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Abstract

Contrastive self-supervised learning has largely narrowed the gap to supervised
pre-training on ImageNet. However, its success highly relies on the object-centric
priors of ImageNet, i.e., different augmented views of the same image correspond to
the same object. Such a heavily curated constraint becomes immediately infeasible
when pre-trained on more complex scene images with many objects. To over-
come this limitation, we introduce Object-level Representation Learning (ORL), a
new self-supervised learning framework towards scene images. Our key insight
is to leverage image-level self-supervised pre-training as the prior to discover
object-level semantic correspondence, thus realizing object-level representation
learning from scene images. Extensive experiments on COCO show that ORL
significantly improves the performance of self-supervised learning on scene images,
even surpassing supervised ImageNet pre-training on several downstream tasks.
Furthermore, ORL improves the downstream performance when more unlabeled
scene images are available, demonstrating its great potential of harnessing unla-
beled data in the wild. We hope our approach can motivate future research on more
general-purpose unsupervised representation learning from scene data.1

1 Introduction

Unsupervised visual representation learning aims at obtaining transferable features with abundant
unlabeled data. Recent self-supervised learning (SSL) methods based on contrastive learning [60,
22, 37, 5, 19, 4, 7] have largely narrowed the gap and even surpassed the supervised counterpart
on a number of downstream tasks [30, 49, 15, 47, 35, 23]. These methods build upon the instance
discrimination task that maximizes the agreement between different data-augmented views of the
same image. Despite their success, current SSL methods are primarily pre-trained on the unlabeled
ImageNet [8] dataset that contains iconic images with single object as shown in Figure 1(a). The
underlying object-centric constraint of ImageNet makes it hard to be applied in real world scenarios
where more complex scene images with multiple objects are available. Meanwhile, naïvely adopting
the off-the-shelf contrastive learning methods on scene images introduces inconsistent learning
signals since random crops of the same image may correspond to different objects as shown in
Figure 1(b). Indeed, it has been shown that current contrastive learning methods tend to struggle
on more complex scene datasets [19, 50, 34, 58] like COCO [33] or Places365 [72]. Therefore, it
is imperative to design an effective object-level representation learning paradigm as illustrated in
Figure 1(c) to harness massive unlabeled scene images in the wild.

1Project page: https://www.mmlab-ntu.com/project/orl/.
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Figure 1: (a) Current image-level contrastive learning methods heavily rely on the object-centric bias
of ImageNet, i.e., different crops correspond to the same object. Prior works use either the different
views of the same image [60, 22, 37, 5, 19, 7] (i.e., intra-image) or similar images [74, 63, 1, 11] (i.e.,
inter-image) to form positive pairs. (b) Directly adopting image-level contrastive learning methods
on scene images can cause inconsistent learning signals since different crops may correspond to
different objects. (c) Object-level contrastive learning can overcome the limitation in (b) by enforcing
object-level consistency. (d) We find that image-level contrastive learning encodes priors for region
correspondence discovery across images, and high-response regions are usually objects or object
parts (we show one discovered object-instance pair per image pair for clarity), which is useful for
object-level representation learning.

In this work, we are interested in going beyond ImageNet to obtain better representations on non-
iconic images. Apparently, it is challenging to learn representations from scene-level images since
they are entangled with many concepts including structures, objects, backgrounds and relationships. It
remains an open question how to take advantages of spatial information of multiple objects naturally
residing in the scene images when no object annotations are available, let alone further deriving
object-level correspondence to construct positive object-instance pairs.

To tackle these challenges, we introduce a novel object-level unsupervised representation learning
framework tailored for scene images. Our framework is based on a key insight of the current
contrastive learning methods: they can implicitly group different images with similar visual concepts
together even though they are explicitly optimized to group different views of the same image.
This phenomenon reveals that image-level contrastive learning has already induced a latent space
with rich visual concepts. Though the latent space usually entangles other scene concepts like
structures, backgrounds and relationships, it will be useful for object discovery if appropriately
deployed. Through computing the similarity of sampled regions between k-nearest-neighbor (KNN)
images, we conclude two observations: 1) image-level contrastive learning encodes priors for region
correspondence discovery across images; 2) high-response regions are usually objects or object parts.

