard for “almost”
polynomial approximation factors, that is, 2(log d)1�✏

for any constant ✏ > 0, assuming problems in
NP cannot be solved in quasi-polynomial time [A22, A20]. As mentioned in the introduction of the
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Algorithm 2: Information-theoretic recovery algorithm for learning cosine neurons
Input: Real numbers � = �(d) > 1, � = �(d), and a sampling oracle for the cosine distribution

(3) with frequency �, �-bounded noise, and hidden direction w.
Output: Unit vector ŵ 2 Sd�1 s.t. min{kŵ � wk2, kŵ + wk2} = O(arccos(1� �)/�).

Let ⌧ = arccos(1� �)/(2⇡), ✏ = 2⌧/�, m = 64d log(1/✏), and let C be an ✏-cover of the unit
sphere Sd�1. Draw m samples {(xi, yi)}mi=1 from the cosine distribution (3).

for i = 1 to m do
zi = arccos(yi)/(2⇡)

for v 2 C do
Compute
Tv =

1
m

P
m

i=1 [|�hv, xii � zi mod 1|  3⌧ ] + [|�hv, xii+ zi mod 1|  3⌧ ]

return ŵ = argmaxv2C Tv .

paper, the problem is strongly believed to be computationally hard (even with quantum computation),
for any polynomial approximation factor ↵(d) [A32].

Below we present formal definitions of two of the most fundamental lattice problems, GapSVP
and the Shortest Independent Vectors Problem (SIVP). The SIVP problem, similar to GapSVP, is
also believed to be computationally hard (even with quantum computation) for any polynomial
approximation factor ↵(d). Interestingly, the hardness of CLWE can also be based on the worst-case
hardness of SIVP [A6].
Definition B.3 (GapSVP). For an approximation factor ↵ = ↵(d), an instance of ↵-GapSVP is
given by an d-dimensional lattice ⇤ and a number t > 0. In YES instances, �1(⇤)  t, whereas in
NO instances, �1(⇤) > ↵ · t.
Definition B.4 (SIVP). For an approximation factor ↵ = ↵(d), an instance of SIVP↵ is given by an
d-dimensional lattice ⇤. The goal is to output a set of d linearly independent lattice vectors of length
at most ↵ · �d(⇤).

C Exponential-Time Algorithm: Constant Noise

We provide full details of the proof of Theorem 3.1, restated as Corollary C.5 at the end of this
section. The goal of Algorithm 2 is to use m = poly(d) samples to recover in polynomial-time the
hidden direction w 2 Sd�1, in the `2 sense. More concretely, the goal is to compute an estimator
ŵ = ŵ((xi, zi)i=1,...,m) for which it holds min{kŵ�wk22, kŵ+wk22} = o(1/�2

), with probability
1� exp(�⌦(d)).

We first start with Lemma C.1, which reduces the recovery problem under the cosine distribution
(See Eq. (3)) to the recovery problem under the phaseless CLWE distribution (See Appendix B.2).
Then, we prove Lemma C.4, which states that there is an exponential-time algorithm for recovering
the hidden direction w 2 Sd�1 in Phaseless-CLWE under sufficiently small adversarial noise.
Theorem 3.1 follows from Lemmas C.1 and C.4.
Lemma C.1. Assume � 2 [0, 1]. Suppose that one receives a sample (x, z̃) from the cosine distribu-
tion on dimension d with frequency � under �-bounded adversarial noise. Let z̄ := sgn(z̃)min(1, |z̃|).
Then, the pair (x, arccos(z̄)/(2⇡) mod 1) is a sample from the Phaseless-CLWE distribution on
dimension d with frequency � under 1

2⇡ arccos(1� �)-bounded adversarial noise.

Proof. Recall z̃ = cos(2⇡(�hw, xi)) + ⇠, for x ⇠ N(0, Id) and |⇠|  �. It suffices to show that
1

2⇡
arccos(z̄) = ✏�hw, xi+ ⇠0 mod 1 (11)

for some ✏ 2 {�1, 1} and ⇠0 2 R with |⇠0|  1
2⇡ arccos(1� �).

First, notice that we may assume that without loss of generality z̄ = z̃. Indeed, assume for now z̃ > 1.
The case z̃ < �1 can be shown with almost identical reasoning. From the definition of z̃, it must
hold that ⇠ > 0 and z̃  1 + ⇠. Hence

z̄ = 1 = cos(2⇡(�hw, xi)) + ⇠̃.
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Algorithm 3: Information-theoretic recovery algorithm for learning the Phaseless-CLWE
Input: Real numbers � = �(d) > 1, � = �(d), and a sampling oracle for the phaseless-CLWE

distribution (9) with frequency �, �-bounded noise, and hidden direction w.
Output: Unit vector ŵ 2 Sd�1 s.t. min{kŵ � wk2, kŵ + wk2} = O(�/�).

Let ✏ = 2⌧/�, m = 64d log(1/✏), and let C be an ✏-cover of the unit sphere Sd�1. Draw m
samples {(xi, zi)}mi=1 from the phaseless CLWE distribution (9).

for v 2 C do
Compute
Tv =

1
m

P
m

i=1 [|�hv, xii � zi mod 1|  3�] + [|�hv, xii+ zi mod 1|  3�]

return ŵ = argmaxv2C Tv .

for ⇠̃ := ⇠ + 1 � z̃ 2 (0, ⇠) ✓ (0,�). Hence, (x, z̄) is a sample from the cosine distribution in
dimension d with frequency � under �-bounded adversarial noise.

Now, given the above observation, to establish (11), it suffices to show that for some ✏ 2 {�1, 1},
and K 2 Z,

����
1

2⇡
arccos(z̃)� ✏�hw, xi �K

���� 
1

2⇡
arccos(1� �) ,

or equivalently using that the cosine function is 2⇡ periodic and even, it suffices to show that

| arccos(z̃)� arccos(cos(2⇡�hw, xi))|  arccos(1� �) .

The result then follows from the definition of z̃ and the simple calculus Lemma K.7.

We will use the following covering number bound for the running time analysis of Algorithm 2, and
the proof of Lemma C.4.
Lemma C.2 ([A42, Corollary 4.2.13]). The covering number N of the unit sphere Sd�1 satisfies the
following upper and lower bound for any ✏ > 0

✓
1

✏

◆d

 N (Sd�1, ✏) 

✓
2

✏
+ 1

◆d

. (12)

Remark C.3. An ✏-cover for the unit sphere Sd�1 can be constructed in time O(exp(d log(1/✏)))
by sampling O(N logN) unit vectors uniformly at random from Sd�1, where we denote by N =

N (Sd�1, ✏). The termination time gurantee follows from Lemma C.2 and the property holds with
probability 1� exp(�⌦(d)). We direct the reader for a complete proof of this fact in Appendix H.

Now we prove our main lemma, which states that recovery of the hidden direction in Phaseless-CLWE
under adversarial noise is possible in exponential time, when the noise level � is smaller than a small
constant.
Lemma C.4 (Information-theoretic upper bound for recovery of Phaseless-CLWE). Let d 2 N and
let � = �(d) > 1, and � = �(d) 2 (0, 1/400). Moreover, let P be the Phaseless-CLWE distribution
with frequency �, �-bounded adversarial noise, and hidden direction w. Then, there exists an
exp(O(d log(�/�)))-time algorithm, described in Algorithm 3, using O(d log(�/�)) samples from
P that outputs a direction ŵ 2 Sd�1 satisfying

min(kŵ � wk22, kŵ + wk22)  40000�2/�2 (13)

with probability 1� exp(�⌦(d)).

Proof. Let P be the Phaseless-CLWE distribution and w be the hidden direction of P . We describe
first the steps of the Algorithm 3 we use and then prove its correctness.

Let ✏ = �/�, and C be an ✏-cover of the unit sphere. By Remark C.3, we can construct such
an ✏-cover C in O(exp(d log(�/�))) time such that |C|  exp(O(d log(�/�))). We now draw
m = 36d log(�/�) samples {(xi, zi)}mi=1 from P . Now, given these samples and the threshold value
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t = 3�, we compute for each of the |C|  exp(O(d log(�/�))) directions v 2 C the following
counting statistic,

Tv :=
1

m

mX

i=1

( [|�hv, xii � zi mod 1|  3�] + [|�hv, xii+ zi mod 1|  3�]) .

Tv is simply measuring the fraction of the zi’s falling in a mod 1-width 3� interval around �hv, xii

or ��hv, xii, accounting for the uncertainty over the sign ✏ 2 {�1, 1} in the definition of Phaseless-
CLWE. We then suggest our estimator to be ŵ = argmaxv2C Tv. The algorithm can be clearly
implemented in |C|  exp(O(d log(�/�))) time.

We prove the correctness of our algorithm by establishing (13) with probability 1� exp(�⌦(d)). We
first show that some direction v 2 C which is sufficiently close to w satisfies Tv �

2
3 with probability

1 � exp(�⌦(d)). Indeed, let us consider v 2 C be a direction such that kw � vk2  ✏ = �/�.
The existence of such a v follows from our definition of C. We denote for every i = 1, . . . ,m by
✏i 2 {�1, 1} the sign chosen by the i-th sample, and

⇠i = zi � ✏i�hw, xii (14)
the adversarial noise added to the sample per (9). Now notice that the following trivially holds almost
surely for v,

Tv �
1

m

mX

i=1

[|�hv, xii � ✏izi mod 1|  3�] .

By elementary algebra and using (14) we have ✏izi� �hv, xii mod 1 = �hw� v, xii+ ⇠i mod 1.
Combining the above it suffices to show that

1

m

mX

i=1

[|�hw � v, xii+ ⇠i mod 1|  3�] �
2

3
. (15)

with probability 1� exp(�⌦(d)).

Now we have
P[|�hw � v, xii+ ⇠i mod 1|  3�] � P[|�hw � v, xii mod 1|  2�]

� P[|�hw � v, xii|  2�]

using for the first inequality that �-bounded adversarial noise cannot move points within distance 2�
to the origin to locations with distance larger than 3� from the origin and for the second the trivial
inequality |a| � |a mod 1|. Now, notice that �hw�v, xii is distributed as a sample from a Gaussian
(see Definition K.1) with mean 0 and standard deviation at most �kv�wk2  �✏ = �. Hence, we can
immediately conclude P[|�hw�v, xii|  2�] � 3/4 since the probability of a Gaussian vector falling
within 2 standard deviations of the mean is at least 0.95. By a standard application of Hoeffding’s
inequality, we can then conclude that (15) holds with probability 1�exp(�⌦(m)) = 1�exp(�⌦(d)).

We now show that with probability 1�exp(�⌦(d)) for any v 2 C which satisfies min(kv�wk2, kv+
wk2) � 200�/�, it holds Tv  1/2. Notice that given the established existence of a v which is
�/�-close to w and satisfies Tv � 2/3, with probability 1 � exp(�⌦(d)), the result follows. Let
v 2 C be a direction satisfying kv � wk2 � 200�/�. Without loss of generality, assume that
kv � wk2  kv + wk2. Then, using (14) we have �hv, xii � zi = �hv � ✏iw, xii � ✏i⇠i mod 1

and �hv, xii + zi = �hv + ✏iw, xii + ✏i⇠i mod 1. Hence, since ✏ 2 {�1, 1}, |⇠i|  � for all
i = 1, . . . ,m we have by a triangle inequality

Tv 
1

m

mX

i=1

( [|�hv � w, xii mod 1|  4�] + [|�hv + w, xii mod 1|  4�]) .

Now by our assumption on v both �hv�w, xii and �hv+w, xii are distributed as mean-zero Gaussians
with standard deviation at least �kw�vk2 � 200�. Hence, both �hv�w, xii mod 1 and �hv+w, xii

mod 1 are distributed as periodic Gaussians with width at least 200� (see Definition K.1). By
Claim K.6 and the fact that � < 1/400,

P[|�hv � w, xii mod 1|  4�]  16�/(400�
p

2⇡) · (1 + 2(1 + (400�)2)e�1/(160000�2)

 4/(25
p

2⇡) <
1

12
.
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By symmetry the same upper bound holds for P[|�hv + w, xii mod 1|  4�]. Hence,

P(xi,zi)⇠P [{|�hv � w, xii mod 1|  3�} [ {|�hv + w, xii mod 1 mod 1|  3�}] < 1/6 .

By a standard application of Hoeffding’s inequality, we have

P[Tv > 1/2]  exp(�m/18)  exp(�2d log(1/✏)),

and by the union bound over all v 2 C satisfying kv � wk � 200�/�,

P

2

4
[

kv�wk�200�/�

{Tv > 1/2}

3

5 < |C| · exp(�2d log(1/✏)) = exp(�⌦(d)) .

This completes the proof.

Finally, we discuss the recovery in terms of samples from the cosine distribution.
Corollary C.5 (Restated Theorem 3.1). For some constants c0, C0 > 0 (e.g., c0 = 1 �

cos(⇡/200), C0 = 40000) the following holds. Let d 2 N and let � = �(d) > 1, � = �(d)  c0,
and ⌧ =

1
2⇡ arccos(1 � �). Moreover, let P be the cosine distribution with frequency �, hidden

direction w, and noise level �. Then, there exists an exp(O(d log(�/⌧)))-time algorithm, described
in Algorithm 2, using O(d log(�/⌧)) i.i.d. samples from P that outputs a direction ŵ 2 Sd�1

satisfying min{kŵ � wk22, kŵ + wk22}  C0⌧2/�2 with probability 1� exp(�⌦(d)).

Proof. We first define m = O(d log(�/�)) reflecting the sample size needed for the algorithm
analyzed in Lemma C.4 to work. We then draw m samples {(xi, z̃i)}mi=1 from the cosine distribution.
From this point Algorithm 2 simply combines the reduction step of Lemma C.1 and then the algorithm
described in the proof of Lemma C.4.

Specifically, using Lemma C.1, we can transform our i.i.d. samples to i.i.d. samples from the
Phaseless CLWE distribution on dimension d with frequency � under 1

2⇡ arccos(1 � �)-bounded
adversarial noise. The transformation simply happens by applying the arccosine function to every
projected z̃i, so it takes O(1) time per sample, a total of O(m) steps. We then use the last step
of Algorithm 2 and employ Lemma C.4 which analyzes Algorithm 2 to conclude that the output
ŵ 2 Sd�1 satisfies min(kŵ�wk2, kŵ+wk2)  40000⌧2/�2 with probability 1�exp(�⌦(d)).

D Cryptographically-Hard Regime: Polynomially-Small Noise

We give a full proof of Theorem 3.3, restated as Theorem D.1 here. Given Theorem 3.3, Corollary 3.4,
also restated below as Corollary D.2, follows from the hardness of CLWE [A6].
Theorem D.1 (Restated Theorem 3.3). Let d 2 N, � = !(

p
log d),� = �(d) 2 (0, 1). Moreover,

let L > 0, let � : R ! [�1, 1] be an L-Lipschitz 1-periodic univariate function, and ⌧ = ⌧(d) be
such that �/(L⌧) = !(

p
log d). Then, a polynomial-time (improper) algorithm that weakly learns

the function class F�
�
= {f�,w(x) = �(�hw, xi) | w 2 S

d�1
} over Gaussian inputs xi.i.d.

