
Stronger NAS with Weaker Predictors

Junru Wu1, Xiyang Dai2, Dongdong Chen2, Yinpeng Chen2, Mengchen Liu2, Ye Yu2,
Zhangyang Wang3, Zicheng Liu2, Mei Chen2, Lu Yuan2

1 Texas A&M University, 2Microsoft Corporation, 3University of Texas at Austin
sandboxmaster@tamu.edu, {xidai,dochen,yilche,mengcliu}@microsoft.com,

atlaswang@utexas.edu, {yeyu1,zliu,mei.chen,luyuan}@microsoft.com

Abstract

Neural Architecture Search (NAS) often trains and evaluates a large number of ar-
chitectures. Recent predictor-based NAS approaches attempt to alleviate such heavy
computation costs with two key steps: sampling some architecture-performance
pairs and fitting a proxy accuracy predictor. Given limited samples, these predictors,
however, are far from accurate to locate top architectures due to the difficulty of
fitting the huge search space. This paper reflects on a simple yet crucial question:
if our final goal is to find the best architecture, do we really need to model the
whole space well?. We propose a paradigm shift from fitting the whole architecture
space using one strong predictor, to progressively fitting a search path towards the
high-performance sub-space through a set of weaker predictors. As a key property
of the weak predictors, their probabilities of sampling better architectures keep
increasing. Hence we only sample a few well-performed architectures guided by
the previously learned predictor and estimate a new better weak predictor. This em-
barrassingly easy framework, dubbed WeakNAS, produces coarse-to-fine iteration
to gradually refine the ranking of sampling space. Extensive experiments demon-
strate that WeakNAS costs fewer samples to find top-performance architectures
on NAS-Bench-101 and NAS-Bench-201. Compared to state-of-the-art (SOTA)
predictor-based NAS methods, WeakNAS outperforms all with notable margins,
e.g., requiring at least 7.5x less samples to find global optimal on NAS-Bench-101.
WeakNAS can also absorb their ideas to boost performance more. Further, Weak-
NAS strikes the new SOTA result of 81.3% in the ImageNet MobileNet Search
Space. The code is available at: https://github.com/VITA-Group/WeakNAS.

1 Introduction

Figure 1: Comparison between our
method using a set of weak predictors (it-
erative sampling), and a single strong pre-
dictor (random sampling) on NAS-Bench-
201. For fair comparison, the NAS predic-
tor in both methods adtops the same type
of MLP described in 2.4. Solid lines and
shadows denote the mean and standard
deviation (std), respectively.

Neural Architecture Search (NAS) [1–12] methods aim
to find the best network architecture by exploring the
architecture-to-performance manifold, using reinforced-
learning-based [13], evolution-based [14, 15] or gradient-
based [1, 16] approaches. In order to cover the entire search
space, they often train and evaluate a large number of archi-
tectures, leading to tremendous computation cost.

Recently, predictor-based NAS methods alleviate this prob-
lem with two key steps: one sampling step to sample some
architecture-performance pairs, and another performance
modeling step to fit the performance distribution by training
a proxy accuracy predictor. An in-depth analysis of existing
methods [2] found that most of those methods [5, 6, 17, 7–
9, 18] consider these two steps independently and attempt to
model the performance distribution over the whole architec-
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Figure 2: An illustration of WeakNAS’s progressive approximation. Previous predictor-based NAS
uniformly sample in the whole search space to fit a strong predictor. Instead, our method progressively
shrinks the sample space based on predictions from previous weak predictors, and update new weak
predictors towards subspace of better architectures, hence focusing on fitting the search path.

ture space using a strong1 predictor. However, since the architecture space is often exponentially
large and highly non-convex, even a very strong predictor model has difficulty fitting the whole space
given limited samples. Meanwhile, different types of predictors often demand handcraft design of the
architecture representations to improve their performance.

This paper reflects on a fundamental question for predictor-based NAS: “if our final goal is to find the
best architecture, do we really need to model the whole space well?”. We investigate the alternative of
utilizing a few weak1 predictors to fit small local spaces, and to progressively move the search space
towards the subspace where good architecture resides. Intuitively, we assume the whole space could
be divided into different sub-spaces, some of which are relatively good while some are relatively bad.
We tend to choose the good ones while discarding the bad ones, which makes sure more samples
will be focused on modeling only the good subspaces and then find the best architecture. It greatly
simplifies the learning task of each predictor. Eventually, a line of progressively evolving weak
predictors can connect a path to the best architecture.

