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Abstract

In offline reinforcement learning (offline RL), one of the main challenges is to deal
with the distributional shift between the learning policy and the given dataset. To
address this problem, recent offline RL methods attempt to introduce conservatism
bias to encourage learning in high-confidence areas. Model-free approaches directly
encode such bias into policy or value function learning using conservative regular-
izations or special network structures, but their constrained policy search limits the
generalization beyond the offline dataset. Model-based approaches learn forward
dynamics models with conservatism quantifications and then generate imaginary
trajectories to extend the offline datasets. However, due to limited samples in of-
fline datasets, conservatism quantifications often suffer from overgeneralization in
out-of-support regions. The unreliable conservative measures will mislead forward
model-based imaginations to undesired areas, leading to overaggressive behav-
iors. To encourage more conservatism, we propose a novel model-based offline
RL framework, called Reverse Offline Model-based Imagination (ROMI). We
learn a reverse dynamics model in conjunction with a novel reverse policy, which
can generate rollouts leading to the target goal states within the offline dataset.
These reverse imaginations provide informed data augmentation for model-free
policy learning and enable conservative generalization beyond the offline dataset.
ROMI can effectively combine with off-the-shelf model-free algorithms to enable
model-based generalization with proper conservatism. Empirical results show that
our method can generate more conservative behaviors and achieve state-of-the-art
performance on offline RL benchmark tasks.

1 Introduction

Deep reinforcement learning (RL) has achieved tremendous successes in a range of domains [1–3]
by utilizing a large number of interactions with the environment. However, in many real-world
applications, collecting sufficient exploratory interactions is usually impractical, because online
data collection can be costly or even dangerous, such as in healthcare [4] and autonomous driving
[5]. To address this challenge, offline RL [6, 7] develops a new learning paradigm that trains RL
agents only with pre-collected offline datasets and thus can abstract away from the cost of online
exploration [8–17]. For such offline settings, recent studies demonstrate that directly applying
∗Equal contribution.
†Work done while Guangxiang was a Ph.D. student at Tsinghua University.
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Figure 1: (a) Basic idea of ROMI. (b) A concrete RL task to demonstrate the superiority of ROMI.

the online RL algorithms can lead to poor performance [8, 9, 16]. This phenomenon is primarily
attributed to distributional shift [7] between the learning policy and the behavior policy induced by
the given dataset. With function approximation, the learning policy can overgeneralize the offline
dataset and result in unexpected or dangerous behaviors. Thus developing techniques to handle
distributional shift is becoming an active topic in the community of offline RL.

Recently, a variety of advanced offline RL algorithms have been proposed, which introduce con-
servatism bias and constrain the policy search in high-confidence regions induced by the offline
dataset. Model-free offline RL methods [8–11] explicitly encode such bias into policy or value
functions by using conservative regularizations or specially designed network structures. These
methods often effectively address distributional shift issues, but their constrained policy search can
limit the generalization beyond the offline dataset. In contrast, model-based offline RL [12–15]
adopts more aggressive approaches. They first learn a forward dynamics model from the offline
dataset with conservatism quantifications and then generate imaginary trajectories on high confidence
regions to extend the offline dataset. Specifically, these methods may use a model-uncertainty quantifi-
cation [12, 13], representation learning of a robust model [14], or a conservative estimation of value
functions [15] to ensure the confidence of model-based rollouts. However, because samples in offline
datasets are limited, conservatism quantifications often suffer from overgeneralization, especially in
out-of-support regions. Thus, these unreliable measures can overestimate some unknown states and
mislead forward model-based imaginations to undesired areas, leading to radicalism. In this paper,
we will investigate a new direction in the context of model-based offline RL and propose reverse
model imagination that enables effective conservative generalization.

We use Figure 1a to illustrate our basic ideas. When an offline dataset contains expert or nearly optimal
trajectories, model-free offline RL methods [8–11] show promising performance. In other situations,
such as in Figure 1a, when the optimal policy requires a composition of multiple trajectories ( ) in
the offline dataset, model-free offline RL usually fails because it may get stuck in isolated regions of
the offline dataset ( ). In contrast, model-based approaches [12–15] have advantages of connecting
trajectories in the offline dataset by generating bridging rollouts. When using forward dynamics
models, model-based methods can generate aggressive rollouts from the dataset to outside areas ( ).
Such forward imaginations potentially discover a better policy outside the offline dataset, but may
also lead to undesirable regions consisting of fake high-value states ( ) due to overgeneralization
errors. Things will be different if we reverse the model imagination. Reverse imaginations ( )
generate possible traces leading to target goal states ( ) inside the offline dataset, which provides
a conservative way of augmenting the offline dataset. We assume that the reverse dynamics model
has similar accuracy to the forward model. In this way, reverse models not only maintain the
generalization ability to interpolate between given trajectories and potential better policies but also
avoid radical model imagination by enabling bidirectional search in conjunction with the existing
forward real trajectories ( ) in the offline dataset. The scenario illustrated in Figure 1a is common
in RL tasks [18], where the agent may encounter new obstacles or unexpected dangers at any time
(e.g., bumping into walls like in Figure 1b or falling). As many unexpected data are not recorded by
an offline dataset, there are likely large generalization errors outside the support of the dataset. Thus,
reverse models that can generate conservative imaginations are more appealing for real-world offline
RL tasks.
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Based on the above observation, we present a novel model-based offline RL framework, called
Reverse Offline Model-based Imagination (ROMI). ROMI trains a reverse dynamics model and
generates backward imaginary trajectories by a backtracking rollout policy. This rollout policy is
learned by a conditional generative model to produce diverse reverse actions for each state and lead
to the unknown data space with high probabilities. ROMI ensures start states of the reverse rollout
trajectories (i.e., target goals of forward trajectories) are within the offline dataset, and thus naturally
imposes conservative constraints on imaginations. With this conservative data augmentation, ROMI
has the advantage of effectively combining with off-the-shelf model-free algorithms (e.g., BCQ [8]
and CQL [11]) to further strengthen its generalization with proper conservatism. Taken together,
the whole ROMI framework enables extensive interpolation of the dataset and potentially better
performance (contributed by diverse policy) in a safe manner (contributed by reverse imagination).
To our best knowledge, ROMI is the first offline RL approach that utilizes reverse model-based
imaginations to induce conservatism bias with data augmentation. It provides a novel bidirectional
learning paradigm for offline RL, which connects reverse imaginary trajectories with pre-collected
forward trajectories in the offline dataset. Such a bidirectional learning paradigm shares similar
motivations with humans’ bidirectional reasoning. Studies from Psychology [19] show that, during
the decision-making process, humans not only consider the consequences of possible future actions
from a forward view but also imagine possible traces leading to the ideal goal through backward
inference.