⇠ N(0, Id)
under �-bounded adversarial noise implies a polynomial-time algorithm for CLWE⌧,� .

Proof. Recall that a polynomial-time algorithm for CLWE⌧,� refers to distinguishing between
m samples (xi, zi = �hw, xii + ⇠i mod 1)i=1,2,...,m, where xi ⇠ N(0, Id), ⇠i ⇠ N(0, ⌧) and
w ⇠ U(Sd�1

), from m random samples (xi, zi)i=1,2,...,m, where yi ⇠ U([0, 1]) with non-negligible
advantage over the trivial random guess (See Appendix B.1 and B.2). We refer to the former sampling
process as drawing m i.i.d. samples from the CLWE distribution, where from now on we call P for
the CLWE distribution, and to the latter sampling process as drawing m i.i.d. samples from the null
distribution, which we denote by Q. Here, and everywhere in this proof, the number of samples m
denotes a quantity which depends polynomially on the dimension d.

Let ✏ = ✏(d) 2 (0, 1) be an inverse polynomial, and let A be a polynomial-time learning algorithm
that takes as input m samples from P , and with probability 2/3 outputs a hypothesis h : R ! R
such that LP (h)  LP (E[�(z)])� ✏. Since we are using the squared loss, we can assume without
loss of generality that h : R ! [�1, 1] because clipping the output of the hypothesis h, i.e.,
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h̃(x) = sgn(h) ·max(|h(x)|, 1) is always an improvement over h pointwise because the labels are
always inside the range [�1, 1].

Let D be an unknown distribution on 2m i.i.d. samples, that is equal to either P or Q. Our reduction
consists of a statistical test that distinguishes between D = P and D = Q. Our test is using the
(successful in weakly learning f�,w if D = P ) predictor h returned by A on (some appropriate
function of the first) m out of the 2m samples drawn from D. Then, we compute the empirical loss
of h on the remaining m samples from D, and m samples drawn from Q, respectively, and test

L̂D(h)  L̂Q(h)� ✏/4 . (16)

We conclude D = P if h passes the test and D = Q otherwise. The way we prove that this test
succeeds with probability 2/3� o(1), is by using the fact that A outputs a hypothesis h with ✏-edge
with probability 2/3 when given m samples from P as input. In the following, we now formally
prove the correctness of this test.

We first assume D = P , and consider the first m samples (xi, zi)i=1,...,m drawn from P . Now
observe the elementary equality that for all v 2 R it holds �(v mod 1) = �(v). Hence,

�(�hw, xii+ ⇠i) = �(zi).

Furthermore, notice that by the fact that the � is an L-Lipschitz function we have

�(�hw, xii) + ⇠̃i = �(zi) (17)

for some ⇠̃i 2 [�L|⇠i|, L|⇠i|]. By Mill’s inequality, for all i = 1, 2, . . . ,m we have P[|⇠i| > �/L] p
2/⇡ exp(��2/(2L2⌧2)). Since �/(L⌧) = !(

p
log d), we conclude that

P[
m[

i=1

{|⇠i| > �/L}] 
p
2/⇡ ·m exp(��2/(8⇡2⌧2)) = md�!(1)

= o(1) ,

where the last equality holds because m depends polynomially on d. Hence, it holds that
|⇠0

i
|  L|⇠i|  � ,

for all i = 1, . . . ,m with probability 1�o(1) over the randomnesss of ⇠i, i = 1, 2, . . . ,m. Combining
the above with (17), we conclude that with probability 1 � o(1) over ⇠i, using our knowledge of
(xi, zi), we have at our disposal samples from the function f�,w(x) = �(�hw, xi) corrupted by
adversarial noise of magnitude at most �. Let us write by �(P ) the data distribution obtained by
applying � to labels of the samples from P , and similarly write �(Q) for the null distribution Q.

By assumption and the above, given these samples (xi,�(zi))i=1,2,...,m we have that A outputs an
hypothesis h : Rd

! [�1, 1] such that for m large enough, with probability at least 2/3,

L�(P )(h)  L�(P )

✓
E

(x,z)⇠P

[�(z)]

◆
� ✏,

for some ✏ = 1/poly(d) > 0.

Now, note that by Claim K.6, the marginal distribution of �(�hw, xi) is 2 exp(�2⇡2�2
)-close in

total variation distance to the distribution of �(y), where y ⇠ U([0, 1]). Moreover, notice that since
the loss ` is continuous, and h(x), x 2 Rd and of course �(z), y 2 R both take values in [�1, 1],

sup

(x,y)2Rd⇥R
`(h(x),�(y))  sup

(a,b)2[�1,1]d⇥[�1,1]
`(a, b)  4; . (18)

Let us denote c = E(x,y)⇠Q[�(y)] for simplicity. Clearly |c|, |�(y)|  1. Also,

|L�(P )(c)� L�(Q)(c))| =

���� E
(x,y)⇠P

[(�(y)� c)2]� E
(x,y)⇠Q

[(�(y)� c)2]

����



Z 1

�1
�(y)2|P (y)�Q(y)|dy + 2c

Z 1

�1
|�(y)||P (y)�Q(y)|dy

 (1 + 2|c|)

Z 1

�1
|P (y)�Q(y)|dy

 6 · TV (Py, Qy)

 12 exp(�2⇡2�2
) .
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From the above, since Ez⇠P [�(z)] is the optimal predictor for P under the squared loss, we deduce

L�(P )

✓
E

(x,z)⇠P

[�(z)]

◆
 L�(P )

✓
E

y⇠Q

[�(y)]

◆
 L�(Q)

✓
E

y⇠Q

[�(y)]

◆
+ 12 exp(�2⇡2�2

) .

Now since Ey⇠Q[�(y)] is the optimal predictor for Q under the squared loss, L�(Q)(E[�(y)]) 
L�(Q)(h) for any predictor h. In addition, exp(�2⇡2�2

) = o(✏) since � = !(
p
log d) and ✏ is an

inverse polynomial in d. Hence, for d large enough, with probability at least 2/3
L�(P )(h)  L�(P )(E[�(�hw, xi)])� ✏

 L�(Q)(h) + 12 exp(�2⇡2�2
)� ✏

 L�(Q)(h)� ✏/2 . (19)

Using the remaining m samples from P , we now compute the empirical losses L̂�(P )(h) =

1
m

P
m

i=1 `(h(xi),�(zi)), and L̂�(Q)(h) =
1
m

P
m

i=1 `(h(xi),�(yi)), where (xi, zi) are drawn from
P and (xi, yi) are drawn from Q. By a standard use of Hoeffding’s inequality, and the fact that the
loss is bounded based on (18), it follows that

|L̂�(P )(h)� L�(P )(h)| 
✏

8
,

with probability 1� exp(�⌦(m)) and respectively

|L̂�(Q)(h)� L�(Q)(h)| 
✏

8
,

with probability 1� exp(�⌦(m)) for sufficiently large, but still polynomial in d, m. Combining the
last two displayed equations with (19), we have that, for m large enough, with probability at least
2/3� o(1),

L̂�(P )(h)  L�(P )(h) +
✏

8
 L̂�(Q)(h)�

✏

4
.

Hence, for m large enough, with probability at least 2/3�o(1), the test correctly concludes D = P or
D = Q by using the empirical loss L̂�(D)(h), and comparing it with the value L̂�(Q)(h)� ✏/4.

Corollary D.2 (Restated Corollary 3.4). Let d 2 N, � = �(d) � 2
p
d and ⌧ = ⌧(d) 2 (0, 1) be

such that �/⌧ = poly(d), and � = �(d) be such that �/⌧ = !(
p
log d). Then, a polynomial-time

algorithm that weakly learns the cosine neuron class F� under �-bounded adversarial noise implies
a polynomial-time quantum algorithm for O(d/⌧)-GapSVP.

Proof. The cosine function �(z) = cos(2⇡z) is 2⇡-Lipschitz and 1-periodic. Hence, the result
follows from Theorem D.1 with L = 2⇡.

Remark D.3 (CLWE with subexponentially small noise). The intermediate regime of subexpo-
nentially small noise, which corresponds to the uncharted region between “Crypto-Hard” and

“Polynomial-Time Possible” in Figure 1 where � = exp(�⇥(dc)) for some c 2 (0, 1), has not been
explored in our work. However, we conjecture that this regime is still hard for polynomial-time
algorithms. While [A6] did not consider this noise regime for the CLWE problem, given the prob-
lem’s analogy to the LWE problem [A36], it is plausible that the quantum reduction from CLWE
to GapSVP also applies for subexponentially small noise, since the quantum reduction for LWE
extends to subexponentially small noise. That is, it is possible that the requirement �/� = poly(d)
in Theorem 2.2 can be relaxed, given the high degree of similarity between CLWE and LWE. If
this is true, then a polynomial-time algorithm for CLWE with � � 2

p
d and � 2 (0, 1) implies a

polynomial-time quantum algorithm for O(d/�)-GapSVP. Hence, by Theorem 3.3, a polynomial-time
algorithm for our setting with subexponentially small noise would yield a “breakthrough” quantum
algorithm for GapSVP, since no polynomial-time algorithms are known to achieve subexponential
approximation factors of the form 2

O(dc) for any constant c < 1. In more detail, the best known
algorithms for GapSVP are lattice block reductions, such as the Block Korkin-Zolotarev (BKZ)
algorithm and its variants [A39, A38, A33], or slide reductions [A14, A1], which actually solve the
harder search problem. These block reduction algorithms, which can be seen as generalizations of
the LLL algorithm, trade-off running time for better SVP approximation factors. However, none is
known to achieve approximation factors of the form 2

O(dc) for any constant c < 1 in polynomial
time.
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E LLL-based Algorithm: Exponentially Small Noise

In this section we offer the required missing proofs from the Section 3.3.

E.1 The LLL Algorithm: Background and the Proof of Theorem 2.5

The most crucial component of the algorithm analyzed in this section is an appropriate use of the LLL
lattice basis reduction algorithm. The LLL algorithm receives as input n linearly independent vectors
v1, . . . , vn 2 Zn and outputs an integer combination of them with “small" `2 norm. Specifically, let
us (re)-define the lattice generated by n integer vectors as simply the set of integer linear combination
of these vectors.
Definition E.1. Given linearly independent v1, . . . , vn 2 Zn, let

⇤ = ⇤(v1, . . . , vn) =

(
nX

i=1

�ivi : �i 2 Z, i = 1, . . . , n

)
, (20)

which we refer to as the lattice generated by integer-valued v1, . . . , vn. We also refer to (v1, . . . , vn)
as an (ordered) basis for the lattice ⇤.

The LLL algorithm is defined to approximately solve the search version of the Shortest Vector Problem
(SVP) on a lattice ⇤, given a basis of it. We have already defined decision-SVP in Appendix B.3. We
define the search version below for completeness.
Definition E.2. An instance of the algorithmic�-approximate SVP for a lattice ⇤ ✓ Zn is as follows.
Given a lattice basis v1, . . . , vn 2 Zn for the lattice, ⇤; find a vector bx 2 ⇤, such that

kbxk  � min
x2⇤,x 6=0

kxk .

The following theorem holds for the performance of the LLL algorithm, whose details can be found
in [A26].
Theorem E.3 ([A26]). There is an algorithm (namely the LLL lattice basis reduction algorithm),
which receives as input a basis for a lattice ⇤ given by v1, . . . , vn 2 Zn which

(1) solves the 2
n
2 -approximate SVP for ⇤ and,

(2) terminates in time polynomial in n and log (max
n

i=1 kvik1) .

In this work, we use the LLL algorithm for an integer relation detection application.
Definition E.4. An instance of the integer relation detection problem is as follows. Given a vector
b = (b1, . . . , bn) 2 Rn, find an m 2 Zn

\ {0}, such that hb,mi =
P

n

i=1 bimi = 0. In this case, m
is said to be an integer relation for the vector b.

We now establish Theorem 2.5, by proving following more general result. In particular, Theorem
2.5 follows from the theorem below by choosing M = 2

n+1
km0
k2 and using notation m (used in

Theorem 2.5) instead of m0 (used in Theorem E.5), and m0 (used in Theorem 2.5) instead of t (used
in Theorem E.5).

The following theorem, is rigorously showing how the LLL algorithm can be used for integer relation
detection. The proof of the theorem, is based upon some key ideas of the breakthrough use of the
LLL algorithm to solve the average-case subset sum problem by Lagarias and Odlyzko [A24], and
Frieze [A13], and its recent extensions in the context of regression [A44, A16].
Theorem E.5. Let n,N 2 Z>0. Suppose b 2 (2

�NZ)n with b1 = 1. Let also m0
2 Zn be an integer

relation of b, an integer M � 2
n+1
2 km0

k2 and set b�1 = (b2, . . . , bn) 2 (2
�NZ)n�1. Then running

the LLL basis reduction algorithm on the lattice generated by the columns of the following n ⇥ n
integer-valued matrix,

B =

✓
M2

Nb1 M2
Nb�1

0(n�1)⇥1 I(n�1)⇥(n�1)

◆
(21)

outputs t 2 Zn which
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(1) is an integer relation for b with ktk2  2
n+1
2 km0

k2kbk2 and,

(2) terminates in time polynomial in n,N, logM and log(kbk1).

Proof. It is immediate that B is integer-valued and that the determinant of B is M2
N
6= 0, and

therefore the columns of B are linearly independent. Hence, from Theorem E.3, we have that the
LLL algorithm outputs a vector z = Bt with t 2 Zn such that it holds

kzk2  2
n
2 min

x2Zn\{0}
kBxk2. (22)

Moreover, it terminates in time polynomial in n and log(M2
N
kb1k1) and therefore in time polyno-

mial in n,N, logM and log(kbk1).

Since m0 is an integer relation for b it holds, Bm0
= (0,m0

2, . . . ,m
0
n
)
t and therefore

min
x2Zn\{0}

kBxk2  kBm0
k2  km

0
k2.

Hence, combining with (22) we conclude

kzk2  2
n
2 km0

k2. (23)

or equivalently
q
(Mh2Nb, ti)2 + kt�1k

2
2  2

n
2 km0

k2, (24)

where t�1 := (t2, . . . , tn) 2 Zn�1.

Now notice that since 2
N
hb, ti = h2Nb, ti 2 Z either 2N hb, ti 6= 0 and the left hand side of (24)

is at least M , or 2N hb, ti = 0. Since the former case is impossible given the right hand side of
inequality described in (24) and that M � 2

n+1
2 km0

k2 > 2
n
2 km0

k2 we conclude that 2N hb, ti = 0

or equivalently hb, ti = 0. Therefore, t is an integer relation for b.

To conclude the proof it suffices to show that ktk2  2
n
2 +1
km0
k2kbk2. Now again from (24) and the

fact that t is an integer relation for b, we conclude that

kt�1k2  2
n
2 km0

k2. (25)

But since hb, ti = 0 and b1 = 1 we have by Cauchy-Schwartz and (24)

|t1| = |ht�1, b�1i|  kt�1k2kb�1k2  2
n
2 km0

k2kbk2.

Hence,

ktk2 
p

2max{2
n
2 km0

k2kbk2, 2
n
2 km0

k2}  2
n+1
2 km0

k2kbk2,

since kbk2 � |b1| = 1.

