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Abstract

The representation learning on textual graph is to generate low-dimensional embed-
dings for the nodes based on the individual textual features and the neighbourhood
information. Recent breakthroughs on pretrained language models and graph neu-
ral networks push forward the development of corresponding techniques. The
existing works mainly rely on the cascaded model architecture: the textual fea-
tures of nodes are independently encoded by language models at first; the textual
embeddings are aggregated by graph neural networks afterwards. However, the
above architecture is limited due to the independent modeling of textual features.
In this work, we propose GraphFormers, where layerwise GNN components are
nested alongside the transformer blocks of language models. With the proposed
architecture, the text encoding and the graph aggregation are fused into an iterative
workflow, making each node’s semantic accurately comprehended from the global
perspective. In addition, a progressive learning strategy is introduced, where the
model is successively trained on manipulated data and original data to reinforce its
capability of integrating information on graph. Extensive evaluations are conducted
on three large-scale benchmark datasets, where GraphFormers outperform the
SOTA baselines with comparable running efficiency. The source code is released
athttps://github.com/microsoft/GraphFormers .

1 Introduction

The textual graph is a widely existed data format, where each node is annotated with its textual feature.
The representation learning on textual graph is to generate low-dimensional node embeddings based
on the individual textual features and the information from the neighbourhood. In recent years, the
breakthroughs in pretrained language models and graph neural networks contribute to the development
of corresponding techniques. Particularly, with pretrained language models, such as BERT (Devlin
et al.,2018) and RoBERTa (Liu et al., 2019a)), the underlying semantics of texts can be captured more
precisely; at the same time, with graph neural networks, like GraphSage (Hamilton et al.,[2017a)) and
GAT (Velickovic¢ et al.| 2018)), neighbours can be effectively aggregated for more informative node
embeddings. It is necessary to combine both techniques for better textual graph representation. As
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(A) Cascaded Transformers-GNN (B) GNN-nested Transformers

Figure 1: Model architecture comparison (a center node C is connected with two neighbours N1, N2).
(A) Cascaded Transformers-GNN: text embeddings are independently generated by language models
and aggregated by rear-mounted GNNs. (B) GNN-nested Transformers: the text encoding and graph
aggregation are iteratively performed with the layerwise GNNs and Transformers (TRM).

suggested by GraphSage (Hamilton et al.,[2017a)) and PinSage (Ying et al., 2018)), the textual feature
can be independently modeled by text encoders and further aggregated by rear-mounted GNNs for
the final node embeddings. Such a representation paradigm has been widely adopted by subsequent
works on various scenarios (Zhu et al.| 2021} L1 et al., [2021; [Hu et al., 2020; Liu et al.| 2019b; |Zhou
et al.| 2019), where GNNs are combined with powerful PLM-based text encoders.

The above way of combination is called the “Cascaded Transformers-GNN” architecture (Figure[I] A),
as the language models (built upon Transformers) are deployed ahead of the GNN component. With
the above architecture, the text encoding and the graph aggregation are performed in two consecutive
steps, where there is no information exchange between the nodes when text embeddings are generated.
However, the above workflow is defective considering that the linked nodes are correlated, whose
underlying semantics can be mutually enhanced. For example, given a node “notes on transformers”
and its neighbour “tutorials on machine translation”; by making reference to the whole context, the
“transformers” here can be interpreted as a machine learning model, rather than an electric device.

Our Work. We propose “GNN-nested Transformers” (GraphFormers), which are highlighted for
the fusion of GNNs and language models (Figure[I|B). In GraphFormers, the GNN components are
nested alongside the transformer layers (TRM) of language models, where the text encoding and graph
aggregation are fused as an iteratively workflow. In each iteration, the linked nodes will exchange
information with each other in the layerwise GNN component; thus, each node will be augmented
by its neighbourhood information. The transformer component will work on the augmented node
features, where increasingly informative node representations can be generated for the next iteration.
Compared with the cascaded architecture, GraphFormers achieve more sufficient utilization of the
cross-node information on graph, which significantly benefit the representation quality. Given that the
layerwise GNN components merely involve simple and effective multi-head attention, GraphFormers
preserve comparable running costs as the existing cascaded Transformers-GNN models.

