A Proofs of Theorems 1] and

We first recall the following lemma in [8]], which shows a relationship between iteration points x; and
Lt41-

Lemma 3 ([8]). Suppose that M is a Hadamard manifold with the sectional curvature lower bounded
by —k (k > 0) and K C M is a g-convex set. Then, for any x,x; € K, .11 = Px(exp,, (—otg:))
satisfies

(—gusex0, (@) < 5 (@ (o) = P, o) + 500 dlan)ala
t

Then we begin our proofs of Theorems[I]and 2]

Proof of Theorem[I] By the g-convexity, we have
fe(we) = fo(@™) < (=V filze), expy! (a7)).
Recalling Lemma 3] gives
1 1
fi(ze) = fi(2") < T«t(dz(xtvl’*) — d*(my1, %)) + 5((%,d(xt,x*))at||Vft(xt)||2.

With the Lipschitz constant L, we have

fler) = Fle") € 5o (@) = o, a) + 3k d(nat) o O

Summing (3) from 1 to 7', we obtain
T
R(T) =2 il Zﬂ

t=1
T

T
1 1 )
< ; E(Cp(l‘hx*) — d*(ze41,2%)) + ; ig(,@ d(zr, 7)) Loy
d T
=3 P ) (o — )+ 2ard(w1,77) + 212 S (s (w2
=2 ’ 2011& 20(t_1 2 ? 9 — 5 s

Since the set K has diameter D, d(z¢,2*) < D and ((k,d(z,z*)) < ((k,D) for every t =
1,2,...,T, which implies

T
1 1 1
T) < D? — - D? D)L
R(T) < ;(2% 2at71)+ 501+ 3 cn Zat
1 T
=D — D)L?
QO[T + 2((”‘7 ) tz:;ata
Setting oy = L\/ﬁ, we get
DL\/C(r, D) 1 ) —
R(T) < > VT + ¢ (s D)L ;at
DL\/¢(k, D 2D
< D) 74 Lot D)2 T
2 2 L+/¢(x, D)

= 2DLVC DT,

The second inequality is based on the inequality ZtT 1 %/ < 2y/T, and then we complete our
proof. O
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Proof of Theorem[2] By the strong g-convexity, we have
filae) = fi(a) < (=V i), exp; ) (@%)) = Ed(we, o).

With the help of Lemma [3|and the Lipschitz constant L, we have

1 1
f ( ) ft( ) T(d2(xtam*) - d2(1‘t+1,l‘*)) + ig(ﬁvd('xtvx*))[}o‘ - 7d (xh )
(6)
Summing (6) from 1 to 7', we obtain
T T
R(T) = flz:) =Y fil=
t=1 t=1
T T T
< Z E(dQ(xt,x*) - d2($t+1a$*)) + Z §C(Kad($t’l’*))L20¢t - Z %dg(a:t,x
t=1 t=1 t=1
d 1 1 o op 1, &
_ 2 * _ _ P 2 D -r2 *
_;d (x4, )(20& RV 2)—i—d (1, 27)( 5 2)—|— 2L ;C(H,d(l’t,w ).

Substituting d(z¢,2*) < D and ((k, d(zt,2*)) < ((k, D) fort =1,2,...,T, we obtain

T T
1 1 W 1 W 1
R(T) < D(— — —— - )+ D*(— — )4 =L? d *
(030G~ ga — 5 Pl 9+ 5L o Cl dlona e
1 uT. 1 da
=D*(— - ")+ = D)L?
(0 ~ 3+ 3R D2 e
Setting a; = ;%t we get
7)L2

R(T)<0+ C/iD Zat (1+1ogT).

The second inequality follows from the inequality thl
proof.

1
t

B Proof of Theorem 3

<1+ logT, and then we complete our

O

In this appendix, we first introduce an instance of Riemannian online convex optimization called
Riemannian online Busemann optimization (ROBO) and then prove Theorem [3| by analyzing the

worst-case regret of the ROBO problem.

