
Supplementary Materials

Di↵erentially Private Sampling from Distributions

These supplementary materials are organized as follows. Section A collects standard definitions and
mathematical tools. Next, in Section B, we describe general transformations of samplers that we use in our
lower bounds. In Section C.3, we prove upper and lower bounds for the task of private sampling from k-ary
distributions, corresponding to Theorems 1.4 and 1.5 in the introduction. In Section D, we prove upper
bounds for private sampling from product distributions over {0, 1}d, corresponding to Theorem 1.6. We
defer the proof of Theorem 1.7 to the full version of the paper. In Section E, we present our upper and
lower bounds for private sampling from product distributions with bounded attribute biases, corresponding
to Theorems 1.8 and 1.9 in the introduction. Finally, in Section F, we discuss some standard results that we
use in our proofs and, in Section G, we state some results from other papers that we use in our proofs.

A Definitions

A.1 Di↵erential Privacy

A dataset x = (x1, . . . , xn) 2 Un is a vector of elements from universe U . Two datasets are neighbors if
they di↵er in at most one coordinate. Informally, di↵erential privacy requires that an algorithm’s output
distributions are similar on all pairs of neighboring datasets. We use two di↵erent variants of di↵erential
privacy. The first one (and the main one used in this paper) is the standard definition of di↵erential privacy.

Definition A.1 (Di↵erential Privacy [17, 16]). A randomized algorithm A : Un ! Y is (", �)-di↵erentially
private if for every pair of neighboring datasets x,x

0 2 Un
and for all subsets Y ✓ Y,

Pr[A(x) 2 Y ]  e
" · Pr[A(x0) 2 Y ] + �.

In addition to standard di↵erential privacy (Definition 1.3), we use a variant called zero-mean concentrated

di↵erential privacy [10] that is defined in terms of Rényi divergence.

Definition A.2 (Rényi divergence). Consider two probability distributions P and Q over a discrete do-

main S. Given a positive ↵ 6= 1, Rényi divergence of order ↵ of distributions P and Q is

D↵(P ||Q) =
1

1� ↵
log

 
X

x2S

P (x)↵Q(x)1�↵

!
.

Definition A.3 (Zero-Mean Concentrated Di↵erential Privacy (zCDP) [10]). A randomized algorithm A :
Un ! Y is ⇢-zCDP if for every pair of neighboring datasets x,x

0 2 Un
,

8↵ 2 (1,1) D↵ (A(x)||A(x0))  ⇢↵,

where D↵(A(x)||A(x0)) is the ↵-Rényi divergence between A(x) and A(x0).

Lemma A.4 (Relationships Between (", �)-Di↵erential Privacy and ⇢-CDP [10]). For every " � 0,

1. If A is (", 0)-di↵erentially private, then A is
"2

2 -zCDP.

2. If A is
"2

2 -zCDP, then A is

⇣
"2

2 + "
p
2 log(1/�), �

⌘
-di↵erentially private for every � > 0.

Both definitions of di↵erential privacy are closed under post-processing.
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Lemma A.5 (Post-Processing [17, 10]). If A : Un ! Y is (", �)-di↵erentially private, and B : Y ! Z is

any randomized function, then the algorithm B �A is (", �)-di↵erentially private. Similarly, if A is ⇢-zCDP

then the algorithm B �A is ⇢-zCDP.

Importantly, both notions of di↵erential privacy are closed under adaptive composition. For a fixed
dataset x, adaptive composition states that the results of a sequence of computations satisfies di↵erential
privacy even when the chosen computation At(·) at time t depends on the outcomes of previous computations
A1(x), . . . ,At�1(x). Under adaptive composition, the privacy parameters add up.

Definition A.6 (Composition of (", �)-di↵erential privacy and ⇢-zCDP [17, 10]). Suppose A is an adaptive

composition of di↵erentially private algorithms A1, . . . ,AT .

1. If for each t 2 [T ], algorithm At is ("t, �t)-di↵erentially private, then A is (
P

t "t,
P

t �t)-di↵erentially
private.

2. If for each t 2 [T ], algorithm At is ⇢t-zCDP, then A is (
P

t ⇢t)-zCDP.

Standard (", �)-di↵erential privacy protects the privacy of groups of individuals.

Lemma A.7 (Group Privacy [17]). Every (", �)-di↵erentially private algorithm A is

⇣
k", �

ek"�1
e"�1

⌘
-di↵erentially

private for groups of size k. That is, for all datasets x,x
0
such that kx� x

0k0  k and all subsets Y ✓ Y,

Pr[A(x) 2 Y ]  e
k" · Pr[A(x0) 2 Y ] + � · e

k" � 1

e" � 1
.

Laplace Mechanism Our algorithms use the standard Laplace Mechanism to ensure di↵erential privacy.

Definition A.8 (Laplace Distribution). The Laplace distribution with parameter b and mean 0, denoted by

Lap(b), is defined for all x 2 R and has probability density

h(x) =
1

2b
e
� |x|

b .

Definition A.9 (`1-Sensitivity). Let f : Un ! Rd
be a function. Its `1-sensitivity is

�f = max
x,x02Un

x,x0neighbors

kf(x)� f(x0)k1.

Lemma A.10 (Laplace Mechanism). Let f : Un ! Rd
be a function with `1-sensitivity �f . Then the

Laplace mechanism is algorithm

Af (x) = f(x) + (Z1, . . . , Zd),

where Zi ⇠ Lap
⇣

�f

"

⌘
. Algorithm Af is (", 0)-di↵erentially private.

Gaussian Mechanism Our algorithms also use the common Gaussian Mechanism to ensure di↵erential
privacy.

Definition A.11 (Gaussian Distribution). The Gaussian distribution with parameter � and mean 0, denoted

N (�), is defined for all x 2 R and has probability density

h(x) =
1

�
p
2⇡

e
� x2

2�2 .

Definition A.12 (`2-Sensitivity). Let f : Un ! Rd
be a function. Its `2-sensitivity is

�f = max
x,x02U

x,x0neighbors

kf(x)� f(x0)k2.
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Lemma A.13 (Gaussian Mechanism). Let f : Un ! Rd
be a function with `2-sensitivity �f . Then the

Gaussian mechanism is algorithm

Af (x) = f(x) + (Z1, . . . , Zd),

where Zi ⇠ N
✓⇣

�fp
2⇢

⌘2
· I
◆
. Algorithm Af is ⇢-zCDP.

A.2 Distributions

Additionally, we use the Bernoulli and Poisson distributions and total variation distance.

Definition A.14 (Bernoulli Distribution). The Bernoulli distribution with bias p 2 [0, 1], denoted Ber(p),
is defined for x 2 {0, 1} with density

h(x) =

(
p if x = 1;

1� p if x = 0.

Definition A.15 (Binomial Distribution). The Binomial distribution with parameter n, p, denoted Bin(n, p),
is defined for all non-negative integers x such that x  n with density

h(x) =

✓
n

x

◆
p
x(1� p)n�x

Definition A.16 (Poisson Distribution). The Poisson distribution with parameter �, denoted Po(�), is

defined for all x 2 R with probability density

h(x) =
�
x
e
�x

x!
.

Definition A.17 (Total Variation Distance). Let P and Q be discrete probability distributions over some

domain S. Then

dTV (P,Q) :=
1

2
kP �Qk1 = sup

E✓S
|Pr
P
(E)� Pr

Q
(E)|.

We use the fact that the total variation distance between two product distributions is subadditive.

Definition A.18 (Subadditivity of TV Distance for Product Distributions). Let P and Q be product dis-

tributions over some domain S. Let P
1
, . . . , P

d
be the marginal distributions of P and Q

1
, . . . , Q

d
be the

marginal distributions over Q. Then,

dTV (P,Q) 
dX

i=1

dTV (P
i
, Q

i)

Definition A.19 (KL Divergence). Let P and Q be discrete probability distributions over some domain S.

Then

dKL(P,Q) :=
1

2

X

x2S

P (x) log

✓
P (x)

Q(x)

◆

Claim A.20. For a Bernoulli distribution Ber(p), we can simplify the definition of ↵-accuracy (Defini-

tion 1.1) of a sampler A with inputs of size n to require that

dTV (QA,Ber(p),Ber(p)) =
��� Pr
X⇠(Ber(p))⌦n

[A(X) = 1]� p

��� =
��� E
X⇠(Ber(p))⌦n

[ A(X)=1]� p

���  ↵.
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B Properties of Samplers

In this section, we describe three general transformations of samplers that allow us to assume without loss
of generality that samplers can take a certain specific form. All three transformations are used in our lower
bound proofs.

B.1 General Samplers to Poisson Samplers

In the first transformation, we show that any private sampling task can be performed by an algorithm that
gets a dataset with size distributed as a Poisson random variable instead of getting a dataset of a fixed size.
This enables the use of the technique called Poissonization to break dependencies between quantities that
arise in trying to reason about samplers. Recall that Po(�) denotes a Poisson distribution with mean �.

Lemma B.1. If there exists an (", �)-di↵erentially private sampler A that is ↵-accurate on distribution

class C for datasets of size n, then there exists an (", �)-di↵erentially private sampler APo that is (↵+e
�n/6)-

accurate on class C for datasets of size distributed as Po(2n).

Proof. Algorithm 1 is the desired sampler APo. It is (", �)-di↵erentially private since A is (", �)-di↵erentially
private. Let X represent the random variable corresponding to the dataset fed to A.

Algorithm 1 Sampler APo with dataset size N ⇠ Po(2n)

Input: dataset x = (x1, . . . , xN ), universe U , oracle access to (", �)-DP sampler A, parameter n
Output: i 2 U

1: Fix an element s 2 U .
2: if N < n then i = s.
3: else i A(x)
4: return i.

We use the following tail bound for Poisson random variables [12].

Claim B.2 ([12]). If Y ⇠ Po(�), then Pr(Y  �� y)  e
� y2

2(�+y) for all y > 0.

Let event E correspond to N < n. Let E represent the complement of E. Then

Pr(E)  e
�n

6 (1)

by an application of Claim B.2. Let P 2 C and X ⇠ P
⌦N . Then

dTV (QAPo,P , P ) =
1

2

X

i2U
| Pr
N,APo,X

(APo(X) = i)� P (i)|

=
1

2

X

i2U

���� Pr
N,APo,X

(APo(X) = i ^ E) + Pr
N,APo,X

(APo(X) = i ^ E)� P (i)
⇣
Pr
N
(E) + Pr

N
(E)

⌘����

 1

2

X

i2U

✓���� Pr
N,APo,X

(APo(X) = i ^ E)� P (i) Pr
N
(E)

����+ Pr
N,APo,X

(APo(X) = i ^ E) + Pr
N
(E)P (i)

◆

=
1

2

X

i2U

���� Pr
N,APo,X

(APo(X) = i | E) Pr(E)� P (i) Pr
N
(E)

����+
1

2
· (Pr

N
(E) + Pr

N
(E))

=
1

2

X

i2U
Pr
N
(E) ·

����� Pr
A,X,N |E

(A(X) = i | E)� P (i)

�����+ Pr
N
(E)

 1

2

X

i2U

���� PrA,X
(A(X) = i | E)� P (i)

����+ Pr
N
(E)

 ↵+ e
�n/6

,
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where the first equality is by the definition of total variation distance, the second equality is because Pr(E)+
Pr(E) = 1 and because Pr(a) = Pr(a,E) + Pr(a,E) for every event a, the first inequality is because of the
triangle inequality, the third equality is by the product rule and by marginalizing over the outputs, the
fourth inequality is because when N > n, APo sets the output to be A(x), the second inequality is by the
fact that PrN (E)  1, and the final inequality is by (1) and the fact that the sampler A is ↵-accurate when
it gets any fixed number of samples larger than n. Hence, APo is (↵+ e

�n/6)-accurate on C.