On top of the proposed model architecture, we further improve GraphFormers’ representation quality
and practicability as follows. Firstly, the training of GraphFormers is likely to be shortcut: in
many cases, the center node itself can be “sufficiently informative”, where the training tasks can be
accomplished without leveraging the neighbourhood information. As such, GraphFormers may end
up with insufficiently trained GNNs. Inspired by recent success of curriculum learning (Bengio et al.}
2009), we propose to train the model progressively: the first round of training is performed with
manipulated data, where the nodes are randomly polluted; thus, it becomes harder to make prediction
merely rely on the center nodes, and the model will be forced to leverage the whole input nodes.
The second round of training gets back to the unpolluted data, where the model will be fit into the
targeted distribution. Another concern about GraphFormers is that all the linked nodes are mutually
dependent in the representation process: once a new node is presented, all the neighbours, regardless
of whether they have been processed before, need to be encoded from scratch. As a result, a great
deal of unnecessary computations will be incurred. We introduce unidirectional graph attention to
alleviate this problem: only the center node is required to make reference to the neighbours, while the
neighbour nodes remain independently encoded. By this means, the existing neighbours’ encoding
results can be cached and reused, which significantly saves the computation cost.



Extensive evaluations are conducted with three million-scale textual graph datasets: DBLP, Wiki and
Product, where the representation quality is measured by the link prediction accuracy. According to
our experiment results, GraphFormers significantly outperform the SOTA cascaded Transformers-
GNN baselines with comparable running efficiency.

2 Related Work

The textual graph representation is an important research topic in multiple areas, such as natural
language processing, information retrieval and graph learning (Yang et al., 20155 Wang et al., |2016blja;
Yasunaga et al., 2017;|Wang et al,2019a; |Xu et al.,|2019)). To learn high-quality representation for
textual graph, techniques on natural language understanding and graph representation need to be
jointly leveraged. In recent years, breakthroughs on pretrained language models (PLM) and graph
neural networks (GNN) significantly advance the development of corresponding techniques.

PLM. The PLMs are proposed to learn universal language models with neural networks trained
on large-scale corpus. The early works were based on shallow networks, e.g, word embeddings
learned by Skip-Gram (Mikolov et al.,|2013)) and GloVe (Pennington et al.,2014). In recent years,
the backbone networks are being quickly scaled up: from EMLo (Peters et al.|[2018), GPT (Radford
et al., 2018)), to BERT (Devlin et al.| [2018), XLNet (Yang et al., [2019), TS5 (Raffel et al., [2019),
GPT-3 (Brown et al.| [2020). The large-scale models, which get fully trained with massive data,
demonstrate superior performances on general NLP tasks. One of the most critical usages of PLMs
is text representation, where the underlying semantics of texts are captured by low-dimensional
embeddings. Such embeddings achieve competitive results on downstream tasks, like text retrieval
and classification (Reimers and Gurevychl 2019; |Luan et al., 2020; |Gao et al., 2021} [Su et al.| [2021]).

GNN. Graph neural networks are recognized as powerful tools of modeling graph data (Hamilton
et al.,|2017b;|{Zhou et al.,[2020). Such methods (e.g., GCN (Kipf and Welling,[2016)), GAT (Velickovié
et al.| [2018), GraphSage (Hamilton et al.l 2017a)) learn effective message passing mechanisms such
that information between the nodes can get aggregated for expressive graph representations.

Graph neural networks may also incorporate node attributes, like texts; and it’s quite straightforward
to leverage GNNs and PLMs for textual graph representation following the “cascaded architecture”
suggested by GraphSage (Hamilton et al.l 2017a)): the node features are independently encoded
at first; then, the node embeddings are aggregated via GNNs to generate the final representations.
Such a representation paradigm is widely adopted by subsequent works (Zhu et al.,[2021}; L1 et al.}
20215 |Hu et al., [2020; Liu et al., 2019b} |[Zhou et al., [2019). However, the above approaches treat
the text encoding and graph aggregation as two consecutive steps, where the node-level features are
independently processed. Our work is different from these approaches as the text encoding and graph
aggregation are fused as an iterative workflow based on the “GNN-nested Transformers”.

3 GraphFormers

In this work, we deal with textual graph data, where each node z is a text. The node x together with
its neighbours N, are denoted as G,.. Our model learns the embedding for node x based on its own
textual feature and the information of its neighbourhood N,. The generated embeddings are expected
to capture the relationship between the nodes, i.e., to accurately predict whether two nodes z, and xy,
are connected based on the embedding similarity.