We conduct extensive evaluations on the D4RL offline benchmark suite [18]. Empirical results show
that ROMI significantly outperforms state-of-the-art model-free and model-based baselines. Our
method achieves the best or comparable performance on 16 out of 24 tasks among all algorithms.
Ablation studies verify that the reverse model imagination can effectively generate more conservative
behaviors than forward model imagination. Videos of the experiments are available online3.

2 Preliminaries

We consider a Markov decision process (MDP) defined by a tupleM = (S,A, T, r, µ0, γ), where
S and A denote the state space and the action space, respectively. T (s′|s, a) : S × A × S → R
denotes the transition distribution function, r(s, a) : S × A → R denotes the reward function,
µ0 : S → [0, 1] is the initial state distribution, and γ ∈ (0, 1) is the discount factor. Moreover, we
denote the reverse transition distribution by Tr(s|s′, a) = T−1 : S ×A×S → R. The goal of an RL
agent is to optimize a policy π(a|s) : S ×A → R that maximizes the expected cumulative reward,
i.e., J (π) = Es0∼µ0,st+1∼T (·|st,π(st)) [

∑∞
t=0 γ

tr(st, π(st))].

In the offline RL setting, the agent only has access to a static dataset Denv = {(s, a, r, s′)} and is not
allowed to interact with the environment for additional online explorations. The data can be collected
through multi-source logging policies and we denote the empirical distribution of behavior policy in
a given dataset Denv collected by πD . Logging policies are not accessible in our setting.

Model-based RL methods aim at performing planning or policy searches based on a learned model
of the environment. They usually learn a dynamics model T̂ and a reward model r̂(s, a) from a
collection of environmental data in a self-supervised manner. Most of the existing approaches use
the forward model T̂f (s′|s, a) for dynamics learning, but we will show in Section 3 that the reverse
dynamics model T̂r(s|s′, a) can induce more conservatism and is critical for the offline RL tasks.

3 Reverse Offline Model-based Imagination

In the offline RL setting, the agent can only access a given dataset without additional online explo-
ration. Model-based offline RL algorithms usually face three challenges in this setting. (i) The offline
dataset has limited samples and generalization over the given data is required. (ii) There are a lot
of uncertainties that are difficult to estimate out of the support of the dataset. (iii) The model-based
rollouts cannot receive feedback from the real environment. Thus it is important to augment diverse
data and keep conservative generalization at the same time. In this section, we will introduce the
Reverse Offline Model-based Imagination (ROMI) framework to combine model-based imagina-

3https://sites.google.com/view/romi-offlinerl/.
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tion with model-free offline policy learning. This framework encourages diverse augmentation of
model-based rollouts and enables conservative generalization of the generated imaginations.

We use a concrete example to show the superiority of our framework in Figure 1b. The agent navigates
in a u-maze to reach the goal ( ). We gather an offline dataset consisting of three data blocks ( ).
This dataset only contains the trajectories that do not hit the wall, thus the agent will be unaware of
the walls during the offline learning process. In this situation, the conventional forward model may
generate a greedy and radical imagination ( ) that takes a shortcut to go straight to the goal (whose
value function may be overestimated) and hit the wall. On the contrary, ROMI adopts backward
imaginations and generates traces that can lead to the target goal states in the support of the dataset
( ). Such imaginations can be further connected with the given forward trajectories ( ) in the
dataset to form an optimal policy. In this example, we assume that the model error is mainly due
to the prediction of the OOD states (outside of the support of the data), then we can expect reverse
models to help combat overestimation since they prevent rollout trajectories that end in the OOD
states. A more detailed illustrative example is deferred to Appendix A.

Specifically, our framework consists of two main components: (i) a reverse model learned from the
offline dataset, (ii) a diverse rollout policy to generate reverse actions that are close to the dataset.
ROMI pre-generates the model-based trajectories under the rollout policy based on the reverse model.
Then we use the mixture of the imaginary data and the original dataset to train a model-free offline
agent. The whole algorithm is shown in Algorithm 1.

Training the reverse model. To backtrace the dynamics and reward function of the environment,
we introduce a reverse model to estimate the reverse dynamics model T̂r(s|s′, a) and reward model
r̂(s, a) from the offline dataset simultaneously. For simplicity, we unify the dynamics and reward
function into our reverse model p(s, r|s′, a), i.e.,

p(s, r|s′, a) = p(s|s′, a)p(r|s′, a, s) = Tr(s|s′, a)p(r|s, a), (1)

where we assume that the reward function only depends on the current state and action. This unified
reverse model represents the probability of the current state and immediate reward conditioned on the
next state and current action. We parameterize it by φ and optimize it by minimizing the loss function
LM (φ) (which is equivalent to maximizing the log-likelihood):

LM (φ) = E
(s,a,r,s′)∼Denv

[− log p̂φ(s, r|s′, a)] , (2)

where Denv is the offline dataset.

Training the reverse rollout policy. To encourage diversity for the reverse model-based imagination
near the dataset, we train a generative model Ĝθ(a|s′), which samples diverse reverse actions from
the offline dataset using stochastic inference. Specifically, we use a conditional variational auto-
encoder (CVAE) [20, 8] to represent the diverse rollout policy Ĝθ(a|s′), which is parameterized by
θ and depends on the next state. The rollout policy Ĝθ(a|s′) contains two modules: (i) an action
encoder Êω(s′, a) that outputs a latent vector z under the gaussian distribution z ∼ Êω(s′, a), and
(ii) an action decoder D̂ξ(s

′, z) whose input is the latent vector z and reconstructs the given action
ã = D̂ξ(s

′, z). The action encoder and decoder are parameterized by ω and ξ, respectively. For
simplicity, denote the parameters of the rollout policy Ĝθ(a|s′) by θ = {ω, ξ}. We defer the detailed
discussion of CVAE to Appendix B.

We train the rollout policy Ĝθ(a|s′) by maximizing the variational lower bound Lp(θ),

Lp(θ) = E
(s,a,r,s′)∼Denv,z∼Êω(s′,a)

[(
a− D̂ξ(s

′, z)
)2

+DKL

(
Êω(s

′, a)‖N (0, I)
)]
, (3)

where I is an identity matrix. To optimize such loss function, we adopt similar optimization
techniques as those used in the context of image generalization and video prediction [20, 8].

After the rollout policy Ĝθ(a|s′) is well trained, we can sample reverse actions â based on the policy.
We first draw a latent vector from the multivariate normal distribution, ẑ ∼ N (0, I), and then utilize
the action decoder to sample actions conditioned on the next state, â = D̂ξ(s

′, ẑ). To explore more
possibilities, the rollout policy Ĝθ(a|s′) uses stochastic layers to generate a variety of reverse actions
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for multiple times. In addition, if we need an extremely diverse policy in easy tasks, we can replace
the generative model based policy with a uniformly random rollout policy.