Based on the observation above, we propose a multi-stage framework for unsupervised object-level
representation learning. Specifically, we first extract potential object-based regions in scene images
using the unsupervised region proposal algorithms (e.g., selective search [56]). We then propose
a region correspondence generation scheme to leverage the off-the-shelf image-level contrastive
learning pre-trained model to discover corresponding object-instance pairs for the proposed regions in
the embedding space. Finally, we use the obtained object-instance pairs to construct positive sample
pairs for object-level representation learning. Figure 1(d) shows several cross-image object-instance
pairs discovered by our framework on COCO dataset using the latent prior of BYOL [19], the
state-of-the-art image-level contrastive learning method. The discovered inter-corresponding pairs
substantially provide diverse intra-class variances at the object-instance level to aid object-level
representation learning.

Overall, our main contributions are summarized as follows:
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1) We observe that existing image-level contrastive learning methods have priors to discover object-
level correspondence across images. We leverage this prior for the first time for unsupervised
cross-image object-level correspondence discovery.

2) With the obtained correspondence, we introduce a novel multi-stage self-supervised learning
pipeline, termed as ORL, for object-level representation learning from scene images, going beyond
object-centric ImageNet.

3) We contribute the first study for object-level SSL. ORL substantially outperforms image-level
contrastive learning approaches pre-trained on COCO dataset (∼118k images with labels discarded),
setting a new state of the art on this challenging dataset that contains diverse scenes in the wild.
The COCO pre-trained ORL even surpasses supervised ImageNet pre-training on several considered
downstream tasks. When SSL is conducted on a larger “COCO+” dataset (COCO train2017 set
plus COCO unlabeled2017 set, ∼241k images in total), ORL further improves the performance,
demonstrating its potential to benefit from more unlabeled scene data.

2 Related work

Self-supervised learning. Self-supervised learning builds unsupervised representations by exploiting
the internal priors or structures of data in the form of a pretext task. A wide range of pretext tasks
have been proposed in the past few years. Examples include patch context prediction [10], jigsaw
puzzles [39], inpainting [43], colorization [31, 70], cross-channel prediction [71], visual primitive
counting [40], and rotation prediction [14]. Although good representations emerge with these pretext
tasks, they are prone to lose generality due to their hand-crafted nature.

Recently, contrastive learning [20] that performs instance discrimination [60, 22, 37, 5, 19, 4, 7] has
shown great potential in this field, largely narrowing the gap to fully supervised learning. The core
idea of contrastive learning is to gather positive pairs and separate negative pairs in the embedding
space. A positive pair is usually formed with two transformed views of the same image while the
negative pairs are formed with different images. Typically, contrastive learning methods require a
large number of negative samples to avoid mode collapse. These samples can be maintained within
a mini-batch [42, 27, 66, 26, 2, 5], a memory bank [60, 53, 74, 37] or a queue [22, 6]. BYOL [19]
and SwAV [4] further remove the necessity of involving negative pairs. BYOL directly predicts
the features of one view from another view, while SwAV predicts the cluster assignments between
multiple views of the same image. Despite their improved performance, the existing image-level
contrastive learning methods are largely confined to the underlying object-centric bias of ImageNet.

More recently, a group of works that perform pixel-level [45, 58, 64, 50, 34, 25] or region-level [48,
65, 61, 62, 9] representation learning have emerged. Our work is more related to region-level
representation learning but substantially different from this line of research in the following aspects:
1) they still largely pre-train on object-centric ImageNet while we pre-train on non-iconic scene
images, 2) they align pre-training specifically for dense prediction downstream tasks while we
target at more general-purpose representation learning that improves performance in both dense
prediction and classification tasks, 3) their randomly cropped local regions do not contain the explicit
object notion as ours, and 4) they only rely on intra-image transformations (e.g., random cropping)
to construct corresponding positive pairs from the same image while we leverage the discovered
high-level semantic correspondence to construct positive pairs across images.

There are also a few prior attempts [18, 3, 16] for self-supervised learning on non-curated scene
images. As opposed to our work, most of them consider larger models and datasets to explore
the limit of current self-supervised learning methods without further considering the object-level
information residing in scene images.

