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A Details of training and hyperparameter tuning

A.1 Training and tuning neural networks

We trained ImageNet models (ResNet-50 [9, 7, 6] “v1.5”3) with SGD with Nesterov momentum of
0.9 and a batch size 4096 and weight decay of 8× 10−5 (applied to the weights but not batch norm
parameters). After 10 epochs of linear warmup to a maximum learning rate of 1.6, we decayed the
learning rate by a factor of 0.975 per epoch. We took an exponential moving average of the weights
over training as in Szegedy et al. [30], with a momentum factor of 0.9999. We used standard data
augmentation comprising random crops of 10-100% of the image with aspect ratios of 0.75 to 1.33
and random horizontal flips. At test time, we resized images to 256 pixels on their shortest side and
took a 224× 224 center crop. Each training run took approximately 1.5 hours on a 128-core TPU v2
node. Overall, the experiments in the main text reflect 72 total training runs, plus an approximately
equal number of training runs used to tune hyperparameters.

To tune hyperparameters, we held out a validation set of 50,046 ImageNet training examples. We
initially performed a set of training runs with a wide range of different parameters, and then narrowed
the hyperparameter range to the range shown in Table A.1. To further tune the hyperparameters and
the epoch for early stopping, we performed 3 training runs per configuration.4 After determining the
hyperparameters, we trained models on the full training set. We note that early stopping is important
to achieve maximal performance with our learning rate schedule, but does not affect the conclusions
we draw regarding transferability and class separation, as we confirm in Appendices D.2 and E.4.

Table A.1: Hyperparameters for ResNet-50 on ImageNet.

Loss/regularizer Hyperparameters Epochs

Softmax N/A 146
Label smoothing α = {0.08, 0.09,0.1, 0.11.0.12} 180
Sigmoid N/A 166

Extra final layer L2 λfinal = {4e-4, 6e-4,8e-4, 1e-3} 168
Dropout ρ = {0.6, 0.65,0.7, 0.75, 0.8, 0.85} 172
Logit penalty β = {5e-5, 1e-4, 2e-4, 4e-4,6e-4, 8e-4} 180
Logit normalization τ = {0.03,0.04, 0.05, 0.06} 152
Cosine softmax τ = {0.04, 0.045,0.05, 0.06, 0.07, 0.08} 158
Squared error κ = 9, M = 60, loss scale = 10 196

A.2 Training and tuning multinomial logistic regression classifiers

To train multinomial logistic regression classifiers on fixed features, we use L-BFGS [24], following
a similar approach to previous work [16, 27]. We first extracted features for every image in the
training set, by resizing them to 224 pixels on the shortest side and taking a 224× 224 pixel center
crop. We held out a validation set from the training set, and used this validation set to select the L2

regularization hyperparameter, which we selected from 45 logarithmically spaced values between
10−6 and 105, applied to the sum of the per-example losses. Because the optimization problem
is convex, we used the previous weights as a warm start as we increased the L2 regularization
hyperparameter. After finding the optimal hyperparameter on this validation set, we retrained on the
training + validation sets and evaluated accuracy on the test set. We measured either top-1 or mean
per-class accuracy, depending on which was suggested by the dataset creators. See Table A.2 for
further details of the datasets investigated.

3The torchvision ResNet-50 model and the “official” TensorFlow ResNet both implement this architecture,
which was first proposed by Gross and Wilber [7] and differs from the ResNet v1 described by He et al. [9] in
performing strided convolution in the first 3× 3 convolution in each stage rather than the first 1× 1 convolution.
Our implementation initializes the γ parameters of the last batch normalization layer in each block to 0, as
in Goyal et al. [6].

4Due to the large number of hyperparameter configurations, for squared error, we performed only 1 run per
configuration to select hyperparameters, but 3 to select the epoch at which to stop. We manually narrowed the
hyperparameter search range until all trained networks achieved similar accuracy. The resulting hyperparaameters
performed better than those suggested by Hui and Belkin [13].
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Table A.2: Datasets examined in transfer learning.

Dataset Classes Size (train/test) Accuracy measure

Food-101 [2] 101 75,750/25,250 top-1
CIFAR-10 [18] 10 50,000/10,000 top-1
CIFAR-100 [18] 10 50,000/10,000 top-1
Birdsnap [1] 500 47,386/2,443 top-1
SUN397 [32] 397 19,850/19,850 top-1
Stanford Cars [17] 196 8,144/8,041 top-1
Oxford-IIIT Pets [26] 37 3,680/3,369 mean per-class
Oxford 102 Flowers [23] 102 2,040/6,149 mean per-class

A.3 Fine-tuning

In our fine-tuning experiments in Table 2, we used standard ImageNet-style data augmentation
and trained for 20,000 steps with SGD with momentum of 0.9 and cosine annealing [20] without
restarts. We performed hyperparameter tuning on a validation set, selecting learning rate values
from a logarithmically spaced grid of 8 values between 10−5.5 and 10−1 and weight decay values
from a logarithmically spaced grid of 8 values between 10−6.5 and 10−3, as well as no weight decay,
dividing the weight decay by the learning rate. We manually verified that optimal hyperparameter
combinations for each loss and dataset fall inside this grid. We averaged the accuracies obtained by
hyperparameter tuning over 3 runs starting from 3 different pretrained ImageNet models and picked
the best. We then retrained each model on combined training + validation sets and tested on the
provided test sets.

B Confirmation of main findings with Inception v3

To confirm that our findings hold across architectures, we performed experiments using Inception
v3 [30], which does not have residual connections but still attains good performance on ImageNet
ILSVRC. Because our goal was to validate the consistency of our observations, rather than to achieve
maximum accuracy, we used the same hyperparameters as for ResNet-50, but selected the epoch for
early stopping on a holdout set.

Table B.1 confirms our main findings involving class separation and transfer accuracy. As in Table 1,
we observe that softmax learns more transferable features than other loss functions, and as in Table 3,
we find that lower class separation is associated with greater transferability. Figure B.1 confirms our
finding that the choice of loss function affects representations only in later layers of the network.