E.2 Towards proving Theorem 3.6: Auxiliary Lemmas

We first repeat the algorithm we analyze here for convenience, see Algorithm 4. Next, we present
here three crucial lemmas towards proving the Theorem 3.6. The proofs of them are deferred to later
sections, for the convenience of the reader.
Remark E.6. While the main recovery guarantee in Theorem 3.6 is stated in terms of the hidden
direction w 2 Sd�1, Algorithm 4 in fact also recovers the vector �w (up to global sign), if one skips
the last line of the algorithm, which normalises the output to the unit sphere. Such recovery is shown
as a crucial step towards establishing the main result. This stronger recovery will be used for exact
phase retrieval (See Appendix F).

The first lemma establishes that given a small, in `2 norm, “approximate" integer relation between
real numbers, one can appropriately truncate each number to some sufficiently large number of bits,
so that the truncated numbers satisfy a small in `2-norm integer relation between them. This lemma is
important for the appropriate application of the LLL algorithm, which needs to receive integer-valued
input. Recall that for real number x we denote by (x)N its truncation to its first N bits after zero, i.e.
(x)N := 2

�N
b2

Nxc.
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Algorithm 4: LLL-based algorithm for learning the single cosine neuron (Restated)

Input: i.i.d. noisy �-single cosine neuron samples {(xi, zi)}
d+1
i=1 .

Output: Unit vector ŵ 2 Sd�1 such that min(kŵ � wk, kŵ + wk) = exp(�⌦((d log d)3)).

for i = 1 to d+ 1 do
zi  sgn(zi) ·min(|zi|, 1)
z̃i = arccos(zi)/(2⇡) mod 1

Construct a d⇥ d matrix X with columns x2, . . . , xd+1, and let N = d3(log d)2.
if det(X) = 0 then

return ŵ = 0 and output FAIL
Compute �1 = 1 and �i = �i(x1, . . . , xd+1) given by (�2, . . . ,�d+1)

>
= X�1x1.

Set M = 2
3d and ṽ =

�
(�2)N , . . . , (�d+1)N , (�1z1)N , . . . , (�d+1zd+1)N , 2�N

�
2 R2d+2

Output (t1, t2, t) 2 Zd+1
⇥ Zd+1

⇥ Z from running the LLL basis reduction algorithm on the
lattice generated by the columns of the following (2d+ 3)⇥ (2d+ 3) integer-valued matrix,

✓
M2

N
(�1)N M2

N ṽ
0(2d+2)⇥1 I(2d+2)⇥(2d+2)

◆

Compute g = gcd(t2), by running Euclid’s algorithm.
if g = 0 _ (t2/g) /2 {�1, 1}d+1 then

return ŵ = 0 and output FAIL
ŵ  SolveLinearEquation(w0, X>w0

= (t2/g)z + (t1/g))
return ŵ/kŵk and output SUCCESS.

Lemma E.7. Suppose n  C0d for some constant C0 > 0 and s 2 Rn satisfies for some m 2 Zn

that |hm, si| = exp(�⌦((d log d)3)). Then for some sufficiently large constant C > 0, if N =

dd3(log d)2e there is an m0
2 Zn+1 which is equal with m in the first n coordinates, which satisfies

that km0
k2  Cd

1
2 kmk2 and is an integer relation for the numbers (s1)N , . . . , (sn)N , 2�N .

The proof of Lemma E.7 is in Section K.3.

The following lemma establishes multiple structural properties surrounding d+ 1 samples from the
cosine neuron, of the form (xi, zi), i = 1, . . . , d+ 1 given by (3).

Lemma E.8. Suppose that �  dQ for some constant Q > 0. For some hidden direction w 2 Sd�1

we observe d+ 1 samples of the form (xi, zi), i = 1, . . . , d+ 1 where for each i, xi is a sample from
the distribution N(0, Id), and

zi = cos(2⇡(�hw, xii)) + ⇠i,

for some unknown and arbitrary ⇠i 2 R satisfying |⇠i|  exp(�(d log d)3). Denote by X 2 Rd⇥d the
random matrix with columns given by the d vectors x2, . . . , xd+1. With probability 1� exp(�⌦(d))
the following properties hold.

(1) maxi=1,...,d+1 kxik2  10
p
d.

(2) mini=1,...,d+1 | sin(2⇡�hxi, wi)| � 2
�d.

(3) For all i = 1, . . . , d + 1 it holds zi 2 [�1, 1] and zi = cos(2⇡(�hxi, wi + ⇠0
i
)), for some

⇠0
i
2 R with |⇠0

i
| = exp(�⌦((d log d)3)).

(4) The matrix X is invertible. Furthermore, kX�1x1k1 = O(2
d
2

p
d).

(5) 0 < |det(X)| = O(exp(d log d)).

The proof of Lemma E.8 is in Section K.3.

As explained in the description of our main results in Section 3.3, a step of crucial importance
is to show that all “near-minimal" integer relations, such as (8), for the (truncated versions of)
�i,�iz̃i, i = 1, . . . , d+ 1 are "informative". In what follows, we show that the integer relation with
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appropriately “small" norm are indeed informative in terms of recovering the unknown ✏i,Ki of (8)
and therefore the hidden vector w. The following technical lemma is of instrumental importance for
the analysis of the algorithm.
Lemma E.9. Suppose that �  dQ for some constant Q > 0, and N = dd3(log d)2e. Let ⇠0 2 Rd+1

be such that k⇠0k1  exp(�(d log d)3) and w 2 Sd�1. Suppose that for all (xi)i=1,...,d+1 are i.i.d.
N(0, Id) and that for each i = 1, . . . , d+1 for some z̃i 2 [�1/2, 1/2] there exist ✏i 2 {�1, 1},Ki 2

Z with |Ki|  dQ such that

�hw, xii = ✏iz̃i +Ki � ⇠0
i
. (26)

Define also X 2 Rd⇥d the matrix with columns the x2, . . . , xd+1 and set �1 = 1 and
(�2, . . . ,�d+1)

t
= X�1x1. Then with probability 1 � exp(�⌦(d)), any integer relation t 2

Z2d+3 between the numbers (�1)N , . . . , (�d+1)N , (�1z̃1)N , . . . , (�d+1z̃d+1)N , 2�N with ktk2 
2
2d satisfies in the first 2d + 2 coordinates it is equal to a non-zero integer multiple of

(K1, . . . ,Kd+1, ✏1, . . . , ✏d+1).

The proof of Lemma E.9 is in Section E.4.

E.3 Proof of Theorem 3.6

We now proceed with the proof of the Theorem 3.6 using the lemmas from the previous sections.

Proof. We analyze the algorithm by first analyze it’s correctness step by step as it proceeds and then
conclude with the polynomial-in-d bound on its termination time.

We start with using part 3 of Lemma E.8 which gives us that zi 2 [�1, 1] with probability 1 �

exp(�⌦(d)) for all i = 1, 2, . . . , d + 1. Therefore the zi’s remain invariant under the operation
zi  sgn(zi)min(|zi|, 1), with probability 1� exp(�⌦(d)). Furthermore, using again the part 3 of
Lemma E.8 the z̃i’s computed in the second step satisfy

cos(2⇡z̃i) = cos(2⇡(�hw, xii+ ⇠0
i
))

for some ⇠0
i
2 R with |⇠0

i
|  exp(�⌦((d log d)3)). Using the 2⇡- periodicity of the cosine as well as

that it is an even function we conclude that for all for i = 1, . . . , d+1 there exists ✏i 2 {�1, 1},Ki 2

Z for which it holds for every i = 1, . . . , d+ 1

�hw, xii = ✏iz̃i +Ki � ⇠0
i
. (27)

Notice that if we knew the exact values of ✏i,Ki, since we already know xi, z̃i the problem would
reduce to inverting a (noisy) linear system of d + 1 equations and d unknowns. The rest of the
algorithm uses an appropriate application of the LLL to learn the values of ✏i,Ki and solve the (noisy)
linear system.

Now, notice that using the part 5 of Lemma E.8 with probability 1� exp(�⌦(d)) the matrix X is
invertible and the algorithm is not going to terminate in the second step.

In the following step, the �i, i = 1, 2, . . . , d + 1 are given by �1 = 1 and the unique �i =

�i(x1, . . . , xd+1) 2 R, i = 2, . . . , d+ 1 satisfying

d+1X

i=1

�ixi = x1 +X(�2, . . . ,�d+1)
>
= 0.

Hence, we conclude that for the unknown direction w it holds
d+1X

i=1

�i�hw, xii = �hw,
d+1X

i=1

�ixii = 0.

Using now (27) and rearranging the noise terms we conclude

d+1X

i=1

�iz̃i✏i +
d+1X

i=1

�iKi =

d+1X

i=1

�i⇠
0
i
. (28)
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Now using the fourth part of Lemma E.8 and the upper bound on k⇠0k1 we have with probability
1� exp(�⌦(d)) that

�����

d+1X

i=1

�i⇠
0
i

����� = O(dk�k1k⇠
0
k1) = O(d2

d
2

p

d exp(�⌦((d log d)3))) = exp(�⌦((d log d)3)).

Hence, using (28) we conclude that with probability 1� exp(�⌦(d)) it holds
�����

d+1X

i=1

�iz̄i✏i +
d+1X

i=1

�iKi

����� = exp(�⌦((d log d)3)). (29)

Define s 2 R2d+2 given by si = �i, i = 1, . . . , d+1 and si = �i�d�1z̃i�d�1, i = d+2, . . . , 2d+2.
Define also m 2 Z2d+2 given by mi = Ki, i = 1, . . . , d+1 and mi = ✏i�d�1, i = d+1, . . . , 2d+2.
For these vectors, given the above, it holds with probability 1 � exp(�⌦(d)) that |hs,mi| =

exp(�⌦((d log d)3)) based on (29). Now notice that

max
i=1,...,d+1

|Ki| = O(�
p

d) (30)

with probability 1� exp(�⌦(d)). Indeed, from the definition of Ki we have for large enough values
of d that |Ki|  �|hw, xii| + 1 + |⇠i|  �kxik2 + 2. Recall that using part 1 of Lemma E.8 for
all i = 1, . . . , d + 1 it holds kxik2 = O(

p
d) with probability 1 � exp(�⌦(d)). Hence, for all i,

|Ki| = O(�
p
d), with probability 1� exp(�⌦(d)). Therefore, since |✏i| = 1 for all i = 1, . . . , d+1

it also holds with probability 1� exp(�⌦(d)) that kmk2 = O(dkKk1) = O(�d
3
2 ).

We now employ Lemma E.7 for our choice of s and m to conclude that for the N chosen by the
algorithm there exists an integer m0

2d+3 so that m0
= (m,m0

2d+3) 2 Z2d+3 is an integer relation for
(�1)N , . . . , (�d+1)N , (�1z1)N , . . . , (�d+1zd+1)N , 2�N with km0

k2 = O(d2�).

Now we set b 2 (2
�NZ)2d+3 given by bi = (�i)N for i = 1, . . . , d+ 1, bi = (�i�d�1z̃i�d�1)N for

i = d + 2, . . . , 2d + 2, and b2d+3 = 2
�N . Notice that b1 = (1)N = 1 and furthermore that the ṽ

defined by the algorithm satisfies ṽ = (b2, . . . , b2d+3). On top of this, we have that the m0 defined in
previous paragraph is an integer relation for b with km0

k2 = O(d2�). Since � is polynomial in d we
have that 2

2d+3+1
2 km0

k2  2
3d for large values of d. Hence, to analyze the LLL step of our algorithm

we use Theorem E.5 for n = 2d+ 3, to conclude that the output of the LLL basis reduction step is a
t = (t1, t2, t0) 2 Zd+1

⇥ Zd+1
⇥ Z which is an integer relation for b and it satisfies that

ktk2  2
d+2
km0
k2kbk2,

with probability 1� exp(�⌦(d)).

Now we use part 4 of Lemma E.8 to conclude that k�k2  dk�k1 = O(2
d
2 d

3
2 ), with probability

1� exp(�⌦(d)). Since for any real number x it holds |(x)N |  |x|+ 1 and z̃i 2 [�1/2, 1/2] for all
i = 1, 2, . . . , d+1 we conclude that kbk2 = O(k�k2) = O(2

d
2 d

3
2 ), with probability 1�exp(�⌦(d)).

Furthermore, since km0
k = O(d2�) we conclude that since � is polynomial in d, for large values of

d it holds,

ktk2 = O(2
3d
2 )  2

2d , (31)
with probability 1� exp(�⌦(d)).

We now use the above and (30) to crucially apply Lemma E.9 and conclude that for some non-zero
integer multiple c it necessarily holds (t1)i = cKi and (t2)i = c✏i, with probability 1� exp(�⌦(d)).
Note that the assumptions of the Lemma can be checked to be satisfied in straightforward manner.
Now, the greatest common divisor between the elements of t2 equals either c or�c, since the elements
of t2 are just c-multiples of ✏i which themselves are taking values either �1 or 1. Hence the step of
the algorithm using Euclid’s algorithm outputs g such that g = ✏c for some ✏ 2 {�1, 1}. In particular,
t2/g = ✏(✏1, . . . , ✏d+1) 6= 0 implying that the algorithm does not enter the if-condition branch on the
next step.

Finally, since c = ✏g it also holds t1/g = ✏(K1, . . . ,Kd+1) and therefore the last step of the
algorithm is solving the linear equations for i = 2, . . . , d+ 1 given by

hxi, ŵi = ✏ (✏iz̃i + ✏Ki) = ✏�hxi, wi+ ✏⇠0
i
,
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where we have used (27). Hence if ⇠0 = (⇠02, . . . , ⇠
0
d+1)

t we have

ŵ = ✏�w + ✏X�1⇠ .

Hence,
kŵ � ✏�wk2  kX

�1⇠k2.

Now, using standard results on the extreme singular values of X , such as [A37, Equation (3.2)],
we have that �max(X�1

) = 1/�min(X)  2
d, with probability 1 � exp(�⌦(d)). Hence, with

probability 1� exp(�⌦(d)) it holds

kŵ � ✏�wk2  O
⇣
2

d
2 k⇠k2

⌘
.

Now since almost surely k⇠k2  d� and �  exp(�(d log d)3) we have 2
d
2 k⇠k2 = O(�) =

exp(�⌦((d log d)3)) and therefore, with probability 1� exp(�⌦(d)) it holds
kŵ � ✏�wk2  O (�) = exp(�⌦((d log d)3)). (32)

Finally, since |kxk2�kx0
k2|  kx�x0

k2 we also have |kŵk2��|  O(�) = exp(�⌦((d log d)3))
and therefore����

ŵ

kŵk
� ✏w

����
2

= ��1

����
�

kŵk2
ŵ � ✏w�

����
2

 ��1

✓
kŵ � ✏�wk2 +

kŵ � �k2
� � |� � kŵk2|

◆

 ��1
(kŵ � ✏�wk2 +O(�))

 O

✓
�

�

◆
= exp(�⌦((d log d)3)) ,

since � = !(�). Since ✏ 2 {�1, 1} the proof of correctness is complete.

