A Proofs of Theorems 1 and 2

We first recall the following lemma in [8], which shows a relationship between iteration points x_{t} and x_{t+1}.
Lemma 3 ([8]). Suppose that \mathcal{M} is a Hadamard manifold with the sectional curvature lower bounded by $-\kappa(\kappa>0)$ and $\mathcal{K} \subset \mathcal{M}$ is a g-convex set. Then, for any $x, x_{t} \in \mathcal{K}$, $x_{t+1}=\mathcal{P}_{\mathcal{K}}\left(\exp _{x_{t}}\left(-\alpha_{t} g_{t}\right)\right)$ satisfies

$$
\left\langle-g_{t}, \exp _{x_{t}}^{-1}(x)\right\rangle \leq \frac{1}{2 \alpha_{t}}\left(d^{2}\left(x_{t}, x\right)-d^{2}\left(x_{t+1}, x\right)\right)+\frac{1}{2} \zeta\left(\kappa, d\left(x_{t}, x\right)\right) \alpha_{t}\left\|g_{t}\right\|^{2} .
$$

Then we begin our proofs of Theorems 1 and 2 .
Proof of Theorem 1 . By the g-convexity, we have

$$
f_{t}\left(x_{t}\right)-f_{t}\left(x^{*}\right) \leq\left\langle-\nabla f_{t}\left(x_{t}\right), \exp _{x_{t}}^{-1}\left(x^{*}\right)\right\rangle .
$$

Recalling Lemma 3 gives

$$
f_{t}\left(x_{t}\right)-f_{t}\left(x^{*}\right) \leq \frac{1}{2 \alpha_{t}}\left(d^{2}\left(x_{t}, x^{*}\right)-d^{2}\left(x_{t+1}, x^{*}\right)\right)+\frac{1}{2} \zeta\left(\kappa, d\left(x_{t}, x^{*}\right)\right) \alpha_{t}\left\|\nabla f_{t}\left(x_{t}\right)\right\|^{2} .
$$

With the Lipschitz constant L, we have

$$
\begin{equation*}
f_{t}\left(x_{t}\right)-f_{t}\left(x^{*}\right) \leq \frac{1}{2 \alpha_{t}}\left(d^{2}\left(x_{t}, x^{*}\right)-d^{2}\left(x_{t+1}, x^{*}\right)\right)+\frac{1}{2} \zeta\left(\kappa, d\left(x_{t}, x^{*}\right)\right) L^{2} \alpha_{t} \tag{5}
\end{equation*}
$$

Summing (5) from 1 to T, we obtain

$$
\begin{aligned}
R(T) & =\sum_{t=1}^{T} f_{t}\left(x_{t}\right)-\sum_{t=1}^{T} f_{t}\left(x^{\star}\right) \\
& \leq \sum_{t=1}^{T} \frac{1}{2 \alpha_{t}}\left(d^{2}\left(x_{t}, x^{\star}\right)-d^{2}\left(x_{t+1}, x^{\star}\right)\right)+\sum_{t=1}^{T} \frac{1}{2} \zeta\left(\kappa, d\left(x_{t}, x^{*}\right)\right) L^{2} \alpha_{t} \\
& =\sum_{t=2}^{T} d^{2}\left(x_{t}, x^{\star}\right)\left(\frac{1}{2 \alpha_{t}}-\frac{1}{2 \alpha_{t-1}}\right)+\frac{1}{2} \alpha_{1} d^{2}\left(x_{1}, x^{\star}\right)+\frac{1}{2} L^{2} \sum_{t=1}^{T} \zeta\left(\kappa, d\left(x_{t}, x^{*}\right)\right) \alpha_{t} .
\end{aligned}
$$

Since the set \mathcal{K} has diameter $D, d\left(x_{t}, x^{*}\right) \leq D$ and $\zeta\left(\kappa, d\left(x_{t}, x^{*}\right)\right) \leq \zeta(\kappa, D)$ for every $t=$ $1,2, \ldots, T$, which implies

$$
\begin{aligned}
R(T) & \leq D^{2} \sum_{t=2}^{T}\left(\frac{1}{2 \alpha_{t}}-\frac{1}{2 \alpha_{t-1}}\right)+D^{2} \frac{1}{2} \alpha_{1}+\frac{1}{2} \zeta(\kappa, D) L^{2} \sum_{t=1}^{T} \alpha_{t} \\
& =D^{2} \frac{1}{2 \alpha_{T}}+\frac{1}{2} \zeta(\kappa, D) L^{2} \sum_{t=1}^{T} \alpha_{t},
\end{aligned}
$$

Setting $\alpha_{t}=\frac{D}{L \sqrt{\zeta(\kappa, D) t}}$, we get

$$
\begin{aligned}
R(T) & \leq \frac{D L \sqrt{\zeta(\kappa, D)}}{2} \sqrt{T}+\frac{1}{2} \zeta(\kappa, D) L^{2} \sum_{t=1}^{T} \alpha_{t} \\
& \leq \frac{D L \sqrt{\zeta(\kappa, D)}}{2} \sqrt{T}+\frac{1}{2} \zeta(\kappa, D) L^{2} \frac{2 D}{L \sqrt{\zeta(\kappa, D)}} \sqrt{T} \\
& =\frac{3}{2} D L \sqrt{\zeta(\kappa, D) T},
\end{aligned}
$$

The second inequality is based on the inequality $\sum_{t=1}^{T} \frac{1}{\sqrt{t}} \leq 2 \sqrt{T}$, and then we complete our proof.