3.1 GNN-nested Transformers

The encoding process of GraphFormers is indicated as follows. The input nodes (the center node
and its neighbours) are tokenized into sequences of tokens, with special tokens [CLS] padded in the
front, whose states are used for node representation. The input sequences are mapped into the initial
embedding sequences {HS}G based on the summation of word embeddings and position embeddings.
The embedding sequences are encoded by multiple layers of GNN-nested Transformers (shown as
Figure[2), where the graph aggregation and text encoding are iteratively performed.

e Graph Aggregation in GNN. Each node is enhanced by its neighbourhood information based on
the layerwise graph aggregation. For each node in the /-th layer, the first token-level embedding (corre-
sponding to [CLS]) is taken as the node-level embedding: zfq — Hé [0]. The node-level embeddings
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Figure 2: GNN-nested Transformers (using the [-th layer for illustration). The graph aggregation
is performed in the first place: the node-level embeddings {zf]}g are gathered from all the nodes
and processed by the GNN component (the leftmost rectangle). The GNN processed node-level
embeddings {ilg}g are dispatched to their original nodes, which forms the graph-augmented token-
level embeddings. The graph-augmented token-level embeddings are further encoded by Transformer.

are gathered from all the nodes and passed to the layerwise GNN for graph aggregation. We leverage
Multi-Head Attention (MHA) to encode the node-level embeddings ZlG ({zé}g), similar as GAT
(Velickovi€ et al.l|2018)). For each attention head, the scaled dot-product attention is performed as:
ZL, = MHA(ZL,);
MHA(ZL,) = Concat(head,, ..., head},);
QKT (D
+B)V;
Nz )

Q=Z,WP K =Z,WE, V=2, W/

head; = softmax(

In the above equations, WJQ, W]K , and W;/ are the projection matrices of MHA, corresponding to
the j-th attention head. A learnable position bias B is added to the dot-product result; the positions
differentiate the relationship between the nodes; i.e., “center-to-center” (x to x), “center-to-neighbour”
(x to N,), and “neighbour-to-neighbour” (N, to INV,.), respectively.

Each of the embeddings if] (Zf] S ZIG) is dispatched to its original node and concatenated () with
the token-level embeddings, which gives rise to the graph-augmented token-level embeddings:

0yl NS

H, < Concat(z,, H). (2)
In this place, the GNN-processed node-level embeddings ZlG can be interpreted as “messagers”, with
which the neighbourhood information can be introduced to each of the nodes.

e Text Encoding in Transformer. The graph-augmented token-level embeddings I:Ié are processed
by the transformer component (Vaswani et al.,|2017)), where the following computations are performed:

H! = LN(H, + MHA®Y(H)));
H = LN(H, + MLP(H!)).

In the above equations, MLP is the Multi-Layer Projection unit, and LN is the Layer-Norm unit. We
use asymmetric Multi-Head Attention (MHA“*Y), where Q, K, V are computed as:

3)

_ 1! Q. _ ol K. _ 1l %4
Q=HW? K=H WK v=HW @)

Therefore, the output sequence Hé“ will be of the same length as the input sequence ng. The
encoding result will be used as the input token-level embeddings for the next layer. The node-level
embedding at the last layer zL (i.e., HgL [0]) will be used as the final node representation.

e Workflow. We summarize GraphFormers’ encoding workflow as Algorithm[I] The initial token-
level embeddings { HS}G are independently encoded by the first Transformer layer TRM". For a
L-layer GraphFormers, the graph aggregation and text encoding are iteratively performed for the
subsequent L-1 steps (from 1 to L — 1). In each step, the node-level embeddings ZlG are gathered and
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Algorithm 1: GraphFormers’ Workflow

Input: The input graphs G (consist of the center node x and its neighbours).
Output: The embedding for the center node h,,.
begin
for each text g € G do
| Hj < TRM°(HY); // Get the initial token-level embeddings
for/=1,....,L—1do

Z., < {zl|geG}: // Gather node-level embeddings to GNN

7L, « GNN(ZL,); // Graph aggregation in GNN

for each text g € G do

! 50 Egl - ;
L H, < Concat(2,, H); // Get graph-augmented token-level embeddings

HLM TRMZ(I:IZQ); // Text encoding in Transformer

| Return h, < zZ;

processed by the layerwise GNN component. The output node-level embeddings ZZG are dispatched

to their original nodes, which generates the graph-augmented token-level embeddings ITIZ The graph-
augmented token-level embedding are further processed by the Transformer component. Finally, The
node-level embedding (for the center node ) in the last layer zZ is taken as our representation result.