For the termination time, it suffices to establish that the step using the LLL basis reduction algorithm
and the step using the Euclid’s algorithm can be performed in polynomial-in-d time. For the LLL
step we use Theorem E.5 to conclude that it runs in polynomial-time in d,N, logM and log k�k1.
Now clearly N, logM are polynomial in d. Furthermore, by part 4 of Lemma E.8 also log k�k1
is polynomial in d with probability 1 � exp(�⌦(d)). The Euclid’s algorithm takes time which is
polynomial in d and in log kt2k1. But we have established in (31) that kt2k2  ktk2  2

2d, with
probability 1 � exp(�⌦(d)) and therefore the Euclid’s algorithm step also indeed requires time
which is polynomial-in-d.

E.4 Proof of Lemma E.9

We focus this section on proving the crucial Lemma E.9. As mentioned above, the proof of the lemma
is quite involved, and, potentially interestingly, it requires the use of anticoncentration properties of
the coefficients �i which are rational function of the coordinates of xi. In particular, the following
result is a crucial component of establishing Lemma E.9.
Lemma E.10. Suppose w 2 Sd�1 is an arbitrary vector on the unit sphere and � � 1. For two
sequences of integer numbers C = (Ci)i=1,2,...,d+1, C 0

= (C 0
i
)i=1,2,...,d+1 we define the polynomial

PC,C0(x1, . . . , xd+1) in d(d+ 1) variables which equals
det(x2, . . . , xd+1) (h�w, x1iC1 + (C 0

)1) (33)

+

d+1X

i=2

det(x2, . . . , xi�1,�x1, xi+1, . . . , xd+1) (h�w, xiiCi + (C 0
)i) ,

where each x1, . . . , xd+1 is assumed to have a d-dimensional vector form.

We now draw xi’s in an i.i.d. fashion from the standard Gaussian measure on d dimensions. For any
two sequences C,C 0 it holds

Var(PC,C0(x1, . . . , xd+1)) = (d� 1)!�2
X

1i<jd+1

(Ci � Cj)
2
+ d!

d+1X

i=1

(C 0
)
2
i
.

Furthermore, for some universal constant B > 0 the following holds. If Ci, C 0
i

are such that either
the Ci’s are not all equal to each other or the C 0

i
’s are not all equal to zero, then for any ✏ > 0,

P(|PC,C0(x1, . . . , xd+1)|  ✏)  B(d+ 1)✏
1

d+1 . (34)
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Proof. The second part follows from the first one combined with the fact that under the assumptions
on C,C 0 in holds that for some i = 1, . . . , d+ 1 either (Ci � C 0

i
)
2
� 1 or (C 0

i
)
2
� 1. In particular,

in both cases since � � 1,

Var(PC,C0(x1, . . . , xd+1)) � (d� 1)! � 1.

Now we employ [A30, Theorem 1.4] (originally proved in [A7]) which implies that for some universal
constant B > 0, since our polynomial is multilinear and has degree d+ 1 it holds for any ✏ > 0

P
✓
|PC,C0(x1, . . . , xd+1)|  ✏

q
Var(PC,C0(x1, . . . , xd+1))

◆
 B(d+ 1)✏

1
d+1 .

Using our lower bound on the variance we conclude the result.

Now we proceed with the variance calculation. First we denote

µ(x�1) := det(x2, . . . , xd+1) ,

and for each i > 2

µ(x�i) := det(x2, . . . , xi�1,�x1, xi+1, . . . , xd+1).

As all coordinates of the xi’s are i.i.d. standard Gaussian, for each i = 1, . . . , d + 1 the random
variable µ(x�i) has mean zero and variance d!. Furthermore, let us denote `(xi) := h�w, xii, which
is a random variable with mean zero and variance �2. In particular µ(x�i)`(xi) has also mean zero
as µ(x�i) is independent with xi. Now notice that under this notation,

PC,C0(x1, . . . , xd+1) =

dX

i=1

Ciµ(x�i)`(xi) +

dX

i=1

C 0
i
µ(x�i).

Hence, we conclude

E[PC,C0(x1, . . . , xd+1)] = 0.

Now we calculate the second moment of the polynomial. We have

E[P 2
C,C0(x1, . . . , xd+1)] =

d+1X

i=1

C2
i
d!�2

+

X

1i 6=jd

CiCjE[µ(x�i)`(xi)µ(x�j)`(xj)] +

d+1X

i=1

C 02
i
d! .

Now for all i 6= j,

E[µ(x�i)`(xi)µ(x�j)`(xj)]

= E[det(. . . , xi�1,�x1, xi+1, . . .) det(. . . , xj�1,�x1, xj+1, . . .)h�w, xiih�w, xji]

=

dX

p,q=1

�2wpwqE[det(. . . , xi�1,�x1, xi+1, . . .) det(. . . , xj�1,�x1, xj+1, . . .)(xi)p(xj)q]

Now observe that the monomials of the product

det(. . . , xi�1,�x1, xi+1, . . .) det(. . . , xj�1,�x1, xj+1, . . .)(xi)p(xj)q

have the property that each coordinate of the various x0
i
s appears at most twice; in other words

the degree per variable is at most 2. Hence, the monomials that could potentially have not zero
mean with respect to the standard Gaussian measure are the ones where all coordinates of every
xi, i = 1, . . . , d + 1 appear exactly twice or none at all, in which case the monomial has mean
equal to the coefficient of the monomial. By expansion of the determinants, we have that the studied
product of polynomials equals to the sum over all �, ⌧ permutations on d variables of the terms

(�1)
sgn(�⌧�1)

(. . . xi�1,�(i�1)(�x1)�(i)xi+1,�i+1 . . .)(. . . xj�1,⌧(j�1)(�x1)⌧(j)xj+1,⌧(j+1) . . .)(xi)p(xj)q.

Hence, a straightforward inspection allows us to conclude that for every coordinate to appear
exactly twice, we need the corresponding permutations �, ⌧ to satisfy ⌧(i) = p,�(j) = q (from the
coordinates (xi)p, (xj)q), �(i) = ⌧(j) (from the coordinate of x1) and finally �(x) = ⌧(x) for all
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x 2 [d] \ {i, j} (the rest coordinates). Furthermore, the value of the mean of this monomial would
then be given simply by (�1)

sgn(�⌧�1).

Now we investigate more which permutations �, ⌧ can satisfy the above conditions. The last two
conditions imply in straightforward manner that ⌧�1� is the transposition (i, j). Hence, ⌧�1�(j) = i.
But we have �(j) = q and therefore i = ⌧�1�(j) = ⌧�1

(q) which gives ⌧(i) = q. We have though
as our condition that ⌧(i) = p which implies that for such a pair of permutations �, ⌧ to exist it must
hold p = q. Furthermore, for any � with �(j) = p there exist a unique ⌧ satisfying the above given
by ⌧ = � � (i, j), where � corresponds to the multiplication in the symmetric group Sd. Hence, if
p 6= q no such pair of permutations exist and the mean of the product is zero. If p = q there are
exactly (d� 1)! such pairs (all permutations � sending j to p and ⌧ given uniquely given �) which
correspond to (d� 1)! monomials with mean (�1)

sgn(�)+sgn(⌧)
= (�1)

sgn(��1
⌧)

= �1, where we
used that the sign of a transposition is �1. Combining the above we conclude that
E[det(. . . , xi�1,�x1, xi+1, . . .) det(. . . , xj�1,�x1, xj+1, . . .)(xi)p(xj)q] = �(d� 1)!1(p = q).

Hence, since kwk2 = 1,

E[µ(x�i)`(xi)µ(x�j)`(xj)] =

dX

p=1

��2w2
p
= ��2.

Therefore,

E[P 2
C,C0(x1, . . . , xd+1)] =

d+1X

i=1

C2
i
d!�2

� (d� 1)!�2
X

1i 6=jd+1

CiCj +

d+1X

i=1

C 02
i
d!

= (d� 1)!�2
X

1i<jd+1

(Ci � Cj)
2
+ d!

d+1X

i=1

(C 0
)
2
i
.

The proof is complete.

We now proceed with the proof of Lemma E.9.

Proof of Lemma E.9. Let t1, t2 2 Zd+1, t0 2 Z with k(t1, t2, t0)k2  2
2d which is an integer

relation;
d+1X

i=1

(�i)N (t1)i +
d+1X

i=1

(�iz̃i)N (t2)i + t02�N
= 0.

First note that it cannot be the case that t1 = t2 = 0 as from the integer relation it should be also
that t0 = 0 and therefore t = 0 but an integer relation needs to be non-zero. Hence, from now on we
restrict ourselves only to the case where t1, t2 are not both zero. Now, as clearly |t0|  2

2d it also
holds �����

d+1X

i=1

(�i)N (t1)i +
d+1X

i=1

(�iz̃i)N (t2)i

�����  2
2d
2
�N .

Consider T the set of all pairs t = (t1, t2) 2 (Zd+1
⇥ Zd+1

) \ {0} for which there does not exist a
c 2 Z \ {0} such that for i = 1, . . . , d+ 1 (t1)i = cKi and (t2)i = c✏i.

To prove our result it suffices therefore to prove that

P

0

@
[

t2T ,ktk222d

(�����

d+1X

i=1

(�i)N (t1)i +
d+1X

i=1

(�iz̃i)N (t2)i

�����  2
2d/2N

)1

A  exp(�⌦(d))

for which, since for any x it holds |x�(x)N |  2
�N and k(t1, t2)k1 

p
2(d+ 1)k(t1, t2)k2  2

3d

for large values of d, it suffices to prove that for large enough values of d,

P

0

@
[

t2T ,ktk222d

(�����

d+1X

i=1

�i(t1)i +
d+1X

i=1

�iz̃i(t2)i

�����  2
4d/2N

)1

A  exp(�⌦(d)).
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Notice that by using the equations (26) it holds
d+1X

i=1

�i(t1)i +
d+1X

i=1

�iz̃i(t2)i

=

d+1X

i=1

�i(t1)i +
d+1X

i=1

�i(✏i�hw, xii � ✏iKi + ✏i⇠
0
i
)(t2)i

=

d+1X

i=1

�i (✏ih�w, xii(t2)i � ✏iKi(t2)i + ✏i⇠i(t2)i + (t1)i)

=

d+1X

i=1

�i (h�w, xiiCi + C 0
i
) +

dX

i=1

�i⇠
0
i
Ci,

for the integers Ci = ✏i(t2)i and C 0
i
= �✏iKi(t2)i + (t1)i. Since t 2 T some elementary alge-

bra considerations imply that either not all (Ci)i=1,...,d+1 are equal to each other or one of the
(C 0

i
)i=1,2,...,d+1 is not equal to zero. Let us call this region of permissible pairs (C,C 0

) as C. Fur-
thermore, given that all t satisfy ktk2  2

2d, and that for all Ki satisfy |Ki|  dQ it holds that any
(C,C 0

) defined through the above equations with respect to t1, t2, ✏i,Ki satisfies the crude bound
that

k(C,C 0
)k

2
2  kt2k

2
2 + 2(d2Qkt2k

2
2 + kt1k

2
2)  2

6d.

Hence, using this refined notation it suffices to show

P

0

@
[

(C,C0)2C,k(C,C0)k223d

(�����

d+1X

i=1

�i (h�w, xiiCi + C 0
i
) +

dX

i=1

�i⇠iCi

�����  2
4d/2N

)1

A  exp(�⌦(d)).

Now notice that from our exponential-in-d norm upper bound assumptions on C, the part 4 of Lemma
E.8, and since N = o((d log d)3), the following holds with probability 1� exp(�⌦(d))

dX

i=1

|�i⇠iCi| = O(2
4d
k⇠k1) = O(exp(�(d log d)3)) = O(2

�N
).

Hence it suffices to show that for large enough values of d,

P

0

@
[

(C,C0)2C,k(C,C0)k223d

(�����

d+1X

i=1

�i (h�w, xiiCi + C 0
i
)

�����  2
5d/2N

)1

A  exp(�⌦(d)).

Using the polynomial notation of Lemma E.10 and specifically notation (33), as well as the fact that
by Cramer’s rule �i are rational functions of the coordinates of xi satisfying �idet(x2, . . . , xd+1) =

det(. . . , xi�1,�x1, xi+1, . . .) it suffices to show

P

0

@
[

(C,C0)2C,k(C,C0)k223d

{|PC,C0(x1, . . . , xd+1)|  |det(x2, . . . , xd+1)|2
5d/2N}

1

A  exp(�⌦(d)).

Using the fifth part of the Lemma E.8 there exists some constant D > 0 for which it suffices to show

P

0

@
[

(C,C0)2C,k(C,C0)k223d

{|PC,C0(x1, . . . , xd+1)|  2
Dd log d/2N}

1

A  exp(�⌦(d)).

Now since N = ⇥(d3(log d)2) we have N = !(d log d). Hence, for sufficiently large d it suffices to
show

P

0

@
[

(C,C0)2C,k(C,C0)k223d

{|PC,C0(x1, . . . , xd+1)|  2
�N

2 }

1

A  exp(�⌦(d)).
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By a union bound, it suffices
X

(C,C0)2C,k(C,C0)k223d

P
⇣
|PC,C0(x1, . . . , xd+1)|  2

�N
2

⌘
 2

�⌦(d). (35)

Now the integer points (C,C 0
) with `2 norm at most 23d are at most 23d

2+d as they have at most
2
3d+1 choices per coordinate. Furthermore, using the anticoncentration inequality (34) of Lemma

E.10, we have for any (C,C 0
) 2 C that it holds for some universal constant B > 0,

P
⇣
|PC,C0(x1, . . . , xd+1)|  2

�N
2

⌘
 B(d+ 1)2

� N
2(d+1) .

Combining the above with the left hand side of (35), the right hand side is at most

B(d+ 1)2
3d2+d

2
� N

2(d+1) = exp(O(d2)� ⌦(N/d)) = exp(�⌦(d)),

where we used that N/d = ⌦(d2 log d). This completes the proof.

F Exact Recovery for Phase Retrieval with Optimal Sample Complexity

Phase retrieval is a classic inverse problem [A12] with important applications in computational
physics and signal processing, and which has been thoroughly studied in the high-dimensional
statistics and non-convex optimization literature [A4, A21, A18, A35, A5, A9, A28, A29, A34]. In
the noiseless setting, the phase retrieval problem asks one to exactly recover a hidden signal w 2 Rd,
up to global symmetry ±w, given sign-less measurements of the form

y = |hx,wi| .

As mentioned in Section 1.2, our cosine learning problem can be seen as “containing” the phase
retrieval problem since the even-ness of the cosine function immediately “erases” the sign of the inner
product hx,wi. More precisely, the phase retrieval problem can be reduced to the cosine learning
problem by simply applying the cosine function to the measurements and noticing that

cos(2⇡|hx,wi|) = cos(2⇡hx,wi) .

Hence, Algorithm 1, without the last normalization step (see Remark E.6), can be immediately used to
exactly solve phase retrieval under exponentially small noise. Formally, Theorem 3.6 (for � = kwk2)
certifies near exact recovery for (Gaussian) phase retrieval using only d+ 1 samples:
Corollary F.1 (Recovery of Phase Retrieval under exponentially small noise). Let us consider
noise level �  (2⇡)�1

exp(�(d log d)3), and arbitrary w 2 Rd such that 1  kwk2 = poly(d).
Suppose {(xi, yi)}i=1,...d+1 are i.i.d. samples of the form xi ⇠ N(0, Id) and yi = |hxi, wi| + ⇠̌i,
with arbitrary |⇠̌i|  �. Then Algorithm 1 with input {(xi, zi = cos(2⇡yi))}i=1,...d+1 returns an
un-normalized output w0 satisfying min{kw0

�wk2, kw0
+wk2} = O(�) and terminates in poly(d)

steps, with probability 1� exp(�⌦(d)).