Table B.1: Objectives that produce higher ImageNet accuracy lead to less transferable fixed features, for
Inception v3. “ImageNet” columns reflect accuracy of each model on the ImageNet validation set. “Transfer”
columns reflect accuracy of L2-regularized multinomial logistic regression classifiers trained to classify different
transfer datasets using the fixed penultimate layer features of the ImageNet-trained networks. Numbers are
averaged over 3 different pretraining initializations, and all values not significantly different than the best are
bold-faced (p < 0.05, t-test). The strength of L2 regularization is selected on a validation set that is independent
of the test set. See Table 1 for results with ResNet-50.

ImageNet Transfer

Loss Top-1 Top-5 R
2 Food CIFAR10 CIFAR100 Birdsnap SUN397 Cars Pets Flowers

Softmax 78.6 94.24 0.356 74.5 92.4 76.2 59.3 63.1 64.4 92.2 94.0

Label smoothing 78.8 94.60 0.441 73.3 91.6 75.0 56.1 62.4 60.3 93.0 92.4

Sigmoid 79.1 94.17 0.444 73.7 91.3 74.7 55.0 62.0 60.7 92.8 93.0

More final layer L2 79.0 94.52 0.586 70.1 91.0 73.3 52.4 61.0 51.1 92.5 89.6

Dropout 79.0 94.50 0.454 72.6 91.5 74.7 56.3 62.1 59.2 92.7 92.2

Logit penalty 78.9 94.63 0.638 69.1 90.6 72.1 49.3 59.2 52.3 92.3 87.9

Logit normalization 78.8 94.34 0.559 67.4 90.6 72.2 50.9 58.5 45.6 92.1 84.2

Cosine softmax 78.9 94.38 0.666 63.1 90.3 71.5 45.8 55.6 38.0 90.6 75.2

Squared error 77.7 93.28 0.838 45.3 84.1 57.6 25.0 41.1 18.8 85.7 54.8

3



2 4 6 8 10 12 14 16 18 20

Net A Layer

Conv2d_2a_3x3
MaxPool_3a_3x3
Conv2d_4a_3x3

Mixed_5b
Mixed_5d
Mixed_6b
Mixed_6d
Mixed_7a
Mixed_7c

AvgPool_1a
Logits

N
et

 B
 L

ay
er

Softmax vs.
Softmax

2 4 6 8 10 12 14 16 18 20

Label Smoothing Layer

2
4
6
8

10
12
14
16
18
20

S
of

tm
ax

 N
et

 L
ay

er

Softmax vs.
Label Smoothing

2 4 6 8 10 12 14 16 18 20

Sigmoid Layer

2
4
6
8

10
12
14
16
18
20

S
of

tm
ax

 N
et

 L
ay

er

Softmax vs.
Sigmoid

2 4 6 8 10 12 14 16 18 20

More Final Layer L2 Layer

2
4
6
8

10
12
14
16
18
20

S
of

tm
ax

 N
et

 L
ay

er

Softmax vs.
More Final Layer L2

2 4 6 8 10 12 14 16 18 20

Dropout Layer

2
4
6
8

10
12
14
16
18
20

S
of

tm
ax

 N
et

 L
ay

er

Softmax vs.
Dropout

2 4 6 8 10 12 14 16 18 20

Logit Penalty Layer

2
4
6
8

10
12
14
16
18
20

S
of

tm
ax

 N
et

 L
ay

er

Softmax vs.
Logit Penalty

2 4 6 8 10 12 14 16 18 20

Logit Normalization Layer

2
4
6
8

10
12
14
16
18
20

S
of

tm
ax

 N
et

 L
ay

er

Softmax vs.
Logit Normalization

2 4 6 8 10 12 14 16 18 20

Cosine Softmax Layer

2
4
6
8

10
12
14
16
18
20

S
of

tm
ax

 N
et

 L
ay

er

Softmax vs.
Cosine Softmax

2 4 6 8 10 12 14 16 18 20

Squared Error Layer

2
4
6
8

10
12
14
16
18
20

S
of

tm
ax

 N
et

 L
ay

er

Softmax vs.
Squared Error

0.0

0.2

0.4

0.6

0.8

1.0

S
im

ila
rit

y 
(C

K
A

)

Softmax
Label Smoothing

Sigmoid
More Final Layer L2

Dropout
Logit Penalty

Logit Normalization
Cosine Softmax

Squared Error

Conv2d_1a_3x3 MaxPool_3a_3x3 MaxPool_5a_3x3 Mixed_5c Mixed_5d

Softmax
Label Smoothing

Sigmoid
More Final Layer L2

Dropout
Logit Penalty

Logit Normalization
Cosine Softmax

Squared Error

Mixed_6a Mixed_6b Mixed_6c Mixed_6d Mixed_6e

S
of

tm
ax

La
be

l S
m

oo
th

in
g

S
ig

m
oi

d
M

or
e 

Fi
na

l L
ay

er
 L

2
D

ro
po

ut
Lo

gi
t P

en
al

ty
Lo

gi
t N

or
m

al
iz

at
io

n
C

os
in

e 
S

of
tm

ax
S

qu
ar

ed
 E

rr
or

Softmax
Label Smoothing

Sigmoid
More Final Layer L2

Dropout
Logit Penalty

Logit Normalization
Cosine Softmax

Squared Error

Mixed_7a

S
of

tm
ax

La
be

l S
m

oo
th

in
g

S
ig

m
oi

d
M

or
e 

Fi
na

l L
ay

er
 L

2
D

ro
po

ut
Lo

gi
t P

en
al

ty
Lo

gi
t N

or
m

al
iz

at
io

n
C

os
in

e 
S

of
tm

ax
S

qu
ar

ed
 E

rr
or

Mixed_7b

S
of

tm
ax

La
be

l S
m

oo
th

in
g

S
ig

m
oi

d
M

or
e 

Fi
na

l L
ay

er
 L

2
D

ro
po

ut
Lo

gi
t P

en
al

ty
Lo

gi
t N

or
m

al
iz

at
io

n
C

os
in

e 
S

of
tm

ax
S

qu
ar

ed
 E

rr
or

Mixed_7c

S
of

tm
ax

La
be

l S
m

oo
th

in
g

S
ig

m
oi

d
M

or
e 

Fi
na

l L
ay

er
 L

2
D

ro
po

ut
Lo

gi
t P

en
al

ty
Lo

gi
t N

or
m

al
iz

at
io

n
C

os
in

e 
S

of
tm

ax
S

qu
ar

ed
 E

rr
or

AvgPool_1a

S
of

tm
ax

La
be

l S
m

oo
th

in
g

S
ig

m
oi

d
M

or
e 

Fi
na

l L
ay

er
 L

2
D

ro
po

ut
Lo

gi
t P

en
al

ty
Lo

gi
t N

or
m

al
iz

at
io

n
C

os
in

e 
S

of
tm

ax
S

qu
ar

ed
 E

rr
or

Logits

0.0

0.2

0.4

0.6

0.8

1.0

S
im

ila
rit

y 
(C

K
A

)