¢ Encoding Complexity. Given an input of M nodes, each one has P tokens; the time complexity of
each layer’s encoding operation is O(M? + M P?): the graph aggregation takes O(M?), because M
node-level embeddings are gathered for multi-head attention; the text encoding takes O (M P?), as
each of the M node calls for the multi-head attention of P tokens. Compared with Transformers, the
GNN’s computation cost is much smaller, mainly because of two reasons: 1) M? < M P? in general,
2) operations like MLP are not needed in graph aggregation. Therefore, the working efficiency of
GraphFormers is close to the cascaded GNN-Transformers as the extra computation cost of layerwise
graph aggregation is relatively small. Such a property is also empirically verified in our experiment.

3.2 Model Simplification: Unidirectional Graph Aggregation

One concern about GraphFormers is that the input nodes are mutually dependent on each other during
the encoding process. As a result, to generate the embedding for a node, all the related nodes in its
neighbourhood need to be encoded from scratch, regardless of whether they have been processed
before. Such a property is unfavorable in practice as a great deal of unnecessary computation cost
might be incurred (i.e., a node will be repetitively encoded every time it serves as a neighbour node).
We leverage a simple but effective simplification, the unidirectional graph aggregation, to address
this problem. Particularly, only the center node x is required to make reference to the neighbourhood;
while the rest of nodes [V, remain independently encoded all by their own textual features:

TRM!(HL), g = x;
HIH = (), 9= 5)
TRM!(HL), ¥g € N,.

Because the encoding of the neighbour nodes is independent of the center node, the intermediate
encoding results {z}]"'L} N, can be cached in storageﬂ and reused in subsequent computations when
they are needed. As a result, the nodes can be prevented from being encoded repetitively, which saves
a great deal of unnecessary computation cost. We empirically verify that GraphFormers maintain
similar performances when the above simplification is introduced.

3.3 Model Training: Two-Stage Progressive Learning

e Training Objective. We take advantage of link prediction as our training task. Given a pair of
nodes ¢ and k, the model is learned to predict whether they are connected based on their embedding

2The encoding results can be kept in low-cost devices, whose storage capacity can be regarded as infinite.



Table 1: Specifications of the experimental datasets: the number of items, the number of neighbour
nodes on average, and the number of training, validation, testing cases.

Product DBLP Wiki
#Item 5,643,688 4,894,081 4,818,679
#N 4.71 9.31 8.86
#Train 22,146,934 3,009,506 7,145,834
#Valid 30,000 60,000 66,167
#Test 306,742 100,000 100,000

similarity. Particularly, the following classification loss is minimized for a positive pair of ¢ and kﬂ
exp((hg, hy))

exp((hq, hk>) + ZreR eXp(<hq7 hT>) .

In the above equation, h, and hy, are the node embeddings; (-) denotes the computation of inner
product; R stands for the negative samples. In our implementation, we leverage “in-batch negative
samples” (Karpukhin et al.| 2020; |[Luan et al., 2020) for the reduction of encoding cost: a positive
sample in one training instance will be used as a negative sample in the rest of the training instances
within the same mini-batch.

L= —log (6)

o Two-stage Training. In GraphFormers, the information from the center node and neighbour
nodes are not treated equally, which may undermine the model’s training effect. Particularly, the
center node’s information can be directly utilized, while the neighbourhood information needs to be
introduced via three steps: 1) encoded as node-level embeddings, 2) making graph aggregation with
the center node, and 3) introduced to center node’s graph augmented token-level embeddings. The
message passing pathway can shortcut when the center nodes are “sufficiently informative”, i.e., two
nodes are sufficiently similar with each other in terms of their own textual features, such that their
connection can be predicted without considering the neighbours. Given the existence of such cases,
GraphFormers may end up with well-trained Transformers but insufficiently trained GNNs.