Visual correspondence. Visual correspondence aims at finding pairwise pixels or regions across
images that result from the same scene [67], which can be regarded as similarity learning of visual
descriptors among matched points or patches. While early efforts learn dense correspondence with
labeled data [21, 68, 29, 55, 41], some recent works learn the similarity between the parts or landmarks
of the data in an unsupervised manner [52, 51]. Our work substantially differs from this line of
research from original intention. Previous works aim at accurately detecting all correspondence
given two images, whereas our work focuses on retrieving high-quality correspondence to improve
representation learning.
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Figure 2: Overview of our three-stage pipeline. In Stage 1, we pre-train an image-level contrastive
learning model, e.g., BYOL. In Stage 2, we first use the pre-trained model to retrieve KNNs for
each image in the embedding space to obtain image-level visually similar pairs. We then use
unsupervised region proposal algorithms (e.g., selective search) to generate rough RoIs for each
image pair. Afterwards, we reuse the pre-trained model to retrieve the top-ranked RoI pairs, i.e.,
correspondence. We find these pairs of RoIs are almost objects or object parts. In Stage 3, with
the corresponding RoI pairs discovered across images, we finally perform object-level contrastive
learning using the same architecture as Stage 1.

3 Methodology

We propose a new multi-stage self-supervised learning framework, i.e., ORL, for object-level rep-
resentation learning from scene images. ORL extends the existing image-level contrastive learning
framework to object level by leveraging priors from image-level instance discrimination. The over-
all pipeline of ORL is illustrated in Figure 2. It contains three stages: image-level pre-training,
correspondence discovery, and object-level pre-training. We detail each stage as follows.

3.1 ORL pipeline

Preliminary: Contrastive learning. Our pipeline contains several contrastive learning modules in
Stage 1 and 3. Without loss of generality, we consider BYOL [19] as our basic contrastive learning
module. BYOL uses two neural networks: the online network fθ(x) and the target network gξ(x).
The target network provides the regression target to train the online network while its weights ξ are
updated by an exponential moving average of the online parameters θ with a decay rate τ ∈ [0, 1]
following BYOL. Given two input images x1 and x2, the loss function is defined as:

L (x1, x2) , ‖fθ (x1)− gξ (x2)‖22 , (1)

We name it an “intra-” version of BYOL if x1 and x2 are two augmented views from the same image,
otherwise an “inter-” one.

Stage 1: Image-level pre-training. The foremost stage is to obtain an unsupervised pre-trained
model from image-level tasks. As shown in Figure 2 Stage 1, given two augmented views v and v′
from the same input image x, we pre-train the network following the loss function Limage = L (v, v′),
constituting a standard image-level BYOL pre-training. This stage can be freely replaced with other
image-level contrastive learning methods. We adopt BYOL here for its simplicity and effectiveness.

Stage 2: Correspondence discovery. We employ the pre-trained image-level contrastive learning
model in Stage 1 to mine object-level correspondence for the whole dataset. As shown in Figure 2
Stage 2, the overall discovery process comprises three steps.

(i) Image-level nearest-neighbor retrieval. Specifically, for each query image x in the training set D,
we first retrieve its top K nearest neighbors Nk, k = 1, ...,K, by cosine distance in the embedding
space using the features learned from the first stage to form image-level pairs that contain similar
visual context.
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(ii) Region-of-interest (RoI) generation. To generate object-based RoIs, we apply unsupervised
region proposal algorithms, e.g., selective search [56], for each image in the pair. Considering the
redundancy of generated proposals (each image can have thousands of proposals), we filter certain
number of them with some pre-defined thresholds2 including the minimal scale, the range of aspect
ratio, and the maximal intersection-over-union (IoU) among the filtered boxes. After the filtering
operation, we select the top 100 proposals ranked with objectiveness as the candidate RoI set for
subsequent RoI pair retrieval. To extract features with the equally-sized input that is compatible
with the backbone, we crop and resize each RoI to 224× 224. Note that even top RoIs ranked with
objectiveness are still very noisy, containing a large proportion of non-object regions.

(iii) Top-ranked RoI pair retrieval. For each query RoI from x, we compute its cosine similarity in the
embedding space with all RoIs from its nearest-neighbor image Nk using the features learned from
Stage 1 again. Within the calculated cosine similarity matrix Mk ∈ R100×100, we retrieve top-ranked
N RoI pairs to construct the set of object-level corresponding pairs {Bnk}, where n = {1, ..., N}.
These high-response corresponding regions are almost objects or object parts. Finally, we save the
nearest-neighbor image id and bounding box coordinate information of each corresponding pair.