a

b

Figure B.1: The choice of loss function affects representations only in later network layers, for Inception
v3. All plots show linear centered kernel alignment (CKA) between representations computed on the ImageNet
validation set. a: CKA between network layers, for pairs of Inception v3 models trained from different
initializations with the same or different losses. b: CKA between representations extracted from corresponding
layers of networks trained with different loss functions. Diagonal reflects similarity of networks with the same
loss function trained from different initalizations. See Figure 2 for results with ResNet-50.
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C Additional evaluation of regularizers and losses

C.1 Training accuracy and learning curves

Table C.1: Training accuracy of ResNet-50 models. Regularizers and modified losses resulted in lower
ImageNet training set accuracy, consistent with the notion that regularization sacrifices training accuracy to
attain greater test accuracy. However, label smoothing was statstically tied with vanilla softmax cross-entropy in
terms of training top-1 accuracy, and performed slightly better in terms of training top-5 accuracy. See Table 1
for validation set accuracy.

Loss/regularizer Top-1 Acc. (%) Top-5 Acc. (%)

Softmax 93.61± 0.01 99.33± 0.002
Label smoothing 93.62± 0.04 99.43± 0.007
Sigmoid 93.22± 0.01 99.19± 0.002
Extra final layer L2 91.62± 0.01 98.85± 0.003
Dropout 92.25± 0.01 99.03± 0.003
Logit penalty 93.04± 0.01 99.13± 0.002
Logit normalization 92.86± 0.01 99.01± 0.003
Cosine softmax 92.47± 0.01 98.75± 0.004
Squared error 91.65± 0.01 98.59± 0.002
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Figure C.1: Evolution of ImageNet validation accuracy over training. Each curve represents a different
model. For each loss function, curves terminate at the epoch that provided the highest holdout set accuracy.
Validation accuracy rises rapidly due to the use of an exponential moving average of the weights for evaluation.
Some loss functions, such as logit normalization, appear to provide higher accuracy than vanilla softmax
cross-entropy over the entire training run.
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Figure C.2: Evolution of ImageNet training accuracy. Each curve represents a different model. For each loss
function, curves terminate at the epoch that provided the highest holdout set accuracy.
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Figure C.3: Validation versus training accuracy. Each curve represents a different model. For each loss
function, curves terminate at the training accuracy that provided the highest holdout set accuracy. Regularized
models achieve higher validation accuracy at a given training accuracy as compared to softmax.
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C.2 Robustness and calibration

In addition to the differences in class separation and accuracy described in the text, losses differed in
out-of-distribution robustness, and in the calibration of the resulting predictions. Table C.2 shows
results for ImageNet-trained ResNet-50 models on the out-of-distribution test sets ImageNet-V2 [29],
ImageNet-A [11], ImageNet-Sketch [31], ImageNet-R [12], and ImageNet-C [10]. In almost all
cases, alternative loss functions outperformed softmax cross-entropy, with logit normalization and
cosine softmax typically performing slightly better than alternatives. Effects on calibration, shown
in Table C.3, were mixed. Label smoothing substantially reduced expected calibration error [8],
as previously shown by Müller et al. [22], although cosine softmax achieved a lower negative log
likelihood. However, there was no clear relationship between calibration and accuracy. Logit penalty
performed well in terms of accuracy, but provided the worst calibration of any objective investigated.

Table C.2: Regularizers and alternative losses improve performance on out-of-distribution test sets. Ac-
curacy averaged over 8 ResNet-50 models per loss.

Loss/regularizer ImageNet-V2 (%) ImageNet-A (%) IN-Sketch (%) ImageNet-R (%) ImageNet-C (mCE)

Softmax 65.0 ± 0.1 2.7 ± 0.0 21.8 ± 0.1 36.8 ± 0.1 75.9 ± 0.1
Label smoothing 65.7 ± 0.1 3.8 ± 0.1 22.5 ± 0.1 37.8 ± 0.1 75.2 ± 0.1
Sigmoid 65.9 ± 0.1 3.3 ± 0.0 22.6 ± 0.1 36.6 ± 0.1 74.6 ± 0.1
Extra final layer L2

65.8 ± 0.1 3.3 ± 0.0 23.1 ± 0.1 37.7 ± 0.1 74.1 ± 0.1
Dropout 65.4 ± 0.0 3.1 ± 0.1 23.0 ± 0.1 37.2 ± 0.1 74.5 ± 0.1
Logit penalty 65.8 ± 0.0 4.5 ± 0.0 22.8 ± 0.1 38.1 ± 0.1 74.3 ± 0.1
Logit normalization 65.8 ± 0.1 4.8 ± 0.1 23.7 ± 0.1 39.2 ± 0.1 73.2 ± 0.1
Cosine softmax 65.8 ± 0.1 4.6 ± 0.1 24.8 ± 0.1 38.7 ± 0.1 72.5 ± 0.1
Squared error 65.3 ± 0.1 4.5 ± 0.1 22.4 ± 0.1 36.3 ± 0.1 74.6 ± 0.1

Table C.3: Some regularizers and alternative losses improve calibration. We report negative log likelihood
(NLL) and expected calibration error (ECE), averaged over 3 ResNet-50 models trained with each loss on
the ImageNet validation set, before and after scaling the temperature of the probability of the distribution to
minimize NLL, as in Guo et al. [8]. These models were trained with a holdout set of 50,046 ImageNet training
examples, which were then used to perform temperature scaling to minimize NLL. ECE is computed with
15 evenly spaced bins. For networks trained with sigmoid loss, we normalize the probability distribution by
summing probabilities over all classes.