To alleviate the above problem, we introduce a warm-up training task, where the link prediction is
made based on the polluted input nodes. Particularly, for each input node g, a subset of its tokens g,
will be randomly maske(ﬂ As a result, the classification loss becomes:

exp((hg, hy))
exp((hg, hy)) + 37, c g exp((hg, hy))’
where hg, h;, h; are the embeddings generated from the polluted nodes. The masked tokens reduce

the informativeness of each individual node; therefore, the model is forced to leverage the whole
input nodes to make the right prediction.

L = —log (7)

Finally, the model training is organized as a two-stage progressive learning process. In the first
stage, the model is trained to minimize £’ based on the polluted nodes until its convergence, which
reinforce the model’s capability of integrating information on graph. In the second stage, the model
is continually trained to minimize £ based on the original data until the convergence, which makes
the model fit into the target distribution.

4 Experimental Studies

4.1 Data and Settings

We make use of the following three real-world textual graph datasets for our experimental studies.

° DBLPE], which contains the paper citation graph from DBLP up to 2020-04-09. Two papers are
linked if one is cited by the other one. The paper’s title is used as the textual feature.

° WikidataSME] (Wiki) (Wang et al.,[2019b), which contains the entity graph from Wikipedia. The
first sentence in each entity’s introduction is taken as its textual feature.

3We remove the naive cases where ¢ and k are included by each other’s neighbour set, N, and Nj.

*We use the common MLM strategy, where 15% of the input tokens are masked: 80% of them are replaced
by [MASK], the rest ones are replaced randomly or kept as the original tokens with the same probabilities.

Shttps://originalstatic.aminer.cn/misc/dblp.v12.7z

Shttps://deepgraphlearning.github.io/project/wikidataSm



Table 2: Overall evaluation (GraphFormers marked in bold, the best baseline underlined). Graph-
Formers outperforms all baselines, especially the ones based on cascaded Transformers-GNN.

Product DBLP Wiki

Methods P@l NDCG MRR P@1 NDCG MRR P@1 NDCG MRR

PLM 0.6563 0.7911 0.7344 0.5673 0.7484 0.6777 0.3466 0.5799 0.4712
TNVE 0.4618 0.6204 0.5364 0.2978 0.5295 0.4163 0.1786 0.4274 0.2933
IFTN 0.5233 0.6740 0.5982 0.3691 0.5798 0.4773 0.1838 0.4276 0.2945
PLM+GAT 0.7540 0.8637 0.8232 0.6633 0.8204 0.7667 0.3006 0.5430 0.4270
PLM+Max 0.7570 0.8678 0.8280 0.6934 0.8386 0.7900 0.3712 0.6071 0.5022
PLM+Mean 0.7550 0.8671 0.8271 0.6896 0.8359 0.7866 0.3664 0.6037 0.4980
PLM+Att 0.7513 0.8652 0.8246 0.6910 0.8366 0.7875 0.3709 0.6067 0.5018
GraphFormers 0.7786 0.8793 0.8430 0.7267 0.8565 0.8133 0.3952 0.6230 0.5220

e Product Graph (Product), an even larger dataset of online products collected by a world-wide
search engine. In this dataset, the users’ web browsing behaviors are tracked for the targeted product
webpages (e.g., Amazon webpages of Nike shoes). The user’s continuously browsed webpages
within a short period of time (e.g., 30 minutes) is called a “session”. The products within a common
session are connected in the graph (which is a common way of graph construction in e-commerce
scenarios (Ying et al., 2018 Wang et al.| [2018))). Each product has its unique textual description,
which specifies information like the product name, brand, and saler, etc.

The textual features of all the datasets are in English. We make use of uncased WordPiece (Wu et al.|
2016) to tokenize the input text. In our experiment, each text is associated with 5 uniformly sampled
neighbours (without replacement); for texts with neighbourhood smaller than 5, all the neighbours will
be utilized. We summarized the specifications of all the datasets with Table I} The experiment results
are evaluated in terms of link prediction accuracy, i.e., to predict whether a query node and key node
are connected given the textual features of themselves and their neighbours. In each testing instance,
one query is provided with 300 keys: 1 positive plus 299 randomly sampled negative cases. We
leverage three common metrics to measure the prediction accuracy: Precision@1, NDCG, and MRR.
Without specifications, we will take the unidirectional-simplified GraphFormers trained with the
two-stage progressive learning as our default model. More details about the implementations and
the training/testing configurations are summarized in an Appendix file. It is submitted together with
our source code within the supplementary materials.