Stage 3: Object-level pre-training. With the corresponding inter-image RoI (inter-RoI) pairs
obtained in Stage 2, we perform object-level representation learning following the BYOL framework
as shown in Figure 2 Stage 3. Specifically, given an input image x, we first randomly select one
nearest-neighbor imageNk to obtain the corresponding set of inter-RoI pairs {Bnk}. We then randomly
select one inter-RoI pair Bnk as a positive pair. With the bounding box coordinate stored in Bnk , we
crop the corresponding inter-RoIs from x and Nk, respectively, and resize each patch to 96×96,
constituting two patches p1 and p2. We feed the two patches to the online network and target network
separately to compute the loss Linter-RoI = L (p1, p2).
To make full use of discovered objects, we introduce the intra-RoI contrastive learning via augmenting
object patches. Specifically, we randomly select one filtered bounding box from x obtained in Stage
2, and spatially jitter the box around its original location with the following operations3: (i) a random
box center shifting within 50% of its width and height, (ii) a random area scaling between 50% and
200% of the original box, and (iii) a random aspect ratio between 1/2 and 2/1. Similarly, we crop
the two intra-RoIs p and p′, and resize each patch to 96×96 for forward propagation to compute the
loss Lintra-RoI = L (p, p′). The diverse spatial jittering of the bounding box encourages the network
to preserve common object information and disregard the background, thus further improving the
localization ability.

We keep the two original global views in BYOL as well since they preserve the global image-level
information compared with the local patches. The final loss for our ORL can thus be formulated as:

LORL = λ1Limage + λ2Lintra-RoI + λ3Linter-RoI, (2)

where λ1, λ2, λ3 are the loss weights to balance each term. We set all loss weights to 1 by default.
Following BYOL, we also compute the symmetric loss L̃ORL by separately feeding v′, p′, p2 to the
online network and v, p, p1 to the target network.

3.2 Implementation details

Dataset. We pre-train our models on the COCO train2017 set that contains ∼118k images without
using labels. Compared with the heavily curated object-centric ImageNet dataset, COCO contains
more natural and diverse scenes in the wild, which is closer to real-world scenarios. We also
perform self-supervised learning on a larger “COCO+” dataset (COCO train2017 set plus COCO
unlabeled2017 set) to verify whether our method can benefit from more unlabeled scene data.

Image augmentations. The global image augmentation setting is the same as BYOL [19]: a
224×224-pixel random resized crop with a random horizontal flip, followed by a random color
distortion, random grayscale conversion, random Gaussian blur and solarization. For the local patch
augmentation, we directly crop the corresponding intra-RoI and inter-RoI on the input images, and

2In practice, we filter bounding boxes with the minimal scale as 96 pixels, the aspect ratio between 1/3 and
3/1, and the maximal IoU as 0.5.

3Inspired by the anchor technique used in object detection, we adopt the similar operations for our bounding
box augmentations but in a continuous fashion.
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resize each cropped patch to 96×96 to take place of the random resized cropping. The subsequent
augmentations exactly follow the global ones.

Network architecture. We adopt ResNet-50 [24] as the default backbone. We use the same
MLP projector and predictor as in BYOL: a linear layer with output size 4096 followed by batch
normalization (BN) [28], rectified linear units (ReLU) [38], and a final linear layer with output
dimension 256. We share the backbone and projector weights among the global and two local
branches while the weights of predictor are not shared.

Optimization. For pre-training in Stage 1 and Stage 3, we use the same training hyper-parameters.
Specifically, we use the SGD optimizer with a weight decay of 0.0001 and a momentum of 0.9.
We adopt the cosine learning rate decay schedule [36] with a base learning rate of 0.2, linearly
scaled[17] with the batch size (lr = 0.2× BatchSize/256). The batch size is set to 512 by default,
which is friendly to typical 8-GPU implementations. To keep the training iterations comparable with
the ImageNet supervised pre-training, we train our models for 800 epochs with a warm-up period
of 4 epochs. The exponential moving average parameter τ starts from 0.99 and is increased to 1
during training, following [19]. For correspondence generation in Stage 2, we retrieve top K = 10
nearest neighbors for each image and select top-ranked N = 10% RoI pairs for each image-level
nearest-neighbor pair.