B.1 Riemannian Online Busemann Optimization

It is shown that the Busemann function [1] is useful to study the large-scale geometry of Hadamard

manifolds.

Definition 1 ([1]]). Let M be a Hadamard manifold and «y : [0, o) be a geodesic ray on M with

[I%(0)|| = 1. Then the Busemann function with ~ is defined as

fy(@) = lim (d(z,5(t) —1).

Here are some properties of the Busemann function.
Lemma 4 ([1]). For a Busemann function f.,

1) f, is g-convex;
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2) V1,(x(t)) = 4(2) for every t € [0, 00);
3) IVfy(@)|| < 1 forevery z € M.

Next, we introduce some notations. Let D, L > 0 be two constants, M be a Hadamard manifold,
p € Mand v : R — M be a geodesic with conditions ||5(0)|| = 1 and v(0) = p. Then we consider
an instance of R-OCO problem termed Riemannian online Busemann optimization (ROBO) on M,
where the g-convex set /C is the ball centered p with radius D ,i.e.,

K ={z € M|d(z,p) < D},
and the loss function f; is randomly and uniformly chosen from the set
{Lera Lf* }7

where f, and f_ are Busemann functions related to the geodesic rays v () = v(¢) and y_(t) =
~(—t). The regret of the ROBO problem is

T T
R(T) = th(xt) - inel’rclzlft(x)

In the last part of the subsection, we propose a lemma about the minimum of Zthl fe(x).
Lemma 5. The minimum of afy(t) + bf_(t), (a,b € N) in K is —|a — b|D.
Proof. By the g-convexity of f1 and f_, we have
aft (@) +bf-(w) = af(p) + bf-(p) + (aV f1(p) + bV f-(p), exp, ' (2)), Vo € K.

Because V{1 (p) = ¥(0), Vf_(p) = —%(0) and fy(p) = 0, we have

af(z) +bf-(x) > ((a—b)¥(0),exp,  (z)),Vz € K.
Moreover, since [|7(0) = 1 and || exp,* ()| = d(z,p) < D, we have

i > min((a — b)3 ~1(x)) > —|a — b|D.
min afy (z) +bf- () 2 min((a — b)3(0), exp, *(z)) 2 ~la —b|D @)

However, we see that af (y(D)) + bf—(y(D)) = (b —a)D and af+(y(=D)) + bf—(y(—D)) =
(a — b)D, which imply

rréi’rcl af+(z) +bf—(x) <min{(b —a)D, (a —b)D} = —|a — b|D. (8)
Following from ([7) and (8), we complete our proof. O

B.2 Proof of Theorem[3|

We begin our proof with an analysis of the worst-case regret of the ROBO problem. In the ROBO,
the expectation of the regret on loss functions { f1, f2, ..., fr} is

Efly-wa [R(T)] :E.f17~~;fT[

M=

filwe) —min D~ fi()]

H
l

1

:]Ef17~~~sz[

E

T
ft(xt)] _EflwnafT[l;[éi)rClth(x)}' )
t=1

~
Il

1

Since f; is uniformly and independently chosen in {f, f_}, we get

T
Bppe D fil@)] =D By [fulw)]
t=1

S (L (@) + L (2)

v

Il
<311 11>

min(f. (2) + f-(2))



From Lemma [5}

T
Efi..ooir[Y_ fol@)] > 0. (10)
t=1
Putting (T0) into (9)), we obtain
T
Ep, fT[R(T)] > —Ep,., fT[manft(‘r)]
t=1

By Lemma[3]

Efy,....pr [R(T)]

v

T
B pelmin 3 fi(@)
t=1

A B SR SR

ft=Lfy+ fi=Lf-

=Ee, ...cr [DL] PREEY —1|]

er=1 er=—1

T
=Ee,....cr [DL] > e }
t=1

where €; are i.i.d Rademacher variables ¢, = +1 with probability 1/2. From the Khinchine’s
inequality [4]], we finally get

DL T 1° DL
E ] > =—=E . 2l = Z=VT, 11
f1 fT[R( )} > Tyeees T [tz_:let] \/ﬁf an

which indicates that no matter how we choose strategies in the ROBO, there are a sequence of
functions {f1,..., fr} € {Lf+,Lf-}" to make the regret no less than %\/T Considering that

the diameter of the set K is 2D and the Lipschitz constant of {Lf,, Lf_} is L, we complete our
proof.