B.2 Privacy Amplification for Samplers

Our second general transformation shows how to amplify privacy (that is, decrease privacy parameters) of
a sampler by subsampling its input. The transformation does not a↵ect the accuracy. The following lemma
quantifies how the privacy parameters and the dataset size are a↵ected by privacy amplification. This result
is needed in the proof of the lower bound for k-ary distributions, because the main technical lemma in
that proof (Lemma C.3) only applies to samplers with small ". It is well known that subsampling amplifies
di↵erential privacy (see, e.g., [23, 22]).

Lemma B.3. Fix " 2 (0, 1], � 2 (0, 1), and � 2 (0, 1). If there exists an (", �)-di↵erentially private sampler A
that is ↵-accurate on distribution class C for datasets of size distributed as Po(n) then there exists an ("�, � �

2 )-

di↵erentially private sampler A�/2 that is ↵-accurate on class C for datasets of size distributed as Po
⇣
n · 2

�

⌘
.

Proof. We construct A�/2 from sampler A as follows: Given a dataset x, sampler A�/2 subsamples each
record in x independently with probability �/2 to get a new dataset x⇤ and then returns A(x⇤).

First, we argue that if sampler A is (", �)-di↵erentially private, then sampler A�/2 is ("�, �
�
2 )-di↵erentially

private. This follows from [22, Theorem 1] which we state as Theorem G.2 in the appendix. By Theorem G.2,
algorithm A�/2 is ("0, � · �

2 )-di↵erentially private with

"
0 = ln

⇣
1 +

�

2
· (e" � 1)

⌘
 ln

⇣
1 +

�

2
· (2")

⌘
= ln(1 + �")  ln(e�") = "�,

where the inequalities hold because e
" � 1  2" for all "  1 and 1 + "�  e

"� for all "�.
Next, we argue that if sampler A is ↵-accurate on class C for datasets of size Po(n), then sampler A�/2

is ↵-accurate on class C for datasets of size Po(n · 2
� ). Suppose A�/2 is given a sample X of size Po

�
n · 2

�

�

drawn i.i.d. from some distribution P . Then, the size of X⇤, obtained by subsampling each entry of X with
probability �/2, has distribution Po(n), and entries of X⇤ are i.i.d. from P . Since the output distributions
of A�/2(X) and A(X⇤) are the same, the accuracy guarantee is the same for both algorithms.

B.3 General Samplers to Frequency-Count-Based Samplers

Our final transformation shows that algorithms that sample form distribution classes with certain symmetries
can be assumed without loss of generality to use only frequency counts of their input dataset in their decisions.
Before stating this result (Lemma B.7), we define frequency counts, frequency-count-based algorithms, and
the type of symmetries relevant for the transformation.

Definition B.4 (Frequency Counts). Given a dataset x and an integer j � 0, let Fj(x) denote the number

of elements that occur j times in x. The vector F (x) of frequency counts of a dataset x of size n is

(F0(x), . . . , Fn(x)).

Definition B.5 (Frequency-count-based algorithms). A sampler is frequency-count-based if, for every ele-

ment i in the universe, the probability that the algorithm outputs i when given a dataset x only depends on

j, the number of occurrences of i in x, and on F (x). If x contains an element i 2 U that occurs j times in

x, then let pj,F (x) denote the probability that the sampler outputs i; otherwise, let pj,F (x) = 0.

Next, we define the type of distribution classes for which our transformation works.
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Definition B.6. A class C of distributions over a universe U is label-invariant if for every distribution

P 2 C and permutation ⇡ : U ! U , we have ⇡(P ) 2 C, where ⇡(P ) is the distribution obtained by applying

permutation ⇡ to the support of P (that is, Pr⇡(P )(s) = PrP (⇡�1(s)) for all s 2 U).

Examples of label-invariant classes include the class of all Bernoulli distibutions and, more generally, the
class of all k-ary distributions, for any k.

Lemma B.7. Fix a label-invariant distribution class C. If there exists an (", �)-di↵erentially private sam-

pler A that is ↵-accurate on C with a particular distribution on the dataset size, then there exists an (", �)-
di↵erentially private frequency-count-based sampler AFP that is ↵-accurate on C with the same distribution

on the dataset size.

Proof. Consider an ↵-accurate sampler A for the class C that is not frequency-count-based. Construct the
sampler AFP as show in Algorithm 2.

Algorithm 2 Sampler AFP

Input: dataset x, universe U
Output: i 2 U

1: Choose a permutation ⇡ : U ! U uniformly at random.
2: return ⇡

�1(A(⇡(x)))

First, we show that AFP is ↵-accurate for C. For all P 2 C and x ⇠ P , denote by QAFP(x) the distribution
of outputs for AFP(x). Then, for a fixed permutation ⇡, we have

dTV (QAFP(x), P ) = dTV

�
⇡
�1(QAFP(⇡(x)), P

�

= dTV

�
QAFP(⇡(x)),⇡(P )

�
 ↵. (2)

The equalities hold by the definition of AFP and A, and the inequality holds because ⇡(x) ⇠ ⇡(P ) and since
C is label-invariant. For a uniformly chosen ⇡,

dTV (QAFP(x), P ) = dTV

⇣
E
⇡
[QAFP(x)|⇡], P

⌘

 E
⇡
[dTV (QAFP(x)|⇡, P )] By the triangle inequality

 max
⇡

{dTV (QAFP(x)|⇡, P )}

= max
⇡

{dTV (QAFP(⇡(x)),⇡(P ))}  ↵. By (2)

So, Algorithm AFP is also ↵-accurate for C.
Next, we show that AFP is frequency-count-based by proving that for all permutations ⇡⇤ on the universe

and for all i in the universe, Pr[AFP(⇡⇤(x)) = ⇡
⇤(i)] = Pr[AFP(x) = i]. Let ⇡0 = ⇡ �⇡⇤. We can characterise

the output distribution of AFP for a fixed x as follows

Pr[AFP(⇡
⇤(x)) = ⇡

⇤(i)] =
1

|U|!
X

⇡02[U !]

Pr[A(⇡0 � ⇡⇤(x)) = ⇡0 � ⇡⇤(i)]

=
1

|U|!
X

⇡0�⇡⇤2[U !]

Pr[A(⇡0 � ⇡⇤(x)) = ⇡0 � ⇡⇤(i)]

=
1

|U|!
X

⇡2[U !]

Pr[A(⇡(x)) = ⇡(i)]

=
1

|U|!
X

⇡2[U !]

Pr[⇡�1(A(⇡(x))) = i]

= Pr[AFP(x) = i]
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The third equality holds since the permutations ⇡,⇡⇤ are bijections. Thus AFP is frequency-count-based.
Furthermore, the sizes of the input datasets to AFP and A are identical, so if A takes a sample with size

distributed according to some distribution P , then so does the frequency-count-based sampler AFP.

C k-ary Discrete Distributions

We consider privately sampling from the class of discrete distribution over [k] := {1, 2, . . . , k}. We call this
class Ck. We prove in this section that the sample complexity of this task is ⇥(k/↵"), corresponding to
Theorems 1.4 and 1.5. The proof of Theorem 1.5 is split into two cases: Theorem C.1 deals with the case
where k = 2 and Theorem C.8 deals with the case where k � 3. We combine these theorems appropriately
at the end of Section C.3.2.

C.1 Optimal Private Sampler for k-ary Distributions

In this section, we prove Theorem 1.4.

Proof of Theorem 1.4. Algorithm 3 is the desired (", 0)-di↵erentially private sampler for Ck. The algorithm
computes the empirical distribution, adds Laplace noise to each count in [k], and then projects the result onto
Ck in order to sample from the resulting distribution. The L1 projection onto Ck is defined as L1Proj(P ) =
argminP 02Ck

kP � P
0k1.

Algorithm 3 Sampler ACk for Ck
Input: dataset x 2 [k]n, parameter " > 0
Output: i 2 [k]

1: for j = 1 to k do

2: P̂j  1
n

Pn
i=1 [xi=j] . Compute the empirical distribution

3: Zj ⇠ Lap(2/"n) . Sample Laplace noise

4: P̂
noisy
j  P̂j + Zj . Compute noisy empirical estimate

5: P̃  L1Proj(P̂noisy) . Do L1 projection of private empirical estimate to Ck
6: i ⇠ P̃ . Sample from resulting distribution
7: return i

First, we argue that Algorithm 3 is ↵-accurate. Let P be the input distribution represented by a vector of
length k. As defined in Algorithm 3, let P̂ be the empirical distribution, P̂noisy be the empirical distribution
with added Laplace noise, and P̃ be the distribution obtained after applying L1 projection (all represented
by vectors of length k). Then EX[P̂ ] = P , since P̂ is the empirical distribution of a dataset sampled from P .
Let QACk

,P be the distribution of the sampler’s output for dataset X ⇠ P
n. Then QACk

,P = EX,A[P̃ ], since

the output of ACk is sampled from P̃ . We get

dTV (QACk
,P , P ) =

1

2

���P �QACk
,P

���
1
=

1

2

���P � E
X,ACk

[P̃ ]
���
1
=

1

2

��� E
X,ACk

[P̂ � P̃ ]
���
1

 1

2
· E
X,ACk

h
kP̂ � P̃k1

i
, (3)

where we applied Jensen’s inequality in the last step of the derivation. Additionally,

kP̂ � P̃k1 = kP̃ � P̂
noisy + P̂

noisy � P̂k1
 kP̂ � P̂

noisyk1 + kP̃ � P̂
noisyk1 By the triangle inequality

 2kP̂ � P̂
noisyk1. Definition of L1 projection
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Substituting this into (3), we get that

dTV (P,QACk
,P ) 

1

2
· E
X,ACk

h
2kP̂ � P̂

noisyk1
i
= E

ACk

h X

j2[k]

|Zj |
i
=

2k

n"
,

since the expectation of the absolute value of a random variable distributed according to the Laplace distri-
bution Lap( 2

n" ) is
2
n" . We conclude that with n � 2k

↵" , Algorithm 3 is ↵-accurate.
Next, we show that Algorithm 3 is (", 0)-di↵erentially private. The sensitivity of a function f : Xn ! Rd

is defined as maxx,x02Xn,kx�x0k0=1 kf(x) � f(x0)k1. Recall that P̂ is the empirical distribution of dataset

x (represented by a vector of length k). Changing one element of x can change only two components of P̂
by 1

n each. Hence, the sensitivity of the empirical distribution is 2
n . Algorithm 3 adds Laplace noise scaled

to the sensitivity of the empirical distribution to each component of the empirical distribution and then
post-processes the output. This is an instantiation of the Laplace Mechanism (proved in [17] to be (", 0)-
di↵erentially private) followed by post-processing. Algorithm 3 is (", 0)-di↵erentially private since di↵erential
privacy is preserved under post-processing.