We present a novel, general framework that requires only to estimate a series of weak predictors
progressively along the search path, we denoted it as WeakNAS in the rest of the paper. To ensure
moving towards the best architecture along the path, at each iteration, the sampling probability of
better architectures keep increasing through the guidance of the previous weak predictor. Then, the
consecutive weak predictors with better samples will be trained in the next iteration. We iterate
until we arrive at an embedding subspace where the best architectures reside and can be accurately
assessed by the final weak predictor.

Compared to the existing predictor-based NAS, our proposal represents a new line of attack and has
several merits. First, since only weak predictors are required, it yields better sample efficiency. As
shown in Figure 1, it costs significantly fewer samples to find the top-performance architecture than
using one strong predictor, and yields much lower variance in performance over multiple runs. Second,
it is flexible to the choices of architecture representation (e.g., different architecture embeddings)
and predictor formulation (e.g., multilayer perceptron (MLP), gradient boosting regression tree, or
random forest). Experiments show our framework performs well in all their combinations. Third, it
is highly generalizable to other open search spaces, e.g. given a limited sample budget, we achieve
the state-of-the-art ImageNet performance on the NASNet and MobileNet search spaces. Detailed
comparison with state-of-the-art predictor-based NAS [19–21, 8] is presented in Section 4.

1“Strong” vs “Weak” predictors: we name a “weak” predictor if it only predicts a local subspace of the
search space thus can be associated with our iterative sampling scheme; such predictors therefore usually do not
demand very heavily parameterized models. On the contrary, “strong” predictors predict the global search space
and are often associated with uniform sampling. The terminology of strong versus weak predictors does not
represent their number of parameters or the type of NAS predictor used. An overparameterized NAS predictor
with our iterative sampling scheme may still be considered as a “weak” predictor.
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2 Our Framework
2.1 Reformulating Predictor-based NAS as Bi-Level Optimization
Given a search space of network architectures X and an architecture-to-performance mapping
function f : X → P from the architecture set X to the performance set P , the objective is to find the
best neural architecture x∗ with the highest performance f(x) in the search space X:

x∗ = argmax
x∈X

f(x) (1)

A naïve solution is to estimate the performance mapping f(x) through the full search space. However,
this is prohibitively expensive since all architectures have to be exhaustively trained from scratch. To
address this problem, predictor-based NAS learns a proxy predictor f̃(x) to approximate f(x) by
using some architecture-performance pairs, which significantly reduces the training cost. In general,
predictor-based NAS can be re-cast as a bi-level optimization problem:

x∗ = argmax
x∈X

f̃(x|S), s.t. f̃ = argmin
S,f̃∈F̃

∑
s∈S
L(f̃(s), f(s)) (2)

where L is the loss function for the predictor f̃ , F̃ is a set of all possible approximation to f ,
S := {S ⊆ X | |S| ≤ C} all architectures satisfying the sampling budget C. C is directly related to
the total training cost, e.g., the total number of queries. Our objective is to minimize the loss L based
on some sampled architectures S.

Previous predictor-based NAS methods attempt to solve Equation 2 with two sequential steps: (1)
sampling some architecture-performance pairs and (2) learning a proxy accuracy predictor. For the
first step, a common practice is to sample training pairs S uniformly from the search space X to fit
the predictor. Such sampling is however inefficient considering that the goal of NAS is only to find
well-performed architectures without caring for the bad ones.

2.2 Progressive Weak Predictors Emerge Naturally as A Solution to the Optimization
Optimization Insight: Instead of first (uniformly) sampling the whole space and then fitting the
predictor, we propose to jointly evolve the sampling S and fit the predictor f̃ , which helps achieve
better sample efficiency by focusing on only relevant sample subspaces. That could be mathematically
formulated as solving Equation 2 in a new coordinate descent way, that iterates between optimizing
the architecture sampling and predictor fitting subproblems:

(Sampling) P̃ k = {f̃k(s)|s ∈ X \ Sk}, SM ⊂ TopN (P̃ k), Sk+1 = SM ∪ Sk,

where TopN (P̃ k) denote the set of top N architectures in P̃ k
(3)

(Predictor Fitting) x∗ = argmax
x∈X

f̃(x|Sk+1), s.t. f̃k+1 = argmin
f̃k∈F̃

∑
s∈Sk+1

L(f̃(s), f(s)) (4)

In comparison, existing predictor-based NAS methods could be viewed as running the above coordi-
nate descent for just one iteration – a special case of our general framework.