Remarkably, our lattice-based algorithm improves upon the AMP-based algorithm analysed in [A5],
which requires m ⇡ 1.128d in the high-dimensional regime for exact recovery, and therefore shows
that AMP is not optimal amongst polynomial-time algorithms in the regime of exponentially small
adversarial noise. Hence, this adds phase retrieval to a list of problems, including for example linear
regression with discrete coefficients, where in the exponentially-small noise regime no computational-
statistical gap is present [A44] [A23, Section 4.2.1]. We note that the possibility that LLL might
be efficient for exponentially-small noise phase retrieval was already suggested in [A44] and later
established for discrete-valued w in [A16]. In fact, previous results by [A2] have already shown
that exact (i.e., noiseless) phase retrieval is possible with optimal sample complexity using an LLL-
based algorithm very similar to ours. We also remark that our result is stated under the Gaussian
distribution, as opposed to generic i.i.d. entries as in [A5]. The reason is that we rely crucially on
anti-concentration properties of random low-degree polynomials, which are satisfied in the Gaussian
case [A7, A30]. However, these anti-concentration properties can be extended to log-concave random
variables [A7, Theorem 8], and as a result our analysis easily extends to xi following a product
distribution of a density which is both log-concave and sub-Gaussian. In this respect, we strengthen
previous results by [A2], whose analysis is tailored to the Gaussian case.
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An interesting question is whether the sample size d + 1 is information-theoretically optimal to
recover w up to error � from the studied phase retrieval setting. In other words, whether the recovery
is possible with d samples by any estimator, and irrespective of any computational constraints. For
simplicity, we focus on the noiseless case � = 0, in which case the goal is exact recovery. We note
that the answer depends on the prior knowledge on w, or, assuming throughout a rotationally invariant
prior for w, on the prior distribution of kwk. Indeed, in the extreme setting where the hidden vector
w 2 Rd is unconstrained, we immediately observe that there are 2

d possible vectors w0 satisfying
|hxi, w0

i| = |hxi, wi|. As a consequence, by taking into consideration the global sign flip symmetry,
exact recovery is possible only with probability at most 2�d+1. On the other extreme, if one knew
that kwk = 1, then generically only two (w and �w) of these 2

d possibilities will satisfy the exact
norm constraint, making exact recovery (up to global sign flip) possible with only d samples in that
case. The following theorem addresses the general case between these two extremes, and establishes
that exact recovery using only d samples cannot be generally certified with high probability, in stark
contrast with Corollary F.1.

Theorem F.2. Assume a uniform prior on the direction w/kwk2 2 Sd�1, and assume that � =

kwk2 > 0 is distributed independently of w according to a probability density q� which satisfies the
following assumption: For some B >

p
2 and C > 0, the function q� : R! [0,+1) satisfies

q�(t)t
�d+1 is non-increasing in t 2 [1, B] , and

Z
B

p
2
q�(t)dt � C. (36)

Consider d � 2 i.i.d. samples {xi, yi = |hxi, wi|}i=1...d, where xi are i.i.d. N(0, Id) and w is
drawn from two independent variables: w/kwk uniformly distributed in Sd�1 and kwk is distributed
with density q� satisfying (36). Let A be any estimation procedure (deterministic or randomized)
that takes as input {(xi, yi)}i=1,...,d and outputs w0

2 Rd. Then with probability !(d�2
) it holds

w0
62 {�w,w}.

This theorem is proved in Appendix J. The main idea of the proof is to show that, with non-neglibile
probability (!(d�2

)), some of the ‘spurious’ solutions w0 satisfying |hxi, w0
i| = |hxi, wi| are such

that kw0
k  kwk. Combined with our assumption on the prior q� and the optimality of MAP

estimators in terms of error probability, the result follows. We also note that Assumption (36) is very
mild, and is satisfied e.g. when � is uniformly distributed in [1, B], or when w is either uniformly
distributed in a circular ring, or follows a Gaussian distribution. Therefore, our proposed algorithm, as
well as the algorithm used in [A2], obtains a sharp optimal sample complexity in this phase-retrieval
setup, in the sense that even one less sample than the sample complexity of our algorithm is not
sufficient for exact recovery with high probability.

Finally, we would like to highlight that our result and the described lower bound should be also
understood in contrast with the recently established weak recovery threshold that d/2(1 + o(1))
measurements actually suffice for achieving some non-trivial (constant) error with w [A35].

G Approximation with One-Hidden-Layer ReLU Networks

The members of the cosine function class F� = {cos(2⇡�hw, xi) | w 2 Sd�1
} consist of a

composition of the univariate 2⇡-Lipschitz, 1-periodic function �(z) = cos(2⇡z), and an one-
dimensional linear projection z = �hw, xi. Notice that since x ⇠ N(0, Id), z lies within the
interval [�R,R], where R = �

p
2 log(1/�), with probability at least 1� � due to Mill’s inequality

(Lemma K.3). Hence, to achieve ✏-squared loss over the Gaussian input distribution, it suffices for the
ReLU network to uniformly approximate the univariate function �(z) = cos(2⇡z) on some compact
interval [�R(�, ✏), R(�, ✏)], and output 0 for all z 2 R outside the compact interval.

The uniform approximability of univariate Lipschitz functions by the family of one-hidden-layer
ReLU networks on compact intervals is well-known. To establish our results, we will use the
quantitative result from [A11], which we reproduce here as Lemma G.1. We present our ReLU
approximation result for the cosine function class right after, in Theorem G.2.

Lemma G.1 ([A11, Lemma 19]). Let �(z) = max{0, z} be the ReLU activation function, and fix
L, ⌘, R > 0. Let f : R! R be an L-Lipschitz function which is constant outside an interval [�R,R].
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There exist scalars a, {↵i,�i}
w

i=1, where w  3
RL

⌘
, such that the function

h(x) = a+

wX

i=1

↵i�(x� �i)

is L-Lipschitz and satisfies
sup
x2R

��f(x)� h(x)
��  ⌘.

Moreover, one has |↵i|  2L.
Theorem G.2. Let d 2 N, � � 1, and ✏ 2 (0, 1) be a real number. Then, the cosine function class
F� = {cos(2⇡�hw, xi) | w 2 Sd�1

} can be ✏-approximated (in the squared loss sense) over the
Gaussian input distribution x ⇠ N(0, Id) by one-hidden-layer ReLU networks of width at most

O

✓
�
q

log(1/✏)
✏

◆
.

Proof. Let R = d�
p

2 log(8/✏)e+ 1/2, and z = �hw, xi. Then, by Mill’s inequality (Lemma K.3)
and the fact that R > �,

P(|z| � R) 

r
2

⇡
exp

✓
�

R2

2�2

◆


✏

8
. (37)

Let f : R ! R be a function which is equal to cos(2⇡z) on [�R,R] and 0 outside the compact
interval. We claim that f is still 2⇡-Lipschitz. First, note that cos(2⇡R) = cos(�2⇡R) = 0.
Moreover, f is 2⇡-Lipschitz within the interval [�R,R] and 0-Lipschitz in the region |z| > R.
Hence, it suffices to consider the case when one point z falls inside [�R,R] and another point z0
falls outside the interval. Without loss of generality, assume that z 2 [�R,R] and z0 > R. The same
argument applies for z0 < �R. Then,

|f(z0)� f(z)| = |f(R)� f(z)|  2⇡|R� z|  2⇡|z0 � z| .

Now set L = 2⇡, ⌘ =
p
✏/2, R = d�

p
2 log(8/✏)e + 1/2 in the statement of Lemma G.1, and

approximate f with a one-hidden-layer ReLU network g(z) of width at most O
✓
�
q

log(1/✏)
✏

◆
.

Then,
E

x⇠N(0,Id)
[(cos(2⇡�hw, xi)� g(�hw, xi))2] = E

z⇠N(0,�)
[(cos(2⇡z)� g(z))2]

=
1

�
p
2⇡

Z
(cos(2⇡z)� g(z))2 exp(�z2/(2�2

))dz

=
1

�
p
2⇡

Z

|z|R

(cos(2⇡z)� g(z))2 exp(�z2/(2�2
))dz

+
1

�
p
2⇡

Z

|z|>R

(cos(2⇡z)� g(z))2 exp(�z2/(2�2
))dz

 ⌘2 +
4

�
p
2⇡

Z

|z|>R

exp(�z2/(2�2
))dz

 ⌘2 + 4(✏/8)

< ✏ ,

where the first inequality follows from the fact that the squared loss is bounded by 4 for all z /2
[�R,R] since cos(2⇡z) 2 [�1, 1] and g(z) 2 [�⌘, ⌘] ⇢ [�1, 1] and the second inequality uses (37).
This completes the proof.

H Covering Algorithm for the Unit Sphere

The (very simple) randomized exponential-time algorithm for constructing an ✏-cover of the d-
dimensional unit sphere Sd�1 is presented in Algorithm 5. We prove the algorithm’s correctness in
the following claim, which is essentially an appropriate application of the coupon collector problem.
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Algorithm 5: Exponential-time algorithm for constructing an ✏-cover of the unit sphere
Input: A real number ✏ 2 (0, 1), and natural number d 2 N.
Output: An ✏-cover of the unit sphere Sd�1 containing 2N logN points, where

N = (1 + 4/✏)d with probability 1� exp(�⌦(d)).

Initialize the cover C = ;, and set m = 2N logN .
for i = 1 to m do

Sample x ⇠ N(0, 1)
v  x/kxk2
Add v 2 Sd�1 to C

return C.

Claim H.1. Let d 2 N be a number, let ✏ 2 (0, 1) be a real number, and let N = d(1 + 4/✏)de.
Then, d2N logNe vectors sampled from Sd�1 uniformly at random forms an ✏-cover of Sd�1 with
probability at least 1� exp(�⌦(d)).

Proof. By Lemma C.2, we know that there exists an ✏/2-cover of Sd�1 with size less than N =

d(1 + 4/✏)de. Let us assume for simplicity and without loss of generality, that it’s size equals to N ,
by adding additional arbitrary points on the sphere to the cover if necessary. We denote this ✏/2-cover
by K. Of course, K ✓ Sd�1 by the definition of an ✏-cover in [A42, Section 4.2].

Now, observe that any family W of M vectors on the sphere, say W = {w1, . . . , wM}, with the
property that for any v 2 K there exist i 2 [M ] such that kv � wik2  ✏/2 is an ✏-cover of Sd�1.
Indeed, let x 2 Sd�1. Since K is an ✏/2-cover, there exist v 2 K with kx� vk2  ✏/2. Moreover,
using the property of the family W , there exists some i 2 [M ] for which kv � wik2  ✏/2. By
triangle inequality we have kwi � xk2  ✏.

Now, by definition of the ✏/2-cover it holds
[

v2K

�
B(v, ✏/2) \ Sd�1

�
= Sd�1,

where by B(x, r) we denote the Euclidean ball in Rd with center x 2 Rd and radius r. Hence,
denoting by µ the uniform probability measure on the sphere, by a simple union bound we conclude
that for all v 2 K, Nµ(B(v, ✏/2) \ Sd�1

) � 1 or

µ(B(v, ✏/2) \ Sd�1
) �

1

N
. (38)

In other words, if we fix some v 2 K and sample a uniform point w on the sphere, it holds that with
probability at least 1/N we have kw � vk2  ✏/2.

Hence, the probability that M random i.i.d. unit vectors w1, . . . , wM are all at distance more than
✏/2 from a fixed v 2 K is upper bounded by

P
 

M\

i=1

{kui � vk2 > ✏/2}

!
 (1� 1/N)

m
 exp(�m/N) .

Now let M = 2N logN . By the union bound, the probability that there exists some v 2 K not
covered by M random unit vectors w1, . . . , wM is upper bounded by

P
 
[

v2K
{kui � vk2 > ✏/2 for all i = 1, . . . ,M}

!
 |K| · exp(�M/N)  1/N .

Since N = exp(⌦(d)), we conclude that M = 2N logN random unit vectors form an ✏-cover of
Sd�1 with probability 1� exp(�⌦(d)). The proof is complete.
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I The Population Loss and Parameter Estimation

Let f(x) = cos(2⇡�hw, xi) be the target function defined on Gaussian inputs x ⇠ N(0, Id). In this
section, we consider the proper learning setup, where we wish to learn a unit vector w0 such that the
hypothesis gw0(x) = cos(2⇡�hw0, xi) achieves small squared loss with respect to the target function
f . Towards this goal, we define the squared loss associated with a unit vector w0

2 Sd�1.
Definition I.1. Let d 2 N, � � 1, and w 2 Sd�1 be some fixed hidden direction. For any w0

2 Sd�1,
we define the population loss L(w0

) of the hypothesis gw0(x) = cos(2⇡�hw0, xi) with respect to w
by

L(w0
) = Ex⇠N(0,Id)[(cos(2⇡�hw, xi)� cos(2⇡�hw0, xi))2] . (39)

Notice that because the cosine function is even, the population loss inherits the sign symmetry and
satisfies that L(w0

) = L(�w0
) for all w0

2 Sd�1. Reflecting that symmetry, we obtain a Lipschitz
relation between the population loss and the squared `2 difference between w and w0 (or �w0 if
kw + w0

k2  kw � w0
k2). In particular, when � is diverging, we can rigorously show that recovery

of w with o(1/�) `2-error is sufficient for (properly) learning the associated cosine function with
constant edge. This is formally stated in Corollary I.3. We start with the following useful proposition.
Proposition I.2. For every w0

2 Sd�1 it holds

L(w0
) = 2

X

k22Z�0

(2⇡�)2k

k!
exp(�4⇡2�2

)
�
1� hw,w0

i
k
�
. (40)

In particular,
L(w0

)  4⇡2�2
min{kw � w0

k
2
2, kw + w0

k
2
2}. (41)

Proof. Let {hk}k2Z�0
be the (probabilist’s) normalized Hermite polynomials. We have that the pair

Z = hw, xi, Z⇢ = hw0, xi is a bivariate pair of standard Gaussian random variables with correlation
⇢ = hw,w0

i. Using the fact that hk’s form an orthonormal basis in Gaussian space (See item (1) of
Lemma K.10), we have by Parseval’s identity that

L(w0
) = 2(E[cos(2⇡�Z)

2
]� E[cos(2⇡�Z) cos(2⇡�Z⇢)])

= 2

X

k2Z

�
E[cos(2⇡�Z)hk(Z)]

2
� E[cos(2⇡�Z)hk(Z)]E[cos(2⇡�Z⇢)hk(Z)]

�
.

Using now item (2) of Lemma K.10 for ⇢ = 1 and for ⇢ = hw,w0
i, we have

L(w0
) = 2

X

k2Z

✓
(2⇡�)2k

k!
exp(�4⇡2�2

)� hw,w0
i
k
(2⇡�)2k

k!
exp(�4⇡2�2

)

◆

= 2

X

k22Z�0

(2⇡�)2k

k!
exp(�4⇡2�2

)
�
1� hw,w0

i
k
�
,

as we wanted for the first part.