C Proofs of Lemmas (1] and 2]

In this appendix, we first introduce some fundamental definitions and technical lemmas, and then we
prove Lemmas [T|and 2] in Subsections[C.2]and [C.3] respectively.

C.1 Basic Definitions and Technical Lemmas
We discuss two special kinds of vector fields, namely, the Killing field and the Jacobi field.
Definition 2 (Killing field). A vector field 7 is a Killing field if it satisfies

<VX77) Y> + <VY777X> = 07VX7Y € X(M),

Definition 3 (Jacobi field). A vector field n along a geodesic -y is a Jacobi field if it satisfies the
Jacobi equation

V5 Vin + R(¥,m)7 =0,
where R is the curvature tensor of M (see [5, Chapter 4.2]).

For vector fields, we mainly consider about their flows and divergence.

Definition 4 (Flow). Suppose that M is a smooth manifold, X € X(M) and there is a smooth map

o:Rx M— M,
¢t(p) = ¢(t7p)7 (t>p) eRx Ma

satisfying the following conditions:
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1 ¢o(p) =p;

2) ¢s 0 ¢ = ¢y for any real numbers s, ¢;
3) X(p) = %52 0.

Then we call ¢; the flow (or the one-parameter group of diffeomorphism) of X, and call X the
infinitesimal transformation of ¢;.

Definition 5 (Divergence). For a vector field X, the divergence Div(X) is the trace of the operator
VX. More precisely, if {e1,...,e,} is a normal orthogonal basis at tangent space T, M, the
divergence of X at x can be expressed as

n

Div(X)(z) =Y (Ve X(2),e:).
i=1
Then we present some lemmas that are needed in the following proofs.
Lemma 6 ([2). Ifn € X(M) is a Killing vector field, then

1) For every vector field X, (V xn, X) = 0. As a corollary, the divergence Div(n) = 0.

2) For every geodesic vy, 1| is a Jacobi field.
Lemma 7 ([3]). Ifn is a Jacobi vector field along a geodesic v : [0, 1] — R. Denote n(t) = n(~(t)).

Then

(n(t),7(t)) = (n(0),3(£)) + t(V4m(0),¥(¢))
forallt € [0,1].
Lemma 8 ([7]). Let M be a simply connected complete Riemannian homogeneous manifold. Then
forevery x € M and every X € T, M, there exists a Killing vector field 1 such that n(x) = X. The
flow of n exists and consists of a one-parameter group of isometries.
Lemma 9 (Divergence theorem,[6]). Let M be a Riemannian manifold M with the volume form w,
K C M with the boundary 0K, and i be the (outer) unit normal vector field of 0K. Then, for any
vector field X and any differentiable function f,

| X = [ ) (X e /K Div(X) f (u)ew,

where wgic is the volume form of OK induced by w.

Lemma 10 (Bishop-Gromov volume comparison theorem, [6l]). Let M be an n-dimensional Rie-
mannian manifold with sectional curvature lower bounded by —r (k > 0). Given p € M, denote
V. as the volume of the ball of radius 6 about p and V. ,, as the volume of a ball of radius r on the
n-dimensional hyperbolic space with constant curvature —rk. Then the function

is non-increasing.

C.2 Proof of Lemmall]

We start with the first part of the lemma.