As well known in optimization, many iterative algorithms only need to solve (subsets of) their
subproblems inexactly [22–24] for properly ensuring convergence either theoretically or empirically.
Here, using a strong predictor to fit the whole space could be treated as solving the predictor fitting
subproblem relatively precisely, while adopting a weak predictor just imprecisely solves that. Previous
methods solving Equation 2 truncate their solutions to “one shot" and hinge on solving subproblems
with higher precision. Since we now take a joint optimization view and allow for multiple iterations,
we can afford to only use weaker predictors for the fitting subproblem per iteration.

Implementation Outline: The above coordinate descent solution has clear interpretations and is
straightforward to implement. Suppose our iterative methods has K iterations. We initialize S1

by randomly sampling a few samples from X , and train an initial predictor f̃1. Then at iterations
k = 2, . . .K, we jointly optimize the sampling set Sk and predictor f̃k in an alternative manner.

Subproblem 1: Architecture Sampling. At iteration k + 1, we first sort all architectures2 in the
search spaceX (excluding all the samples already in Sk) according to its predicted performance P̃ k at

2One only exception is the Section 3.2 open-domain experiments: we will sub-sample all architectures in the
search space before sorting. More details can be found in Appendix Section H
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Figure 3: Visualization of the search dynamics in NAS-Bench-201 Search Space. (best viewed in
color) (a) The trajectory of the predicted best architecture and global optimal through out 5 iterations;
(b) Error empirical distribution function (EDF) of the predicted top-200 architectures throughout 5
iterations (c) Triangle marker: probability of sampling top-50 architectures throughout 5 iterations;
Star marker: Kendall’s Tau ranking of NAS predictor in Top 50 architectures through out 5 iterations.

Figure 4: Visualization of search dynamics in NAS-Bench-201 Search Space via t-SNE. At i-th
iteration, we randomly sample M = 40 new architectures from the top N = 400 ranked architectures in
P̃ k. The top row from (a)-(d) show the sampling space TopN (P̃ k), and the bottom row from (e)-(h)
show the sampled architectures Sk. The performance ranking of architectures is encoded by color,
and those not-sampled architectures are colored in grey.

every iteration k. We then randomly sampleM new architectures from the topN ranked architectures
in P̃ k. Note this step both reduces the sample budget, and controls the exploitation-exploration
trade-off (see Section 3.1). The newly sampled architectures together with Sk become Sk+1.

Subproblem 2: (Weak) Predictor Fitting. We learn a predictor f̃k+1, by minimizing the loss L of
the predictor f̃k+1 based on sampled architectures Sk+1. We then evaluate architectures using the
learned predictor f̃k+1 to get the predicted performance P̃ k+1.

As illustrated in Figure 2, through alternating iterations, we progressively evolve weak predictors to
focus on sampling along the search path, thus simplifying the learning workload of each predictor.
With these coarse-to-fine iterations, the predictor f̃k would guide the sampling process to gradually
zoom into the promising architecture samples. In addition, the promising samples Sk+1 would in
turn improve the performance of the updated predictor f̃k+1 among the well-performed architectures,
hence the ranking of sampling space is also refined gradually. In other words, the solution quality
to the subproblem 2 will gradually increase as a natural consequence of the guided zoom-in. For
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derivation, we simply choose the best architecture predicted by the final weak predictor. This idea is
related to the classical ensembling [25], yet a new regime to NAS.
Proof-of-Concept Experiment. Figure 3 (a) shows the progressive procedure of finding the optimal
architecture x∗ and learning the predicted best architecture x̃∗k over 5 iterations. As we can see from
Figure 3 (a), the optimal architecture and the predicted best one are moving towards each other
closer and closer, which indicates that the performance of predictor over the optimal architecture(s) is
growing better. In Figure 3 (b), we use the error empirical distribution function (EDF) [26] to visualize
the performance distribution of architectures in the subspace. We plot the EDF of the top-200 models
based on the predicted performance over 5 iterations. As is shown, the subspace of top-performed
architectures is consistently evolving towards more promising architecture samples over 5 iterations.
Then in Figure 3 (c), we validate that the probabilities of sampling better architectures within the top
N predictions keep increasing. Based on this property, we can just sample a few well-performing
architectures guided by the predictive model to estimate another better weak predictor. The same plot
also suggests that the NAS predictor’s ranking among the top-performed models is gradually refined,
since more and more architectures in the top region are sampled.