4.2 Baselines

We focus on the comparison between GNN-nested Transformers and Cascaded Transformers-GNN.
To make sure the difference between both architectures can be truthfully reflected from the evaluation
results, GraphFormers and the Cascaded Transformers-GNN baselines are equipped with text encoders
and graph aggregators of the same capacities. Particularly, we use the BERT-like PLM as our text
encoder, where UniLM-base{Z] (Bao et al., [2020) is chosen as the network backbone for all related
methods; the final layer’s [CLS] token embedding is used for the text embedding.

We enumerate the following representative graph aggregators as used in GAT (Velickovic et al., [2018)),
GIN (Xu et al.| 2018)), GraphSage (Hamilton et al.,[2017a)). The GAT aggregator, where the node
embedding is generated as the weighted sum of all the text embeddings. Each text embedding’s
relative importance is calculated as the attention score with the center node. The Pooling-and-
Concat aggregators, where the center node’s text embedding is concatenated with the neighbours’
pooling result and linearly transformed for the final representation. Depending on the form of pooling
function, we have the following options: Max and Mean, where neighbours are aggregated by
max-pooling and mean-pooling, respectively; Att, where the neighbours are summed up based on the
attention weights with the center node. By comparison, the neighbourhood information may get more
emphasized with GAT; while the center node itself tends to be highlighted with Pooling-and-Concat.

We consider two more baselines which make use of simplified text encoders (such as CNN) and
network embeddings: TNVE (Wang et al.,[2019a)) and IFTN (Xu et al., 2019). We also include the
PLM only baseline, which merely leverages the textual feature of the center node.

" An enhanced BERT-like PLM showing more competitive performances than peers like RoOBERTa, XLNet.



Table 3: Impact of neighbour size (#N).
GraphFormers PLM+Max

#N  P@l NDCG MRR P@1 NDCG MRR
0.6485 0.8087 0.7522 0.6249  0.7946  0.7342
0.6841 0.8308 0.7804  0.6538 0.8137 0.7583
0.6980  0.8396  0.7916  0.6728 0.8256 0.7734
0.7126  0.8485 0.8029 0.6823 0.8319 0.7814
0.7267 0.8565 0.8133 0.6934  0.8386  0.7900

(O N R

4.3 Overall Evaluation

The overall evaluation results are reported in Table[2] It’s observed that GraphFormers consistently
outperform all the baselines, especially the ones based on the cascaded Transformers-GNN, with
notable advantages. Particularly, it achieves 2.9%, 4.8%, 6.5% relative improvements over the
most competitive baselines (underlined) on each of the experimental datasets. Such an observation
indicates that the relationship between the nodes can be captured more accurately based on the node
embeddings generated by GraphFormers, which verifies the effectiveness of our proposed method.

We also observe the following underlying factors that may influence the representation quality.

Firstly, the effective utilization of neighbourhood information is critical. With the joint consideration
of the center node and neighbour nodes, the PLM+GNNs methods, including GraphFormers and the
cascaded Transformers-GNN baselines, significantly outperform the PLM only baseline in most of
the time. We further analyze the impact of neighbourhood size as Table[3] with a fraction of neighbour
nodes randomly sampled for each center node (using DBLP for illustration). It can be observed
that both GraphFormers and PLM+Max (the most competitive baseline) achieve higher prediction
accuracy than the PLM only method (P@1:0.5673, NDCG:0.7484, MRR:0.6777, as reported in
Table [2), even with fewer neighbour nodes included. With the increasing number of neighbour
nodes, the advantages become gradually enlarged. However, the marginal gain is vanishing, as the
relative improvement becomes smaller when more neighbours are included. In all the testing cases,
GraphFormers maintain consistent advantages over PLM+Max, which reaffirms the effectiveness of
our proposed methods.

Secondly, the capacity of the text encoder is crucial for textual graph representation. All the pretrained
language model based methods (GraphFormers, Cascaded Transformers-GNN baselines, PLM-only
baseline) significantly outperform the baselines with simplified text encoders (TNVE, IFTN).