Combination with model-free algorithms. Based on the learned reverse dynamics model and
the reverse rollout policy, ROMI can generate reverse imaginations. We collect these rollouts to
form a model-based buffer Dmodel and further compose the total dataset with the offline dataset,
Dtotal = Denv ∪ Dmodel. Since our rollout policy is agnostic to policy learning, such buffer can be
obtained before the policy learning stage, i.e., ROMI can be combined with any model-free offline
RL algorithm (e.g., BCQ [8] or CQL [11]). Specifically, during the model-based imagination, we
sample the target state st+1 from the dataset Denv, and generate reverse imaginary trajectory τ̂ with
the rollout horizon h by the reverse model p̂φ and rollout policy Ĝθ:

τ̂ =
{
(st−i, at−i, rt−i, st+1−i)

∣∣ at−i ∼ Ĝθ (·|st+1−i) and st−i, rt−i ∼ p̂φ (·|st+1−i, at−i)
}h−1
i=0

.

We gather trajectories τ̂ to form the buffer Dmodel and further combine it with Denv to obtain Dtotal.
Then we will run the model-free offline policy learning algorithm on the total buffer to derive the
final policy πout. Compared to existing model-based approaches [12–15], ROMI provides informed
data augmentation to extend the offline dataset. It is agnostic to policy optimization and thus can
be regarded as an effective and flexible plug-in component to induce conservative model-based
imaginations for offline RL.

Algorithm 1 ROMI: Reverse Offline Model-based Imagination

1: Require: Offline dataset Denv, rollout horizon h, the number of iterations Cφ, Cθ, T , learning
rates αφ, αθ, model-free offline RL algorithm (i.e., BCQ or CQL)

2: Randomly initialize reverse model parameters φ
3: for i = 0 . . . Cφ − 1 do . Learning a reverse dynamics model p̂φ
4: Compute LM using the dataset Denv

5: Update φ← φ− αφ∇φLM
6: Randomly initialize rollout policy parameters θ
7: for i = 0 . . . Cθ − 1 do . Learning a diverse rollout policy Ĝθ
8: Compute Lp using the dataset Denv

9: Update θ ← θ − αθ∇θLp
10: Initialize the replay buffer Dmodel ← ∅
11: for i = 0 . . . T − 1 do . Collecting the replay buffer Dmodel
12: Sample target state st+1 from the dataset Denv

13: Generate reverse model rollout τ̂ = {(st−i, at−i, rt−i, st+1−i)}h−1i=0 from st+1 by drawing
samples from the dynamics model p̂φ and rollout policy Ĝθ

14: Add model rollouts to replay buffer, Dmodel ← Dmodel ∪ {(st−i, at−i, rt−i, st+1−i)}h−1i=0

15: Compose the final dataset Dtotal ← Denv ∪ Dmodel
16: Combine model-free offline RL algorithms to derive the final policy πout using the dataset Dtotal
17: Return: πout

4 Experiments

In this section, we conduct a bunch of experiments in the offline RL benchmark [18] to answer
the following questions: (i) Does ROMI outperform the state-of-the-art offline RL baselines (see
Table 1 and 2)? (ii) Does ROMI achieve excellent performance because of the reverse model-based
imagination (see Section 4.3)? (iii) Is CVAE-based rollout policy critical for ROMI (see Table 4)?
(iv) Compared with the forward imagination, does ROMI trigger more conservative and effective
behaviors (see Figure 3)?

4.1 Evaluation Environments

We evaluate ROMI on a wide range of domains in the D4RL benchmark [18], including the Maze2D
domain, the Gym-MuJoCo tasks, and the AntMaze domain. Figure 2 shows the snapshots of nine
environments used in our experiments. We defer the quantification of ROMI’s model accuracy in
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Figure 2: Experimental environments.

these domains to Appendix C and empirical evaluations show that reverse models have comparable
accuracy, if not worse, than forward models.

Maze2D. The maze2d domain requires a 2D agent to learn to navigate in the maze to reach a fixed
target goal and stay there. As shown in Figure 2, there are three maze layouts (i.e., umaze, medium,
and large) and two dataset types (i.e., sparse and dense reward singal) in this domain. The dataset
of each layout is generated by a planner moving between randomly sampled waypoints. From the
detailed discussion of the D4RL benchmark [18], we found that the agents in the maze2d dataset
are always moving on the clearing and will not stay in place. We will visualize the dataset of
mazed2d-umaze in Section 4.5.

Gym-MuJoCo. The Gym-MuJoCo tasks consist of three different environments (i.e., walker2d,
hopper, and halfcheetah), and four types of datasets (i.e., random, medium, medium-replay, and
medium-expert). Random dataset contains experiences selected by a random policy. Medium dataset
contains experiences from an early-stopped SAC policy. Medium-replay dataset records the samples
in the replay buffer during the training of the "medium" SAC policy. Medium-expert dataset is mixed
with suboptimal samples and samples generated from an expert policy.

AntMaze. The antmaze domain combines challenges of the previous two domains. The policy needs
to learn to control the robot and navigate to the goal simultaneously. This domain also contains
three different layouts (i.e., umaze, medium, and large) shown in Figure 2. D4RL benchmark [18]
introduces three flavors of datasets (i.e., fixed, diverse, and play) in this setting, which commands the
ant from different types of start locations to various types of goals.

4.2 Overall Results

In this subsection, the experimental results are presented in Table 1 and 2, which are evaluated in
the D4RL benchmark tasks [18] illustrated in Figure 2. We compare ROMI with 11 state-of-the-art
baselines: MF denotes the best performance from offline model-free algorithms, including BCQ [8],
BEAR [10], BRAC-v, BRAC-p [9], BAIL [17], and CQL [11]; MB denotes the best performance
from offline model-based algorithms, including MOPO [13], MOReL [12], Repb-SDE [14], and
COMBO [15]; BC denotes the popular behavior cloning from the dataset in the imitation learning.
The implementation details of ROMI and these algorithms are deferred to Appendix D.2. Towards
fair evaluation, all experimental results are illustrated with the averaged performance with ± standard
deviation over three random seeds.

We evaluate ROMI in nine D4RL benchmark domains with 24 tasks. Our experiments show that
ROMI significantly outperforms baselines and achieves the best or comparable performance on 16
out of 24 continuous control tasks. Table 1 and 2 only contain the best performance of MF and MB
categories4. We defer the pairwise comparison of ROMI and each baseline to Appendix E, which

4In Table 2, each score of COMBO or MOReL is the better one between the score our reproduction and their
reported score.
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Table 1: Performance of ROMI and best performance of prior methods on the maze and antmaze
domains, on the normalized return metric proposed by D4RL benchmark [18]. Scores roughly range
from 0 to 100, where 0 corresponds to a random policy performance and 100 corresponds to an expert
policy performance. med is short for medium.