In Figure 4, we also show the t-SNE visualization of the search dynamic in NAS-Bench-201 search
space. We can observe that: (1) NAS-Bench-201 search space is highly structured; (2) the sam-
pling space TopN (P̃ k) and sampled architectures Sk are both consistently evolving towards more
promising regions, as can be noticed by the increasingly warmer color trend.

2.3 Relationship to Bayesian Optimization: A Simplification and Why It Works
Our method can be alternatively regarded as a vastly simplified variant of Bayesian Optimization
(BO). It does not refer to any explicit uncertainty-based modeling such as Gaussian Process (which
are often difficult to scale up); instead it adopts a very simple step function as our acquisition function.
For a sample x in the search space X , our special “acquisition function" can be written as:

acq(x) = u(x− θ) · ε (5)

where the step function u(x) is 1 if x ≥ θ, and 0 otherwise; ε is a random variable from the uniform
distribution U(0, 1); and θ is the threshold to split TopN from the rest, according to their predicted
performance P̃ k(x). We then choose the samples with the M largest acquisition values:

SM = argmax
TopM

acq(x) (6)

Why such “oversimplified BO" can be effectively for our framework? We consider the reason to be
the inherently structured NAS search space. Specifically, existing NAS spaces are created either by
varying operators from a pre-defined operator set (DARTS/NAS-Bench-101/201 Search Space) or by
varying kernel size, width or depth (MobileNet Search Space). Therefore, as shown in Figure 4, the
search spaces are often highly-structured, and the best performers gather close to each other.

Here comes our underlying prior assumption: we can progressively connect a piecewise search path
from the initialization, to the finest subspace where the best architecture resides. At the beginning,
since the weak predictor only roughly fits the whole space, the sampling operation will be “noisier",
inducing more exploration. When it comes to the later stage, the weak predictors fit better on the
current well-performing clusters, thus performing more exploitation locally. Therefore our progressive
weak predictor framework provides a natural evolution between exploration and exploitation, without
explicit uncertainty modeling, thanks to the prior of special NAS space structure.

Another exploration-exploitation trade-off is implicitly built in the adaptive sampling step of our
subproblem 1 solution. To recall, at each iteration, instead of choosing all Top N models by the
latest predictor, we randomly sample M models from Top N models to explore new architectures
in a stochastic manner. By varying the ratio ε = M/N and the sampling strategy (e.g., uniform,
linear-decay or exponential-decay), we can balance the sampling exploitation and exploration per
step, in a similar flavor to the ε-greedy [27] approach in reinforcement learning.

2.4 Our Framework is General to Predictor Models and Architecture Representations
Our framework is designed to be generalizable to various predictors and features. In predictor-based
NAS, the objective of fitting the predictor f̃ is often cast as a regression [7] or ranking [5] problem.
The choice of predictors is diverse, and usually critical to final performance [5, 6, 2, 7–9]. To
illustrate our framework is generalizable and robust to the specific choice of predictors, we compare
the following predictor variants.
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(a) CIFAR10 (b) CIFAR100 (c) ImageNet16-120

Figure 5: Evaluations of robustness across different predictors on NAS-Bench-201. Solid lines and
shadow regions denote the mean and std, respectively.

• Multilayer perceptron (MLP): MLP is the common baseline in predictor-based NAS [5] due
to its simplicity. For our weak predictor, we use a 4-layer MLP with hidden layer dimension
of (1000, 1000, 1000, 1000).

• Regression Tree: tree-based methods are also popular [9, 28] since they are suitable for
categorical architecture representations. As our weak predictor, we use the Gradient Boosting
Regression Tree (GBRT) based on XGBoost [29], consisting of 1000 Trees.

• Random Forest: random forests differ from GBRT in that they combines decisions only at
the end rather than along the hierarchy, and are often more robust to noise. For each weak
predictor, we use a random forest consisting of 1000 Forests.

The features representations to encode the architectures are also instrumental. Previous methods
hand-craft various features for the best performance, e.g., raw architecture encoding [6], supernet
statistics [30], and graph convolutional network encoding [7, 5, 8, 19] Our framework is also agnostic
to various architecture representations, and we compare the following:

• One-hot vector: In NAS-Bench-201 [31], its DARTS-style search space has fixed graph
connectivity, hence the one-hot vector is commonly used to encode the choice of operator.

• Adjacency matrix: In NAS-Bench-101, we used the same encoding scheme as in [32, 6],
where a 7×7 adjacency matrix represents the graph connectivity and a 7-dimensional vector
represents the choice of operator on every node.