Take a vector X € M, arbitrarily. From Lemmal(§] we can find a Killing vector field 7 on M such
that () = X. The flow of 7 consists of a one-parameter group of isometries {$; }+cr. Then the

directional derivative of f along X can be written as

; @)~ f@) 11
X(f(z)) =lim ———~———= = — lim — U)w — w)w ). 12
(f( )) </Bs(¢'t(ac)) f( ) /Bé(w) f( ) ) (12)

t—0 t TV ts0t

Since ¢, is an isometry that preserves the distance, ¢¢(Bs(z)) = Bs(¢¢(x)). By the substitution rule
of integration ([15, Chapter 3.3]), we have

/ f(w)w = / F(60(u)6 (). (13)
Bs(¢i(x)) Bs(z)
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Because ¢; preserves the metric g, it preserves the volume form, i.e., ¢ (w) = w, which gives

[ e[ e (14
Bs(de(x)) B;()
Combining equations (T2) and (T4) together, we have

: 1 . f(d(w) = f(w)
lim ————————~
X(f(x)) = /Bé(m)

V;; t—0 t
_ i 9¢+(p)
=1 35(x)( BT lt=0) fw. 15)

By Deﬁnition ‘%5715“) lt=0 = n(u). Hence, we rewrite (I3)) as
A 1
X(fa) =0 [ (e
6 JBs(x)
According to Lemma 9}

. 1 . 1 .
X(f(z)) = Vs Jssio )f(U)<77(U)7n(U)>wS5(m) - %/Bé(m) Div(n)(u) f (u)w

- Vié /S F () (7(w), 7H())wsy oy, (16)

where wg; () is the volume form of Ss(x) induced by w and 7 is the (outer) unit normal vector field
of Ss(x). The last equation is because Div(n) = 0, as stated in Lemma@

Then we compute (7, 7i) for each point u € S5(z). Since geodesics start at the center z are normal to
the sphere Ss(), the outer normal vector 7i(u) can be written as i Jul(l) y for the geodesic v, such

that v,,(0) = x and 7, (1) = u. Therefore, h !
Lo 1 .
(n(u), 7i(u)) = a0l My (1)), Y (1))
Since 7 is Killing, by Lemmal6} 77(+.,(t)) is Jacobi. By Lemmal[7]
Lo 1 .
= T 100 0D + (V.03 (0)).5(0)
1 .
= m@?(%(o))ﬁu(o» + 0. (17)

Applying 1(7,(0)) = n(z) = X and 4, (0) = exp, " (u) to (I7) yields
(X, expy ! (u))

O R 19)
Substituting (T8) to (T6), we have
L1 (X, expz (1) L exvz ! (u)
1, z) — 1~ T 1, WSs(x 7X-
XU ZF o™ Tempz @l @ = 55 Sy Tompr @ 5

Because the directional derivative X (f()) coincides with the term (V f(z), X ), we obtain

i L . O
(V@) X) = (5 /S T s X).

Since X is arbitrary,

oy = L ey (W) S _exp, ()
Vi) = /SM)f(“)||exp$1(u)||w5“(” = 7, Puess@) [fa Y exps? (u)II]’
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which completes the proof of the first part.

Then we examine the second part of the lemma.

From the first part, it is clearly to see ||V f ()| < %C . Since the sectional curvature of M is lower

bounded by —«, the function g(r) = ‘Y—T is non-increasing from Lemma and so does log g(r).

Therefore,

d d d
— = ZlogV. — —log V... <0.
drlog(g(r)) o log Ve — - log Vi <0

Since deriving the volume of a ball along the radius gives the surface area of its sphere, we write

d ST‘ S'I” K

—I =—-——-<0 19

Glosto(r) = 37 = 7= <0, (19)
where S, and S, ; are the surface area of the balls in M and the hyperbolic space, respectively.
Setting r = § in (T9), we get ‘S,—g < ‘S,j: From calculation, it shows that

S5 sinh""'(V/kS)
Vi fots sinh"~* (\/Et)dt.

Consequently,
5 sinh™ ! (/K6
Vi) < oS _Wrd)
Jo sinh™ ™ (y/kt)dt

By a change of variable u = sinh ¢,

s sinh(y/r4)
[ st (e = e [ WL+ )" 2du,
0 0

Integration by parts gives

1) ) sinh (v/k9)
- h" (/k6) - - -
Bt __sm 1/2/ n-1(1 1/2
/0 sin (Vrkt)dt /i cosh(v/i0) + K ; w7 (14 u) du

sinh” (1/k0)
~ ny/kcosh(y/Kkd)

Putting it into the expression of ‘?,—;, we get

% < ny/k coth(v/k6).
5

Applying the inequality coth(z) < x + 1/x, we have

55 n
—_< = .
A +nkd, V>0
Hence, for every § > 0,
V5] < 520 < O3 + ),

which completes our proof.