4 Experiments

4.1 Transferring to downstream tasks

We evaluate the quality of learned representations by transferring them to multiple downstream
tasks. Following common protocol [18, 37], we use two evaluation setups: (i) the pre-trained
network is frozen as a feature extractor, and (ii) the network parameters are fully fine-tuned as weight
initialization. We provide more experimental details in the supplementary material.

Method Pre-train
data

VOC07 ImageNet Places205 iNat.
mAP Top-1 Top-1 Top-1

Random [18] - 9.6 13.7 16.6 4.8
Supervised [37] ImageNet 87.5 75.9 51.5 45.4

SimCLR [5] COCO 78.1 50.9 48.0 22.7
MoCo v2 [6] COCO 82.2 55.1 48.8 27.8
BYOL [19] COCO 84.5 57.8 50.5 29.5
ORL (ours) COCO 86.7 59.0 52.7 31.8

BYOL [19] COCO+ 87.0 59.6 52.7 30.9
ORL (ours) COCO+ 88.6 60.7 54.1 32.0

Table 1: Image classifi-
cation with linear models.
All unsupervised methods
are based on 800-epoch pre-
training on COCO(+) with
ResNet-50. We report mAP
on the VOC07 dataset and
top-1 center-crop accuracy
on all other datasets. Num-
bers for all other methods
are reproduced by us.

Method Pre-train
data

VOC07 low-shot (mAP)
1 2 4 8 16 32 64 96

Random - 9.2 9.4 11.1 12.3 14.3 17.4 21.3 23.8
Supervied ImageNet 53.0 63.6 73.7 78.8 81.8 83.8 85.2 86.0

SimCLR [5] COCO 33.3 43.5 52.5 61.1 66.7 70.5 73.7 75.0
MoCo v2 [6] COCO 39.5 49.3 60.4 69.3 74.1 76.8 79.1 80.1
BYOL [19] COCO 39.4 50.9 62.2 71.7 76.6 79.2 81.3 82.2
ORL (ours) COCO 39.6 51.2 63.4 72.6 78.2 81.3 83.6 84.7

BYOL [19] COCO+ 41.1 54.3 66.6 75.2 80.1 82.6 84.6 85.4
ORL (ours) COCO+ 42.1 54.9 67.4 75.7 81.3 83.7 85.8 86.7

Table 2: Low-shot
image classification on
VOC07 using linear
SVMs trained on the
fixed representations.
All unsupervised meth-
ods are pre-trained
on COCO(+) for 800
epochs with ResNet-50.
We report mAP for each
case across five runs.

Image classification with linear models. Following [18, 37], we assess the quality of features by
training linear classifiers on top of the fixed representations extracted from different depths of the
network for four datasets: VOC07 [12], ImageNet [8], Places205 [73], and iNaturalist18 [57]. These
datasets involve diverse classification tasks ranging from object classification, scene recognition
to fine-grained recognition. For VOC07, we train linear SVMs using LIBLINEAR package [13]

6



Method Pre-train
data

1% labels 10% labels
Top-1 Top-5 Top-1 Top-5

Random - 1.6 5.0 21.8 44.2
Supervised [69] ImageNet 25.4 48.4 56.4 80.4

SimCLR [5] COCO 23.4 46.4 52.2 77.4
MoCo v2 [6] COCO 28.2 54.7 57.1 81.7
BYOL [19] COCO 28.4 55.9 58.4 82.7
ORL (ours) COCO 31.0 58.9 60.5 84.2

BYOL [19] COCO+ 28.3 56.0 59.4 83.6
ORL (ours) COCO+ 31.8 60.1 60.9 84.4

Table 3: Semi-supervised learn-
ing on ImageNet. All unsuper-
vised methods are pre-tained on
COCO(+) for 800 epochs with
ResNet-50. We fine-tune all mod-
els with 1% and 10% ImageNet
labels, and report both top-1 and
top-5 center-crop accuracy on the
ImageNet validation set.