Environment BC ROMI-BCQ MF MB

sparse-maze2d-umaze -3.2 139.5 ± 3.6 65.7 ± 6.9BEAR 76.4 ± 19.2COMBO

sparse-maze2d-med -0.5 82.4 ± 15.2 70.6 ± 34.3BRAC-v 68.5 ± 83.6COMBO

sparse-maze2d-large -1.7 83.1 ± 22.1 81.0 ± 65.3BEAR 14.1 ± 10.7COMBO

dense-maze2d-umaze -6.9 98.3 ± 2.5 51.5 ± 8.2BRAC-p 94.3 ± 13.6Repb-SDE

dense-maze2d-med 2.7 102.6 ± 32.4 41.7 ± 2.0BAIL 84.2 ± 9.5COMBO

dense-maze2d-large -0.3 124 ± 1.3 133.0 ± 25.5BEAR 36.8 ± 12.4MOPO

fixed-antmaze-umaze 82.0 68.7 ± 2.7 75.3 ± 13.7BCQ 80.3 ± 18.5COMBO

play-antmaze-med 0.0 35.3 ± 1.3 1.7 ± 1.0BAIL 0.0
play-antmaze-large 0.0 20.2 ± 14.8 2.2 ± 1.3BAIL 0.0
diverse-antmaze-umaze 47.0 61.2 ± 3.3 54.0 ± 15.0BAIL 57.3 ± 33.6COMBO

diverse-antmaze-med 0.0 27.3 ± 3.9 61.5 ± 10.0CQL 0.0
diverse-antmaze-large 0.0 41.2 ± 4.2 1.0 ± 0.9BAIL 0.0

Table 2: Performance of ROMI and best performance of prior methods on Gym-MuJoCo tasks.
Environment BC ROMI-CQL MF MB

random-walker2d 0.0 7.5 ± 20.0 11.1 ± 8.8 BEAR 7.0 COMBO

random-hopper 0.9 30.2 ± 4.4 31.4 ± 0.1 CQL 31.7 ± 0.1 Repb-SDE

random-halfcheetah -0.1 24.5 ± 0.7 19.6 ± 1.2 CQL 38.8 COMBO

medium-walker2d 41.7 84.3 ± 1.1 83.8 ± 0.2 CQL 85.3 ± 2.2 Repb-SDE

medium-hopper 40.0 72.3 ± 17.5 66.6 ± 4.1 CQL 95.4 MOReL

medium-halfcheetah 39.2 49.1 ± 0.8 49.0 ± 0.4 CQL 69.5 ± 0.0 MOPO

medium-replay-walker2d 2.2 109.7 ± 9.8 88.4 ± 1.1 CQL 83.8 ± 7.6 Repb-SDE

medium-replay-hopper 8.1 98.1 ± 2.6 97.0 ± 0.8 CQL 93.6 MOReL

medium-replay-halfcheetah 25.6 47.0 ± 0.7 46.4 ± 0.3 CQL 68.2 ± 3.2 MOPO

medium-expert-walker2d 73.4 109.7 ± 5.3 109.5 ± 0.1 CQL 111.2 ± 0.2 Repb-SDE

medium-expert-hopper 36.0 111.4 ± 5.6 106.8 ± 2.9 CQL 111.1 COMBO

medium-expert-halfcheetah 39.7 86.8 ± 19.7 90.8 ± 5.6 CQL 95.6 MOReL

can demonstrate that ROMI in conjunction with off-the-shelf model-free methods (i.e., BCQ [8] and
CQL [11]) can outperform all offline RL baselines. Specifically, we denote the methods with ROMI
as ROMI-BCQ, and ROMI-CQL, respectively. The suffix -BCQ or -CQL indicates that ROMI adopts
BCQ [8] or CQL [11] as base learning algorithms for policy optimization.

Table 1 shows that ROMI-BCQ is the best performer on 10 out of 12 tasks in the maze2d and
antmaze domains. In these tasks, model-free methods can achieve reasonable performance, while
current model-based algorithms with forward imagination cannot perform well, especially in antmaze.
This may be because that messy walls (see Figure 2) are unknown from the given datasets, and the
forward imagination may lead RL agent to bump into walls and lose the game. In contrast, reverse
model-based imagination can avoid directing agents towards unconfident area, which makes a safe
way to imagine in the complex domains. Table 2 shows that ROMI-CQL achieves the best performer
on six out of 12 tasks in gym domain. CQL is the best performer among all model-free methods,
and ROMI-CQL can further outperform CQL on four challenging tasks. In this domain, current
model-based methods perform pretty well. We argue that similar to forward imagination, reverse
direction can also generalize beyond offline datasets for better performance in the relatively safe
tasks, i.e., there is no obstacle around, as shown in Figure 2.
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4.3 Ablation Study with Model-based Imagination

In this subsection, we conduct an ablation study to investigate whether ROMI works due to the
reverse model-based imagination. Specifically, we replace the reverse imagination with the forward
direction in ROMI, which is denoted as Forward rOMI (FOMI). In this subsection, we study the
performance of ROMI and FOMI in maze2d and antmaze domains and defer the ablation study in
gym domain to Appendix F. Towards fair comparison, we integrate FOMI with BCQ [8] in these
settings, called FOMI-BCQ. Table 3 shows that ROMI-BCQ significantly outperforms FOMI-BCQ
and the base model-free method BCQ [8], which implies that reverse model-based imagination is
critical for ROMI in the offline RL settings.

In the maze2d domain, compared with the base model-free algorithm BCQ, ROMI-BCQ outperforms
all settings, while FOMI-BCQ achieves the superior performance in maze2d-medium but performs
poorly in the umaze and large layouts. As illustrated in Figure 2, maze2d-medium enjoys less obstacles
on the diagonal to the goal than maze2d-umaze and maze2d-large. In this case, the conservative
reverse model-based imagination can enable safe generalization in all layouts. A detailed case study
of maze2d-umaze will be provided in Section 4.5. Moreover, in the antmaze domain, ROMI-BCQ
achieve the best performance in the medium and large layouts, while FOMI-BCQ and BCQ perform
well in antmaze-umaze. From Figure 2, we find that the medium and large layouts of antmaze have
larger mazes with narrower passages, which may frustrate forward imagination and make reverse
imagination more effective.

Table 3: Ablation study about ROMI with model-based imagination. Delta equals the improvement
of ROMI-BCQ over BCQ on the normalized return metric.