C.3 Proof of Lemmal[2]

Without loss of generality, we assume f(z) = 0. By the homogeneity of the manifold M, we find an
isometry ¢ such that ¢(z) = y. Denote V (u) as the vector field V (u) = exp, ' (¢(u)). Clearly,

f - f@ =g (f s [ )



With the method shown in (T3) and (T4),

F) = f@) =gz [ st~ s
By the g-convexity of f,
f) - @) = ) ~ flu)e

6 JBs(z)

>0 [ (Vi)ew 6w)
9 JBs(z)
1

A BW)< fw), V(u)w
1

= v e V(f(u)w. (20)

By Lemmal9]
/B - V(f(u)w= /S J(I)f(u)<V(u)7ﬁ(u)>wsé(m) - /B " Div(V)f(ww. (1)

Hence, we rewrite (20) as

A 1 . .
fw -z g ([ e iwess - [ pewses). e

In Lemmal[I] we have already shown that

(Y f@)exvz ) = (- /S ( )f(u)wwsé<z>7e><pgl<y>>
1 exp, (u)

—(— w)y—Pa W,V (@) (23)
Vs Josm ' Nlexps M)l @)

-1
Denote 17i(u) as the vector Z‘;{l((z))u . Combining (1)) and (23) gives

. R . . 1 . -
Fl) = F (@) = (V@) exp; () > 37 ( / o (V) - <v<x>,m<u>>)wsa<$>)
_ v%( /B D) flues). (24)
Here we claim
(V(w),fi(u)) = (V(x),m(u)) <0, VYuée Ss(z). (%)

If the claim (x) holds (whose proof will be presented in[C.4), then, with the g-L-Lipschitz of f and
the condition f(z) = 0, we have

/95(90) f(u) (<V(u),ﬁ(u)> - <V(m),rﬁ(u)>>w56(x)
= /S “ 5L(<V(u),ﬁ(u)> - <V(x),7ﬁ(u)>)w56(w)
N (/s (z) 6L<V(u)’ﬁ(u)>ws5("”)> - (/s @ 5L<V($)7m(u»ws5(m)). (25)

By Lemma v%; fS(;(m) OL(V (), m(u))ws;(z) in 23) is the gradient of the function
1
9(z) = 7(/ 5L-w) = 5L,
Vs N Bs(a)
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and then
1
Vs Jss ()

Combining (24)-(26), we have

F)— fo) (V@ ) 2 g ([ o1V T

5L<V(‘T)7m(u)>w55(l) =0. (26)

Applying Lemma 9] again, we obtain

1 B B . |
Vé/s,;(x) SL(V (u), fi(u))ws; (z) = V5~/B§(;c) V(6L)w — %(/Bs(x) Dw(V)aLw)
1 .
= _V5</B§(m) Dw(V)éLw).
Therefore,
R . . ) 1 |
fy) = f(@) = (Vf(z),exp; " (y)) = _75(/3 ( )Dw(V)(f(;c) + 5L)w)
> —26L sup |Div(V(u))|- 27)
uGB(s(a:)

Note that V (u) = exp, ' (¢(u)) is continuous on p and ¢, and ¢ is continuous on z and y. Thus,
| Div(V (u))| is a continuous function of (z,y,u) € K x I x K. Denote

p= sup  |Div(V(u))|.
(z,y,u)ELXKXK

Since the boundedness of K set yields the compactness of K x K x K, we have p < oco. Putting p
into (27) establishes the formula in Lemmal[7}

C.4 Proof of the Claim (x)

Fix u € Ss(z) and denote &,(s) = exp,(sm(u)) as the geodesic with the initial tangent vector
m(u). Consider the following rectangle map

Ty : [0,1] x [0, 6] = M
(t,8) = expe, (5 (tV (€u(s)))-

s) = (t,s) and S(t,s) = %= (t,s). For a fixed t, the length of the curve v;(s) =
Twu(t, s), (0 < s <) is defined as

o
Lu(t) = /O VIS5, 50, 9)ds.