As shown in Figure 5, all predictor models perform similarly across different datasets. Comparing per-
formance on NAS-Bench-101 and NAS-Bench-201, although they use different architecture encoding
methods, our method still performs similarly well among different predictors. This demonstrates that
our framework is robust to various predictor and feature choices.

3 Experiments
Setup: For all experiments, we use an Intel Xeon E5-2650v4 CPU and a single Tesla P100 GPU, and
use the Multilayer perceptron (MLP) as our default NAS predictor, unless otherwise specified.

NAS-Bench-101 [32] provides a Directed Acyclic Graph (DAG) based cell structure. The connectiv-
ity of DAG can be arbitrary with a maximum number of 7 nodes and 9 edges. Each nodes on the
DAG can choose from operator of 1×1 convolution, 3×3 convolution or 3×3 max-pooling. After
removing duplicates, the dataset consists of 423,624 diverse architectures trained on CIFAR10[33].

NAS-Bench-201 [31] is a more recent benchmark with a reduced DARTS-like search space. The
DAG of each cell is fixed, and one can choose from 5 different operations (1×1 convolution,
3×3 convolution, 3×3 avg-pooling, skip, no connection), on each of the 6 edges, totaling 15,625
architectures. It is trained on 3 different datasets: CIFAR10, CIFAR100 and ImageNet16-120 [34].
For experiments on both NAS-Benches, we followed the same setting as [8].

Open Domain Search: We follow the same NASNet search space used in [35] and MobileNet
Search Space used in [36] to directly search for the best architectures on ImageNet[37]. Due to
the huge computational cost to evaluate sampled architectures on ImageNet, we leverage a weight-
sharing supernet approach. On NASNet search space, we use Single-Path One-shot [38] approach
to train our SuperNet, while on MobileNet Search Space we reused the pre-trained supernet from
OFA[36]. We then use the supernet accuracy as the performance proxy to train weak predictors.
We clarify that despite using supernet, our method is more accurate than existing differentiable
weight-sharing methods, meanwhile requiring less samples than evolution based weight-sharing
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methods, as manifested in Table 6 and 7. We adopt PyTorch and image models library (timm) [39] to
implement our models and conduct all ImageNet experiments using 8 Tesla V100 GPUs. For derived
architecture, we follow a similar training from scratch strategies used in LaNAS[21].

3.1 Ablation Studies
We conduct a series of ablation studies on the effectiveness of proposed method on NAS-Bench-
101. To validate the effectiveness of our iterative scheme, In Table 1, we initialize the initial Weak
Predictor f̃1 with 100 random samples, and set M = 10, after progressively adding more weak
predictors (from 1 to 191), we find the performance keeps growing. This demonstrates the key
property of our method that probability of sampling better architectures keeps increasing as more
iteration goes. It’s worth noting that the quality of random initial samples M0 may also impact on
the performance of WeakNAS, but if |M0| is sufficiently large, the chance of hitting good samples
(or its neighborhood) is high, and empirically we found |M0|=100 to already ensure highly stable
performance at NAS-Bench-101: a more detailed ablation can be found in the Appendix.

Sampling #Predictor #Queries Test Acc.(%) SD(%) Test Regret(%) Avg. Rank

Uniform 1 Strong Predictor 2000 93.92 0.08 0.40 135.0

Iterative

1 Weak Predictor 100 93.42 0.37 0.90 6652.1
11 Weak Predictors 200 94.18 0.14 0.14 5.6
91 Weak Predictors 1000 94.25 0.04 0.07 1.7

191 Weak Predictors 2000 94.26 0.04 0.06 1.6

Optimal - - 94.32 - 0.00 1

Table 1: Ablation on the effectiveness of our iterative scheme on NAS-Bench-101

Sampling (M from TopN) M TopN #Queries Test Acc.(%) SD(%) Test Regret(%) Avg. Rank

Exponential-decay 10 100 1000 93.96 0.10 0.36 85.0
Linear-decay 10 100 1000 94.06 0.08 0.26 26.1
Uniform 10 100 1000 94.25 0.04 0.07 1.7
Uniform 10 1000 1000 94.10 0.19 0.22 14.1
Uniform 10 100 1000 94.25 0.04 0.07 1.7
Uniform 10 10 1000 94.24 0.04 0.08 1.9

Table 2: Ablation on exploitation-exploration trade-off on NAS-Bench-101

Method #Queries Test Acc.(%) SD(%) Test Regret(%) Avg. Rank

WeakNAS 1000 94.25 0.04 0.07 1.7
WeakNAS (BO Variant) 1000 94.12 0.15 0.20 8.7

Optimal - 94.32 - 0.00 1.0

Table 3: Comparing to the BO variant of WeakNAS on NAS-Bench-101.