Method Pre-train
data

COCO detection COCO instance seg.
APbb APbb

50 APbb
75 APmk APmk

50 APmk
75

Random [54] - 32.8 50.9 35.3 29.9 47.9 32.0
Supervised [54] ImageNet 39.7 59.5 43.3 35.9 56.6 38.6

SimCLR [5] COCO 37.0 56.8 40.3 33.7 53.8 36.1
MoCo v2 [6] COCO 38.5 58.1 42.1 34.8 55.3 37.3
Self-EMD [34] COCO 39.3 60.1 42.8 - - -
DenseCL [58] COCO 39.6 59.3 43.3 35.7 56.5 38.4
BYOL [19] COCO 39.5 59.3 43.2 35.6 56.5 38.2
ORL (ours) COCO 40.3 60.2 44.4 36.3 57.3 38.9

BYOL [19] COCO+ 40.0 60.1 44.0 36.2 57.1 39.0
ORL (ours) COCO+ 40.6 60.8 44.5 36.7 57.9 39.3

Table 4: Object de-
tection and instance
segmentation fine-tuned
on COCO. All unsuper-
vised methods are based
on 800-epoch pre-training
on COCO(+). We use
Mask R-CNN R50-FPN
(1× schedule), and report
bounding-box AP (APbb)
and mask AP (APmk).
Numbers for MoCo v2
are adopted from [58].

following the setup in [18, 37]. We train on trainval split of VOC07 and evaluate mAP on test
split. For ImageNet, Places205 and iNaturalist18, we follow [71, 18, 37] and train a 1000-way,
205-way and 8142-way linear classifier, respectively. We train on train split of each dataset, and
report top-1 center-crop accuracy on the respective val split. Table 1 reports the results for the
best-performing layer of each method. ORL substantially outperforms the BYOL baseline on all
four datasets. We also observe that the COCO pre-trained ORL surpasses the supervised ImageNet
pre-trained counterpart on Places205 by 1.2% in top-1 accuracy. This is the first time that a self-
supervised learner outperforms the ImageNet pre-training using only ∼1/10 images compared with
ImageNet. When pre-trained on a larger COCO+ dataset, ORL again outperforms BYOL. Note that
apart from Places205 (2.6% gains), ORL also surpasses the supervised ImageNet counterpart on
VOC07 by 1.1% mAP, using merely ∼1/5 images.

Low-shot image classification. We perform low-shot image classification with few training examples
per class on VOC07 dataset following the same setup in [18]. We vary the number of labeled examples
per category used to train linear SVMs on train split of VOC07 and report the average mAP across
five independent samples for each low-shot case evaluated on test split. Table 2 provides the
results. ORL shows consistent performance improvement over BYOL for each low-shot value, with
larger gains achieved as the number of labeled examples per class is increasing. ORL also gradually
bridges the gap to the supervised ImageNet pre-training under this scenario. We observe consistent
performance boost when pre-training on the COCO+ dataset. Note that the COCO+ pre-trained ORL
again outperforms the supervised ImageNet pre-training when the low-shot samples are 64 and 96.

Semi-supervised learning. We perform semi-supervised learning on ImageNet following the proto-
col of previous studies [60, 26, 37, 5, 19]. Specifically, we first randomly select 1% and 10% labeled
data from ImageNet train split. We then fine-tune our models on these two training subsets and
report both top-1 and top-5 accuracy on the official val split of ImageNet in Table 3. Again, ORL
outperforms BYOL as well as the supervised ImageNet counterpart by large margins.

Object detection and segmentation. We train a Mask R-CNN model [23] with R50-FPN back-
bone [32] implemented in Detectron2 [59]. We fine-tune all layers end-to-end on COCO train2017
split with the standard 1× schedule and evaluate on COCO val2017 split. We follow the same
setup in [54], with batch normalization layers synchronized across GPUs [44]. As shown in Table 4,
ORL yields 0.8% AP and 0.7% AP improvements over BYOL for object detection and instance
segmentation, respectively. The improvements are consistent over all evaluation metrics. When
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Table 5: Ablations for ORL. (a) Effect of intra-RoI and inter-RoI losses. (b) Effect of NNs and RoI
pairs. (c) Comparison with multi-crop BYOL. (d) Comparison with ground truth bounding boxes. (e)
Pre-trainig schedules. We report mAP of linear SVMs on VOC07 classification benchmark.