Dataset type Environment ROMI-BCQ (ours) FOMI-BCQ BCQ (base) Delta

sparse maze2d-umaze 139.5 ± 3.6 8.1 ± 15.5 41.1 ± 7.6 98.4
sparse maze2d-medium 82.4 ± 15.2 93.6 ± 41.3 9.7 ± 14.2 72.7
sparse maze2d-large 83.1 ± 22.1 -2.5 ± 0.0 38.3 ± 10.4 44.8
dense maze2d-umaze 98.3 ± 2.5 30.7 ± 0.9 37.0 ± 5.3 61.3
dense maze2d-medium 102.6 ± 32.4 64.7 ± 37.0 37.9 ± 4.5 64.7
dense maze2d-large 124.0 ± 1.3 -0.7 ± 7.1 79.8 ± 12.2 44.2

fixed antmaze-umaze 68.7 ± 2.7 79.5 ± 2.5 75.3 ± 13.7 -6.6
play antmaze-medium 35.3 ± 1.3 26.2 ± 5.5 0.0 35.3
play antmaze-large 20.2 ± 14.8 12.0 ± 3.3 0.0 20.2
diverse antmaze-umaze 61.2 ± 3.3 66.8 ± 3.5 49.3 ± 9.9 11.9
diverse antmaze-medium 27.3 ± 3.9 12.3 ± 2.1 0.0 27.3
diverse antmaze-large 41.2 ± 4.2 17.8 ± 2.1 0.0 41.2

4.4 Ablation Study with Different Rollout Policies

In this subsection, we conduct an ablation study to investigate the effect of ROMI’s different rollout
policies. To compare with a CVAE-based policy, we propose a new rollout policy (i.e., reverse behav-
ior cloning) for ROMI-BCQ, denoted by ROMI-RBC-BCQ. To realize the reverse behavior cloning
method, we train a stochastic policy π̂ϕ(a|s′), which is parameterized by ϕ and can sample current
action depended on the next state. During training π̂ϕ(a|s′), the objective Lrbc(ϕ) is formalized by

Lrbc(ϕ) = E
(s,a,r,s′)∼Denv

[− log π̂ϕ(a|s′)] , (4)

where Denv is the given offline dataset, and minimizing the loss function Lrbc(ϕ) is equivalent to
maximizing the log-likelihood of probability.

We illustrate the performance of ROMI with different rollout policies in Table 4, where ROMI-BCQ
achieves the best performance and ROMI-RBC-BCQ also outperforms BCQ. As suggested by prior
generative models [21, 20], in comparison to the deterministic layers (e.g., fully connected layers),
CVAE-based methods can generate more diverse and realistic structured samples using stochastic
inference. We argue that, the rollout policy implemented by CVAE is critical for ROMI to rollout
more diverse trajectories for proposed generalization, and BC-based implementation is also effective
in reverse model-based imagination.
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Table 4: Ablation study about ROMI with different rollout policies.
Dataset type Environment ROMI-BCQ (ours) ROMI-RBC-BCQ BCQ (base)

fixed antmaze-umaze 68.7 ± 2.7 62.2 ± 5.6 75.3 ± 13.7
play antmaze-medium 35.3 ± 1.3 33.8 ± 6.2 0.0
play antmaze-large 20.2 ± 14.8 13.3 ± 16.1 0.0
diverse antmaze-umaze 61.2 ± 3.3 43.8 ± 13.3 49.3 ± 9.9
diverse antmaze-medium 27.3 ± 3.9 20.8 ± 15.5 0.0
diverse antmaze-large 41.2 ± 4.2 14.2 ± 9.8 0.0

4.5 A Case Study in maze2d-umaze

To dive deeper into how ROMI triggers more conservative and effective behaviors, we provide a
detailed visual demonstration of one particular task in D4RL benchmark [18]: maze2d-umaze-sparse.

As mentioned in Section 4.1, experiences in maze2d domain are generated by a planner moving
between randomly sampled waypoints on the clearing. Figure 3a shows the movement of the agent
from randomly sampled trajectories. To earn high returns, the agent not only needs to learn how to
direct to the goal, but also how to stay in the high reward region — the latter behavior is not in the
dataset yet. Model-free offline RL algorithms constrain their policy "close" to the dataset, thus it
is hard to learn such behaviors out of the support. To see this, Figure 3d shows the behavior of a
trained BCQ policy during execution. After reaching the goal, the agent will still oscillate between
the high-reward and low-reward regions. This motivates us to use model imagination to generalize
beyond the dataset.

As shown in Table 1, ROMI solves this task but previous model-based methods have poor performance,
sometimes even worse than model-free algorithms. To better understand this counter-intuitive
phenomenon, we compare the rollout trajectories and the learned policy of ROMI-BCQ, FOMI-BCQ
(mentioned in Section 4.3), and MOPO [13]. Figure 3(g-i) shows the imagined trajectories in the
learning process of the three methods. Figure 3(b,c,e) shows the learned policy behavior at the
execution phase. While all model-based imagination will leave the dataset for better generalization,
forward model rollout naturally takes some risks as it directs the agent to unknown areas. Undesired
forward model imagination will ruin the policy learning (e.g., FOMI-BCQ in Figure 3e and Table 3)
or mislead the policy optimization to the suboptimal solution (e.g., MOPO in Figure 3c). Moreover,
as shown in Figure 3f, the regularization penalty based on model uncertainty also failed, which is
also pointed out in the literature [15]. On the other hand, reverse model imagination inherits the
conservatism of the dataset, as it is always ended in the real experience points. Figure 3(b,g) shows
that ROMI induces the conservative and optimal behaviors: ROMI will stay around the goal point,
and will stick to the data points for higher expected returns. We aim to quantify the aggressiveness
of each learned policy and thus define the following trajectory-based discrepancy to measure the
distance between learning policy and dataset:
Definition 1 (Average Trajectory Discrepancy). Given a dataset D = {(s, a, r, s′)} and a trajectory
τ = (s0, a0, . . . , sH , aH), the discrepancy between D and τ is defined as:

D(D, τ) = 1

H + 1

H∑
t=0

min
(s,a,r,s′)∈D

‖st − s‖2. (5)

We report the average trajectory discrepancy for policies during execution in Figure 3j and defer
results for other maze environments in Appendix G. The results implicate that ROMI is as conservative
as model-free method BCQ, but forward model-based offline RL policy (i.e., ROMI and MOPO)
tends to deviate from the dataset and will touch the undesirable walls.

5 Related Work

Offline RL. In the literature, offline RL methods can be primarily divided into model-free and
model-based algorithms. Prior model-free offline RL methods constrain their policy search in the
offline dataset. They can realize their bias by either estimating uncertainty quantification to the value
function [7, 9, 10, 16], using importance sampling based algorithms [22–28], explicitly constraining
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𝑎 Dataset trajectory 𝑏 ROMI-BCQ’s execution path

𝑑 BCQ’s execution path

𝑔 ROMI-BCQ’s imagination ℎ FOMI-BCQ’s imagination

𝑓 MOPO’s model-uncertainty

𝑖 MOPO’s imagination

Failed!Failed!