Figure 6: Comparison with SoTA methods on
NAS-Bench-101. Solid lines and shadow regions
denote the mean and std, respectively.

We then study the exploitation-exploration trade-
off in Table 2 in NAS-Bench-101 (a similar ab-
lation in Mobilenet Search space on ImageNet
is also included in Appendix Table 6) by inves-
tigating two settings: (a) We gradually increase
N to allow for more exploration, similar to con-
trolling ε in the epsilon-greedy [27] approach in
the RL context; (b) We vary the sampling strat-
egy from Uniform, Linear-decay to Exponential-
decay (top models get higher probabilities by fol-
lowing either linear-decay or exponential-decay
distribution). We empirically observed that: (a)
The performance drops more (Test Regret 0.22%
vs 0.08%) when more exploration (TopN=1000
vs TopN=10) is used. This indicates that exten-
sive exploration is not optimal for NAS-Bench-
101; (b) Uniform sampling method yields better performance than sampling method that biased
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towards top performing model (e.g. linear-decay, exponential-decay). This indicates good architec-
tures are evenly distributed within the Top 100 predictions of Weak NAS, therefore a simple uniform
sampling strategy for exploration is more optimal in NAS-Bench-101. To conclude, our Weak NAS
Predictor strikes a good balance between exploration and exploration.

Apart from the above exploitation-exploration trade-off of WeakNAS, we also explore the possibility
of integrating other meta-sampling methods. We found that the local search algorithm could achieve
comparable performance, while using Semi-NAS [20] as a meta sampling method could further boost
the performance of WeakNAS: more details are in Appendix Section G.

3.2 Comparison to State-of-the-art (SOTA) Methods
NAS-Bench-101: On NAS-Bench-101 benchmark, we compare our method with several popular
methods [14, 40, 21, 2, 7, 20, 19, 41–44]. Table 5 shows that our method significantly outperforms
baselines in terms of sample efficiency. Specifically, our method costs 964×, 447×, 378×, 245×,
58×, and 7.5× less samples to reach the optimal architecture, compared to Random Search, Reg-
ularized Evolution [14], MCTS [40], Semi-NAS[20], LaNAS[21], BONAS[19], respectively. We
then plot the best accuracy against number of samples in Table 4 and Figure 6 to show the sample
efficiency on the NAS-Bench-101, from which we can see that our method consistently costs fewer
sample to reach higher accuracy.

Method #Queries Test Acc.(%) SD(%) Test Regret(%) Avg. Rank

Random Search 2000 93.64 0.25 0.68 1750.0
NAO [2] 2000 93.90 0.03 0.42 168.1
Reg Evolution [14] 2000 93.96 0.05 0.36 85.0
Semi-NAS [20] 2000 94.02 0.05 0.30 42.1
Neural Predictor [7] 2000 94.04 0.05 0.28 33.5
WeakNAS 2000 94.26 0.04 0.06 1.6
Semi-Assessor [42] 1000 94.01 - 0.31 47.1
LaNAS [21] 1000 94.10 - 0.22 14.1
BONAS [19] 1000 94.22 - 0.10 3.0
WeakNAS 1000 94.25 0.04 0.07 1.7
Arch2vec [41] 400 94.10 - 0.22 14.1
WeakNAS 400 94.24 0.04 0.08 1.9
LaNAS [21] 200 93.90 - 0.42 168.1
BONAS [19] 200 94.09 - 0.23 18.0
WeakNAS 200 94.18 0.14 0.14 5.6
NASBOWLr [45] 150 94.09 - 0.23 18.0
CATE (cate-DNGO-LS) [43] 150 94.10 - 0.22 12.3
WeakNAS 150 94.10 0.19 0.22 12.3
Optimal - 94.32 - 0.00 1.0

Table 4: Comparing searching efficiency by limiting the total query amounts on NAS-Bench-101.

Method NAS-Bench-101 NAS-Bench-201

Dataset CIFAR10 CIFAR10 CIFAR100 ImageNet16-120

Random Search 188139.8 7782.1 7621.2 7726.1
Reg Evolution [14] 87402.7 563.2 438.2 715.1

MCTS [40] 73977.2 †528.3 †405.4 †578.2
Semi-NAS [20] †47932.3 - - -

LaNAS [21] 11390.7 †247.1 †187.5 †292.4
BONAS [19] 1465.4 - - -

WeakNAS 195.2 182.1 78.4 268.4

Table 5: Comparison on the number of samples required to find the global optimal on NAS-Bench-101
and NAS-Bench-201. † denote reproduced results using adapted code.