The first variation formula (see [6, Theorem 6.3]) gives,

l;(()) = <T(07 5)? S(0, §)> - <T(07 O)’ S(0, 0)>

Because

T(O7 8) = V(gu(s))’vs € [O’ 6]
and

S5(0,0) = mi(u), S(0,0) = fi(u),
we have



To prove (x), it is sufficient to show that I/,(0) < 0. Let us focus on the second derivative of the
function [,,(t), that is,

L( dt2/ V{(S(t,s),S(t,s))ds
dt2 \/ (t,s),S(t,s))ds
0

§
1
:/0 ~ T VTS, ) +W(VTS VrS) + HSII (VoVrS, S)ds.  (28)

For every fixed s, the curve v, (t) = T', (¢, s) is a geodesic, hence, S is the variation field of the
geodesic 74(t) and becomes a Jacobi field. Putting the Jaboci equation (Deﬁnition into (28)), we
have

§
1 1
4@:/' VrS, S (VrS, VS R(T, S, 8, T)ds.
[~ o (S 8+ (9. 98) + Isi -
By the Cauchy—Schwarz inequality, —(V 7.5, S)?2 2 which yields
)
1 1
002 [ =g~ ISIPIV2SIP + 15 (VrS, V28) + oo — BT, 5.5, T)ds
ER ||5H [El

o
z/AL—R@&&ﬂM
o S]]

From the definition of the sectional curvature, R(T, S, S,T) = K(II)|T A S|?, where K (II) is
the sectional curvature of the two-dimensional submanifold spanned by 7" and S. Since M has
nonpostive sectional curvature, we get

§
1
la(t) > /HS|| R(T, S, S,T)ds > 0,

which means that /,,(¢) is convex in [0, 1].

Let us look back on the function [, (t). Note that the O-curve is
7s(0) = &(s),

and the 1-curve is

70(1) = expg(y) (VIE(S)) = expegy(expyh (9(6(3))) = H(E(s).

Since the mapping ¢ is an isometry, the length of £(s) is equal to the length of ¢(£(s)). As a result,
1,(0) = 1, (1).

The convexity of [,, immediately leads to

I

u

(0) <0,

which proves the claim (x).

D Proof of Theorem 4|

Before the proof, we propose two lemmas. Lemma|[TT]is about the expected online gradient descent
on Riemannian manifolds.

Lemma 11. Suppose that S is a g-convex set of M with diameter D and { f;}1=1,2,... 7 is a series
of smooth functions and there exists a constant A\ > 0 such that

fe(@) = fely) — (V fr(x), exp; (1)) > =, (29)
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foranyx,y € Sandt=1,2,...,T. If the sequence {x;}i=1 2,... 1 is generated by

Tiy1 = PS(QXPmt(—agt)%

where o > 0 and g; is a random vector bounded by G such that E[gi|x:] = V fi(x) for every
_ . . _ D
t=1,2,...,T, then, with taking o = 7G\/W’ we have

E[tz_;ft(xt)} —inei]gtz_;ft(x) < DG\/C(r, D)T + AT

Proof. Let z* = argmingex Y1, fi(x). From (29), the difference between f; () and f,(z*) is
bounded by

fe(we) — fe(z7) <AV fe(zy), eXP;tl(JC*» + A
= (Elge|2], expy, (27)) + A

= E|(gs.expy, (2) ] + X
Taking the expectation on both sides yields

Elfu(w) — fi(e")] < B[ {gu, expp! (@))] + 1

From Lemma[3]
Bfu(re) — fula)] < B[ 5 (0, 27) = (ren,0%)) + 500, da, x)ollgl?] + . G0)

Summing (30) from 1 to 7', we have

T T
* 1 * * @ *
> E[fi(w) — fila®)] < ZE[M(CF(%’%‘ ) = d(@p11,27)) + 56k, d(ze, 2 ))IIgtlﬂ + AT
t=1 t=1
1
< e 2 * 2
_E[Qad 1,2 }—i—ZE[ xt,x))G}+AT
D2
< 5+ 5C(r D)GT + AT. (31)
The last inequality is because S is of diameter D. Putting o = ﬁ in (31)), we complete our
proof. O

Lemma |12 reveals a relationship between the offline optimum in (1 — 7)X and K.