Uncalibrated With temperature scaling

Loss/regularizer NLL ECE NLL ECE

Softmax 0.981± 0.002 0.073± 0.0001 0.917± 0.002 0.027± 0.0004
Label smoothing 0.947± 0.001 0.016± 0.0007 0.941± 0.001 0.044± 0.0004
Sigmoid 0.944± 0.002 0.044± 0.0003 0.914± 0.002 0.019± 0.0002
Extra final layer L2 0.976± 0.002 0.081± 0.0003 0.908± 0.002 0.038± 0.0006
Dropout 0.971± 0.002 0.074± 0.0009 0.905± 0.002 0.031± 0.0002
Logit penalty 1.041± 0.001 0.090± 0.0003 0.995± 0.001 0.055± 0.0004
Logit normalization 0.965± 0.001 0.069± 0.0002 0.949± 0.001 0.049± 0.0003
Cosine softmax 0.912± 0.002 0.066± 0.0006 0.895± 0.002 0.043± 0.0008

C.3 Similarity of model predictions

Given that many loss functions resulted in similar improvements in accuracy over softmax loss, we
sought to determine whether they also produced similar effects on network predictions. For each pair
of models, we selected validation set examples that both models classified incorrectly, and measured
the percentage of these examples for which the models gave the same prediction. As shown in
Figure C.4, models’ predictions cluster into distinct groups according to their objectives. Models
trained with the same objective (from different initializations) are more similar than models trained
with different objectives. In addition, models trained with (regularized) softmax loss or sigmoid loss
are more similar to each other than to models trained with logit normalization or cosine softmax, and
networks trained with squared error are dissimilar to all others examined. Figure C.5 shows that other
ways of measuring the similarity of models’ predictions yielded qualitatively similar results.

Although it was possible to identify the loss used to train individual models from their predictions,
models trained with the same loss nonetheless disagreed on many examples. Standard deviations in
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Figure C.4: Different losses produce different predictions, even when accuracies are close. a: For each pair
of models, we take examples incorrectly classified by both and measure the percentage where the models’ top-1
predictions agree. We show results for 8 different initializations trained with each objective. See Figure C.5 for
qualitatively similar plots that show percentages of all examples on which models agree, and percentages of
images where both models are either correct or incorrect. b: Dendrogram based on similarity matrix. All models
naturally cluster according to loss, except for “Dropout” and “More Final Layer L2” models.
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Figure C.5: Different ways of measuring similarity of single-model ResNet-50 predictions yield similar
qualitative results. In the left panel, we compute the top-1 predictions for pairs of models on the ImageNet
validation set and determine the percentage of examples where these predictions match. In the middle panel, we
measure the percentage of examples where models either get both right or both wrong. In the right panel, we
restrict our analysis to examples that both models get incorrect, and measure the percentage of these examples
where both models make the same (incorrect) top-1 prediction.

top-1 accuracy are <0.2% for all losses, but even the most similar pair of models provides different
predictions on 13.9% of all validation set examples (Figure C.5). Ensembling can substantially reduce
the level of disagreement between models and objectives: When ensembling the 8 models trained
with the same loss, the least similar losses (softmax and squared error) disagree on only 11.5% of
examples (Figure C.6). However, there was little accuracy benefit to ensembling models trained with
different objectives over ensembling models trained with the same objective (Figure C.7).
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Figure C.6: Ensemble predictions are substantially more similar than single-model predictions. Predic-
tions of the ensemble were computed by taking 8 ResNet-50 models trained from different random initializations
with the same loss and picking the most common top-1 prediction for each example.
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Figure C.7: Ensembling models trained with different losses provides only modest performance benefits.
Ensembles consist of 8 ResNet-50 models, half of which are trained with the objective on the x-axis, the other
half with the objective on the y-axis. The ensemble prediction is the modal class prediction of the 8 models.

C.4 Combining regularizers does not improve accuracy

Given the clear differences in the effects of different objectives on network predictions, we next
asked whether combining regularization or normalization strategies might result in better predictions.
Table C.4 shows that these combinations do not improve accuracy. However, as shown in Table C.5,
improved data augmentation [4, 33] provides a similar additive gain in accuracy to networks trained
with alternative losses as it does to networks trained with softmax cross-entropy. These results suggest
that the objectives that improve over softmax cross-entropy do so via similar mechanisms, but data
augmentation acts differently.

With longer training, both sigmoid cross-entropy and cosine softmax achieve state-of-the-art accuracy
among ResNet-50 networks trained with AutoAugment (Table C.6), matching or outperforming
supervised contrastive learning [15]. Combining cosine softmax loss, AutoAugment, and Mixup,
we achieve 79.1% top-1 accuracy and 94.5% top-5 accuracy, which was, at the time this paper was
first posted, the best reported 224× 224 pixel single-crop accuracy with an unmodified ResNet-50
architecture trained from scratch.
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Table C.4: Combining final-layer regularizers and/or improved losses does not meaningfully enhance
performance. Accuracy of ResNet-50 models on our ImageNet holdout set when combining losses and
regularizers between models. All results reflect the maximum accuracy on the holdout set at any point during
training, averaged across 3 training runs. Accuracy numbers are higher on the holdout set than the official
ImageNet validation set. This difference in accuracy is likely due to a difference in image distributions between
the ImageNet training and validation sets, as previously noted in Section C.3.1 of Recht et al. [29].