For the second part, notice that since the summation on the right hand from Eq. (40) is only containing
an even power of hw,w0

i it suffices to establish the upper bound in terms of kw � w0
k
2
2. The exact

same argument can be used to obtain the upper bound in terms of kw + w0
k
2
2, due to the observed

sign symmetry of the population loss with respect to w0.

Now notice that using the elementary inequality that for ↵ 2 (0, 1), x � 1 we have (1�a)x � 1�ax,
we conclude that for all k � 0 (the case k = 0 is trivial) it holds

1� hw,w0
i
k
= 1� (1�

1

2
kw � w0

k
2
2)

k


k

2
kw � w0

k
2
2 .

Hence, combining with the first part, we have

L(w0
) 

X

k22Z�0

k
(2⇡�)2k

k!
exp(�4⇡2�2

)kw � w0
k
2
2



X

k2Z�0

k
(2⇡�)2k

k!
exp(�4⇡2�2

)kw � w0
k
2
2 .
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Now notice that
P

k2Z�0
k (2⇡�)2k

k! exp(�4⇡2�2
) is just the mean of a Poisson random variable with

parameter (and mean) equal to 4⇡2�2. Hence, the proof of the second part of the proposition is
complete.

The following Corollary is immediate given the above result and the item (3) of Lemma K.10.
Corollary I.3. Let d 2 N and � = �(d) = !(1). For any w0

2 Sd�1 which satisfies min{kw �
w0
k
2
2, kw + w0

k
2
2} 

1
16⇡2�2 and sufficiently large d,

L(w0
)  Var(cos(2⇡�hw, xi))� 1/12 .

Proof. Using our condition and w0 and the second part of the Proposition I.2 we conclude

L(w0
) 

1

4
.

Now using item (3) of Lemma K.10 we have that for large values of d (since � = !(1)), it holds

1

3
 Var(cos(2⇡�hw, xi)) .

The result follows from combining the last two displayed inequalities.

J Optimality of d+ 1 samples for exact recovery under norm priors

In this appendix, we argue that d+ 1 samples are necessary in order to obtain exact recovery with
probability 1� exp(�⌦(d)), irrespective of any estimation procedure. Since our upper bound holds
for arbitrary w/kwk2 2 Sd�1, and arbitrary 1  � = kwk2 = poly(d), it suffices to prove a lower
bound for some distributional assumption on � and w/kwk2 which respects these constraints. Hence,
for our lower bound, we assume a uniform prior on the direction w/kwk2 2 Sd�1, and assume that
� = kwk2 > 0 is distributed independently of w according to a probability density q� which satisfies
the following assumption.

Assumption J.1. For some B >
p
2 and C > 0, the function q� : R ! [0,1) satisfies that

q�(t)t�d+1 is non-increasing for t 2 [1, B], and
R
Bp
2 q�(t)dt � C.

We now state our lower bound, restating Theorem F.2 for convenience.
Theorem J.2. Consider d � 2 samples {(xi, yi = |hxi, wi|)}i=1...d, in which the xi’s are drawn
i.i.d. from N(0, Id), and w is drawn from two independent variables: w/kwk uniformly distributed in
Sd�1 and kwk distributed with density satisfying Assumption J.1. Let A be any estimation procedure
(deterministic or randomized) that takes as input {(xi, yi)}i=1,...,d and outputs w0

2 Rd. Then with
probability !(d�2

) it holds w0
62 {�w,w}.

Proof. The key idea of the proof will be to establish that with probability !(d�2
) over the

draws of the data {xi}i=1,...,d and the hidden vector w, the following event occurs: There ex-
ist a pair of antipodal solutions {�w0, w0

} different from ±w, such that the posterior prob-
ability measure p(w̃ | {(xi, yi)}i=1,...,d) over any possible hidden vector w̃ 2 Rd satisfies
p({�w0, w0

} | {(xi, yi)}) � p({�w,w}| | {(xi, yi)}). In this event, the MAP estimator will
thus fail to exactly recover {�w,w} at least with probability 1/2 (over the randomness of the algo-
rithm). Finally, using the optimality of the Maximum-a-Posteriori Bayes estimator in minimizing the
probability of error, the result follows.

Let X = (xi)i=1...d 2 Rd⇥d, be the matrix where for i = 1, . . . , d with i-th row equal to x>
i

, and
X�1 its inverse (which exists with probability 1 since the determinant of a squared matrix with i.i.d.
Gaussian entries is non-zero almost surely [A8]). Furthermore, let y = (yi)i=1...d 2 Rd the vector of
the labels. Let us introduce binary variables " 2 {�1, 1}d, and the associated matrix

A" := X�1
diag(")X, .

where by diag(") we refer to the d⇥ d diagonal matrix with the vector " on the diagonal.
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We say that a w0
2 Rd is a feasible solution if for all i = 1, . . . , d it holds that |hxi, w0

i| = yi. Notice
that if w0 is a feasible solution, then for any " 2 {�1, 1}d, A"w0 is also a feasible solution. This
follows since for each i = 1, . . . , d it holds by definition x>

i
X�1

= e>
i

, where ei is the i-th standard
basis vector, and therefore x>

i
A✏ = "ix>

i
. Hence we have

|x>
i
A"w

0
| = |"ix

>
i
w0

| = yi .

On the other hand, if w0 is a feasible solution, then there exists " 2 {�1, 1}d, for which for all
i = 1, . . . , d, it holds hxi, w0

i = "iyi. Therefore, using the definition of yi and the already established
properties of A",

hxi, w
0
i = "iyi = x>

i
"iw = x>

i
A"w .

Hence, X(w0
�A"w) = 0. As X is invertible almost surely, we conclude that w0

= A"w. Combining
the above, we conclude that the set of feasible solutions is almost surely the set

Bw = {A"w|" 2 {�1, 1}d}.

Of course, this set includes w when " = 1 is the all-one vector, and �w when " = �1 is the all-
minus-one vector. Furthermore, from the almost sure linear independence of all xi, i = 1, . . . , d+ 1,
and that w is drawn independent of X , we conclude that for all " 62 {�1,1} it holds almost surely
that A"w 62 {�w,w}.

Now consider the joint density of the setup in this notation (where we recall that w̃ 2 Rd denotes the
generic vector to be recovered, while w is the actual draw of the prior), which decomposes as

p(X, w̃, y) = pX(X) · pw̃(w̃) · p(y | X, w̃) , X 2 Rd⇥d, w̃ 2 Rd, y 2 Rd .

Notice that since we work under the noiseless assumption it holds p(y | X, w̃) = � (y � |Xw̃|),
where by a slight abuse of notation for a vector v 2 Rd we denote by |v| 2 Rd the vector with
elements |vi|, i = 1, . . . , d. Further recall that in this notation we sample a hidden w ⇠ pw̃ and
independently a matrix X ⇠ pX . We observe the vector of labels y = |Xw| and X . The posterior
probability p(w̃ | X, y) is therefore

p(w̃ | X, y) =
p(X, w̃, y)

p(X, y)
/ pw̃(w̃) · p(y | X, w̃) . (42)

From our previous argument, we know that this posterior distribution is necessarily supported in the
set Bw of 2d points of the form (X�1

· diag("))y for any " 2 {�1, 1}d, which include w. Denoting
by �(w̃) the Dirac unit mass at w̃, we have

p(w̃ | X, y) =
1

Z

X

w02Bw

↵X,y(w
0
)�(w̃ � w0

) , (43)

for some normalizing constant Z and some coefficients ↵X,y(") that we now determine. We evaluate
the posterior distribution over w̃ from (42) using the coarea formula [A27]: Given an arbitrary test
function � 2 C1

c
(Rd

), and F : Rd
! Rd defined as F (u) := |Xu|, we have

Z

Z

Rd

p(w̃ | X, y)�(w̃)dw̃ =

Z

Rd

pw̃(w̃)�(y � F (w̃))�(w̃)dw̃ (44)

=

Z

Rd

 Z

F�1(z)
�(y � z)pw̃(u)�(u)|DF (u)|�1dH0(u)

!
dz(45)

=

Z

Rd

�(y � z)

✓Z

Bz

pw̃(u)�(u)|DF (u)|�1dH0(u)

◆
dz (46)

=

X

w02Bw

pw̃(w
0
)�(w0

)|det(X)|
�1 , (47)

where dH0 is the 0-th dimensional Hausdorff measure. From (43) we also have that
Z

Rd

p(w̃ | X, y)�(w̃)dw̃ =

X

w02Bw

↵X,y(w
0
)�(w0

) ,

39



hence we deduce that the weights in (43) satisfy

8 " , ↵X,y(X
�1

· diag(")y) = pw̃(X
�1

· diag(")y)|det(X)|
�1 .

By plugging y = |Xw| = diag("⇤)Xw for the sign coefficients "⇤
i
= sign(hxi, wi), and recalling

the definition of A", we conclude that the posterior distribution over the hidden vector w̃ satisfies
almost surely

p(w̃ | X, y) =

⇢
1
Z
pw̃(w̃) w̃ 2 Bw

0 w̃ 62 Bw

where Z :=
P

w̃2Bw
pw̃(w̃).

Now to prove the desired result, based on the folklore optimality of the Maximum-A-Posteriori (MAP)
estimator in minimizing probability of failure of exact recovery (see Lemma J.4 for completeness) it
suffices to prove that with probability !(d�2

) there exists w0
2 Bw \ {�w,w} such that

pw̃(w
0
) � pw̃(w) . (48)

Indeed, recall that since pw̃ is rotationally invariant, we have pw̃(w̃) = pw̃(�w̃) for any w̃, therefore
(48) immediately implies pw̃(±w0

) � pw̃(±w). Hence, the MAP estimator (and therefore any
estimator) fails to exactly recover an element of {w,�w} with probability !(d�2

), as we wanted.

Now, using a standard change of variables to spherical coordinates, for all w̃ 2 Rd the density of
the prior equal to pw̃(w̃) = q�(kw̃k2)kw̃k

�d+1
2 . In particular, based on Assumption 36 it suffices to

prove that with probability !(d�2
) there exists a w0

2 Bw \ {�w,w} such that 1  kw0
k2 < kwk2,

or equivalently there exists " 2 {�1, 1}d \ {�1,1} such that

1  kA"wk2 < kwk2 . (49)

We establish (49) by actually studying only one such ", potentially the simplest choice, which we call
"(1) where "(1)1 = �1 and "(1)

j
= +1 for j = 2, . . . , d. This is accomplished by the following key

lemma:

Lemma J.3. Suppose X 2 Rd⇥d has i.i.d. N(0, Id) entries, and w is drawn independently of X ,
such that w/kwk2 is drawn from the uniform measure of Sd�1 and its norm kwk2 is independent
of w/kwk2 and distributed according to a density q� satisfying Assumption (36). Set also A"(1) =

X�1
diag("(1))X . Then with probability greater than !(d�2

), it holds

1  kA"(1)wk2 < kwk2 . (50)

This lemma thus proves (49) and the failure of the MAP estimator with probability !(d�2
).

We conclude the proof by formally stating and using the optimality of the MAP estimator in terms
of minimizing the error probability, by relating it to a standard error correcting setup. From our
previous argument, we can reduce ourselves to decoders that operate in the discrete set Bw, since any
w̃ outside this set will be different from ±w almost surely.

Lemma J.4. Suppose X is a discrete set, and let x⇤
2 X be an element to be recovered, with

posterior distribution p(x|y), x 2 X , after having observed the output y = g(x⇤
). Then, any

estimator producing x̂ = x̂(y) will incur in an error probability P(x̂ 6= x⇤
) at least 1�maxx p(x|y),

with equality if x̂ is the Maximum-A-Posterior (MAP) estimator which outputs argmaxx p(x|y).

We apply the Lemma J.4 for X containing all the pairs of antipodal elements of Bw, that is X =

{{w0,�w0
} : w0

2 Bw} and x⇤
= {w,�w}. As we have established that the MAP estimator fails to

exactly recover x⇤ with probability !(d�2
) this completes the proof.
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J.1 Proof of Lemma J.3

Proof. If e1 denotes the first standard basis vector, observe that by elementary algebra,

A"(1) = X�1
�
Id � 2e1e

>
1

�
X = Id � 2x̃1x1 , (51)

where x>
1 is the first row of X and x̃1 is the first column of X�1.

We need a spectral decomposition of matrices of the form A = Id � 2uv>, which is provided in the
following lemma:

Lemma J.5. Let ⌘ 2 R and A = Id � 2⌘uv> 2 Rd⇥d, with kuk2 = kvk2 = 1, and ↵ = hu, vi.
Then A>A has the eigenvalue 1 with multiplicity d� 2, and two additional eigenvalues �1,�2 with
multiplicity 1 given by

�1 = 1 + 2⌘
⇣
⌘ � ↵�

p
⌘2 + 1� 2⌘↵

⌘
, �2 = 1 + 2⌘

⇣
⌘ � ↵+

p
⌘2 + 1� 2⌘↵

⌘
. (52)

In particular, �min(A>A) = �1 < 1 and �max(A>A) = �2 > 1 whenever ⌘ > 0 and |↵| < 1.

From (51), we now apply Lemma J.5. By noting that hx1, x̃1i = 1 since XX�1
= Id, note that the

lemma applies for A"(1) with parameters

↵ =

⌧
x1

kx1k2
,

x̃1

kx̃1k2

�
=

1

kx1k2 · kx̃1k2
, and ⌘ = kx1k2 · kx̃1k2 .

Since |↵| 2 (0, 1] by Cauchy-Schwarz and and ↵⌘ = 1, it follows that ⌘ � 1 and the eigenvalues of
A>

"(1)
A"(1) are

�
�min(A>

"(1)
A"(1)), 1, . . . , 1,�max(A>

"(1)
A"(1))

�
, with

�min(A
>
"(1)

A"(1)) = 1 + 2⌘
⇣
⌘ � ↵�

p
⌘2 � 1

⌘
= �1 + 2⌘2 � 2⌘

p
⌘2 � 1 (53)

�max(A
>
"(1)

A"(1)) = 1 + 2⌘
⇣
⌘ � ↵+

p
⌘2 � 1

⌘
= �1 + 2⌘2 + 2⌘

p
⌘2 � 1 . (54)

In fact, we claim that |↵| < 1 with probability 1, which by Lemma J.5 implies that

�min(A
>
"(1)

A"(1)) < 1 < �max(A
>
"(1)

A"(1)) . (55)

Indeed, recalling from Lemma J.5 that by definition ↵ = h
x1

kx1k ,
x̃1

kx̃1k i with x̃1 = (X>X)
�1x1, first

observe that |↵| < 1 almost surely. Indeed, |↵| = 1 iff x̃1 and x1 are colinear, that is for some scalar
� it holds (X>X)

�1x1 = �x1, which in particular implies that x1 is an eigenvector of (X>X)
�1,

or equivalently of X>X . Letting yi = x>
i
x1, this means that

�x1 = (X>X)x1 =

 
X

i

xix
>
i

!
x1 =

X

i

xiyi .

Since X has rank d almost surely, {xi}i=1...d are linearly independent almost surely, which in turn
implies that yi = hx1, xii = 0 for i 6= 1 almost surely. This is a 0-probability event since the xi’s are
continuously distributed and independent of each other.