(a)

pre-train intra-RoI inter-RoI VOC07

BYOL 84.5

ORL
X 85.7

X 85.9
X X 86.7

(b)

# of NNs # of RoI pairs

1 10 20 5% 10% 20%

VOC07 84.7 86.7 87.0 86.1 86.7 86.4

(c)

pre-train input views VOC07

BYOL 2× 224 + 4× 96 84.0
ORL 2× 224 + 4× 96 86.7

(d)

boxes VOC07

GT 85.4
SS 86.7

(e)

pre-train 100 200 400 800 1600

BYOL 77.1 81.8 83.7 84.5 84.9
ORL 83.5 85.2 86.3 86.7 87.1

pre-trained on the COCO+ dataset, ORL again outperforms BYOL. It should be well noted that
ORL even outperforms the most recent Self-EMD and DenseCL that are specifically designed for
dense prediction downstream tasks. More importantly, either COCO or COCO+ pre-trained ORL can
surpass the supervised ImageNet pre-training on all metrics. This further demonstrates the superiority
of learning unsupervised representations at the object level.

4.2 Ablation study

In this subsection, we conduct extensive ablation experiments to examine the effect of each component
that contributes to ORL. We pre-train our models on COCO and observe the downstream performance
of all ablations on VOC07 SVM classification benchmark as introduced in Section 4.1.

Effect of intra-RoI and inter-RoI losses. Table 5a ablates the effect of our introduced Lintra-RoI and
Linter-RoI losses in Equation 2. Adding either Lintra-RoI or Linter-RoI can improve the performance, with
the best results obtained by adding both terms.

Effect of nearest neighbors and RoI pairs. Table 5b ablates the effect of the number of nearest
neighbors K and RoI pairs N used for generating inter-RoI pairs in Stage 2 of ORL. We set
N = 10% when ablating K, and set K = 10 when ablating N . We observe that retrieving more
nearest neighbors leads to better performance since more nearest neighbors provide more diverse
image-level pairs to the subsequent generation of inter-RoI pairs. Although setting K = 20 produces
a slightly better performance, we choose K = 10 by default as a trade-off considering the tendency
of the saturated performance. Our method is more robust to the number of retrieved top-ranked RoI
pairs after image-level nearest-neighbor retrieval, with N = 10% performing slightly better.

Comparison with multi-crop BYOL. Prior work [4] has indicated that cropping multiple views of
the same image can improve the performance of self-supervised learning methods pre-trained on
ImageNet. To investigate whether our gains are due to more accurate object-instance comparison or
simply more number of mixed views, we randomly crop four additional smaller views for BYOL to
ensure the number and size of the input patches are equal to ORL (i.e., 2× 224 + 4× 96). As shown
in Table 5c, different from the observation on ImageNet, simply adding more low-resolution crops
tends to hurt the performance since it will further intensify the inconsistent noise on scene images. In
contrast, ORL substantially outperforms this multi-crop variant, validating that the gains are truly
due to our object-level representation learning mechanism.

Comparison with ground truth bounding boxes. In Stage 2, ORL requires an unsupervised region
proposal algorithm to extract approximate object-based regions, which is inaccurate to some extent.
We further investigate whether the performance can be improved when more accurate object regions
are available, i.e., with bounding box annotations. To this end, we replace our selective-search
generated object proposals with ground truth bounding boxes provided from COCO train2017 set,
while keeping all other procedures unchanged. As shown in Table 5d, adopting ground truth (GT)
bounding boxes performs inferior to selective search (SS). This is mainly due to that although the
ground truth bounding boxes can provide more accurate object location, their numbers are too scarce
compared with a large amount of region proposals generated by selective search. The more diverse
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Figure 3: Top-ranked region correspondence discovered by ORL in Stage 2. We show a pair of
discovered object-instance per image pair for clarity. More discovered correspondence pairs are
provided in the supplementary material.

Image ORLBYOL BYOL ORLImage

Figure 4: Attention maps generated by BYOL and ORL. ORL can activate more object regions
and produce more accurate object boundary in the heatmap than BYOL. We provide more attention
maps in the supplementary material. Best viewed with zoom in.

region proposals can potentially induce more unknown object or object-part discovery beyond the
manually annotated objects. In this case, the diversity can make up for the inaccuracy.