Baseline Label smoothing
(α = 0.1)

Sigmoid Cosine softmax
(τ = 0.05)

Baseline 79.9 80.4 80.6 80.6
Dropout (β = 0.7) 80.3 80.3 80.3 80.2
Dropout (β = 0.8) 80.2 80.4 80.4 80.4
Dropout (β = 0.9) 80.3 80.5 80.6
Dropout (β = 0.95) 80.4 80.6 80.7
Logit penalty (γ = 5× 10−5) 80.4 80.3 80.5 80.6
Logit penalty (γ = 1× 10−4) 80.4 80.3 80.5 80.5
Logit penalty (γ = 2× 10−4) 80.4 80.3 80.4 80.5
Logit penalty (γ = 4× 10−4) 80.4 80.2 80.3 80.5
Logit penalty (γ = 6× 10−4) 80.5 80.2 80.3 80.5
Logit normalization (τ = 0.02) 80.0 80.4
Logit normalization (τ = 0.03) 80.3 80.4 80.6
Logit normalization (τ = 0.04) 80.4 80.5 80.6
Logit normalization (τ = 0.05) 80.3 80.5 80.5
Logit normalization (τ = 0.06) 80.3 80.4 80.5
Cosine normalization (τ = 0.045) 80.6 80.5
Cosine normalization (τ = 0.05) 80.6 80.6
Cosine normalization (τ = 0.06) 80.4 75.3

Table C.5: AutoAugment and Mixup provide consistent accuracy gains beyond well-tuned losses and
regularizers. Top-1 accuracy of ResNet-50 models trained with and without AutoAugment, averaged over
3 (with AutoAugment) or 8 (without AutoAugment) runs. Models trained with AutoAugment use the loss
hyperparameters chosen for models trained without AutoAugment, but the point at which to stop training was
chosen independently on our holdout set. For models trained with Mixup, the mixing parameter α is chosen from
[0.1, 0.2, 0.3, 0.4] on the holdout set. Best results in each column, as well as results insignificantly different
from the best (p > 0.05, t-test), are bold-faced.

Standard augmentation AutoAugment Mixup

Loss/regularizer Top-1 (%) Top-5 (%) Top-1 (%) Top-5 (%) Top-1 (%) Top-5 (%)

Softmax 77.0± 0.06 93.40± 0.02 77.7± 0.05 93.74± 0.05 78.0± 0.05 93.98± 0.03
Sigmoid 77.9± 0.05 93.50± 0.02 78.5± 0.04 93.82± 0.02 78.5± 0.07 93.94± 0.04
Logit penalty 77.7± 0.02 93.83± 0.02 78.3± 0.05 94.10± 0.03 78.0± 0.05 93.95± 0.05
Cosine softmax 77.9± 0.02 93.86± 0.01 78.3± 0.02 94.12± 0.04 78.4± 0.04 94.14± 0.02

Table C.6: Comparison with state-of-the-art. All results are for ResNet-50 models trained with AutoAugment.
Loss hyperparameters are the same as in Table C.5, but the learning schedule decays exponentially at a rate
of 0.985 per epoch, rather than 0.975 per epoch. This learning rate schedule takes approximately 2× as many
epochs before it reaches peak accuracy, and provides a ∼0.4% improvement in top-1 accuracy across settings.

Loss Epochs Top-1 (%) Top-5 (%)

Softmax [4] 270 77.6 93.8
Supervised contrastive [15] 700 78.8 93.9

Ours:
Softmax 306 77.9± 0.02 93.77± 0.03
Sigmoid 324 78.9± 0.04 93.96± 0.06
Logit penalty 346 78.6± 0.07 94.30± 0.01
Cosine softmax 308 78.7± 0.04 94.24± 0.02

Ours (with Mixup):
Sigmoid 384 79.1± 0.06 94.28± 0.03
Cosine softmax 348 79.1± 0.09 94.49± 0.01
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D Additional transfer learning results

D.1 Scatterplots of ImageNet vs. transfer accuracy by dataset
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Figure D.1: Higher ImageNet accuracy is not associated with higher linear transfer accuracy. Points
represent the accuracies of individual training runs. Panels represent different datasets. See Figure 1 for a similar
plot of transfer accuracy averaged across datasets.

D.2 Training dynamics of transfer accuracy
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Figure D.2: On most datasets, softmax cross-entropy achieves the highest linear transfer accuracy over
the entire training run. For each loss function, we evaluate the linear transfer accuracy of a ResNet-50 model
every 6 epochs over the course of a single ImageNet pretraining run. Lines terminate at the final checkpoint,
selected as described in Appendix A.1. Conclusions regarding the superiority of different loss functions match
those from Table 1: Vanilla softmax cross-entropy achieves greater accuracy than other losses except on SUN397,
where it is tied with sigmoid cross-entropy, and Pets, where other losses perform better. We do not show results
for squared error because they are off the scale of the plots for all datasets except Pets.

11



D.3 Results on Chexpert

In Table D.1, we evaluate the performance of linear classifiers trained to classify the Chexpert
chest X-ray dataset [14] based on the penultimate layer representations of our ImageNet-pretrained
models, using the procedure described in Appendix A.2. We treat both uncertain and unmentioned
observations as negative. We tune the L2 regularization hyperparameter separately for each class.
We approximate AUC using 1000 evenly-spaced bins. The official validation set of 234 images is
very small and results in high variance; vanilla softmax cross-entropy achieves the best numerical
results on all but one pathology, but many losses are statistically tied. We thus examine a second
setting where we split 22,431 images from the training set and evaluate on these images. On this split,
we find that softmax cross-entropy performs significantly better than all other losses on 4 of the 5
pathologies, and is tied for the best AUC on the fifth.

We note that the domain shift between Chexpert and ImageNet is very large. Given the extent of the
domain shift, linear transfer will always perform far worse than fine-tuning. However, fine-tuning
is unlikely to reveal differences among losses, particularly given that Raghu et al. [28] previously
reported that ImageNet pretraining provides no accuracy advantage over training from scratch on this
dataset. Nonetheless, we find that, even in this somewhat extreme setting, the fixed features learned
by vanilla softmax cross-entropy on ImageNet work better than features learned by other losses.

Table D.1: Transfer learning results on Chexpert. AUC of classifiers learned using L2-regularized multino-
mial logistic regression on the fixed penultimate layer features of the ImageNet-trained networks. Numbers are
averaged over 8 different pretraining initializations, and all values not significantly different than the best are
bold-faced (p < 0.05, t-test). The strength of L2 regularization is selected on a validation set that is independent
of the test set. See Table 1 for results for natural image datasets.