In what follows to ease notation we denote "(1) simply by " and in particular A"(1) simply by A". In
the following lemma we establish that ⌘ . d2 with probability close to 1. The proof of this fact is
given in Section J.2. More precisely, we claim the following:

Lemma J.6. There exist constants C > 0 and d0 > 0 such that for any d � d0,

P
�
⌘  Cd2

�
� 1� 1/d .

We shall now establish (50) building from Lemma J.6. We first relate the spectrum of A" with the
probability that kA"wk2 < kwk2 or equivalently

���A"
w

kwk2

���
2
< 1. Let w̌ := w/kwk, so w = �w̌,

with w̌ 2 Sd�1 uniformly distributed, and independent from �. We claim that with respect to the
randomness of w̌ but conditioning on X it holds

Pw̌(kA"w̌k < 1) =
2

⇡
arcsin

 s
1� �min(A>

"
A")

�max(A>
"
A")� �min(A>

"
A")

!
. (56)

41



Indeed, assuming without loss of generality that the two eigenvectors of A>
"
A" associated with the

distinct eigenvalues �min(A>
"
A") and �max(A>

"
A") are respectively e1 and e2, the first two standard

basis vectors, we have that

kA"w̌k
2
2 = �min(A

>
"
A")w̌

2
1 + �max(A

>
"
A")w̌

2
2 +

X

i>2

w̌2
i
,

and therefore, using the uniform distribution on Sd�1 of w̌, it holds

Pw̌(kA"w̌k2 < 1) = Pw̌(kA"w̌k
2
2  kw̌k

2
)

= Pw̌(�min(A
>
"
A")w̌

2
1 + �max(A

>
"
A")w̌

2
2  w̌2

1 + w̌2
2)

= Pw̌

✓
�min(A

>
"
A")

w̌2
1

w̌2
1 + w̌2

2

+ �max(A
>
"
A")

w̌2
2

w̌2
1 + w̌2

2

 1

◆

= P✓⇠U [0,2⇡]

�
�min(A

>
"
A") cos(✓)

2
+ �max(A

>
"
A") sin(✓)

2
 1

�
,(57)

where the last equality follows since the marginal of w̌ corresponding to the first two coordinates is
also rotationally invariant.

From the last identity of (57) and (55), we verify that

P✓⇠U [0,2⇡]

�
�min(A

>
"
A") cos(✓)

2
+ �max(A

>
"
A") sin(✓)

2
 1

�

=
1

2⇡

Z 2⇡

0

⇥
�min(A

>
"
A") cos(✓)

2
+ �max(A

>
"
A") sin(✓)

2
 1

⇤
d✓

=
2

⇡

Z
⇡/2

0

⇥
�min(A

>
"
A") cos(✓)

2
+ �max(A

>
"
A") sin(✓)

2
 1

⇤
d✓

=
2

⇡
✓⇤ ,

where ✓⇤ is the only solution in (0,⇡/2) of

�min(A
>
"
A") cos(✓)

2
+ �max(A

>
"
A") sin(✓)

2
= 1 . (58)

From (58) we obtain directly (56), as claimed.

Now, the quantity ⇢ :=
1��min(A

>
" A")

�max(A>
" A")��min(A>

" A")
, expressed in terms of ↵ = 1/⌘ and ⌘ becomes

⇢ =
1� �min(A>

"
A")

�max(A>
"
A")� �min(A>

"
A")

=
�⌘2 + ⌘

p
⌘2 � 1 + 1

2⌘
p

⌘2 � 1
,

and satisfies 0  ⇢ = ⇢(⌘) < 1 almost surely. Denoting

f(⌘) := arcsin (
p
⇢) ,

we verify that f 0
(⌘) < 0 for ⌘ � 1. In order to leverage Lemma J.6, we consider the event

that ⌘  C2d2. We can lower bound f(⌘) as follows. First, observe that t 7! arcsin(
p
t) is

non-decreasing in t 2 (0, 1), thus

f(⌘) � arcsin

0

@

s
⌘(
p
⌘2 � 1�

p
⌘2) + 1

2⌘2

1

A ,

since

�⌘2 + ⌘
p
⌘2 � 1 + 1

2⌘
p
⌘2 � 1

�
�⌘2 + ⌘

p
⌘2 � 1 + 1

2⌘2
=

⌘(
p
⌘2 � 1�

p
⌘2) + 1

2⌘2
.

Moreover, since
p
t+ 1�

p
t = 1

2
p
t
+O(t�3/2

), we have that

⌘(
p
⌘2 � 1�

p
⌘2) + 1

2⌘2
=

3

4
⌘�2

+O(⌘�4
) ,
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which, combined with the fact that arcsin(t) = t+O(t3) for |t|  1, leads to

f(⌘) �
3

4
⌘�1

+O(⌘�2
) .

Finally, using Lemma J.6 and the definition of f(⌘), we obtain that

Pw̌(kA"w̌k  1) �
6

4⇡C2
d�2

+O(d�4
)

with probability (over X) greater than 1/2. Since X and w are independent, we conclude that

PX,w̌(kA"w̌k  1) �
1

2

✓
6

4⇡C2
d�2

+O(d�4
)

◆
= C4d

�2
+O(d�4

) , (59)

where C4 is a constant.

Now we show that

Pw̌

⇣
kA"w̌k

2
2 � 1� 1/

p

d
⌘
� 1� exp

⇣
�⌦(

p

d)
⌘

.

Recall that w̌ is distributed uniformly on the sphere Sd�1, and that all eigenvalues of A>
"
A" are all

greater or equal to 1, except for �min. Assuming without loss of generality that e1 is the eigenvector
corresponding to �min, we have for any w̌ 2 Sd�1,

kA"w̌k
2
2 � 1� w̌2

1 .

Let H be the hemisphere H = {w̌1  0 | w̌ 2 Sd�1
}. By the classic isoperimetric inequality for the

unit sphere Sd�1 [A25, Chapter 1], the measure of the r-neighborhood of H , which we denote by
Hr = {u 2 Sd�1

| dist(u,H)  r}, satisfies

Pw̌(Hr) = Pw̌(w̌1  r) � 1� exp(�(d� 1)r2/2) .

An analogous inequality holds for the event {w̌1 � �r} by the sign symmetry of the distribution of
w̌. Plugging in r = d�1/4, It follows that

Pw̌

⇣
kA"w̌k

2
� 1� 1/

p

d
⌘
� Pw̌

⇣
1� w̌2

1 � 1� 1/
p

d
⌘

= Pw̌

⇣
|w̌1|  1/d1/4

⌘

� 1� exp

⇣
�⌦(

p

d)
⌘

.

Therefore, combining the above with (59) using the union bound, we obtain

PX,w̌

⇣p
1� d�1/2  kA"w̌k  1

⌘
� C4d

�2
+O(d�4

)� exp(�⌦(

p

d)) = C4d
�2

+O(d�4
) .

(60)

Finally, since B >
p
2 and

p

1� d�1/2 � 1/
p
2, we have

Pw̃(�
p
1� d�1/2 � 1) = Pw̃

✓
� �

1
p

1� d�1/2

◆

=

Z
B

1p
1�d�1/2

q�(v)dv := Qs (61)

Since w = �w̌, where w̌ is uniformly distributed in S
d�1 and � is independent of w̌, we conclude by

assembling (60) and (61) that

PX,w (1  kA"wk  kwk) � (C4d
�2

+O(d�4
))Qs = C5d

�2
+O(d�4

) ,

since Qs � Q1/
p
2 � C for d � 2 thanks to Assumption 36. This concludes the proof of (50).
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J.2 Auxiliary Lemmas

Proof of Lemma J.4. Observe that
P(x̂ 6= x⇤

) = 1� P(x̂ = x⇤
) = 1� p(x̂|y) � 1�max

x
p(x|y) ,

with equality if x̂ is the Maximum-a-Posteriori estimator.

Proof of Lemma J.5. First notice that we can reduce to a two-by-two matrix, since the directions
orthogonal to both u and v clearly belong to an eigenspace of eigenvalue 1. The result follows directly
by computing the characteristic equation det[A>A� �I] = 0.

Proof of Lemma J.6. First, observe that since the law of X is rotationally invariant, we can assume
without loss of generality that x1 is proportional to e>1 , the first standard basis vector. Using the
Schur complement, we have

X =

✓
kx1k2 0

v X̄

◆
, and X�1

=

✓
kx1k

�1
2 0

b X̄�1

◆
, (62)

where v is the (d� 1)-dimensional vector given by vi = kx1k
�1
2 hx1, xi+1i = xi+1,1 ⇠ N(0, 1), X̄

is a (d� 1)⇥ (d� 1) matrix whose entries are drawn i.i.d. from N(0, 1), and b = �kx1k
�1
2 X̄�1v.

Observe that X̄ and v are independent, since the choice of basis depends only on x1. The coordinates
of v are independent as well for the same reason. It follows that

kx̃1k
2
2 = kx1k

�2
2

�
1 + kX̄�1vk22

�

 kx1k
�2
2

�
1 + kX̄�1

k
2
· kvk22

�
, (63)

where kX̄�1
k = maxu2Sd�1 kX̄�1uk2 is the operator norm of X̄�1. Now let ↵ be a fixed constant,

which will be specified later. Additionally, assume that d is sufficiently large so that ↵d4 � 2. From
Eq. (63), we have that

P{⌘2 � ↵d4}  P
�
kx1k

2
2

�
kx1k

�2
2

�
1 + kX̄�1

k
2
· kvk22

��
� ↵d4

 

= P
�
1 + kX̄�1

k
2
· kvk22 � ↵d4

 

 P
�
kX̄�1

k
2
· kvk22 � ↵d4/2

 

= P
n
kX̄�1

k · kvk2 �
p
↵/2 · d2

o
. (64)

To upper bound Eq. (64), we use the fact that X̄�1 and v are independent, and split the event into two
cases: {kvk2 �

p
d/2} and {kvk2 <

p
d/2}. By [A42, Theorem 3.1.1], we know that there exists a

constant C1 > 0 such that

P
n
kvk2 <

p

d/2
o
 exp(�C1 · d) .

Moreover, by [A41, Theorem 1.2], we have that for sufficiently large d, there exists a universal
constant C2 > 0 such that for any t > 0,

P
n
kX̄�1

k � t
p

d
o
 C2/t .

By setting ↵ = 2C2
2 and d sufficiently large so that exp(�C1d)  1/(2d), we have

P
n
kX̄�1

k · kvk2 �
p
↵/2 · d2

o

 P
n
kX̄�1

k ·

p

d/2 �
p
↵/2 · d2

o
· P

n
kvk2 >

p

d/2
o
+ P

n
kvk2 

p

d/2
o

 P
n
kX̄�1

k ·

p

d/2 �
p
↵/2 · d2

o
+ exp(�C1d)

= P
n
kX̄�1

k �

p

2↵ · d3/2
o
+ exp(�C1d)

 C2/(
p

2↵ · d) + exp(�C1d)

 1/d .

Therefore,

P{⌘ �
p

2C2 · d
2
} = P{⌘2 � 2C2

2 · d4}  P
n
kX̄�1

k · kvk2 � C2 · d
2
o
 1/d .
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K Auxiliary Results

K.1 The Periodic Gaussian

Definition K.1. Let  s(z) : [�1/2, 1/2)! R+ be the periodic Gaussian density function defined
by

 s(z) :=
1X

k=�1

1

s
p
2⇡

exp

 
�

1

2

⇣z � k

s

⌘2
!

.

We refer to the parameter s, the standard deviation of the Gaussian before periodicization, as the
“width” of the periodic Gaussian  s.
Remark K.2. For intuition, we can consider two extreme settings of the width s. If s⌧ 1, then  s

is close in total variation distance to the Gaussian of standard deviation s since the tails outside
[�1/2, 1/2) will be very light. On the other hand, if s � 1, then  s is close in total variation
distance to the uniform distribution on [0, 1). This intuition is formalized in Claim K.6.

The Gaussian distribution on R satisfies the following tail bound called Mill’s inequality.
Lemma K.3 (Mill’s inequality [A42, Proposition 2.1.2]). Let z ⇠ N(0, 1). Then for all t > 0, we
have

P(|z| � t) =

r
2

⇡

Z 1

t

e�x
2
/2dx 

1

t
·

r
2

⇡
e�t

2
/2 .

The Poisson summation formula, stated in Lemma K.5 below, will be useful in our calculations. We
first define the dual of a lattice ⇤ to make the formula easier to state.
Definition K.4. The dual lattice of a lattice ⇤, denoted by ⇤⇤, is defined as

⇤
⇤
= {y 2 Rd

| hx, yi 2 Z for all x 2 ⇤} .

A key property of the dual lattice is that if B is a basis of ⇤ then (BT
)
�1 is a basis of ⇤⇤; in particular,

det(⇤
⇤
) = det(⇤)

�1, where det(⇤) is defined as det(⇤) = det(B) (the determinant of a lattice is
basis-independent) [A31, Chapter 1].

For “nice” functions defined any lattice, the following formula holds [A10, Theorem 2.3].
Lemma K.5 (Poisson summation formula). For any lattice ⇤ ⇢ Rd and any function f : Rd

! C
satisfying some “niceness” assumptions4,

X

x2⇤

f(x) = det(⇤
⇤
) ·

X

y2⇤⇤

bf(y) ,

where bf(y) =
R
Rd f(x)e�2⇡ihy,xidx, and ⇤⇤ is the dual lattice of ⇤.

Note that by the properties of the Fourier transform, for a fixed c 2 Rd

X

x2⇤+c

f(x) =
X

x2⇤

f(x+ c) = det(⇤
⇤
)

X

y2⇤⇤

exp(�2⇡ihc, yi) · bf(y) .

Claim K.6 (Adapted from [A40, Claim 2.8.1]). For any s > 0 and any z 2 [�1/2, 1/2) the periodic
Gaussian density function  s(z) satisfies

 s(z) 
1

s
p
2⇡

⇣
1 + 2(1 + s2)e�1/(2s2)

⌘
.

and

| s(z)� 1|  2(1 + 1/(4⇡s)2)e�2⇡2
s
2

.

4For our purposes, it suffices to know that the Gaussian function of any variance s > 0 satisfies this niceness
assumption. Precise conditions can be found in [A10, Theorem 2.3].
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Proof. We first derive an expression for  s(0) using the Poisson summation formula. Note that
the Fourier transform of f(y) = exp(�y2/2) is given by bf(u) =

p
2⇡ · exp(�2⇡2u2

). Moreover,
viewing Z as a one-dimensional lattice, the determinant of the dual lattice ((1/s)Z)⇤ = sZ is s.
Hence,

 s(0) =
1

s
p
2⇡

X

y2(1/s)Z
exp(�y2/2)

=
det(sZ)

p
2⇡

s
p
2⇡

·

X

u2sZ
exp(�2⇡2u2

)

=

X

u2sZ
exp(�2⇡2u2

) . (65)

We now observe that  s(z)   s(0) for any z 2 [�1/2, 1/2). This can again be shown using the
Poisson summation formula as follows.

 s(z) =
1

s
p
2⇡

X

y2(1/s)Z+z/s

exp(�y2/2)

=

X

u2sZ
exp(�2⇡iuz/s) · exp(�2⇡2u2

)



X

u2sZ
| exp(�2⇡iuz/s)| · exp(�2⇡2u2

)



X

u2sZ
exp(�2⇡2u2

)

=  s(0) .