C.2 The Lower Bound for the Class of Bernoulli Distributions

We consider the class B of Bernoulli distributions with an unknown bias p. For all p 2 [0, 1], distribution
Ber(p) 2 B outputs 1 with probability p and 0 with probability 1 � p. Algorithm 3 for the special case of
k = 2 shows that O( 1

↵" ) samples are su�cient for (", 0)-di↵erentially private ↵-accurate sampling from B.
In this section, we show that this bound is tight, even for (", �)-di↵erentially private samplers.

Theorem C.1. If " 2 (0, 1],↵ 2 (0, 1), and �  ↵", then every (", �)-di↵erentially private sampler that is

↵-accurate on the class B of Bernoulli distributions requires ⌦( 1
↵" ) samples.

Proof. The following lemma captures how di↵erential privacy a↵ects a sampler for Bernoulli distributions.

Lemma C.2. Suppose �  ↵". If sampler A is (", �)-di↵erentially private and ↵-accurate on the class B of

Bernoulli distributions then, for all t 2 [n],

Pr[A(1t0n�t) = 1]  2↵e"t.

Proof. Fix n and t 2 [n]. Since A is ↵-accurate on Ber(0), we have Pr[A(0n) = 1]  ↵. We start with the
dataset 1t0n�t and replace 1s with 0s one character at a time until we reach 0n. Since A is (", �)-di↵erentially
private, its output distribution does not change dramatically with every replacement. Specifically,

Pr[A(1t0n�t) = 1]  e
" · Pr[A(1t�10n�t+1) = 1] + �

 e
"(e" · Pr[A(1t�20n�t+2) = 1] + �) + �  . . .

 e
"t · Pr[A(0n) = 1] + � ·

t�1X

i=0

e
"t = e

"t · Pr[A(0n) = 1] + � · e
"t � 1

e" � 1

 e
"t · ↵+ � · e

"t � 1

e" � 1
 e

"t
⇣
↵+

�

"

⌘
 2↵e"t,

where the last two inequalities hold because e
" � 1  " for all " and since �  ↵".

Consider a sampler A, as described in Theorem C.1. By Lemma B.7, since the class B is label-invariant,
we may assume w.l.o.g. that A is frequency-count-based. In particular, the output distribution of A is the
same on datasets with the same number of 0s and 1s.

Consider a Bernoulli distribution with p = 10↵. Let T be a random variable that denotes the number of
1s in n independent draws from Ber(p). Then T has binomial distribution Bin(n, 10↵). By Claim A.20 and
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↵-accuracy of A for Ber(p), we get

9↵  E
X⇠(Ber(p))⌦n

[A(X) = 1] = E
T⇠Bin(n,10↵)

[A(1T 0n�T ) = 1]

 E
T⇠Bin(n,10↵)

[2↵e"T ] = 2↵(10↵(e" � 1) + 1)n (4)

 2↵(20↵"+ 1)n  2↵e20↵"n, (5)

where, to get (4), we used Lemma C.2 and then the moment generating function of the binomial distribution;
in (5), we used that e"�1  2" for all " 2 (0, 1] and, finally, that x+1  e

x for all x (applied with x = 20↵").
We obtained that 9↵  2↵ · e200↵"n, so n � 20

ln 4.5
1
↵" samples are required. This completes the proof of

Theorem C.1.

C.3 The Lower Bound for the Class of k-ary Distributions

In this section, we prove Theorem 1.5 by proving a lower bound for the universe size at least 3 (Theorem C.8)
and combining it with the previously proved lower bound for the binary case (Theorem C.1). The crux of
the proof of Theorem C.8 is presented in Section C.3.1, where we state and prove the lower bound for the
special case of Poisson, frequency-count-based samplers with su�ciently small " (that is, a strong privacy
guarantee). In Section C.3.2, we complete the proof of the theorem by generalizing the lower bound from
Section C.3.1 with the help of the transformation lemmas (Lemmas B.1, B.3, and B.7) that allow us to
convert general samplers to Poisson, frequency-count-based algorithms with small privacy parameter ".

C.3.1 The Lower Bound for Poisson, Frequency-Count-Based Samplers with Small "

Lemma C.3. Fix k, n 2 N,↵ 2 (0, 0.02], " 2 (0, 1/ ln(1/↵)], and � 2 [0, 0.1↵"/k]. Let C2k+1 denote the class

of discrete distributions over the universe [2k + 1]. If sampler A is (", �)-di↵erentially private, frequency-

count-based, and ↵-accurate on class C2k+1 with dataset size distributed as Po(n), then n >
1
60 · k

↵" .

Proof. We consider the following distribution P over the universe U = [2k + 1]. Fix ↵
⇤ = 60↵ and a set

S
⇤ ⇢ [2k] of size k. Distribution P has mass ↵

⇤
/k on each element in S

⇤ and mass 1 � ↵
⇤ on the special

element 2k + 1.
Consider a sampler A satisfying the conditions of Lemma C.3. Let QA,P denote the output distribution

of A when the dataset size N ⇠ Po(n) and the dataset X ⇠ P
⌦N . Observe that

dTV (QA,P , P ) � Pr
N⇠Po(n)
X⇠P⌦N

[A(X) /2 Supp(P )]. (6)

We will show that when n  k
60↵" and " and � are in the specified range, the right-hand side of (6) is large.

We start by deriving a lower bound on Pr[A(x) /2 Supp(P )] for a fixed dataset x of a fixed size N . Since
A is frequency-count-based, the probability that it outputs a specific element in [2k] that occurs 0 times in
x is p0,F (x). Let F

⇤
0 (x) denote the number of elements in [2k] that occur 0 times in x (note that the special

element 2k + 1 is excluded from this count). By definition, F ⇤
0 (x)  2k. Consequently,

Pr[A(x) /2 Supp(P )] = k · p0,F (x) �
1

2
· F ⇤

0 (x) · p0,F (x). (7)

The next claim uses the fact that sampler A is (", �)-di↵erentially private to show that the probability
pj,F (x) (that A outputs some specific element in the universe U that appears j times in the dataset x) cannot
be much larger than the probability that A outputs a specific element in U that does not appear in x.

Claim C.4. For every (", �)-di↵erentially private sampler and every frequency count f 2 Z⇤
and index

j 2 U ,

pj,f  e
"j

✓
p0,f +

�

"

◆
. (8)
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Proof. Consider a frequency count f and a dataset x with F (x) = f . Note that (8) is true trivially for all j
such that Fj(x) = 0 because, in that case, pj,F (x) is set to 0.

Fix any j 2 U such that Fj(x) > 0. Let a be any element in U that occurs j times in the dataset x. Let b
be any element in U that is not in the support of the distribution P . Let x|a!b denote the dataset obtained
by replacing every instance of a in the dataset x with element b. By group privacy [17],

Pr[A(x) = a]  e
j" Pr[A(x|a!b) = a] + � · e

"j � 1

e" � 1
. (9)

Note that the dataset x|a!b does not contain element a, since we’ve replaced every instance of it with b.
Importantly, F (x|a!b) = F (x) because b is outside of the support of the distribution P and hence does
not occur in x. Since A is frequency-count-based and F (x) = F (x|a!b), we get that p0,F (x) = p0,F (x|a!b).
Substituting this into (9) and using the fact that e" � 1 � " for all ", we get that

pj,F (x)  e
j" · p0,F (x) + � · e

"j � 1

e" � 1
 e

"j

✓
p0,f +

�

"

◆
.

This completes the proof of Claim C.4.

For a dataset x and i 2 [2k+ 1], let Ni(x) denote the number of occurrences of element i in x. Next, we
give a lower bound on Pr[A(x) /2 Supp(P )] in terms of the counts Ni(x).

Claim C.5. Let N 2 N and x 2 [2k + 1]N be a fixed dataset. Set Y =
P

i2S⇤

⇥
e
Ni(x)"

⇤
. Then

Pr[A(x) /2 Supp(P )] � 1

2
· Pr[A(x) 2 [2k]]

1 + Y/k
� k�

"
.

Proof. In the following derivation, we use the fact that that an element j 2 [2k] that appears j times in x is
returned by A with probability pj,F (x), then split the elements into those that do not appear in x and those
that do, next use the fact that all elements from [2k] that appear in x must be in S

⇤, then apply Claim C.4,
and finally substitute Y for

P
i2S⇤

⇥
e
Ni(x)"

⇤
:

Pr[A(x) 2 [2k]] =
X

i2[2k]

pNi(x),F (x) = F
⇤
0 (x) · p0,F (x) +

X

i2[2k]\x

pNi(x),F (x)

 F
⇤
0 (x) · p0,F (x) +

X

i2S⇤

pNi(x),F (x)

 F
⇤
0 (x) · p0,F (x) +

X

i2S⇤

p0,F (x) ·
✓
e
"Ni(x) +

�

"

◆


⇣
F

⇤
0 (x) + Y

⌘⇣
p0,F (x) +

�

"

⌘
.

We rearrange the terms to get

p0,F (x) �
Pr[A(x) 2 [2k]]

F ⇤
0 (x) + Y

� �

"
.

Substituting this bound on p0,F (x) into (7), we obgain

Pr[A(x) /2 Supp(P )] � 1

2
· F

⇤
0 (x) Pr[A(x) 2 [2k]]

F ⇤
0 (x) + Y

� 1

2
· F

⇤
0 (x) · �

"

=
1

2
· Pr[A(x) 2 [2k]]

1 + Y/F ⇤
0 (x)

� 1

2
· F

⇤
0 (x) · �

"

� 1

2
· Pr[A(x) 2 [2k]]

1 + Y/k
� k�

"
,

where in the last inequality, we used that k  F
⇤
0 (x)  2k. This holds since the support of P excludes k

elements from [2k] and since F
⇤
0 (x) counts only elements from [2k] that do not appear in x.
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Finally, we give a lower bound on the right-hand side of (6). Assume for the sake of contradiction that
n  k

↵⇤" . By Claim C.5,

Pr
N⇠Po(n)
X⇠P⌦N

[A(X) /2 Supp(P )] � E
N⇠Po(n)
X⇠P⌦N


1

2
· Pr[A(X) 2 [2k]]

1 + Y/k
� k�

"

�

=
1

2
· E
N⇠Po(n)
X⇠P⌦N


Pr[A(X) 2 [2k]]

1 + Y/k

�
� k�

"
. (10)

Next, we analyze the expectation in (10). Let E be the event that Y
k  e

3. By the law of total expectation,

E
N⇠Po(n)
X⇠P⌦N


Pr[A(X) 2 [2k]]

1 + Y/k

�
� E

N⇠Po(n)
X⇠P⌦N


Pr[A(X) 2 [2k]]

1 + Y/k

��E
�
Pr(E). (11)

In Claims C.6 and C.7, we argue that both Pr(E) and EN⇠Po(n)
X⇠P⌦N

h
Pr[A(X)2[2k]]

1+Y/k

��E
i
are su�ciently large.