Pretraining loss Atelectasis Cardiomegaly Consolidation Edema Pleural effusion

Official validation set (234 images):
Softmax 74.9 75.3 86.9 87.4 86.4
Label smoothing 74.0 73.6 85.8 86.5 85.8
Sigmoid 74.6 75.0 86.9 87.3 85.3

More final layer L2 74.6 74.1 85.2 85.2 84.8
Dropout 74.9 73.3 86.0 86.3 84.0
Logit penalty 74.6 75.9 83.5 84.8 83.3
Logit normalization 74.2 73.6 85.6 82.2 83.8
Cosine softmax 73.3 71.9 83.5 81.6 82.2
Squared error 71.2 67.5 76.2 73.0 75.0

i.i.d. split from training set (22,431 images):
Softmax 65.8 76.2 66.8 79.9 81.4
Label smoothing 64.9 74.9 66.3 79.2 80.2
Sigmoid 65.4 74.9 66.5 79.3 80.5

More final layer L2 64.7 73.6 65.8 78.4 79.7
Dropout 65.0 74.6 66.5 79.0 80.4
Logit penalty 64.1 72.7 65.3 78.1 78.9
Logit normalization 63.9 72.0 65.2 77.6 78.4
Cosine softmax 62.6 70.0 64.2 76.4 76.7
Squared error 59.6 64.9 59.9 72.2 69.5
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D.4 CKA between models before and after transfer
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Figure D.3: Transfer produces large changes in later network layer representations. We measure CKA
between ResNet-50 models trained with softmax cross-entropy before and after transfer, following the same
procedure as described in Section 3.2 of the main text. Consistent with previous work, we find that later layers
change more than earlier layers, although interestingly, the extent of the changes differs greatly by dataset.

E Additional class separation results

E.1 Relation of class separation index to variance ratios

The class separation index we use is a simple multidimensional generalization of η2 in ANOVA or
R2 in linear regression with categorical predictors when it is applied to normalized embeddings. Its
properties are likely to be familiar to many readers. In this section, for completeness, we derive these
properties and provide connections to related work.

The ratio of the average within-class cosine distance to the overall average cosine distance provides a
measure of how distributed examples within a class are that is between 0 and 1. We take one minus
this quantity to get a closed-form measure of class separation

R2 = 1−

∑K
k=1

∑Nk

m=1

∑Nk

n=1

(

1− sim(Xk
m,:,X

k
n,:)

)

/(KN2
k )

∑K
j=1

∑K
k=1

∑Nj

m=1

∑Nk

n=1

(

1− sim(Xj
m,:,Xk

n,:)
)

/(K2NjNk)
, (12)

where Nk is the number of examples in class k, Xk ∈ R
Nk×P is the matrix of P -dimensional

embeddings of these examples, and sim(x,y) = xTy/(‖x‖‖y‖) is cosine similarity.

Relation of R2 to ratio of within-class vs. total variance: R2 is one minus the ratio of the within-
class to weighted total variances of L2-normalized embeddings, summed over the feature dimension.
To see this, first note that

‖x/‖x‖ − y/‖y‖‖2 = (x/‖x‖ − y/‖y‖)
T
(x/‖x‖ − y/‖y‖) (13)

= 2− 2sim(x,y), (14)

so, letting X̃k ∈ R
Nk×P be matrices of L2-normalized embeddings X̃k

m,: = Xk
m,:/‖X

k
m,:‖

R2 = 1−

∑K
k=1

∑Nk

m=1

∑Nk

n=1 ‖X̃
k
m,: − X̃k

n,:‖
2/(KN2

K)
∑K

j=1

∑K
k=1

∑Nj

m=1

∑Nk

n=1 ‖X̃
j
m,: − X̃k

n,:‖
2/(K2NjNk)

. (15)

The variance of a vector is a V-statistic with the kernel h(x, y) = (x− y)2/2, i.e.,

Var(y) =
1

n

n
∑

i=1



yi −

n
∑

j=1

yj/n





2

=
1

n2

n
∑

i=1

n
∑

j=1

(yi − yj)
2/2, (16)
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and thus the sum of the variances of the columns of a matrix Y ∈ R
N×P is

P
∑

p=1

Var(Y:,p) =
1

n2

P
∑

p=1

N
∑

m=1

N
∑

n=1

(Ym,p − Yn,p)
2/2 =

1

n2

N
∑

m=1

N
∑

n=1

‖Ym,: − Yn,:‖
2/2. (17)

If all Nk are equal5, we can use (17) to write R2 in terms of the ratio of the average within-class
variance to the total variance of the normalized embeddings, where each variance is summed over the
embedding dimensions:

σ2
within =

P
∑

p=1

K
∑

k=1

Var(X̃k
:,p)/K σ2

total =

P
∑

p=1

Var(X̃all
:,p) R2 = 1−

σ2
within

σ2
total

, (18)

where X̃all ∈ R
kN×P is the matrix of all examples.

Relation of R2 to ratio of between-class vs. total variance: Letting M ∈ K × P be the matrix

of mean normalized embeddings of each class Mk,: =
1
Nk

∑Nk

m=1 X̃
k
m,:, the law of total variance

states that the variance of each dimension is the sum of the within-class and between-class variances:

Var(X̃all
:,p) =

K
∑

k=1

Var(X̃k
:,p)/K +Var(M:,p). (19)

Thus, if we let σ2
between =

∑P
p=1 Var(M:,p), the variance of the class means summed across dimen-

sions, (19) implies that σ2
total = σ2

within + σ2
between. Thus, we have

R2 = σ2
between/σ

2
total. (20)

Relation of R2 with other variance ratios: Other work has used the alternative variance ratios
σ2

within/σ
2
between [5], σ2

between/σ
2
within [19], or (σ2

between − σ2
within)/(σ

2
between + σ2

within) [21] to measure
class separation. These ratios are monotonic functions of R2 and can be computed directly from the
numbers we provide:

σ2
within

σ2
between

=
1

R2
− 1,

σ2
between

σ2
within

=
R2

1−R2
,

σ2
between − σ2

within

σ2
between + σ2

within

= 2R2 − 1. (21)

E.2 Other class separation indexes and measurements

Table E.1: Comparison of class separation under different distance indexes. Cosine (mean-subtracted)
subtracts the mean of the activations before computing the cosine distance. All results reported for ResNet-50 on
the ImageNet training set.