Pre-training schedules. Table 5e shows the results with different pre-training schedules, from 100
epochs to 1600 epochs. The performance of both ORL and BYOL improves when pre-trained
for longer epochs, while ORL consistently outperforms BYOL by at least 2.2% mAP. Note that
our 200-epoch ORL has already surpassed the 1600-epoch BYOL (85.2% mAP vs. 84.9% mAP),
demonstrating that the performance efficiency of ORL is at least 8× than BYOL below 1600 epochs.

4.3 Visualization

Correspondence pairs. Figure 3 visualizes some top-ranked region correspondence discovered in
Stage 2 of ORL. We observe that each generated inter-RoI pair largely correspond to the regions with
similar visual concepts (i.e., objects or object parts) across images. In contrast to typical contrastive
learning methods that perform aggressive intra-image augmentations to simulate intra-class variances,
our discovered inter-RoI pairs can substantially provide more natural and diverse intra-class variances
at the object-instance level.

Attention maps. Figure 4 visualizes the attention maps generated by BYOL and ORL. We observe
that both BYOL and ORL can produce relatively high-quality attention maps that focus on the
foreground objects. This reflects from the side that current image-level contrastive learning methods
have already induced a latent space with rich visual concepts. Nevertheless, ORL can activate more
object regions and produce more accurate object boundary than BYOL in the generated attention
maps. It is mainly due to introducing object-level similarity learning into ORL, which can minimize
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the inconsistent noise caused by image-level contrastive learning. In contrast, BYOL only uses the
whole image to extract features, thus activating the most discriminative region.

5 Conclusion

In this work, we have presented a new self-supervised learning framework, ORL, for object-level
representation learning from scene images. We leverage the latent prior of image-level self-supervised
pre-training for discovering object-based region correspondence across images. The generated object-
instance correspondence enables us to perform pairwise contrastive learning at the object level. ORL
significantly improves the performance of self-supervised learning from scene images in a variety of
downstream tasks. We expect that our method can be applied to larger-scale unlabeled data in the
wild to fully realize its potential, and hope that our study can attract the community’s attention to
more general-purpose unsupervised representation learning from scene images.

Limitations

In this paper, we mainly perform pre-training experiments with ResNet-50 on COCO dataset, and
further scale them up on COCO+ dataset. However, the promise of self-supervised learning is to
harness massive unlabeled data by scaling up to ever-larger datasets. Some prior works [18, 3, 16]
have attempted to leverage larger models and datasets to explore the limit of current self-supervised
learning methods. For instance, a recent representative work SEER [16] performs billion-scale self-
supervised pre-training on internet images using the RegNet architectures [46] with 700M parameters
over 512 GPUs. Training at scale requires huge computational resources that are inaccessible to many
researchers, which is not the core of our paper. We wish to highlight that our general-purpose ORL
has yielded better performance than concurrent works [58, 34] that are tailored for dense prediction
downstream tasks when pre-trained on COCO (Table 4), even surpassing the supervised ImageNet
pre-training on several downstream tasks (Table 1-4). We expect that scaling ORL with larger
architectures and datasets can further unleash its potential. Besides, ORL may not handle well on
images with cluttered backgrounds since they will deviate the generated proposals to focus on these
background regions. A possible remedy is to use some heuristic algorithms like saliency estimation
to avoid the background regions. Another limitation is that ORL is a multi-stage framework. We
expect an end-to-end framework to further improve the efficiency. We leave these explorations to
future work.

Broader impact

We present a more effective approach for learning unsupervised visual representations. Compared to
supervised learning, it can liberate humans from expensive annotations as well as take advantages
of rapidly growing real-world data. Like other learning algorithms, self-supervised learning should
be applied with cautions when deployed in the real-world scenario. First, it is susceptible to biased
learning if the algorithm is given with biased data. The exposure to unlabeled data may amplify
such biases. Thus, debiasing measures have to be taken. Second, it remains non-trivial to dissect
what is learned by self-supervised models. Similar concerns about the calibration, robustness, and
interpretability of supervised models are equally applicable to the unsupervised counterpart. Our work
is limited to the improvement of self-supervised learning within our scope. However, we acknowledge
the importance of providing more transparent explanations for classification decisions, as well as the
credibility of each prediction. Finally, our method still relies on the traditional regime of centralized
learning. Privacy can be compromised if the method is applied on an unsaved platform. Federated
learning can be a solution. How to scale self-supervised learning to the regime of decentralized
learning will be an interesting research question to answer.
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