NAS-Bench-201: We further evaluate on NAS-Bench-201, and compare with random search, Regu-
larized Evolution [14], Semi-NAS[20], LaNAS[21], BONAS[19]. . As shown in Table 5, we conduct
searches on all three subsets (CIFAR10, CIFAR100, ImageNet16-120) and report the average number
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of samples needed to reach global optimal on the testing set over 100 runs. It shows that our method
has the smallest sample cost among all settings.

Open Domain Search: we further apply our method to open domain search without ground-truth,
and compare with several popular methods [35, 14, 46, 2, 47, 48, 21]. As shown in Tables 6 and 7,
using the fewest samples (and only a fraction of GPU hours) among all, our method can achieve
state-of-the-art ImageNet top-1 accuracies with comparable parameters and FLOPs. Our searched
architecture is also competitive to expert-design networks. On the NASNet Search Space, compared
with the SoTA predictor-based NAS method LaNAS (Oneshot) [21], our method reduces 0.6% top-1
error while using less GPU hours. On the MobileNet Search Space, we improve the previous SoTA
LaNAS [21] to 81.3% top-1 accuracy on ImageNet while costing less FLOPs.

3.3 Discussion: Further Comparison with SOTA Predictor-based NAS Methods

BO-based NAS methods [19, 45]: BO-based methods in general treat NAS as a black-box optimiza-
tion problem, for example, BONAS [19] customizes the classical BO framework in NAS with GCN
embedding extractor and Bayesian Sigmoid Regression to acquire and select candidate architectures.
The latest BO-based NAS approach, NASBOWL [45], combines the Weisfeiler-Lehman graph kernel
in BO to capture the topological structures of the candidate architectures.

Compare with those BO-based method, our WeakNAS is an “oversimplified" version of BO as
explained in Section 2.3. Interestingly, results in Table 4 suggests that WeakNAS is able to outperform
BONAS [19], and is comparable to NASBOWLr [45] on NAS-Bench-101, showcasing that the
simplification does not compromise NAS performance. We hypothesize that the following factors
might be relevant: (1) the posterior modeling and uncertainty estimation in BO might be noisy; (2) the
inherently structured NAS search space (shown in Figure 4) could enable a “shortcut" simplification
to explore and exploit. In addition, the conventional uncertainty modeling in BO, such as the
Gaussian Process used by [45], is not as scalable when the number of queries is large. In comparison,
the complexity of WeakNAS scales almost linearly, as can be verified in Appendix Table 1. In
our experiments, we observe WeakNAS to perform empirically more competitively than current
BO-based NAS methods at larger query numbers, besides being way more efficient.

To further convince that WeakNAS is indeed an effective simplification compared to the explicit
posterior modeling in BO, we report an apple-to-apple comparison, by use the same weak predictor
from WeakNAS, plus obtaining its uncertainty estimation by calculating its variance using a deep
ensemble of five model [49]; we then use the classic Expected Improvement (EI) [50] acquisition
function. Table 3 confirms that such BO variant of WeakNAS is inferior our proposed formulation.

Advanced Architecture Encoding [41, 43] We also compare WeakNAS with NAS using custom
architecture representation either in a unsupervised way such as arch2vec [41], or a supervised way
such as CATE [43]. We show our WeakNAS could achieve comparable performance to both methods.
Further, those architecture embedding are essentially complementary to our method to further boost
the performance of WeakNAS, as shown in Appendix Section C.

LaNAS [21]: LaNAS and our framework both follow the divide-and-conquer idea, yet with two
methodological differences: (a) How to split the search space: LaNAS learns a classifier to do binary
“hard” partition on the search space (no ranking information utilized) and split it into two equally-sized
subspaces. Ours uses a regressor to regress the performance of sampled architectures, and utilizes the
ranking information to sample a percentage of the top samples (“soft” partition), with the sample size
N being controllable. (b) How to do exploration: LaNAS uses Upper Confidence Bound (UCB) to
explore the search space by not always choosing the best subspace (left-most node) for sampling,
while ours always chooses the best subspace and explore new architectures by adaptive sampling
within it, via adjusting the ratio ε =M/N to randomly sample M models from Top N . Tables 4 and
5 shows the superior sample efficiency of WeakNAS over LaNAS on NAS-Bench-101/201.