Claim C.6. Suppose n  k
60↵" . Let E be the event that

Y
k  e

3
. Then Pr(E) � 1� ↵.

Proof. Recall that Y was defined as
P

i2S⇤

⇥
e
Ni(x)"

⇤
for a fixed dataset x. Now we consider the case when

dataset X is a random variable. If N ⇠ Po(n) and X ⇠ P
⌦N then Ni(X) ⇠ Po(↵

⇤n
k ) for all i 2 S

⇤ and,
additionally, the random variables Ni(X) are mutually independent. When X is clear from the context, we
write Ni instead of Ni(X). Now we calculate the moments of Y

k . For all � > 0,

E
N⇠Po(n)
X⇠P⌦N

"✓
Y

k

◆�
#
= E

N⇠Po(n)
X⇠P⌦N

2

4
 
1

k

X

i2S⇤

e
Ni(X)"

!�
3

5 = E
N1,...,Nk⇠Po(↵⇤n

k )

2

4
 
1

k

X

i2S⇤

e
Ni"

!�
3

5 . (12)

Finally, we bound the probability of event E. Set c = e
3 and � = ln 1

↵ . By definition of E,

Pr(E) = Pr

✓
Y

k
� c

◆
= Pr

 ✓
Y

k

◆�

� c
�

!
 1

c�
· E
N⇠Po(n)
X⇠P⌦N

"✓
Y

k

◆�
#

 1

c�
· E
N1,...,Nk⇠Po(↵⇤n

k )

2

4
 
1

k

X

i2S⇤

e
Ni"

!�
3

5  1

c�
· E
N1⇠Po(↵⇤n

k )

h�
e
N1"

��i
(13)

= c
�� · e

↵⇤n
k (e�"�1)  e

�3� · e
(e�"�1)

"  e
�3� · e2� = e

�� = e
� ln(1/↵) = ↵, (14)

where we use � > 0 in the second equality, then apply Markov’s inequality. To get the inequalities in (13),
we apply (12) and then Claim F.1 on the moments of the average of random variables. To get (14), we use
the moment generating function of a Poisson random variable, and then we substitute c = e

3 and use the
assumption that n  k

60↵" = k
↵⇤" . The second inequality in (14) holds because � = ln 1

↵ and " 2 (0, 1/ ln 1
↵ ],

so �"  1 and hence e
�"  1 + 2�". The final expression is obtained by substituting the value of �. We get

that Pr(E) � 1� ↵, completing the proof of Claim C.6.

Claim C.7. E
N⇠Po(n)
X⇠P⌦N


Pr[A(X) 2 [2k]]

1 + Y/k

��E
�
� 2.3↵.

Proof. When event E occurs, 1 + Y
k  1 + e

3
< 22. Then

E
N⇠Po(n)
X⇠P⌦N


Pr[A(X) 2 [2k]]

1 + Y/k

��E
�
> E

N⇠Po(n)
X⇠P⌦N


Pr[A(X) 2 [2k]]

22

��E
�
=

1

22
· E
N⇠Po(n)
X⇠P⌦N

[Pr[A(X) 2 [2k]] | E] . (15)
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By the product rule,

Pr[A(X) 2 [2k]] | E] =
Pr[A(X) 2 [2k]] ^ E]

Pr[E]
� Pr[A(X) 2 [2k]] ^ E] � Pr[A(X) 2 [2k]]� Pr[E].

Substituting this into (15) and recalling that ↵⇤ = 60↵, we get

E
N⇠Po(n)
X⇠P⌦N


Pr[A(X) 2 [2k]]

1 + Y/k

��E
�
� 1

22
· E
N⇠Po(n)
X⇠P⌦N

⇥
Pr[A(X) 2 [2k]]� Pr[E]

⇤
� 1

22
· (↵⇤ � ↵� ↵) � 2.3↵,

since sampler A is ↵-accurate on P , and P has mass ↵⇤ on [2k], and by Claim C.6.

Combining (6), (10), and (11), applying Claims C.6 and C.7, and recalling that �  0.1 · ↵"/k, we get

dTV (P,QA,P ) � Pr
N⇠Po(n)
X⇠P⌦N

[A(X) /2 Supp(P )] � 1

2
· E
N⇠Po(n)
X⇠P⌦N


Pr[A(X) 2 [2k]]

1 + Y/k

�
� k�

"

� 1

2
· E
N⇠Po(n)
X⇠P⌦N


Pr[A(X) 2 [2k]]

1 + Y/k

��E
�
Pr(E)� 0.1↵ � 1

2
· 2.3↵ · (1� ↵)� 0.1↵ > ↵,

where the last inequality holds since ↵  0.02. This contradicts ↵-accuracy of A on datasets of size Po(n),
where n  k

↵⇤" , and completes the proof of Lemma C.3.

C.3.2 Final Lower Bound for k-ary Distributions

In this section, we complete the proof of Theorem C.8.

Theorem C.8. For all su�ciently small ↵ > 0, k, n 2 N, " 2 (0, 1], , and � 2
⇥
0, 0.1 · ↵"

k

⇤
, if there exists

an (", �)-di↵erentially private sampler that is ↵-accurate on the class C2k+1 of discrete distributions over

universe [2k + 1] on datasets of size n, then n = ⌦( k
↵" ).

Proof. We apply Lemmas B.1, B.3, and B.7 to generalize the lower bound in Lemma C.3 to work for all
di↵erentially private samplers and all privacy parameters " 2 (0, 1].

Suppose there exists an (", �)-di↵erentially private sampler A that is ↵-accurate on the class C2k+1 for
datasets of size n, for some n 2 N, " 2 (0, 1], � 2

⇥
0, 0.1 · ↵"

k

⇤
, and ↵ 2 (0, 0.01]. We can assume without loss

of generality that n � 6 ln(1/↵), since, if this is not the case, A can ignore extra samples. By Lemma B.1,
there exists an (", �)-di↵erentially private sampler APo that is (↵+e

�n/6)-accurate on C2k+1 when its dataset
size is distributed as Po(2n). Since n � 6 ln(1/↵), this gives e�n/6  ↵, so sampler APo is 2↵-accurate. By
Lemma B.3, we can amplify the privacy to construct an ("0, �0)-di↵erentially private sampler A0 that is ↵0-
accurate for datasets with size distributed as Po(4n ln(1/↵0)), where ↵0 = 2↵, "0 = "

ln(1/↵0) , and �
0 = �

2 ln(1/↵0) .

Then "
0  1

ln(1/↵0) , �
0  0.01↵0"0

k , and ↵
0  0.02, as required to apply Lemma C.3 with privacy parameters

"
0
, �

0 and accuracy parameter ↵0. By Lemma B.7, we can assume the sampler is frequency-count-based with
no changes in the privacy and accuracy parameters. Now, applying Lemma C.3 gives

4n ln(1/↵0) � 1

60
· k

2↵ · "
ln(1/↵0)

.

Therefore, n � k
480↵" = ⌦( k

↵" ), as claimed in the theorem statement.

Now we can combine Theorem C.1 (for k = 2) and Theorem C.8 (for k � 3) to get the lower bound
in Theorem 1.5 for all k � 2. Note that directly applying these theorems would give a lower bound for
� 2 [0, 0.1↵"

k ]. However, this can be extended to any � 2 [0, 1
5000n ].To see this, observe that when n <

k
480↵✏ <

1
5000� , a direct application of our theorems proves the lower bound. When n <

1
5000� <

k
480↵" ,
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assume by way of contradiction that there exists an (✏, �)-DP sampler that is ↵-accurate on the class of k-ary
distributions for input datasets of size n.

One can find a triple of values (k0,↵0
, "

0) such that 2  k
0  k, 0.01 � ↵

0 � ↵ and 1 � "
0 � " such that

n  k0

480↵0"0 <
1

5000� . In particular, � < 0.1 · ↵0"0

k0 . Next, note that a sampler that achieves accuracy ↵ < 0.01
is also a sampler that achieves accuracy ↵

0 for all 0.01 � ↵
0
> ↵. Additionally, since the class of discrete

distributions over [k0] is a subclass of the class of discrete distributions over [k], an (", �)-di↵erentially private
sampler that is ↵-accurate on the class of discrete distributions over [k] when given an input dataset of size
n is ("0, �)-di↵erentially private and ↵

0-accurate on the class of discrete distributions over [k0] for the same
dataset size n. We can then apply the lower bounds in either Theorem C.8 or Theorem C.1 to show that no
such sampler exists. This proves the theorem for all � 2 [0, 1

5000n ].

D Product Distributions Over {0, 1}d

In this section, we consider the problem of privately sampling from the class B⌦d of product distributions
over {0, 1}d. We present and analyze a ⇢-zCDP sampler for B⌦d (Theorem D.1) and then apply a standard
conversion from ⇢-zCDP to (✏, �)-di↵erential privacy (Theorem A.4) to prove Theorem 1.6.

Theorem D.1 (Upper bound for product distributions). For all ⇢ 2 (0, 1], ↵ 2 (0, 1), and d greater

than some su�ciently large constant, there exists a ⇢-zCDP sampler for the class B⌦d
of product Bernoulli

distributions that is ↵-accurate on datasets of size n = O

⇣
d

↵
p
⇢ ·

h
log9/4 d+ log5/4 1

↵
p
⇢

i⌘
.

This theorem implies Theorem 1.6; we prove the implication at the end of this section.
Our main technical tool is the recursive preconditing technique of [19]. Let p = (p1, . . . , pd) be the

unknown attribute biases for the product distribution P 2 B⌦d from which the data is drawn. For some
intuition, consider the following natural di↵erentially private algorithm for sampling from a product distri-
bution: First, privately estimate each of the attribute biases pj by adding noise to the sample mean; then
sample each attribute independently from a Bernoulli with this estimated bias. This approach does not work
directly because the `2-sensitivity of the vector of sample means is

p
d/n. To accurately estimate tiny biases,

we require a large sample size n. For instance, in the case where all the attribute biases are roughly 1/d, the
naive algorithm described above would require n = ⌦(d3/2) records to be ↵-accurate for a small constant ↵.

To get around this (in the context of distribution learning), Kamath et al. [19] observe that when the
biases are small and the input is drawn from a product distribution, the number of 1s in each record is
constant—say, at most 10—with high probability. Viewing the records as vectors in Rd, we can therefore
truncate every record so that its `2-norm is at most

p
10 (that is, we leave short vectors alone and shrink

longer records) and then average the truncated data entries to obtain a truncated mean. We call
p
10 the

truncation ceiling. Truncation reduces sensitivity, which allows one add less noise—and thus give better
attribute bias estimates—while preserving privacy. When the biases are at most 1/d, the sample complexity
for constant accuracy ↵ is reduced to O(d/"). (A similar idea works for biases very close to 1. For simplicity,
we assume that all attribute biases pi are between 0 and 1/2. See Footnote 4.)