𝑐 MOPO’s execution path

Failed!
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Dataset trajectory 
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Forward imagination 
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An optimal trajectory

𝑗 Average trajectory discrepancy

Dataset support
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GOAL

Figure 3: A case study in maze2d-umaze. Note that in figure (f), the penalty is reflected by the color,
where blue represents large penalty while white represents small penalty.

the learning policy to be close to the dataset [8, 29], learning the conservative value function [11],
and using KL divergence [30, 9, 31] or MMD [10]. On the other hand, prior model-based offline RL
methods [12–14, 32–38] have studied in model-uncertainty quantification [12, 13, 39], representation
learning [14], constraining the policy to imitate the behavioral policy [35], and using conservative
estimation of value function [15]. Different from these works, we propose ROMI to investigate a
new direction in the model-based offline RL, which will provide natural conservatism bias with
maintaining superior model-based generalization benefits.

Reverse model-based RL. The idea of learning a reverse dynamics model to imagine reversal
samples from goal states first emerges in the literature of online RL algorithms [19, 40–43], and
shows the potential of speeding up learning and improving sample efficiency by aimed exploration.
Similar backward model shows benefit in planning for credit assignment [44, 45] and robustness [46].
Lai et al. (2020) [42] utilizes a backward model to reduce the reliance on accuracy in forward model
predictions. In contrast to the backward model in online RL, we show that reverse imagination
inherently incorporates the conservatism into rollout trajectories in the offline RL, which can lead
rollouts towards target states in dataset. To our best knowledge, ROMI is the first offline RL method
with reverse model-based imagination to induce conservatism bias with data augmentation.

6 Conclusion

This paper introduces ROMI, a novel model-based framework for offline RL. To enable conservative
generalization, it adopts reverse dynamics model to imagine possible trajectories that can lead to the
states within the offline dataset. We demonstrate ROMI can effectively combine with off-the-shelf
model-free algorithms and achieve state-of-the-art performance on offline RL benchmark tasks.
ROMI leverages good trajectories (e.g., reaching goal states or with high rewards) in an offline
dataset to generate effective augmentation data. Although most practical offline datasets contain such
trajectories, it is challenging for ROMI to work in other rare cases. One potential future direction
is to extend ROMI with forward models, generating bolder imaginations and reaching goal states
outside a given dataset. Theoretical formalization of the reverse imagination in offline RL is also an
interesting future direction.
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A An Illustrative Example for ROMI

Assume state sin has a trajectory leading to the goal (denoted by sgoal) in the dataset. Considered
below are two five-step trajectories from forward imagination and reverse imagination, which visit
the same state sequence, but in the opposite direction (hence the actions are not the same). Let the
forward imaginary trajectory be from sin to s5, where s5 is the end state of the trajectory. Similarly, let
the reverse imaginary trajectory be from s5 to sin. Note that the rollout orders of these two trajectories
are the same, starting at sin and ending at s5. We formalize these two imaginary trajectories as
follows:

Forward rollout: 〈sin, a
f
1 , s1, a

f
2 , s2, a

f
3 , s3, a

f
4 , s4, a

f
5 , s5〉,

Reverse rollout: 〈s5, ar5, s4, ar4, s3, ar3, s2, ar2, s1, ar1, sin〉,

where s1:5 denotes the imaginary state sequence, af1:5 denotes the action sequence for forward
imagination, and ar1:5 denotes the action sequence for reverse imagination.

During the training process, the reverse rollout will expand the trajectory from 〈sin, · · · , sgoal〉 to
〈s5, · · · , sin, · · · , sgoal〉, i.e., s1:5 can now reach the goal. Through the reverse imagination of s1:5,
the reverse rollout can benefit the policy learning in this task. For the forward rollout, there are three
cases for the state s5:

1. Consider s5 is outside the dataset and the value of s5 (i.e., Q(s5, ·)) is overestimated, which
is a common challenge for function approximation in offline RL [8]. The forward rollout can
mislead the learning policy from sin to s5 and harm the learning performance. In contrast,
the reverse rollout does not have such negative impact. It is because that sin does not have
an action sequence to reach s5 in the reversed data augmentation.

2. If s5 is outside the dataset and the value of s5 is not overestimated, the forward rollout does
not affect the policy learning. It is because that the execution policy will not go to the state
s5 with a lower Q(s5, ·)). In contrast, as discussed above, the reverse rollout would benefit
the learning in this case due to its effective trajectory expansion with the opposite direction
of imagination.

3. Consider s5 is inside the dataset. When s5 has a trajectory leading to the goal in the dataset,
we believe the forward rollout can improve the learning by selecting the better of the two
successful trajectories, 〈sin, · · · , sgoal〉 and 〈sin, · · · , s5, · · · , sgoal〉. In the reversed data
augmentation, there is only one successful trajectory from the state sin, i.e., 〈sin, · · · , sgoal〉,
but this could naturally be compensated by generating a reverse rollout from state s5. Note
that, in this case, both forward and reverse methods do not need to deal with the conservatism
issue, because s5 is in the original offline dataset.

In summary, we would like to highlight that reverse imagination is more conservative for imagined
states outside the dataset and may even have overly estimated values. This explains why it works
well in offline RL.

B Omitted Background in Section 3

Conditional Variational Auto-Encoder A variational auto-encoder (VAE) [21] is a generative
model of pθ(X) =

∏n
i=1 pθ(xi), where X = {x1, . . . , xn} denotes the given dataset and θ denotes

the parameters of approximate ML or MAP estimation. It leverages the latent variable model structure
of pθ(X) =

∫
pθ(X|z)p(z)dz, where z is the latent variable with prior distribution p(z). To perform

tractable maximum log-likelihood, VAE optimizes the following variational lower bound:

log pθ(X) ≥ Ez∼qξ(·|X)[log pθ(X|z)]−DKL (qξ(z|X)‖p(z)) , (6)

where qξ(z|X) = N (z|µξ(X),Σξ(X)) is the encoder parameterized by ξ that represents a multivari-
ate Gaussian distribution with mean µξ and variance Σξ, and pθ(X|z) is the decoder parameterized
by θ. With reparametrization trick [21], VAE performs gradient descent on the variational lower
bound. For inference, z is sampled from a Gaussian distribution and passed through the decoder to
generate diverse samples x.
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Conditional VAE (CVAE) [20] is a variant of VAE , which aims to model pθ(Y |X). Similar to
variational lower bound, CVAE optimizes the following lower bound:

log pθ(Y |X) ≥ Ez∼qξ(·|Y,X) [log pθ(Y |z,X)]−DKL (qξ(z|Y,X)‖p(z|X)) , (7)

where qξ(z|Y,X), pθ(Y |z,X) also denote the encoder and decoder parameterized by ξ, θ with the
evidence X , respectively.