Thirdly, the representation quality is also sensitive to the form of graph aggregator. In Product,
the cascaded Transformers-GNN baselines’ performances are quite close to each other. In DBLP,
PLM+(Max, Mean, Att) outperforms PLM+GAT. In Wiki, not only PLM+(Max, Mean, Att) but also
PLM-only baseline outperform PLM+GAT. Such phenomenons could be attributed to the type of
graph: whether it is homogeneous or heterogeneous. Particularly, both Product and DBLP can be
regarded as homogeneous graphs as the nodes are connected based on the same relationships; i.e.,
co-view relationship in Product, and citation relationship in DBLP. In both homogeneous graphs, the
connected nodes may have quite similar semantics (the co-viewed products usually serve similar user
intents, and the citation relationships usually indicate similar research topics); thus, the incorporated
neighbour nodes will probably provide complementary information for the link prediction between
the center nodes. However, Wiki is a heterogeneous graph, where the connections between entities
may have highly different semantics. As a result, the incorporation of neighbour nodes may not
contribute to the link prediction task, especially when the incorporated neighbours and the prediction
target are connected to the center nodes with totally different relationships. Considering that GAT
tends to focus more on the neighbourhood, its performance can be vulnerable in such unfavorable
situations. These findings suggest that the neighbourhood information should be properly handled in
case that the information of the center node is wiped out.

Finally, we may conclude different methods’ utility in textual graph representation: simplified text
encoders < PLMs < Cascaded Transformers-GNN < GNNs-nested Transformers. Such findings
are consistent with our expectation that the precise modeling of individual textual feature and the
effective integration of neighbourhood information will jointly contribute to high-quality textual
graph representation. GraphFormers enjoy the high expressiveness of PLMs and leverage layerwise
nested-GNNs to facilitate graph aggregation, which contributes to both of the above perspectives.



Table 4: Ablation Studies (The top ablated methods are marked in bold; “1”/*“)”: the performance
is increased/decreased compared with the default setting). “-Progressive”: two-stage progressive
learning disabled; “-Simplified”: unidirectional simplification disabled; “-Shared GNNs”: GNNs
parameters are not shared across the layers; “-Position”: GNNs learnable position bias disabled.

Product DBLP Wiki
Methods P@1 NDCG MRR P@1 NDCG MRR P@1 NDCG MRR
GraphFormers 0.7786 0.8793 0.8430 0.7267 0.8565 0.8133 0.3952 0.6230 0.5220
PLM-+Max 0.7570 0.8678 0.8280 0.6934 0.8386 0.7900 0.3712 0.6071 0.5022
- Progressive 0.7688 0.8751 0.8373 0.7096 0.8468 0.8007 0.3834 0.6155 0.5127
- Simplified 0.7795 1 0.8798 1 0.8436 1 0.7225 0.8542 0.8102 0.3923 0.6209 0.5195
- Shared GNNs 0.7788 0.8795 0.8433 0.7256 0.8558 0.8123 03945 |  0.6221 | 0.5211 )
- Position 0.7788 0.8795 0.8434 0.7276 1 0.8570 +  0.8139 1 0.3942 0.6222 0.5211

Table 5: Time and memory costs per mini-batch for PLM+Max and GraphFormers, with neighbour
size increased from 3 to 200. GraphFormers achieve similar efficiency and scalability as PLM+Max.

#N 3 5 10 20 50 100 200

Time: PLM+Max 60.29 ms 93.41 ms 161.40 ms 295.92 ms 684.16 ms 1357.93 ms 2706.35 ms
Time: GraphFormers 63.95 ms 97.19 ms 170.16 ms 306.12 ms 714.32 ms 1411.09 ms 2801.67 ms
Mem: PLM+Max 1.33 GiB 1.39 GiB 1.55 GiB 1.82 GiB 2.67 GiB 4.09 GiB 6.92 GiB
Mem: GraphFormers 1.33 GiB 1.39 GiB 1.55 GiB 1.83 GiB 2.70 GiB 4.28 GiB 7.33 GiB

4.4 Ablation Studies

The ablation studies (as Table ) are performed to clarify the following issues: 1) the impact of
two-stage progressive learning, and 2) the impact of unidirectional-simplified GraphFormers.