The challenge with this approach is that we don’t know biases ahead of time; when coordinates have large
bias, setting the truncation ceiling too low leads to high error. Kamath et al. address this by estimating the
attribute biases in rounds: in round j, attributes with biases close to 2�j are estimated reasonably accurately,
while smaller biases are passed to the next round where truncation can be applied more aggressively. This
process is called recursive preconditioning, and it is an important part of our algorithm.

Our algorithm proceeds in two phases.

• Bucketing Phase: This phase implements recursive private preconditoning from [19] to estimate the
attribute biases pi. The main di↵erence is that, for coordinates with large bias, we require less accurate
estimates than [19] and can thus use fewer samples.

In a bit more detail: The interval [0, 1
2 ] is divided into dlog2 de + 1 overlapping sub-intervals that we

call buckets. The r
th bucket corresponds to the interval [ 14 · 2�r

, 2�r]. The exception is the smallest
bucket, which corresponds to [0, 1

d ].
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We proceed in rounds, one per bucket. The bucketing phase uses half of the overall dataset and, for
simplicity, those records are split evenly among rounds. Each round thus uses m ⇡ n

2 log d records. At
round r, some coordinates are classified as having attributes in bucket r, while others are passed to the
next round. With high probability, we maintain the invariants that (a) only coordinates with bias at
most 2�r are passed to round r, and (b) all coordinates with bias at most 2�r�2 are passed to round
r+1 (except for the last round, in which no records are passed on). As a result, coordinates classified
in round r have biases in the bucket [2�r�2

, 2r]; records left in the last round have bias at most 1/d.

For example, the first round corresponds to bucket [ 18 ,
1
2 ]. All coordinates are passed to that round

(they have bias at most 1
2 by assumption). Using its batch of m records, this round of the algorithm

computes the empirical means for all coordinates, adds Gaussian noise about
p
d

m to each, and releases
the list of noisy means. We select n large enough for these noisy estimates to each be within 1

16 of the
true attribute bias with high probability (over the sampling of both the data and the noise). Attributes
with noisy estimates below 3/16 are passed to round 2, while the rest are assigned to bucket 1. One
can check that the invariants are maintained: attributes with bias below 1/8 are passed to round 2;
those with bias at least 1/4 are assigned to bucket 1; and those in between may go either way.4

At round r, we proceed similarly except that we can restrict records to those attributes that were
passed to this round and we can truncate records so their `2 norm is at most Tr ⇡

p
d/2r. When the

data are from a product distribution and prior rounds were correct, this truncation has essentially no
e↵ect on the records but allows us to add less noise. We get noisy means that are within ± 1

8 · 2�r of
the true biases. The invariants are maintained if we pass biases with noisy means below 3

8 · 2�r to the
next round, and assign the rest to bucket r.

• Sampling Phase: In the second phase, we use fresh data for the sampling phase to construct new,
unbiased noisy empirical estimates of the attribute biases. In round r of this phase, we restrict records
to the attributes assigned to bucket r. We can truncate the records to have norm Tr (because the
biases are at most 2�r) and add noise as before. This gives us a list of noisy means, which we clip to
[0, 1] by rounding up negative values and rounding down values above 1. We sample one bit for each
attribute independently, according to these clipped noisy means.

For attributes in all buckets except the last, we get noisy means that lie in [0, 1] with high probability
(because the biases are at least 1

4 · 2�r). Since the estimates are unbiased and no clipping occurs, we
sample from the correct distribution. For the attributes in the last bucket, we may get negative noisy
means. However, the noise is small in these attributes, and we can bound the overall e↵ect on the
distribution. Interestingly, almost all the error of our algorithm comes from these low-bias attributes.

We present our sampler Aprod for B⌦d in Algorithm 4. Let x = (x1, . . . , xn) be a dataset with n records.
The truncated mean operation, used in the algorithm, is defined as follows:

truncB(xi) =

(
xi if kxik2  B;

B
kxik2

xi otherwise;

tmeanB(x) =
1

n

nX

i=1

truncB(xi).

Recall that we assume that all of the attribute biases pj 2 [0, 1/2].
First, we argue that this algorithm is private.

Lemma D.2. Aprod is ⇢-zCDP.

4
One can also handle biases larger than 1/2 at this phase. Specifically, the first round of noisy measurements allows us to

divide the coordinates into three disjoint sets, each containing only coordinates with biases in [0, 1/4], [1/8, 7/8], and [3/4, 0],

respectively. We can work with the coordinates in the first two sets as they are. For coordinates in the third set, we can flip all

entries (from 0 to 1 and vice-versa), treat them as if their biases were in [0, 1/4], and flip the corresponding output bits.
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Algorithm 4 Sampler Aprod for B⌦d

Input: dataset x 2 {0, 1}d⇥n, privacy parameter ⇢ 2 (0, 1], failure parameter � > 0.
Output: b 2 {0, 1}d

1: Set R log2
d
40 ,m 

n
2R+1 . . For analysis, assume m = 1200d

↵
p
2⇢

log5/4 dR
↵�

p
2⇢

2: Split x into 2R+ 1 datasets x1
, . . . ,x

2R+1 of size m.

Bucketing Phase

3: Set S1  [d], u1  1
2 , ⌧1  

3
16 .

4: for r = 1 to R do

5: Sr+1  ;, Tr  
q
6ur|Sr| log mR

� .

6: Set p̃[Sr] tmeanTr (x
r[Sr]) +N (0, T 2

r
2⇢m2 I). . Form noisy bias estimates

7: for j 2 Sr do

8: if p̃[j] < ⌧r then . Compare noisy bias estimate to threshold
9: Sr+1  Sr+1 [ {j}. . Send j to next round.

10: SR+r  Sr \ Sr+1, TR+r  Tr.
11: ⌧r+1  ⌧r

2 , ur+1  ur
2 .

Sampling Phase

12: T2R+1  
q
200 log m

� , S2R+1  SR+1, SR+1  S1 \ S2.

13: for r = R+ 1 to 2R+ 1 do

14: p̃[Sr] tmeanTr (x
r[Sr]) +N (0, T 2

r
2⇢m2 I) . Estimate biases using fresh data and noise

15: for j 2 Sr, do
16: Set q[j] [p̃[j]]10. . Clip to lie in the interval [0,1]
17: Sample bj ⇠ Ber(q[j]). . Sample from estimated marginal distribution.

18: return (b1, . . . , bd).

Proof. Each input record xi is used only in one round in one phase. Assume without loss of generality that
this round is in the bucketing phase. The `2-sensitivity of the truncated mean tmeanTr (X

r[Sr]) is Tr/m.
By the privacy of the Gaussian mechanism (Lemma A.13), the step that produces this estimate is ⇢-zCDP.
The remaining steps simply post-process this estimate. Hence, by Lemma A.5, Algorithm 4 is ⇢-zCDP.

D.1 Overview of Accuracy Analysis

We analyze the two phases of Algorithm 4 separately. Our analysis of the bucketing phase mirrors that
of [19]. (Their results are not directly applicable to our setting because our algorithm use fewer samples.
We therefore give new lemma statements and proofs.)

In Section D.2, we prove technical lemmas that are used multiple times in the analysis of both phases.
In Section D.3, we show that with high probability, the bucketing phase is successful—that is, we classify
all of the attribute biases into the right buckets. This is encapsulated by Lemma D.7. This corresponds to
obtaining good multiplicative approximations of all attribute biases except the smallest ones, for which we
obtain good additive approximations.

Next, in Section D.4, we prove a key lemma regarding the success of the sampling phase.
The intuition behind the analysis of this phase is as follows. Algorithm Aprod samples its output from

a product distribution. Since the input distribution is in B⌦d, each attribute of an input record is sampled
from a Bernoulli distribution. By the subadditivity of total variation distance for product distributions, the
overall accuracy of Aprod can be bounded by showing that Aprod samples each attribute independently from
a Bernoulli distribution with bias close to the true attribute bias pj .

The main idea is that the empirical attribute bias has expectation equal to the true attribute bias.
Additionally, to preserve privacy, we add zero-mean Gaussian noise. Hence, a noisy empirical estimate of
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the true attribute bias has mean equal to that attribute bias. If we knew for sure that the noisy empirical
estimate for an attribute bias in the sampling phase was always between 0 and 1, then the sampler would
sample this attribute from exactly the right Bernoulli distribution.

Alas, the noisy empirical estimate of an attribute bias could be less than 0 or larger than 1, and we
would have to clip it to the interval [0, 1] before sampling. This clipping introduces error since we no
longer necessarily sample from the right distribution in expectation. We get around this by proving that
for attribute biases pj larger than ↵

d , clipping happens with low probability, and hence the loss in accuracy
caused by clipping is small in expectation. However, for attribute biases pj that are smaller than ↵

d , clipping
could occur with high probability. For such attribute biases, we argue that the absolute di↵erence between
the clipped noisy empirical mean estimates and the true attribute biases is small enough (at most ↵

d ) with
high probability. This argument is described in Lemma D.8.

Finally, we prove the main upper bound theorem in Section D.5 by putting everything together.

D.2 Analysis of Good Events

In the accuracy analysis, we assume that m � 1200 d
↵
p
2⇢

· log5/4
⇣

dR
↵�

p
2⇢

⌘
and d is su�ciently large (that is,

greater than some positive constant). In this section, we define three good events G1, G2, and G3 that,
respectively, represent that empirical means are close to the attribute biases in all 2R + 1 datasets into
which Algorithm 4 subdivides its input, that truncation does not occur in any round (assuming successful
bucketing for that round), and that the added Gaussian noise is su�ciently small. We show that each of
these events fails to occur only with small probability.

First, we prove that the empirical means are close to the attribute biases with high probability. Define
the empirical mean p̂r[j] :=

1
m

Pm
i=1 x

r
i [j].

Lemma D.3. Let G1 be the event that for all rounds r 2 [2R+ 1], the following conditions hold:

1. For all j 2 [d], if ↵
d  pj  1

2 then |p̂r[j]� pj |  pj

16 .

2. For all j 2 [d], if pj <
↵
d then |p̂r[j]� pj |  ↵

4d .

Then, Pr
h
G1

i
 2�, where the probability is over the randomness of the input data and the coins of Aprod.

Proof. Fix r 2 [2R+ 1] and j 2 [d]. Note that E[p̂r[j]] = pj for all r 2 [2R+ 1].
We prove Item 1 of the lemma by a case analysis on pj . First, when pj � ↵

4d , we use the multiplicative
Cherno↵ bound from Claim F.2 for � 2 (0, 1):

Pr
h
p̂r[j] > pj

⇣
1 +

↵

4dpj

⌘i
 exp

⇣
� ↵

2
pjm

48d2(pj)2

⌘
= exp

⇣
� ↵

2
m

48d2pj

⌘
 exp

⇣
� ↵

12d

1000d

↵
log

dR

�

⌘
 �

4d(R+ 1)
,

where in the third inequality we used that pj  ↵
d and substituted in a lower bound for m.