Loss/regularizer Cosine Cosine (mean-
subtracted)

Euclidean distance

Softmax 0.3494± 0.0002 0.3472± 0.0002 0.3366± 0.0002
Squared error 0.8452± 0.0002 0.8450± 0.0002 0.8421± 0.0007
Dropout 0.4606± 0.0003 0.4559± 0.0002 0.4524± 0.0003
Label smoothing 0.4197± 0.0003 0.4124± 0.0004 0.3662± 0.0005
Extra final layer L2 0.5718± 0.0006 0.5629± 0.0005 0.5561± 0.0005
Logit penalty 0.6012± 0.0004 0.5950± 0.0004 0.5672± 0.0004
Logit normalization 0.5167± 0.0002 0.5157± 0.0002 0.5326± 0.0002
Cosine softmax 0.6406± 0.0003 0.6389± 0.0003 0.6406± 0.0003
Sigmoid 0.4267± 0.0003 0.4315± 0.0003 0.4272± 0.0003

5This equivalence also holds for unequal Nk if the variance is replaced by the inverse-frequency-weighted
variance.
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Table E.2: Simplex ETF measurements. Papyan et al. [25] measure various quantities to demonstrate that the
representations of neural networks converge to the simplex equiangular tight frame as the training error goes
to 0. Collapse to the equiangular tight frame implies both that class separation is maximal (i.e., R2 → 1) and
that class means are maximally distributed. Here we compute the same quantities for networks trained with
different losses and optimal early stopping. µ̃c indicates the mean embedding of the cth of C = 1000 total
classes after subtracting the global mean across all classes, and w indicates the classifier weights corresponding
to the cth class. W is the matrix of all classifier weights, whereas M is the matrix of all global-mean-subtracted
class mean embeddings. ΣB is the covariance matrix of the class means and ΣW is the within-class covariance

matrix. Tr(ΣWΣ
†
B)/C, where Σ

†
B is the Moore-Penrose pseudoinverse of ΣB , measures the collapse of

within-class variability relative to between-class variability. This quantity reveals the greatest difference between
softmax and other losses, and it is also the most related to class separation; for isotropic covariance matrices,

Tr(ΣWΣ
†
B)/C = P/C(1/R2−1) where P is the number of penultimate layer features. Stdc,c′(sim(µ̃c, µ̃c′))

and Avgc,c′ |sim(µ̃c, µ̃c′) +
1

C−1
|, which measure the discrepancy between the class mean directions and those

that would result in the maximal separation between the class means, also differentiate softmax from other losses.
Other quantities do not.

Stdc(‖µ̃c‖)
Avgc(‖µ̃c‖2)

Stdc(‖wc‖)
Avgc(‖wc‖2)

Stdc,c′ (sim(µ̃c, µ̃c′ )) Stdc,c′ (sim(wc,wc′ ))

Softmax 0.127 ± 0.0007 0.100 ± 0.0005 0.119 ± 0.0003 0.034 ± 0.0000

Label Smoothing 0.102 ± 0.0054 0.126 ± 0.0004 0.096 ± 0.0010 0.024 ± 0.0001

Sigmoid 0.171 ± 0.0009 0.102 ± 0.0003 0.080 ± 0.0005 0.031 ± 0.0001

More L2 0.131 ± 0.0005 0.069 ± 0.0006 0.086 ± 0.0003 0.057 ± 0.0001

Dropout 0.134 ± 0.0012 0.048 ± 0.0003 0.085 ± 0.0003 0.061 ± 0.0001

Logit Penalty 0.105 ± 0.0019 0.092 ± 0.0002 0.057 ± 0.0003 0.016 ± 0.0000

Logit Norm 0.300 ± 0.0014 0.135 ± 0.0007 0.060 ± 0.0002 0.020 ± 0.0000

Cosine Softmax 0.100 ± 0.0004 0.000 ± 0.0000 0.045 ± 0.0002 0.063 ± 0.0001

Squared Error 0.448 ± 0.0050 0.078 ± 0.0010 0.011 ± 0.0001 0.005 ± 0.0001

Avgc,c′ |sim(µ̃c, µ̃c′ ) +
1

C−1 | Avgc,c′ |sim(wc,wc′ ) +
1

C−1 | ‖W /‖W ‖F − M/‖M‖F‖
2
F

Tr(ΣWΣ
†
B
)/C

Softmax 0.084 ± 0.0003 0.025 ± 0.0000 0.918 ± 0.0015 21.158 ± 0.1283

Label Smoothing 0.068 ± 0.0008 0.018 ± 0.0001 0.954 ± 0.0052 9.001 ± 0.0859

Sigmoid 0.057 ± 0.0005 0.056 ± 0.0004 0.960 ± 0.0013 6.957 ± 0.0371

More L2 0.059 ± 0.0003 0.042 ± 0.0001 0.328 ± 0.0009 6.104 ± 0.1007

Dropout 0.057 ± 0.0003 0.045 ± 0.0001 0.521 ± 0.0010 9.701 ± 0.0494

Logit Penalty 0.034 ± 0.0003 0.010 ± 0.0000 0.481 ± 0.0020 2.722 ± 0.2005

Logit Norm 0.034 ± 0.0002 0.013 ± 0.0000 0.759 ± 0.0016 2.943 ± 0.1150

Cosine Softmax 0.023 ± 0.0002 0.045 ± 0.0001 0.302 ± 0.0004 1.305 ± 0.3153

Squared Error 0.002 ± 0.0000 0.002 ± 0.0000 0.647 ± 0.0043 0.334 ± 0.0260
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Figure E.1: Angular visual hardness of different loss functions. Kernel density estimate of the angular visual
hardness [3] scores of the 50,000 examples in the ImageNet validation set, computed with a Gaussian kernel
of bandwidth 5× 10−6, for ResNet-50 networks trained with different losses. Legend shows ImageNet top-1
accuracy for each loss function in parentheses. Although alternative loss functions generally reduce angular
visual hardness vs. softmax loss, sigmoid loss does not, yet it is tied for the highest accuracy of any loss function.
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Figure E.2: Singular value spectra of activations and weights learned by different losses. Singular value
spectra computed for penultimate layer activations, final layer weights, and class centroids of ResNet-50 models
on the ImageNet training set. Penultimate layer activations and final layer weights fail to differentiate sigmoid
cross-entropy from softmax cross-entropy. By contrast, the singular value spectrum of the class centroids clearly
distinguishes these losses.
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Figure E.3: The distribution of cosine distance between examples. Kernel density estimate of the cosine
distance between examples of the same class (solid lines) and of different classes (dashed lines), for penultimate
layer embeddings of 10,000 training set examples from ResNet-50 on ImageNet. Top and bottom plots show the
same data with different y scales.
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E.3 Augmentation can improve accuracy without increasing class separation