C Omitted Quantification of Model Accuracy in Section 4.1

To compare the model accuracy of forward and reverse imagination, we estimate the model error of
forward and reverse models. To be fair, we utilize the same neural network architecture to implement
these models. We quantify the one-step model error as mean squared error (MSE) on the validation set.
We evaluate the forward and reverse model error in five different robots of D4RL benchmark suite [18]
illustrated in Table 5. For each robot, we report the MSE across different types of configurations.
Table 5 shows that reverse models have comparable accuracy to, if not worse than, forward models.

Table 5: MSE of forward model and reverse model.
Dataset type Environment Forward model Reverse model

sparse maze2d-umaze 0.0062 ± 0.0019 0.0061 ± 0.0019
sparse maze2d-medium 0.0087 ± 0.0017 0.0107 ± 0.0011
sparse maze2d-large 0.0195 ± 0.0083 0.0242 ± 0.0053
dense maze2d-umaze 0.0014 ± 0.0005 0.0014 ± 0.0004
dense maze2d-medium 0.0008 ± 0.0003 0.0007 ± 0.0003
dense maze2d-large 0.0011 ± 0.0004 0.0021 ± 0.0001

fixed antmaze-umaze 0.1460 ± 0.0470 0.2027 ± 0.0086
play antmaze-medium 0.1225 ± 0.0212 0.1947 ± 0.0053
play antmaze-large 0.1201 ± 0.0272 0.1875 ± 0.0058
diverse antmaze-umaze 0.1509 ± 0.0494 0.1374 ± 0.0043
diverse antmaze-medium 0.1303 ± 0.0206 0.1743 ± 0.0139
diverse antmaze-large 0.1167 ± 0.0236 0.1813 ± 0.0031

random mujoco-walker2d 0.5141 ± 0.0083 0.7102 ± 0.0720
random mujoco-hopper 0.0010 ± 0.0004 0.0012 ± 0.0006
random mujoco-halfcheetah 0.1268 ± 0.0111 1.4220 ± 0.1144
medium mujoco-walker2d 0.2647 ± 0.0680 0.2312 ± 0.0048
medium mujoco-hopper 0.0020 ± 0.0002 0.0024 ± 0.0002
medium mujoco-halfcheetah 0.2437 ± 0.0156 0.5865 ± 0.0247
medium-replay mujoco-walker2d 0.3572 ± 0.0556 0.6123 ± 0.0913
medium-replay mujoco-hopper 0.0037 ± 0.0005 0.0045 ± 0.0004
medium-replay mujoco-halfcheetah 0.4684 ± 0.0156 1.4916 ± 0.1705
medium-expert mujoco-walker2d 0.1447 ± 0.0157 0.1687 ± 0.0107
medium-expert mujoco-hopper 0.0022 ± 0.0004 0.0019 ± 0.0005
medium-expert mujoco-halfcheetah 0.1586 ± 0.0093 0.5161 ± 0.0389

D Experiment Settings and Implementation Details

D.1 Evaluated Settings of D4RL Benchmark

We consider a wide range of domains in the popular offline RL benchmark, D4RL [18]. D4RL
is specifically designed for offline RL setting, which contains many elaborate datasets with key
properties related to the practical offline RL applications. As discussed in Section 4.1, we use
three D4RL benchmark domains with 24 datasets by controlling five different robots. We adopt the
normalized scores metric suggested by D4RL benchmark [18], where 0 indicates a random policy
performance and 100 corresponds to an expert. As suggested by (Fu et al., 2020) [18], we illustrate
the reference min and max scores of our evaluated D4RL settings in Table 6, where score C is
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normalized to C̃ by

C̃ =
C − reference min score

reference max score− reference min score
. (8)

In the maze2d domain, different types of datasets have different reference scores. Moreover, in the
antmaze, walker2d hopper, and halfcheetah domains, all domains share the same reference min and
max scores. We assume that the termination conditions of tasks are known, which is common in
other model-based offline RL baselines [13, 14]. Note that we evaluate ROMI with all baselines in
the *-v2 datasets of gym domain (i.e., walker2d, hopper, and halfcheetah). Table 6 also shows the
episode length of each task, in which the algorithms will time-out when the execution phase exceeds
the time limit of each episode.

Table 6: Reference minmax scores and episode lengths of evaluated D4RL settings.
Dataset type Environment Reference min score Reference max score Ep. length

sparse maze2d-umaze 23.85 161.86 300
sparse maze2d-medium 13.13 277.39 600
sparse maze2d-large 6.7 273.99 800
dense maze2d-umaze 68.54 193.66 300
dense maze2d-medium 44.26 297.46 600
dense maze2d-large 30.57 303.49 800

— antmaze-umaze 0.0 1.0 700
— antmaze-medium 0.0 1.0 1000
— antmaze-large 0.0 1.0 1000

— walker2d 1.63 4592.3 1000
— hopper -20.27 3234.3 1000
— halfcheetah -280.18 12135.0 1000

D.2 Implmentation Details

We train a probabilistic neural network to represent the approximated reverse dynamics and reward
model, which takes the next state and current action as input and outputs a diagonal multivariate
Gaussian distribution predicting state difference and reward:

p̂φ(s, r|s′, a) = N (µφ(s
′, a),Σφ(s

′, a)), (9)

where µφ and Σφ denote the mean and variance of reverse model p̂φ, respectively. To boost the
model accuracy, following Janner et al. (2019) [47], we train an ensemble of seven such models and
pick the best five models according to the validated performance on a hold-out set of 1000 transitions
in the offline dataset. During the model-based imagination, we randomly select a model from the best
five model candidates to rollout trajectories per step. The neural network architecture of each model
has four feedforward layers with 200 hidden units. Each intermediate layer has a swish activation,
and the inputs and outputs of our models are normalized across the given dataset.

The rollout policy Ĝθ(a|s′) implemented by a conditional VAE has two components: an encoder
Êω(s

′, a) and a decoder D̂ξ(s
′, z). Both the encoder and the decoder contain two intermediate layers

with 750 hidden units and relu activations. Besides the common implementation of conditional
VAE [20, 8], our rollout policy Ĝθ(a|s′) takes the next state as input and can sample reverse action
using stochastic inference from an underlying latent space. To generate diverse imaginary trajectories
in complex tasks, we adopt such conditional VAE as a rollout policy introduced in Section 3.
Moreover, we observe that ROMI’s reverse model is quite accurate in the maze2d and hopper
domains, in which ROMI can also use a uniform policy to launch diverse trajectories instead. We
introduce the hyperparameters of ROMI in Table 7. As suggested by the evaluated reverse model error
in Table 5, we perform short-horizon model rollouts in the 24 tasks of D4RL benchmark, in which
ROMI rollouts five steps in domains with higher model accuracy and performs one step imagination
in walker2d and halfcheetah. For antmaze with sparse rewards, we prioritize the start point of model
imagination, in which the prioritized weights are similarly introduced in BAIL [17].
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We combine ROMI with prior offline RL learning algorithms (i.e., BCQ [8] or CQL [11]) to conduct
extensive evaluations on D4RL benchmark suite. As discussed in Section 3, ROMI combines the
given dataset Denv and model-based buffer Dmodel to obtain the total dataset Dtotal for model-free
learning methods. During policy training, we collect the training minibatches from two sources,
Denv and Dmodel, and define the ratio of data collected from the model-based buffer Dmodel as
η ∈ [0, 1]. Therefore, the ratio of data collected from Denv is naturally derived by 1− η. We list the
hyperparameters η in Table 7, where we search over η ∈ {0.1, 0.3, 0.5, 0.7, 0.9} and choose the best
one for each domain. We found that data ratio η = 0.1 is generally effective for ROMI. The only
exception is the maze2d domain, in which other ratios were found to work better. Moreover, ROMI’s
training time on an NVIDIA RTX 2080TI GPU of each task is about eight hours to 20 hours with the
BCQ or CQL learning algorithms.