Secondly, when pj <
↵
4d , we use the multiplicative Cherno↵ bound for all � > 0 from Claim F.2:

Pr
h
p̂r[j] > pj

⇣
1 +

↵

4dpj

⌘i
 exp

⇣
� ↵

2
pjm

16d2p2j (2 +
↵

4dpj
)

⌘
 exp

⇣
� ↵

2
m

12d2pj(
↵
d )

⌘

= exp
⇣
� ↵m

12dpj

⌘
 exp

⇣
� ↵

12d

1000d log(dR/�)

↵

⌘
 �

4d(R+ 1)
,

where in the first inequality we used that since ↵
4dpj

> 1, ↵
4dpj

+ 2  3 ↵
4dpj

, and in the third inequality we

substituted a lower bound for the value of m and upper bounded pj by ↵.
Similar inequalities hold for the lower tails of p̂r[j]. Taking a union bound over all j 2 [d] such that

pj  ↵
d completes the the proof of Item 1 in Lemma D.3.
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Next, assume that ↵
d  pj  1

2 . By the Cherno↵ bound from Claim F.2 for � 2 (0, 1),

Pr
h
p̂r[j]� pj �

pj

16

i
= Pr

h
p̂r[j] � pj

⇣
1 +

1

16

⌘i
 exp

⇣
� pjm

3 · 16

⌘
 �

2d(R+ 1)
,

where the final inequality holds since pjm � ↵
d 1000

d
↵ log dR

� . A similar bound holds for the lower tail of

p̂r[j]. Taking a union bound over all j 2 [d], and all r 2 [2R+ 1] gives the result.

Next, we argue that truncation is unlikely in any round (given successful bucketing). Recall that ur = 1/2r

for all r 2 [R] (see Algorithm 4). For all r 2 [R], let uR+r = ur. Let u2R+1 = 20/d. A version of the following
lemma is stated and proved in [19] (for us, the smallest upper bound of a bucket is u2R+1 = 20/d instead of
1/d, but the truncation ceiling T2R+1 is also larger than in [19] to balance this out.)

Lemma D.4 ([19], Claims 5.10 and 5.18). Let G2 be the following event that, for every round r 2 [2R+ 1],
the following holds: if pj  ur for all j 2 Sr, then for every i 2 [m],

kxr
i [Sr]k2  Tr,

that is, no rows are truncated in the calculation of tmeanTr (x
r[Sr]) in Steps 6 or 14 of Algorithm 4. Then,

Pr
h
G2

i
 3�, where the probability is over the randomness of the input data and the coins of Aprod.

Finally, we prove that the amount of noise added in any round is unlikely to be large. For all r 2 [2R+1],
let Zr be a d-dimensional random vector representing the noise added in round r as in Steps 6 and 14 of
Algorithm 4. For attributes j 2 [d] to which no noise is added in round r, the coordinate Zr[j] = 0.
The remaining Zr[j] are drawn from independent zero-mean Gaussians with standard deviation specified in
Steps 6 and 14 of Algorithm 4.

Lemma D.5. Let G3 be the event that for all rounds r 2 [2R+ 1], for all j 2 Sr,

|Zr[j]| 
↵ur

100
.

Then Pr
h
G3

i
 �, where the probability is over the randomness of the input data and the coins of Aprod.

Proof. For rounds r 2 [2R], the standard deviation of univariate Gaussian noise Zr[j] added in round r is

�r =
q

3ur|Sr|
⇢m2 log mR

� . Set t =
q
2 ln 6dR

� . By Lemma F.3 on the concentration of a zero-mean Gaussian

random variable along with a union bound,

Pr(max
j2Sr

|Zr[j]| � t�r) 
X

j2Sr

Pr(|Zr[j]| � t�r) 
X

j2Sr

2e�t2/2  �

2R+ 1
.

Since m � 600d
↵
p
⇢ log

5/4( dR
↵�

p
⇢ ) and , and because ur � 40

d , for all r 2 [2R],

t�r =

s
6ur|Sr| log mR

� ln 6dR
�

⇢m2
 ↵

vuut6ur|Sr| log dR
↵�

p
⇢ ln

6dR
�

36000d2 log10/4( dR
↵�

p
⇢ )
 ↵

s
6urd

3600d2 log1/4(dR� )
 ↵ur

100
,

where the first inequality is because log mR
� /m is a decreasing function for m and hence we can upper bound

the expression by using a lower bound of m. We also use the fact that the term log mR
�  10 log dR

↵�
p
⇢ ). The

second inequality follows by cancelling out some log terms and using the fact that |Sr|  d, and the last
inequality follows because 1

d 
ur
40 , �  1, and because d is su�ciently large. For r = 2R + 1, the standard

deviation �r =
q

100
⇢m2 log

m
� , so with the same value of t, we get the same result. Taking a union bound over

all r 2 [2R+ 1] gives the result.
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The following corollary summarizes our analysis of good events and follows from Lemmas D.3–D.5 by a
union bound.

Corollary D.6. Let G be the event G1 \ G2 \ G3. Then, Pr[G]  6�, where the probability is over the

randomness of the input data and the coins of Aprod.

D.3 Success of the Bucketing Phase

In this section, we argue that if the good event G occurs, then the bucketing phase succeeds.

Lemma D.7. Let B be the event that that the bucketing procedure is successful, namely, for all rounds

r 2 [R] [ {2R+ 1} and for all coordinates j 2 [d], the following statements hold:

1. If r 2 [R] and pj 2 SR+r, then ur/4  pj  ur.

2. If pj 2 S2R+1 then pj  u2R+1.

If the good event G defined in Corollary D.6 occurs then B occurs.

Proof. Assume that B occurs. We prove this lemma by induction on r. Recall that SR+r = Sr \ Sr+1 for
all r 2 [R]. To prove Item 1, we show that, for all rounds r 2 [R], if j 2 Sr then pj  ur, and if j 62 Sr then
pj � ur/2. For the first round (the base case of the induction), since u1 = 1/2, and since by assumption
pj  1/2 for all j 2 [d], we have that pj  u1. Additionally, since S1 = [d], it vacuously holds that pj � u1/2
for all j 62 S1. Next, fix any r 2 [R� 1]. The inductive hypothesis is that for round r, if j 2 Sr then pj  ur

and if j 62 Sr then pj � ur/2 = ur+1.
We prove that this statement holds for round r + 1. For all j 2 Sr, let p̃r[j] be the noisy empirical

estimate obtained for coordinate j in Step 6 of Algorithm 4 (in round r). By Item 1 of the definition of
event G1, for all j 2 Sr with pj >

↵
d ,

|p̂r[j]� pj | 
pj

16
 ur

16
,

where the second inequality is by the induction hypothesis. Similarly, by Item 2 of the definition of event
G1, for all j 2 Sr with pj  ↵

d ,

|p̂r[j]� pj | 
↵

4d
 ur

160
,

where the second inequality holds since ur � 40
d for all r 2 [R] and ↵  1.

By the inductive hypothesis, pj  ur for all j 2 Sr. Hence, by the definition of event G2, no truncation
occurs in round r. Also, |Zr[j]|  ur

100 , by the definition of event G3, since ↵  1. Hence, for all j 2 Sr,

|p̂r[j]� p̃r[j]| 
ur

100
.

By the triangle inequality, we get that for all j 2 Sr,

|p̃r[j]� pj |  |p̂r[j]� p̃r[j]|+ |p̂r[j]� pj |  +
ur

100
+

ur

16
 ur

8
. (16)

Fix any j 2 Sr. Recall that ⌧r = 3ur+1

4 . If p̃r[j]  ⌧r then, by (16), pj  ⌧r +
ur
8 = 3ur+1

4 + ur+1

4 = ur+1.

Similarly, if p̃r[j] � ⌧r, then pj � 3ur+1

4 � ur+1

4 = ur+1

2 .
This completes the inductive step and proves that at the beginning of round r+1, we have that pj  ur+1

for all j 2 Sr+1, and pj � ur+1

2 for all j 62 Sr+1. Item 2 follows from an extension of the same argument.
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D.4 Success of the Sampling Phase

Lemma D.8 (Success of sampling phase). For all j 2 [d], for q[j] defined as in Step 16 of algorithm Aprod,

when Aprod is run with failure probability parameter � 2 (0, 1
12 ] and target accuracy ↵ 2 (0, 1],

1. if
↵
d < pj  1

2 , then |E[q[j]� pj ]|  12�;

2. if pj  ↵
d , then |E[q[j]� pj ]| 

↵

2d
+ 6�;

where the expectations are taken over the randomness of the data and the noise.

Proof. We start by proving Item 1.
Fix any j 2 [d] with ↵

d  pj  1
2 . First, we argue that if event G occurs, then no noisy empirical means

are clipped in the sampling phase. By construction, (SR+1, . . . , S2R+1) is a partition of [d]. For all j 2 [d],
let r(j) denote the round r 2 {R+1, . . . , 2R+1} such that j 2 Sr. Now suppose G occurred. By the triangle
inequality and since G implies G1, G2, G3, and B,

|pj � p̃r(j)[j]|  |pj � p̂r(j)[j]|+ |p̂r(j)[j]� p̃r(j)[j]| 
pj

16
+ |Zr(j)[j]| 

pj

16
+

↵ur(j)

100
 pj

3
, (17)

where the second inequality is by the definition of event G1, the fact that G implies B, and the definition
of event G2 and the third inequality is by the definition of event G3. The final inequality uses the fact that
event B occurs; if pj >

5
d then ur(j)  4pj , and otherwise ur(j) =

20
d and hence

↵ur(j)

100 = 20↵
100d 

pj

5 .
If G occurs, by (17) and since 0 < pj  1

2 , we have

0 <
2pj
3
 p̃r(j)[j] 

4pj
3

< 1,

and thus p̃r(j)[j] does not get clipped.
Next, by the law of total expectation,

E[q[j]� pj ] = E[q[j]� pj | G] · Pr[G] + E[q[j]� pj | G] · Pr[G]

 E[q[j] | G]� pj + 6� 
E[p̂r(j)[j] + Zr(j)[j]]

Pr[G]
� pj + 6�

 pj

1� 6�
� pj + 6�  1

2

✓
1

1� 6�
� 1

◆
+ 6�  12�,

where the first inequality holds by Corollary D.6 and the fact that E[q[j] � pj ]  1. The second inequality
uses the fact that when G occurs, there is no clipping and truncation, and E[A | E]  E[A]/Pr[E] for all
random variables A and events E. The third inequality is by the fact that E[p̂r(j)[j]] = pj and E[Zr(j)[j]] = 0,
and by Corollary D.6. The last inequality holds because �  1

12 and pj  1
2 by assumption.

Analogously, E[pj � q[j]]  12�, which completes the proof of Item 1.
Next, we prove Item 2. Recall the event G defined in Corollary D.6 and the event B defined in Lemma D.7.

Fix a coordinate j 2 [d] with pj  ↵
d . By Lemma D.7, the law of total expectation, and the fact that

|E[q[j]� pj | B]|  1,

|E[q[j]� pj ]|  |E[q[j]� pj | G]| · Pr[G] + |E[q[j]� pj | B]| · Pr[G]  |E[q[j]� pj | G]|+ 6�. (18)

Now, we show that |E[q[j]� pj | G|  ↵
2d . Conditioned on event G, using Lemma D.7, event B occurs, and

the output bits for all coordinates j with pj  ↵
d are sampled in round 2R + 1. Conditioned on event G,

using the fact that event B occurs, and using the definition of event G2 on truncation of empirical estimates,

|[p̃2R+1[j]]
1
0 � pj |  |p̃2R+1[j]� pj | = |Z2R+1[j]| 

↵u2R+1

100
 ↵

2d
,

where the second to last inequality is by the definition of event G3, and the last inequality is since u2R+1 = 20
d .