Semi-NAS [20] and Semi-Assessor[42]: Both our method and Semi-NAS/Semi-Assessor use an
iterative algorithm containing prediction and sampling. The main difference lies in the use of pseudo
labels: Semi-NAS and Semi-Assessor use pseudo labels as noisy labels to augment the training set,
therefore being able to leverage “unlabeled samples" (e.g., architectures without true accuracies, but
with only accuracies generated by the predictors) to update their predictors. Our method explores an
orthogonal innovative direction, where the “pseudo labels" generated by the current predictor guide
our sampling procedure, but are never used for training the next predictor.

9



That said, we point out that our method can be complementary to those semi-supervised methods
[20, 42], thus they can further be integrated as one, For example, Semi-NAS can be used as a meta
sampling method, where at each iteration we further train a Semi-NAS predictor with pseudo labeling
strategy to augment the training set of our weak predictors. We show in Appendix Table 5 that the
combination of our method with Semi-NAS can further boost the performance of WeakNAS.

BRP-NAS [8]: BRP-NAS uses a stronger GCN-based binary relation predictor which utilize extra
topological prior, and leveraged a different scheme to control exploitation and exploration trade-off
compare to our WeakNAS. Further, BRP-NAS also use a somehow unique setting, i.e. evaluating
Top-40 predictions by the NAS predictor instead of the more common setting of Top-1 [2, 19, 21, 20].
Therefore, we include our comparison to BRP-NAS and more details in Appendix Section F.

Model Queries(#) Top-1 Err.(%) Top-5 Err.(%) Params(M) FLOPs(M) GPU Days

MobileNetV2 - 25.3 - 6.9 585 -
ShuffletNetV2 - 25.1 - 5.0 591 -

SNAS[51] - 27.3 9.2 4.3 522 1.5
DARTS[1] - 26.9 9.0 4.9 595 4.0
P-DARTS[52] - 24.4 7.4 4.9 557 0.3
PC-DARTS[53] - 24.2 7.3 5.3 597 3.8
DS-NAS[53] - 24.2 7.3 5.3 597 10.4

NASNet-A [35] 20000 26.0 8.4 5.3 564 2000
AmoebaNet-A [14] 10000 25.5 8.0 5.1 555 3150
PNAS [46] 1160 25.8 8.1 5.1 588 200
NAO [2] 1000 24.5 7.8 6.5 590 200

LaNAS [21] (Oneshot) 800 24.1 - 5.4 567 3
LaNAS [21] 800 23.5 - 5.1 570 150

WeakNAS 800 23.5 6.8 5.5 591 2.5

Table 6: Comparison to SOTA results on ImageNet using NASNet search space.

Model Queries(#) Top-1 Acc.(%) Top-5 Acc.(%) FLOPs(M) GPU Days?

Proxyless NAS[54] - 75.1 92.9 - -
Semi-NAS[20] 300 76.5 93.2 599 -
BigNAS[47] - 76.5 - 586 -
FBNetv3[48] 20000 80.5 95.1 557 -
OFA[36] 16000 80.0 - 595 1.6
LaNAS[21] 800 80.8 - 598 0.3

WeakNAS 1000 81.3 95.1 560 0.16
800 81.2 95.2 593 0.13

Table 7: Comparison to SOTA results on ImageNet using MobileNet search space. ?Does not include
supernet training cost.

4 Conclusions and Discussions of Broad Impact
In this paper, we present a novel predictor-based NAS framework named WeakNAS that progressively
shrinks the sampling space, by learning a series of weak predictors that can connect towards the
best architectures. By co-evolving the sampling stage and learning stage, our weak predictors can
progressively evolve to sample towards the subspace of best architectures, thus greatly simplifying
the learning task of each predictor. Extensive experiments on popular NAS benchmarks prove that
the proposed method is both sample-efficient and robust to various combinations of predictors and
architecture encoding means. However, WeakNAS is still limited by the human-designed encoding of
neural architectures, and our future work plans to investigate how to jointly learn the predictor and
encoding in our framework.

For broader impact, the excellent sample-efficiency of WeakNAS reduces the resource and energy
consumption needed to search for efficient models, while still maintaining SoTA performance.
That can effectively serve the goal of GreenAI, from model search to model deployment. It might
meanwhile be subject to the potential abuse of searching for models serving malicious purposes.
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