In Section C.4, we show that improved loss functions and AutoAugment are additive, whereas
combinations of improved loss functions or regularizers lead to no significant accuracy improvements.
In Table E.3 below, we show that AutoAugment also does not increase class separation. These results
confirm that data augmentation and modifications to networks’ final layers exert their effects via
different (and complementary) mechanisms.

Table E.3: AutoAugment increases ImageNet top-1 accuracy without increasing class separation. Top-1
accuracy is computed on the ImageNet validation set; class separation is computed on the ImageNet training set.
Results are averaged over 3 (with AutoAugment) or 8 (standard augmentation) models.

Standard augmentation AutoAugment

Loss ImageNet top-1 Class sep. (R2) ImageNet top-1 Class sep. (R2)

Softmax 77.0 ± 0.06 0.349 ± 0.0002 77.7 ± 0.05 0.353 ± 0.0002
Sigmoid 77.9 ± 0.05 0.427 ± 0.0003 78.5 ± 0.04 0.432 ± 0.0001
Logit penalty 77.7 ± 0.04 0.601 ± 0.0004 78.3 ± 0.05 0.595 ± 0.0003
Cosine softmax 77.9 ± 0.02 0.641 ± 0.0003 78.3 ± 0.05 0.632 ± 0.0001

E.4 Training dynamics of class separation

As we discuss in detail in Section 3.3 of the main text, different loss functions lead to different values
of class separation. However, we train models with different loss functions for different numbers
of epochs, reported in Table A.1. In this section, we confirm that differences in the number of
training epochs alone do not explain differences in observed class separation among losses. Instead,
as shown in Figure E.4, differences among losses are established early in training and the relative
ordering changes little. We observe that, for the softmax cross-entropy model, class separation peaks
at epoch 32 and then falls, whereas all models trained with different objectives achieve maximum
class separation on the training set at the last checkpoint. On the validation set, for most losses, class
separation peaks before optimal accuracy is reached.
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Figure E.4: Differences in training dynamics of class separation across loss functions. Plots show evolution
of class separation over training on the ImageNet training set (left) and validation set (right), for a single
ResNet-50 model of each loss function type evaluated every 8 epochs. Curves terminate at the epoch that
provided the highest holdout set accuracy.

F Class overlap between ImageNet and transfer datasets

In this section, we investigate overlap in the classes contained in the ImageNet ILSVRC 2012 dataset
and those contained in the downstream datasets investigated in this work. We previously reported the
overlap in the images contained in these datasets and those contained in ImageNet in Appendix H
of Kornblith et al. [16].
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We first measure the number of classes in each dataset where the class names correspond semantically
to classes in ImageNet. Due to differences in the granularity of different datasets, semantic class over-
lap is somewhat ambiguous. For example, CIFAR-10 contains a single “dog” class that corresponds
to 90 dog breeds contained in ImageNet, but ImageNet contains only a single “hummingbird” class
whereas Birdsnap contains 9 different species. We consider classes as “overlapping” when the name
of the downstream either directly or nearly corresponds to an ImageNet class, or is a superclass of
ImageNet classes.

In addition to being ambiguous, semantic class overlap does not consider shift in class-conditional
distributions. Simply because classes in two datasets refer to the same kinds of real-world objects
does not mean that the images those classes contain are similar. For example, 61 of the 100 classes
in CIFAR-100 are superclasses of ImageNet classes, but because CIFAR images are much lower
resolution, a classifier trained on ImageNet does not perform well at classifying them.

To develop a measure of class overlap that takes distribution shift into consideration, we map each
ImageNet class to a class in the downstream dataset and use this mapping in combination with the
original 1000-way ImageNet-trained vanilla softmax cross-entropy network to measure classification
accuracy. Finding the optimal class mapping is an instance of the minimum-cost flow problem,
but can also be solved somewhat less efficiently as a variant of the assignment problem. For each
downstream task, we apply an ImageNet classifier to the task’s training set and compute the matching
matrix. The cost matrix for the assignment problem is the negative matching matrix. To allow
multiple ImageNet classes to be assigned to the same downstream task class, we replicate all classes
in the downstream task k times, where we select k so that k+1 replications provides no improvement
in accuracy, then use scipy.optimize.linear_sum_assignment to find the mapping. We call
the accuracy of the resulting mapping the “assignment accuracy.”

Results are shown in Table F.1. Semantic class overlap is generally low, but CIFAR-10, CIFAR-100,
and Pets all have non-trivial semantic class overlap. For most datasets, the assignment accuracy is
less than half the linear transfer accuracy; the only exceptions are CIFAR-10 and Pets, where the drop
is smaller. Pets has comparable linear transfer accuracy to CIFAR-10 but higher assignment accuracy,
and thus arguably has the greatest class overlap with ImageNet.

Table F.1: Class overlap between ImageNet and transfer datasets.

Dataset Number of
classes

Semantic
class overlap

Assignment
accuracy

Linear transfer
accuracy

Food 101 7 15.4 74.6
CIFAR-10 10 9 65.1 92.4
CIFAR-100 100 61 34.6 76.9
Birdsnap 500 11 7.0 55.4
SUN397 397 39 20.2 62.0
Cars 196 0 4.0 60.3
Pets 37 25 71.2 92.0
Flowers 102 1 7.6 94.0
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