Thus, |E[q[j]� pj | G]|  ↵
2d . Combining this with (18) proves Item 2 of Lemma D.8.
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D.5 Proof of Main Theorem

Finally, we use Lemma D.8 to prove the theorem.

Proof of Theorem D.1. Fix ⇢ 2 (0, 1],↵ 2 (0, 1),� = ↵
12d , and R = log2(d/40). Fix the sample size

n =
1200(2R+ 1)d

↵
p
2⇢

log5/4
dR

↵�
p
2⇢

= Õ

⇣
d

↵
p
⇢

⌘

for this setting of � and R.
First, by Lemma D.2, we have that Aprod is ⇢-zCDP.
Next, we reason about accuracy. Let QAprod,P⌦d be the distribution of the output of the sampler Aprod

with randomness coming from the data and coins of the algorithm. Observe that QAprod,P⌦d is a product
distribution and that the marginal bias of each coordinate j 2 [d] is E[q[j]]. Let the marginal distributions of
QAprod,P⌦d beQ1, . . . , Qd. By the subadditivity of total variation distance between two product distributions,

dTV (QAprod,P , P
⌦d) 

dX

i=1

dTV (Qi, P ) =
dX

i=1

|E[q[j]� pj ]|

=
X

i:pi>↵
d

|E[q[j]� pj ]|+
X

i:pi↵
d

|E[q[j]� pj ]|


X

i:pi>↵
d

12� +
X

i:pi↵
d

⇣
↵

2d
+ 6�

⌘
 ↵,

where we got the first equality by substituting the expression for the total variation distance between two
Bernoulli distributions, the second inequality is by Lemma D.8 (since � = ↵

12d 
1
12 , this lemma is applicable),

and the final inequality holds because � = ↵
12d .

Finally, we complete this section by proving Theorem 1.6 from the introduction.

Proof of Theorem 1.6. Set ⇢ = ✏2

16 log(1/�) . By Lemma A.4, for all � 2 (0, 1/2], algorithm Aprod is (✏, �)-
di↵erentially private. Substituting this value of ⇢ into Theorem D.1, we get that the sampler Aprod is
↵-accurate for input datasets of size

n = O

 
d

↵✏
·
r
log

1

�

 
log9/4 d+ log5/4

log 1
�

↵"

!!
.

For log(1/�) = polylog(n), we get that Aprod is ↵-accurate for input datasets of size n = Õ( d
↵✏ ). This proves

the theorem, since �  1/2.

E Products of Bernoulli Distributions with Bounded Bias

E.1 Sampling Algorithms for Products of Bernoullis with Bounded Bias

In this section, we consider Bernoulli distributions and, more generally, products of Bernoulli distributions
with bounded bias. We show that, when the bias is bounded, di↵erentially private sampling can be per-
formed with datasets of significantly smaller size than in the general case. For Bernoulli distributions with
bounded bias, we achieve this (in Theorem E.1) with pure di↵erential privacy, that is, with � = 0. For
products of Bernoulli distributions, we give a zCDP algorithm (see Theorem E.4). Theorems E.1 and E.4, in
conjunction with Lemma A.4 relating ⇢-zCDP and di↵erential privacy, directly yield Theorem 1.8. In Sec-
tion E.2, we prove our lower bound for products of Bernoulli distributions with bounded bias, encapsulated
in Theorem 1.9.
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E.1.1 Private Sampler for Bernoulli Distributions with Bounded Bias

First, we consider the class B[ 13 ,
2
3 ]

of Bernoulli distributions (see Definition A.14) with an unknown bias p 2⇥
1
3 ,

2
3

⇤
. Even though class B[ 13 ,

2
3 ]

is the hardest to learn privately among the classes of Bernoulli distributions,
we show in the next theorem that private sampling from this class is easy.

Theorem E.1. For all " > 0 and ↵ 2 (0, 1), there exists an (", 0)-di↵erentially private sampler for the class

B[ 13 ,
2
3 ]

of Bernoulli distributions with bias in
⇥
1
3 ,

2
3

⇤
that is ↵-accurate for datasets of size n = O( 1" + ln 1

↵ ).

Proof. We use [ · ]ba to denote rounding an arbitrary real number to the nearest value in [a, b]. Consider the
following sampler Aclip: on input x 2 {0, 1}n, compute the sample proportion p̂ = 1

n

P
i2[n] xi, obtain a

clipped proportion p̃ = [p̂]3/41/4, and output b ⇠ Ber(p̃).

Claim E.2. Sampler Aclip is ↵-accurate on the class B[ 13 ,
2
3 ]

with dataset of size n � 72 ln 6
↵ .

Proof. Define the “good” event E that no rounding occurs when sample proportion is clipped, that is, p̃ = p̂.
Since p 2 [1/3, 2/3],

Pr[E] = Pr
h
p̂ /2 [1/4, 3/4]

i
 Pr

h
|p̂� p| � 1

12

i
 2e�n/72  ↵

3
, (19)

where we applied the Hoe↵ding bound (specifically, that Pr[|p̂� E[p̂]| � t]  2e�2nt2) and our lower bound
on n.

Let Q be the distribution of the output bit b for a dataset selected i.i.d. from Ber(p). Then, by Claim A.20
and the description of Aclip,

dTV (Q,Ber(p)) = |E(b)� p| = |E(p̃)� E(p̂)|.

Next, we observe that E[p̃|E] = E[p̂|E] and use (19) to bound dTV (Q,Ber(p)). Specifically,

E[p̂] = E[p̂|E] · Pr[E] + E[p̂|E] · Pr[E]  E[p̂|E] · 1 + 1 · Pr[E]

 E[p̂|E] +
↵

3
= E[p̃|E] +

↵

3
 E[p̃]

Pr[E]
+

↵

3
 E[p̃]

1� ↵/3
+

↵

3

 E[p̃] +
⇣ 1

1� ↵/3
� 1

⌘
+

↵

3
 E[p̃] + ↵

2
+

↵

3
 E[p̃] + ↵.

Similarly, E[p̃]  E[p̂] + ↵. We get that dTV (Q,Ber(p)) = |E(p̃) � E(p̂)|  ↵, completing the accuracy
analysis.

Claim E.3. Sampler Aclip is (4/n, 0)-di↵erentially private.

Proof. By definition of the sampler, Pr[b = 1] = p̃. Consider two datasets x and x
0 that di↵er in one record.

The sample proportions p̂ = 1
n

P
i2[n] xi and p̂

0 = 1
n

P
i2[n] x

0
i di↵er by at most 1/n. Let p̃ and p̃

0 be the
corresponding clipped proportions, which also di↵er by at most 1/n. Then, since p̃ � 1/4,

p̃
0  p̃+

1

n
 p̃+ p̃

4

n
= p̃

⇣
1 +

4

n

⌘
= p̃ · e4/n,

where we used the fact that 1 + t  e
t for all t. Similarly, since p̃  3/4, we get that the probabilities of

returning b = 0 for inputs x and x
0 also di↵er by at most a factor of e4/n. Thus, Aclip is 4/n-di↵erentially

private.

Now we set n � max
�
72 ln 6

↵ ,
4
"

 
and use Claims E.2 and E.3 to get both accuracy and privacy guarantees.

Observe that when n � 4/", we get that 4/n  ", that is, Aclip is (", 0)-di↵erentially private. This completes
the proof of Theorem E.1.
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E.1.2 Private Sampler for Products of Bernoulli Distributions with Bounded Bias

In this section, we consider product distributions, where each marginal is a Bernouli distribution with a bias
between 1/3 and 2/3. For this class, significantly fewer samples are needed for private sampling than for the
general class of products of Bernoulli distributions.

Theorem E.4. For all all ⇢ > 0 and ↵ 2 (0, 1), there exists a ⇢-zCDP sampler for the class B⌦d
[ 13 ,

2
3 ]

of products

of Bernoulli distributions with bias in
⇥
1
3 ,

2
3

⇤
that is ↵-accurate for datasets of size n = O

⇣p
dp
⇢ + log d

↵

⌘
.

Proof. The input to a sampler for B⌦d
[ 13 ,

2
3 ]
is an n⇥d matrix x 2 {0, 1}n⇥d

, where row i contains the i-th record

and column j contains all input bits for j-th attribute. Recall sampler Aclip from the proof of Theorem E.1.
For each j 2 [d], our sampler runs sampler Aclip on column j of x and records its output bit bj ; it returns
the vector b = (b1, . . . , bd).

We show that this sampler is ↵-accurate on the class B⌦d
[ 13 ,

2
3 ]

with n � 72 ln 6d
↵ samples. Let P =

P1 ⌦ · · · ⌦ Pd be the input product distribution, where Pj = Ber(pj) for all coordinates j 2 [d]. Let
Q = Q1 ⌦ · · · ⌦ Qd be the distribution of the output vector b for a dataset selected i.i.d. from P. (Since
the coordinates of b are mutually independent, Q is indeed a product distribution.) By Claim E.2 applied
with ↵/d as accuracy parameter, dTV (Qj , Pj)  ↵

d . By subadditivity of the statistical distance between two
product distributions,

dTV (Q,P ) 
X

j2[d]

dTV (Qj , Pj)  d · ↵
d
= ↵,

completing the proof that our sampler is ↵-accurate.
Finally, we show that our sampleris ⇢-zCDP when n �

p
8d/⇢. The sampler is a composition of d

algorithms, each returning one bit. By Claim E.3, these algorithms are (4/n, 0)-di↵erentially private and,
consequently, also 8

n2 -zCDP. A composition of d such algorithms is then 8d
n2 -zCDP. That is, when n �

p
8d/⇢,

it is ⇢-zCDP, as required.

E.2 Lower Bound for Products of Bernoullis with Bounded Bias

We now prove a lower bound that matches the guarantees of the algorithm of the previous section.

Theorem E.5 (Theorem 1.9, restated). For all su�ciently small ↵ > 0, and for all d, n 2 N, " 2 (0, 1], and
�  1

100n , if there exists an (", �)-di↵erentially private sampler that is ↵-accurate on the class of products of

d Bernoulli distributions with biases in
⇥
1
3 ,

2
3

⇤
on datasets of size n, then n = ⌦(

p
d/").

To prove the theorem, we reduce the problem of accurately estimating the marginal biases of a product
distribution over {0, 1}d to the problem of sampling from the product distribution. This involves dividing the
dataset into a constant number of disjoint parts and passing each part separately to a sampler for product
distributions to obtain a constant number of independent samples. Then, by averaging the samples obtained,
we get an estimate of the marginal biases. We also observe that a marginal estimator for the class B⌦d

[ 13 ,
2
3 ]

can be converted into a marginal estimator for the class B⌦d with only a constant factor loss in accuracy.
To do this, we flip every bit of every sample with probability 1/3, which gives us a dataset that looks like it
is drawn from a product distribution in B⌦d

[ 13 ,
2
3 ]
. We then use the marginal estimator for B⌦d

[ 13 ,
2
3 ]

and transform

the estimated biases back to the original range by multiplying by 3 and subtracting 1. Finally, applying the
lower bound of Bun et al. [11] for the sample complexity of marginal estimation for the class B⌦d, we obtain
a lower bound on the sample complexity for the problem of accurately sampling from product distributions
with bounded biases.