Lemma 12. Suppose that Assumption@holds, and { fi}1=1,...T is a sequence of g-convex function
defined on IC bounded by C'. Then

T T
i <27CT + mi
it 2 Si@) S 2CT +uin ) filw)
Proof. Since (1 — 1)K = {exp,((1 — 7)u)|u = exp, ' (x) € K}, itis easy to check

T T
Jmin 7 fulw) = min 3 i (exp, (1 - 7) exp, (2))).
eelmTMia =
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By the g-convexity of f;, we have

T
gg}fcl;ft(epr((l —7) expgl( ) < ineanTft (1—7)fe(x)

< mmZ (fe(p) = fol®)) + fi(z)
T
< glei}IClt:ZlTQC + fi(x)
T

<27CT i
<2rCT + min ; fi(x)
which completes our proof. O

Now it is time to prove Theorem ]

Proof of Theoremd}, Denote x’; as the minimizer of the problem min, 1)k Zthl fi(z), and then
the expectation can be reformulated as

1)) = ET:E[ft(wt) ~ fila")]

[imt ~ fulw)] + B[ D (ul) = fow)] +E [sz fut))]

=1

[M]=

o~
Il

E[i(ﬁ(wi) ~ fila2)] +E[ij(ft<x:> - fila)].

The Lipschitz condition leads to | f;(z;) — f;(y:)| < 6L and |f,(z) — fi(x)| < 6L, and recalling
Lemmayields Zthl( fe(xk) — fe(x*)) < 27CT. Putting them altogether,

~

~

T
E[R(T)] < E[Z(f () ~ fi(a})] + 36LT + 27CT (32)
To estimate the term E [ Zt 1( (fi(ye) — filz ))} we focus on the update rule of y;, that is,
—1
€XDPy, (z1)
Yer1 = Pu_px| exp t (afi(r) —F—)
4 ( v [ expym)n )

=Pu- T)K(eXP zt) Py, (1) ))
. C\/ | expy," ()|

o e (—ﬁf@)m)
G\ PP S e L DT Ve ey @l )

From what we have proved in Lemma |1| we obtain ]E[i fe(x )M‘yt = Vf(y;) and

ll expy, (z2)ll

7o)l <y 55, Consequently, it is clear to see that the update rule here is that of expected gradient
descent in Lemmau w1th parameters S = (1 — 1)K, G = S A C’ A = 20pL and the step size

a=—=L_ Thus,
G+\/¢(r,D)T"

T T
E[th(xt)} ~ min > filw) < chw/ (r, D)T + 26pLT. (33)
t=1

ze(l-7)K =1
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Applying (33), we rewrite (32) as

E[R(T)] < %DC\/C(/@, D)T 4 36LT + 27CT + 26pLT.
By Lemmal[I]
Ss n n
20 <= =— .
Vs 5 nko 5 + Bé
Then
E[R(T)] < (g + B&)DC/¢(k, D)T + 36LT + 27CT + 26pLT. 34)

Taking 7 = g, A =BCD\/((k,D)+3L+2C/randé = T-1 \/ Ghry<(s.D) VAC(K”D), we have,
E[R(T)] %DC\/C(KL, D)T + B6DC/C(r, D)T + 3LT + 2rCT + 25pLT
< EDc C(k, D)T + (BSDC\/C(r, D) + 36 L + 2rC)T + 25pLT,

e G5+ )

Also with A = VA + %’}L we get

IA

which completes our proof. O
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