We compare ROMI with eleven state-of-the-art offline RL baselines: BC (behavior cloning), BCQ [8],
BEAR [10], BRAC-v, BRAC-p [9], BAIL [17], CQL [11], MOPO [13], MOReL [12], Repb-SDE [14],
and COMBO [15]. Our implementation of these baseline algorithms refers to their public source codes.
In particularly, we utilize the implementation of BC introduced by the Repb-SDE repository and
the implementation of MOReL and COMBO is referred to https://github.com/SwapnilPande/
MOReL/ and https://github.com/takuseno/d3rlpy/, respectively.

Table 7: Hyperparameters of ROMI used in the D4RL datasets.
Environment Rollout length Data ratio η Rollout policy

maze2d-umaze 5 0.7 uniform
maze2d-medium 5 0.5 uniform
maze2d-large 5 0.3 uniform

antmaze-umaze 5 0.1 conditional VAE
antmaze-medium 5 0.1 conditional VAE
antmaze-large 5 0.1 conditional VAE

walker2d 1 0.1 conditional VAE
hopper 5 0.1 uniform
halfcheetah 1 0.1 conditional VAE

E Omitted Tables in Section 4.2

See Table 8.
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F Comparison between ROMI-CQL and FOMI-CQL

Similar to Table 3, we compare ROMI-CQL with FOMI-CQL on the gym tasks. From the results
shown in Table 9, we can see that reverse imagination consistently outperforms forward imagination
and that forward rollout sometimes even hurts the policy learning (e.g., in hopper-medium). These
empirical results are consistent with those on maze2d and antmaze. Together with Table 2 we find
that ROMI-CQL does not achieve the best performance in halfcheetah, which may be due to large
model error.

Table 9: Performance of ROMI-CQL and FOMI-CQL on Gym-MuJoCo tasks.
Dataset type Environment ROMI-CQL (ours) FOMI-CQL

random walker2d 7.5 ± 20.0 2.1 ± 0.5
random hopper 30.2 ± 4.4 8.5 ± 0.3
random halfcheetah 24.5 ± 0.7 23.0 ± 0.8
medium walker2d 84.3 ± 1.1 84.2 ± 2.0
medium hopper 72.3 ± 17.5 1.9 ± 0.1
medium halfcheetah 49.1 ± 0.8 48.4 ± 1.1
medium-replay walker2d 109.7 ± 9.8 83.7 ± 4.1
medium-replay hopper 98.1 ± 2.6 94.2 ± 4.4
medium-replay halfcheetah 47.0 ± 0.7 46.6 ± 0.4
medium-expert walker2d 109.7 ± 5.3 109.6 ± 0.3
medium-expert hopper 111.4 ± 5.6 111.4 ± 1.2
medium-expert halfcheetah 86.8 ± 19.7 61.2 ± 44.4

G Average Trajectory Discrepancy for maze2d-medium-sparse and
maze2d-large-sparse

We show the average trajectory discrepancy defined by Eq. (5) in maze2d-medium-sparse and maze2d-
large-sparse environments in Figure 4. The result in maze2d-medium-sparse is consistent with that in
maze2d-umaze-sparse, showing that the reverse imagination is more conservative than the forward
counterpart. Note that the discrepancy of ROMI-BCQ is comparable with FOMI-BCQ and MOPO in
maze2d-large-sparse environment, as the maze is with relatively narrow paths to the goal.
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Figure 4: Average Trajectory Discrepancy for maze2d-medium-sparse and maze2d-large-sparse.

19



H Ablations on Rollout Length

To investigate the effect of the rollout length more clearly, we conduct an ablation study by varying
this hyperparameter on the maze2d and antmaze environments. The results are listed in Table 10
and 11. We find that on maze2d, ROMI performs equally well or even better when increasing the
rollout length to 20, because the model is accurate enough for longer horizon imagination. However,
increasing ROMI’s rollout length has a negative impact on antmaze, where model cannot predict
future states accurately after multi-step rollout.

Table 10: Ablations on rollout length on maze2d. * indicates the hyperparameter used in the main
paper.

Environment len=1 len=5* len=10 len=20

sparse-maze2d-umaze 82.0 ± 31.5 139.5 ± 3.6 134.4 ± 17.2 135.6 ± 7.3
sparse-maze2d-medium 70.4 ± 28.6 82.4 ± 15.2 82.9 ± 6.2 104.5 ± 54.7
sparse-maze2d-large 120.3 ± 18.3 83.1 ± 22.1 116.2 ± 49.3 76.8 ± 17.2
dense-maze2d-umaze 68.0 ± 11.5 98.3 ± 2.5 113.6 ± 7.0 99.2 ± 10.3
dense-maze2d-medium 88.5 ± 20.9 102.6 ± 32.4 93.2 ± 16.3 83.0 ± 10.1
dense-maze2d-large 120.2 ± 4.8 124.0 ± 1.3 113.6 ± 17.9 97.5 ± 40.7

Table 11: Ablations on rollout length on antmaze. * indicates the hyperparameter used in the main
paper.

Environment len=1 len=5* len=7 len=10

fixed-antmaze-umaze 69.7 ± 6.5 68.7 ± 2.7 44.2 ± 29.6 54.8 ± 25.4
play-antmaze-medium 36.8 ± 6.8 35.3 ± 1.3 33.5 ± 14.9 28.0 ± 10.4
play-antmaze-large 37.5 ± 6.1 20.2 ± 14.8 7.3 ± 12.7 0
diverse-antmaze-umaze 12.8 ± 19.7 61.2 ± 3.3 58.3 ± 18.5 42.8 ± 14.3
diverse-antmaze-medium 25.3 ± 4.9 27.3 ± 3.9 18.2 ± 9.3 13.5 ± 4.6
diverse-antmaze-large 31.2 ± 2.4 41.2 ± 4.2 32.8 ± 5.1 25.0 ± 5.8
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