Firstly, the two-stage progressive learning substantially improves GraphFormers’ representation
quality. Without such a training strategy ("-Progressive": training directly on the original data), the
model’s performance is decreased by 0.98%, 1.71%, and 1.18% in each of the datasets, respectively.

Secondly, the performances between simplified and non-simplified (“-Simplified””) GraphFormers
are comparable. In fact, the necessity of graph aggregation is not equivalent for the center node and
the neighbour nodes: since the center node is the one for representation, it is much more important
to ensure that the center node may extract complementary information from its neighbours. The
unidirectional-simplified GraphFormers maintain such a property; thus, there is little impact on the
final performances. Such a finding affirms that we may safely leverage the simplified model to save
the cost of repetitively encoding the existing neighbours.

We make two additional ablation studies. “-Shared GNNs”: the GNN’s parameters sharing is disabled,
where each layer maintains its own graph aggregator (by default, the layerwise GNN components in
GraphFormers share the same set of parameters). “-Position™: the learnable position bias (b in Eq. [I)
is disabled in GNNs. We find that model’s performance is little affected from the above changes.

4.5 Efficiency Analysis

We compare the time efficiency between GNN-nested Transformers (GraphFormers) and Cascaded
Transformers+GNN (using PLM+Max for comparison). The evaluation is made with a Nvidia P100
GPU. Each mini-batch contains 32 encoding instances; each instance contains one center and #N
neighbour nodes; the token length of each node is 16. We report the average time and memory (GPU
RAM) costs per mini-batch as Table [5]

Firstly, the time and memory costs of both methods grow linearly with the increment of neighbours.
(There are overheads of time and memory costs. The time cost overhead may come from CPU
processing; while the memory cost overhead is mainly due to the model parameters (Rajbhandari
et al.} 2020)). We may approximately remove the overheads by deducting the time and memory costs
where #N=3). Such a finding is consistent with our theoretical analysis in Section [3.1]

Secondly, the overall time and memory costs of GraphFormers are quite close to PLM+Max. When the
number of neighbour nodes is small, the differences between both methods are almost ignorable. The
differences become slightly larger when more neighbour nodes are included, because the layerwise
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Figure 3: Online A/B Test: the relative improvements of RPM, CY and CPC against the last version
of production system in Bing Search (green: positive; blue: negative). In most of the time, all three
performance indicators are significantly improved thanks to the utilization of GraphFormers.

graph aggregations in GraphFormers get increasingly time consuming. However, the differences are
still relatively small: merely around 3.5% of the overall running costs when #N is increased to 200
(“#N=200" is already more than enough for most of the real world scenarios).

Based on the above observations, we may conclude that GraphFormers are more accurate, meanwhile
equally efficient and scalable as the conventional cascaded Transformer+GNNs.

4.6 Online A/B Test on Bing Search

GraphFormers has been deployed as one of the major ads retrieval algorithms on Bing Search, and it
achieves highly competitive performance against the previous production system (the combination of a
wide spectrum of semantic representation algorithms, including large-scale PLMs and cascaded PLMs-
GNNp5s). Particularly, the primary objective of Ads service is to maximize the revenue meanwhile
increasing the user clicks. Therefore, the following three metrics are taken as the major performance
indicators: RPME| (revenue per thousand impressions), CY (click yield), and CPCﬂ (cost per click) .
During our large-scale online A/B test, GraphFormers significantly improves the overall RPM, CY,
CPC by 1.87%, 0.96% and 0.91%, respectively. A 11-day performance snapshot is demonstrated
as Figure 3} it can be observed that in most of the time, all three metrics are significantly improved
thanks to the utilization of GraphFormers (the daily performance are measured based on millions of
impressions, thus having strong statistic significance).

5 Conclusion

In this paper, we propose a novel model architecture GraphFormers for textual graph representation.
By having GNNs nested alongside each transformer layer of the pretrained language model, the
underlying semantic of each textual node can be precisely captured and effectively integrated for
high-quality textual graph representation. On top of the fundamental architecture, we introduce the
two-stage progressive training strategy to further strengthen GraphFormers’ representation quality; we
also simplify the model with the unidirectional graph aggregation, which eliminates the unnecessary
computation cost. The experimental studies on three large-scale textual graph datasets verify the
effectiveness of our proposed methods, where GraphFormers notably outperform the existing cascaded
Transformer-GNNs methods with comparable running efficiency and scalability.
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