Definition E.6 (Marginal Estimator). For ↵
0
,�

0
, � 2 [0, 1], and a class C of distributions on {0, 1}d, an

algorithm M is an (↵0
,�

0
, �, C)-marginal estimator with sample size n if, given X ⇠ P

⌦n
where P 2 C, with

probability at least 1� �, algorithm M returns p̃1, . . . , p̃d such that

|{j 2 [d] : |pj � p̃j | > ↵
0}| < �

0
d .
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Algorithm 5 Marginal Estimator Mc for B⌦d
[ 13 ,

2
3 ]

Input: dataset x 2 {0, 1}cn⇥d, constant c, query access to sampler A
Output: marginal estimates p̃ = (p̃1, . . . , p̃d)

1: Partition dataset x into c equal parts: x(1)
, . . . ,x

(c)

2: for i = 1 to c do:
3: Yi  A(x(i)) . Get c independent samples from A
4: p̃ 1

c

Pc
i=1 Yi . Compute marginal estimates

5: return p̃

Lemma E.7 (Reduction from Marginal Estimation to Sampling). For all ↵,�0, �0 2 (0, 1), there exists

c 2 N such that for all ", � > 0: if A is an (", �)-DP sampler that is ↵-accurate on class B⌦d
[ 13 ,

2
3 ]

with sample

size n, then Mc (Algorithm 5) is an (", �)-DP, (2↵,�0, �0,B⌦d
[ 13 ,

2
3 ]
)-marginal estimator with sample size cn.

Proof. Fix a distribution P 2 B⌦d
[ 13 ,

2
3 ]
. Let p represent the vector of biases corresponding to P , and Yi for

i 2 [c] and p̃ be as defined in Steps 3 and 4 of Algorithm 5. Consider any index j 2 [d]. The expectations
E[Yi[j]] are the same for all i 2 [c]. Define q[j] = E[Y1[j]]. Since A is ↵-accurate with sample size n, we
have |q[j] � pj |  ↵. Let D be a positive constant to be set later. By Hoe↵ding’s inequality (Claim F.4),

Pr(|q[j]� p̃j | � Dp
c
)  2e�2D2

. By the triangle inequality, with probability at least 1� 2e�2D2

,

|p̃j � pj |  |p̃j � q[j]|+ |q[j]� pj |  ↵+ Dp
c
. (20)

Since (20) holds for all j 2 [d], the expected number of j 2 [d] such that |q[j] � pj | > ↵ + Dp
c
is at most

2de�2D2

. By Markov’s inequality,

Pr(|{j 2 [d] : |pj � p̃j | > ↵+ Dp
c
}| � 2d

�0
e
�2D2

))  �0.

Setting D
2 = 1

2 ln(
2

�0�0
) ensures 2d

�0
e
�2D2  �0d. Setting c =

l
D2

↵2

m
further ensures that ↵ + Dp

c
 2↵. We

thus get the desired accuracy guarantee on Mc when c =
l

1
2↵2 ln(

2
�0�0

)
m
.

Finally, changing one entry in the dataset x changes a single entry in only one of the parts x(i), and only
this part is fed to the i

th call to A. Since A is (", �)-DP, so is Mc. This proves the lemma.

Next we show how to transform a marginal estimator for a product of bounded Bernoulli distributions
into a marginal estimator for a product of arbitrary Bernoulli distributions. Let BSC1/3 denote a binary

symmetric channel with bias 1/3. That is, on input x 2 {0, 1}n⇥d, each bit gets flipped independently with
probability 1/3. In particular, BSC1/3(x) = x� Z, where Z ⇠ Ber(1/3)⌦n⇥d.

Algorithm 6 Marginal Estimator MBer for B⌦d

Input: dataset x 2 {0, 1}n⇥d, query access to marginal estimator M for B⌦d
[ 13 ,

2
3 ]

Output: marginal estimates p̃ = (p̃1, . . . , p̃d)

1: x
⇤  BSC1/3(x) . Change initial distribution

2: p
⇤  M(x⇤) . Get empirical estimates

3: p̃ (3 · p⇤1 � 1, . . . , 3 · p⇤d � 1) . Rescale empirical estimates
4: return p̃

Lemma E.8 (Reduction from General to Bounded Biases). If M is an (↵0
,�

0
, �,B⌦d

[ 13 ,
2
3 ]
)-marginal estimator

with sample size n, then MBer (in Algorithm 6) is a (3↵0
,�

0
, �,B⌦d)-marginal estimator with sample size n.

If M is (", �)-di↵erentially private, then so is MBer.

xxiii



Proof. We begin with the accuracy proof. Fix an (↵0
,�

0
, �,B⌦d

[ 13 ,
2
3 ]
)-marginal estimator M with sample size n.

Fix a distribution P 2 B⌦d with biases p = (p1, . . . , pd). Let X ⇠ P
⌦n. Denote the output distribution of

BSC1/3(X) by P
0 and its biases by p

0 = (p01, . . . , p
0
d). Let BSC1/3(X)ji = X

j
i � Z be the output for the jth

attribute on the ith data record, where Z
j
i ⇠ Ber(1/3). Then, for all j 2 [d] and all i 2 [n],

p
0
j = Pr[BSC1/3(X)ji = 1] = Pr[Xj

i � Z
j
i = 1] = Pr[Xj

i = 1 ^ Z
j
i = 0] + Pr[Xj

i = 0 ^ Z
j
i = 1]

= pj ·
2

3
+ (1� pj) ·

1

3
=

pj

3
+

1

3
.

Thus, BSC1/3(X) 2 B⌦d
[ 13 ,

2
3 ]
, as desired. Since M is a (↵0

,�
0
, �,B⌦d

[ 13 ,
2
3 ]
)-marginal estimator with sample size n,

estimator M returns (p⇤1, . . . , p
⇤
d) such that with probability at least 1� �,

|{j 2 [d] : |p0j � p
⇤
j | > ↵

0}| < �
0
d. (21)

Substituting p
0
j = pj/3 + 1/3 in the left-hand side of in (21) and then using p̃j = 3p⇤j + 1, we get

|{j 2 [d] : |pj
3

+
1

3
� p

⇤
j | > ↵

0}| = |{j 2 [d] : |pj � (3p⇤j � 1)| > 3↵0}|

= |{j 2 [d] : |pj � p̃j |  3↵0}|.

Thus, MBer is a (3↵0
,�

0
, �,B⌦d)-marginal estimator with sample size n.

Finally, we show that MBer is di↵erentially private. Suppose M is (", �)-di↵erentially private. Fix
neighboring datasets x and x

0 that di↵er in record i. Then, BSC1/3(x) and BSC1/3(x
0) still only di↵er

on record i. Since the output of MBer is a post-processing of M, we have that MBer is (", �)-di↵erentially
private.

We prove our main result by combining Lemmas E.7–E.8 with a lower bound on marginal estimation that
is obtained using the fingerprinting codes technique of Bun, Ullman and Vadhan [11]. We use a corollary of
the version of the result from [11] presented by Kamath and Ullman [20].

Theorem E.9 (Consequence of [20], Theorem 3.3). Suppose there exists a function n = n(d), such that for

every d 2 N, there is a (↵0,�0, �0,B⌦d)-marginal estimator M : {0, 1}n⇥d ! Rd
that is (", 1

100n )-DP, where

↵0,�0, �0 2 (0, 1) are su�ciently small absolute constants. Then n = ⌦(
p
d/").

Proof of Theorem E.5. Let ", � 2 (0, 1] with � <
1

100n . Let ↵0,�0, �0 be the constants from Theorem E.9,

and set ↵ = ↵0
6 . Let A be an ↵-accurate, (", �)-DP sampler for the class B⌦d

[ 13 ,
2
3 ]

for datasets of some size

n. By Lemma E.7, there exists an (", �)-di↵erentially private, (↵0
3 ,�0, �0,B⌦d

[ 13 ,
2
3 ]
)-marginal estimator Mc for

datasets of size cn for an absolute constant c = c(↵,�0, �0). By Lemma E.8, MBer defined in Algorithm 6 is
a (", �)-di↵erentially private, (↵0,�0, �0,B⌦d)-marginal estimator for datasets of size cn. By Theorem E.9,
n = ⌦(

p
d/"), as desired.
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F Inequalities Used in Technical Sections

We argue that the moments of the average of several identically distributed random variables are no larger
than the corresponding moments of the individual random variables.

Claim F.1. If random variables A1, . . . , Ak are identically distributed, then, for all � > 0,

E

2

4
 
1

k

kX

i=1

Ai

!�
3

5  E
⇥
A

�
1

⇤
.
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Proof. By Jensen’s inequality,
⇣

1
k

Pk
i=1 Ai

⌘�
 1

k

Pk
i=1 A

�
i for any fixed values of A1, . . . , Ak. We take ex-

pectation on both sides, then use the linearity of expectation and that A1, . . . , Ak are identically distributed:

E

2

4
 
1

k

kX

i=1

Ai

!�
3

5  E
"
1

k

kX

i=1

A
�
i

#
=

1

k

kX

i=1

E
⇥
A

�
i

⇤
= E

⇥
A

�
1

⇤
.

F.1 Concentration Inequalities

Claim F.2 (Cherno↵ Bounds). Let A be the average of m independent 0-1 random variables with µ = E[A].
For � 2 (0, 1),

Pr[A � µ(1 + �)]  e
� �2µm

3 ;

Pr[A  µ(1� �)]  e
� �2µm

2 .

For � � 0,

Pr[A � µ(1 + �)]  e
� �2µm

2+� ;

Pr[A  µ(1� �)]  e
� �2µm

2+� .

Claim F.3 ([19], Lemma 2.8, Gaussian Concentration). If A is drawn from N (0,�2), then, for all t > 0,

Pr (|A| > t�)  2e�t2/2
.

Claim F.4 (Hoe↵ding’s Inequality). Let A be the average of m independent random variables in the interval

[0, 1] with µ = E[A]. For h � 0,

Pr[A� µ � h]  e
�2mh2

.

Pr[µ�A � h]  e
�2mh2

.

G Lemmas on Amplification by Subsampling

Definition G.1 ([22], Definition 3). An algorithm A is (�, ", �)-DPS if and only if � > � and the algorithm

A�
is (", �)-DP where A�

denotes the algorithm to first sample with probability � (include each tuple in the

input dataset with probability �), and then apply A to the sampled dataset.

Theorem G.2 ([22], Theorem 1). Any (�1, "1, �1)-DPS algorithm is also (�2, "2, �2)-DPS for any �2 < �1

where "2 = ln
⇣
1 +

⇣
�2

�1
(e"1 � 1)

⌘⌘
, and �2 = �2

�1
�1.
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