Hence, it suffices to upper bound  s(0) and show a lower bound for  s(z) for all z 2 [�1/2, 1/2).
For the first upper bound, we use Mill’s inequality (Lemma K.3) to obtain

 s(0) =
1

s
p
2⇡

X

y2(1/s)Z
exp(�y2/2)


1

s
p
2⇡

✓
1 + 2 exp(�1/(2s2)) + 2

Z 1

1
exp(�x2/(2s2))dx

◆


1

s
p
2⇡

�
1 + 2(1 + s2) exp(�1/(2s2))

�
.

For the second upper bound, we use Eq. (65) and Mill’s inequality to obtain

 s(0) =

X

u2sZ
exp(�2⇡2u2

)

= 1 +

X

u2sZ\{0}
exp(�2⇡2u2

)

= 1 + 2

1X

k=1

exp(�2⇡2s2k2)

 1 + 2 exp(�2⇡2s2) + 2

Z 1

1
exp(�2⇡2s2x2

)dx

 1 + 2(1 + 1/(4⇡s)2) exp(�2⇡2s2) .
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For the lower bound on  s(z), we use the Poisson summation formula and Mill’s inequality again to
obtain

 s(z) =
X

u2sZ
exp(�2⇡izu/s) · exp(�2⇡2u2

)

= 1 +

X

u2sZ\{0}
exp(�2⇡izu/s) · exp(�2⇡2u2

)

� 1� 2

1X

k=1

| exp(�2⇡izk)| · exp(�2⇡2s2k2)

� 1� 2

✓
exp(�2⇡2s2) +

Z 1

1
exp(�2⇡2s2x2

)dx

◆

� 1� 2(1 + 1/(4⇡s)2) exp(�2⇡2s2) .

K.2 Auxiliary Lemmas for the Constant Noise Regime

Lemma K.7. Fix some ⌧ 2 (0, 1]. Then, for arccos : [�1, 1]! [0,⇡] it holds that

sup

x,y2[�1,1],|x�y|⌧

| arccos(x)� arccos(y)|  arccos(1� ⌧).

Proof. Let us fix some arbitrary ⇠ 2 [0, ⌧ ] and consider the function G(x) = arccos(x)�arccos(x+
⇠). Given the fact that arccos is decreasing, it suffices to show that |G(x)|  arccos(1� ⌧) for all
x 2 [�1, 1� ⇠]. By direct computation it holds

G0
(x) = �

1
p
1� x2

+
1p

1� (x+ ⇠)2

=
⇠(2x+ ⇠)

p
1� x2

p
1� (x+ ⇠)2(

p
1� x2 +

p
1� (x+ ⇠)2)

.

Hence, the function G decreases until x = �⇠/2 and increases beyond this point. Consequently, G
obtains its global maximum at one the endpoints of [�1, 1� ⇠]. But since cos(⇡ � a) = � cos(a)
for all a 2 R it also holds for all b 2 [�1, 1] arccos(�b) + arccos(b) = ⇡. Hence,

G(�1) = ⇡ � arccos(�1 + ⇠) = arccos(1� ⇠) = G(1� ⇠).

Therefore,

G(x)  arccos(1� ⇠)  arccos(1� ⌧).

The proof is complete.

K.3 Auxiliary Lemmas for the Exponentially Small Noise Regime

Lemma K.8. [Restated Lemma E.7] Suppose n  C0d for some constant C0 > 0 and s 2 Rn

satisfies for some m 2 Zn that |hm, si| = exp(�⌦((d log d)3)). Then for some sufficiently large
constant C > 0, if N = dd3(log d)2e there is an m0

2 Zn+1 which is equal with m in the first n
coordinates, satisfies km0

k2  Cd
1
2 kmk2 and is an integer relation for the (s1)N , . . . , (sn)N , 2�N .

Proof. We start with noticing that since N = o((d log d)3) we have

|hm, si|  exp(�⌦((d log d)3)) = O(2
�N

) .
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Hence, since for any real number x we have |x� (x)N |  2
�N , it holds

nX

i=1

mi(si)N =

nX

i=1

misi +O(

nX

i=1

mi2
�N

)

= O(2
�N

) +O(

nX

i=1

|mi|2
�N

)

= O(

nX

i=1

|mi|2
�N

).

Now observe that the number
P

n

i=1 mi(si)N is a rational number of the form a/2N , a 2 Z. Hence
using the last displayed equation we can choose some integer m0

n+1 with
nX

i=1

mi(si)N = m0
n+12

�N .

for which using Cauchy-Schwartz and n = O(d) it holds

|m0
n+1| = O(kmk1) = O(

p
nkmk2) = O(

p

dkmk2).

Hence m0
= (m1, . . . ,mn,�m0

n+1) is an integer relation for (s1)N , . . . (sn)N , 2�N . On top of that

km0
k
2
2  kmk

2
2 +O(dkmk22) = O(dkmk22).

This completes the proof.

Lemma K.9 (Restated Lemma E.8). Suppose that �  dQ for some Q > 0. For some hidden
direction w 2 Sd�1 we observe d+1 samples of the form (xi, zi), i = 1, . . . , d+1 where for each i,
xi is a sample from N(0, Id) samples, and

zi = cos(2⇡(�hw, xii)) + ⇠i,

for some unknown and arbitrary ⇠i 2 R satisfying |⇠i|  exp(�(d log d)3). Denote by X 2 Rd⇥d the
random matrix with columns given by the d vectors x2, . . . , xd+1. With probability 1� exp(�⌦(d))
the following properties hold.

(1)

max
i=1,...,d+1

kxik2  10

p

d.

(2)

min
i=1,...,d+1

| sin(2⇡�hxi, wi)| � 2
�d.

(3) For all i = 1, . . . , d+ 1 it holds zi 2 [�1, 1] and

zi = cos(2⇡(�hxi, wi+ ⇠0
i
)),

for some ⇠0
i
2 R with |⇠0

i
| = exp(�⌦((d log d)3)).

(4) The matrix X is invertible. Furthermore,

kX�1x1k1 = O(2
d
2

p

d).

(5)

0 < |det(X)| = O(exp(d log d)).

Proof. For the first part, notice that for each i = 1, 2, . . . , d + 1, the quantity kxik
2
2 is distributed

like a �2
(d) distribution with d degrees of freedom. Using standard results on the tail of the �2

distribution (see e.g. [A43, Chapter 2]) we have for each i,

P
⇣
kx1k2 � 10

p

d
⌘
= exp(�⌦(d)).
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Hence,

P
 

d+1[

i=1

kxik2 � 10

p

d

!
 (d+ 1)P

⇣
kx1k2 � 10

p

d
⌘
= O(d exp�⌦(d)

) = exp(�⌦(d)),

For the second part, first notice that for large d the following holds: if for some ↵ 2 R we have
| sin(↵)|  2

�d then for some integer k it holds |↵ � k⇡|  2
�d+1. Indeed, by substracting an

appropriate integer multiple of ⇡ we have ↵� k⇡ 2 [�⇡/2,⇡/2]. Now by applying the mean value
theorem for the branch of arcsin defined with range [�⇡/2,⇡/2] we have that

|↵� k⇡| = | arcsin(sin↵)� arcsin(0)| 
1p

1� ⇠2
| sin↵| 

1

1� ⇠2
2
�d

for some ⇠ with |⇠|  | sin↵|  2
�d. Hence, using the bound on ⇠ we have

|↵� k⇡| 
1

1� 2�2d
2
�d
 2

�d+1 .

Using the above observation, we have that if for some i it holds | sin(2⇡�hxi, wi)|  2
�d then for

some integer k 2 Z it holds |hxi, wi �
k

2� | 
1
�
2
�d. Furthermore, since by Cauchy-Schwartz and

the first part with probability 1� exp(�⌦(d)) we have

|hxi, wi|  kxik  10

p

d,

it suffices to consider only the integers k satisfying |k|  10�
p
d, with probability 1� exp(�⌦(d)).

Hence,

P
 

d+1[

i=1

| sin(2⇡�hxi, wi)|  2
�d

!
 P

0

@
d+1[

i=1

[

k:|k|10�
p
d

|hxi, wi �
k

2�
| 

1

�
2
�d

1

A

 20d
p

d� sup
k2Z

P
✓
|hx1, wi � k/2�| 

1

�
2
�d

◆

 40d
p

d2�d

= exp(�⌦(d)),

where we used the fact that hx1, wi is distributed as a standard Gaussian, and that for a standard
Gaussian Z and for any interval I of any interval of length t it holds P(Z 2 I)  1p

2⇡
t  t.

For the third part, notice that from the second part for all i = 1, . . . , d+ 1 it holds

1� cos
2
(2⇡�hxi, wi) = sin

2
(2⇡�hxi, wi) = ⌦(2

�2d
)

with probability 1 � exp(�⌦(d)). Hence, since k⇠k1  exp(�(d log d)3) we have that for all
i = 1, . . . , d+ 1 it holds

zi = cos(2⇡�hxi, wi)) + ⇠i 2 [�1, 1],

with probability 1� exp(�⌦(d)). Hence, the existence of ⇠0
i

follows by the fact that image of the
cosine is the interval [�1, 1]. Now by mean value theorem we have

⇠i = cos(2⇡(�hxi, wi+ ⇠0
i
))� cos(2⇡�hxi, wi)) = 2⇡�⇠0

i
sin(2⇡�t)

for some t 2 (hxi, wi � |⇠i|, hxi, wi+ |⇠i|). By the 1-Lipschitzness of the sine function, the second
part and the exponential upper bound on the noise we can immediately conclude

| sin(2⇡�t)| � sin(2⇡�hxi, wi)� |⇠i| = ⌦(2
�d

),

with probability 1� exp(�⌦(d)). Hence it holds |⇠0
i
|⌦(2

�d
)  |⇠i| and therefore

|⇠0
i
|  2

d
|⇠i| = exp(�⌦((d log d))3)

with probability 1� exp(�⌦(d)).
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For the fourth part, for the fact that X is invertible, consider its determinant, that is the random
variable det(X). The determinant is non-zero almost surely, i.e. det(X) 6= 0 almost surely. This
follows from the fact that the determinant is a non-zero polynomial of the entries of X , e.g. for
X = Id it equals one, hence, using folklore results as all entries of X are i.i.d. standard Gaussian
it is almost surely non-zero [A8]. Now, using standard results on the extreme singular values of
X , such as [A37, Equation (3.2)], we have that �max(X�1

) = 1/�min(X)  2
d, with probability

1� exp(�⌦(d)). In particular, using also the first part, it holds

kX�1x1k1  kX
�1x1k2 

p
�max(X�1)kx1k2  2

d
2

p

d,

with probability 1� exp(�⌦(d)).

For the fifth part, notice that the determinant is non-zero from the fourth part.

For the upper bound on the determinant, we apply Hadamard’s inequality [A19] and part 1 of the
Lemma to get that

|det(x2, . . . , xd+1)| 

d+1Y

i=2

kxik2  (10

p

d)d = O(exp(d log d)),

with probability 1� exp(�⌦(d)).

K.4 Auxiliary Lemmas for the Population Loss

Fix some hidden direction w 2 Sd�1. Recall that for any w0
2 Sd�1, we denote by

L(w0
) = Ex⇠N(0,Id)[(cos(2⇡�hw, xi)� cos(2⇡�hw0, xi))2] .

Lemma K.10. Let us consider the (probabilist’s) normalized Hermite polynomials on the real line
{hk}k2Z�0

. The following identities hold for Z ⇠ N(0, 1).

(1) For all k, ` 2 Z�0

E[hk(Z)h`(Z)] = [k = `] .

(2) Let Z⇢ be a standard Gaussian which is ⇢-correlated with Z. Then, for all � > 0, k 2 Z�0,

E[hk(Z) cos(2⇡�Z⇢)] = (�1)
k/2⇢k

(2⇡�)k
p
k!

exp(�2⇡2�2
) · [k 2 2Z�0] .

(3) The performance of the trivial estimator, which always predicts 0, equals

Var(cos(2⇡�Z)) =

X

k22Z�0\{0}

(2⇡�)2k

k!
exp(�4⇡2�2

) =
1

2
+O(exp(�⌦(�2

))) .

Proof. The first part follows from the standard property that the family of normalized Hermite
polynomials form a complete orthonormal basis of L2

(N(0, 1)) [A23, Proposition B.2].
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For the second part, recall the basic fact that we can set Z⇢ = ⇢Z+
p
1� ⇢2W for some W standard

Gaussian independent from Z. Using [A23, Proposition 2.10], we get

E[hk(Z) cos(2⇡�Z⇢)] = E[hk(Z) cos(2⇡�(⇢Z +

p
1� ⇢2W )]

=
1
p
k!
E

dk

dZk
cos(2⇡�(⇢Z +

p
1� ⇢2W )

�

= (�1)
k/2

(2⇡⇢�)k
1
p
k!
E[cos(2⇡�(⇢Z +

p
1� ⇢2W )] · (k 2 2Z�0)

+ (�1)
(k+1)/2

(2⇡⇢�)k
1
p
k!
E[sin(2⇡�(⇢Z +

p
1� ⇢2W )] · (k 62 2Z�0)

= (�1)
k/2

(2⇡⇢�)k
1
p
k!
E[cos(2⇡�(⇢Z +

p
1� ⇢2W )] · (k 2 2Z�0)

= (�1)
k/2

(2⇡⇢�)k
1
p
k!
E[cos(2⇡�Z)] · (k 2 2Z�0)

= (�1)
k/2

(2⇡⇢�)k
1
p
k!

exp(�2⇡2�2
) · (k 2 2Z�0) ,

where (a) in the third to last line we used that the sin is an odd function and therefore when k is
odd the corresponding term is zero, (b) in the second to last line we used that Z⇢ follows the same
standard Gaussian law as Z and, (c) in the last line we used the characteristic function of the standard
Gaussian to conclude that for any t > 0,

E[cos(tZ)] = Re[E[eitZ ]] = e�t
2
/2 .

For the third part, notice that by applying the result from part (1) and the result from part (2) (for
⇢ = 1) it holds,

Var(cos(2⇡�Z)) =

X

k2Z�0\{0}

E[cos(2⇡�Z)hk(Z)]
2

=

X

k22Z�0\{0}

(2⇡�)2k

k!
exp(�4⇡2�2

)

=

X

k22Z�0

(2⇡�)2k

k!
exp(�4⇡2�2

)� exp(�4⇡2�2
)

=

X

k�0

1

2
·
(2⇡�)2k

k!
exp(�4⇡2�2

)(1 + (�1)
k
)� exp(�4⇡2�2

)

=
1

2

0

@
X

k�0

(4⇡2�2
)
k

k!
exp(�4⇡2�2

) +

X

k�0

(�4⇡2�2
)
k

k!
exp(�4⇡2�2

)

1

A� exp(�4⇡2�2
)

=
1

2
+

1

2
exp(�8⇡2�2

)� exp(�4⇡2�2
)

=
1

2
+O(exp(�⌦(�2

))) .
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