Proof of Theorem 2 By the strong g-convexity, we have

$$
f_{t}\left(x_{t}\right)-f_{t}\left(x^{*}\right) \leq\left\langle-\nabla f_{t}\left(x_{t}\right), \exp _{x_{t}}^{-1}\left(x^{*}\right)\right\rangle-\frac{\mu}{2} d^{2}\left(x_{t}, x^{*}\right)
$$

With the help of Lemma 3 and the Lipschitz constant L, we have

$$
\begin{equation*}
f_{t}\left(x_{t}\right)-f_{t}\left(x^{*}\right) \leq \frac{1}{2 \alpha_{t}}\left(d^{2}\left(x_{t}, x^{*}\right)-d^{2}\left(x_{t+1}, x^{*}\right)\right)+\frac{1}{2} \zeta\left(\kappa, d\left(x_{t}, x^{*}\right)\right) L^{2} \alpha_{t}-\frac{\mu}{2} d^{2}\left(x_{t}, x^{*}\right) \tag{6}
\end{equation*}
$$

Summing (6) from 1 to T, we obtain

$$
\begin{aligned}
R(T) & =\sum_{t=1}^{T} f_{t}\left(x_{t}\right)-\sum_{t=1}^{T} f_{t}\left(x^{\star}\right) \\
& \leq \sum_{t=1}^{T} \frac{1}{2 \alpha_{t}}\left(d^{2}\left(x_{t}, x^{\star}\right)-d^{2}\left(x_{t+1}, x^{\star}\right)\right)+\sum_{t=1}^{T} \frac{1}{2} \zeta\left(\kappa, d\left(x_{t}, x^{*}\right)\right) L^{2} \alpha_{t}-\sum_{t=1}^{T} \frac{\mu}{2} d^{2}\left(x_{t}, x^{*}\right) \\
& =\sum_{t=2}^{T} d^{2}\left(x_{t}, x^{\star}\right)\left(\frac{1}{2 \alpha_{t}}-\frac{1}{2 \alpha_{t-1}}-\frac{\mu}{2}\right)+d^{2}\left(x_{1}, x^{\star}\right)\left(\frac{\alpha_{1}}{2}-\frac{\mu}{2}\right)+\frac{1}{2} L^{2} \sum_{t=1}^{T} \zeta\left(\kappa, d\left(x_{t}, x^{*}\right)\right) \alpha_{t} .
\end{aligned}
$$

Substituting $d\left(x_{t}, x^{*}\right) \leq D$ and $\zeta\left(\kappa, d\left(x_{t}, x^{*}\right)\right) \leq \zeta(\kappa, D)$ for $t=1,2, \ldots, T$, we obtain

$$
\begin{aligned}
R(T) & \leq \sum_{t=2}^{T} D^{2}\left(\frac{1}{\alpha_{t}}-\frac{1}{2 \alpha_{t-1}}-\frac{\mu}{2}\right)+D^{2}\left(\frac{1}{2 \alpha_{1}}-\frac{\mu}{2}\right)+\frac{1}{2} L^{2} \sum_{t=1}^{T} \zeta\left(\kappa, d\left(x_{t}, x^{*}\right)\right) \alpha_{t} \\
& =D^{2}\left(\frac{1}{2 \alpha_{T}}-\frac{\mu T}{2}\right)+\frac{1}{2} \zeta(\kappa, D) L^{2} \sum_{t=1}^{T} \alpha_{t} .
\end{aligned}
$$

Setting $\alpha_{t}=\frac{1}{\mu t}$, we get

$$
R(T) \leq 0+\frac{1}{2} \zeta(\kappa, D) L^{2} \sum_{t=1}^{T} \alpha_{t} \leq \frac{\zeta(\kappa, D) L^{2}}{2 \mu}(1+\log T)
$$

The second inequality follows from the inequality $\sum_{t=1}^{T} \frac{1}{t} \leq 1+\log T$, and then we complete our proof.

B Proof of Theorem 3

In this appendix, we first introduce an instance of Riemannian online convex optimization called Riemannian online Busemann optimization (ROBO) and then prove Theorem 3 by analyzing the worst-case regret of the ROBO problem.

B. 1 Riemannian Online Busemann Optimization

It is shown that the Busemann function [1] is useful to study the large-scale geometry of Hadamard manifolds.
Definition $1([1])$. Let \mathcal{M} be a Hadamard manifold and $\gamma:[0, \infty)$ be a geodesic ray on \mathcal{M} with $\|\dot{\gamma}(0)\|=1$. Then the Busemann function with γ is defined as

$$
f_{\gamma}(x)=\lim _{t \rightarrow \infty}(d(x, \gamma(t))-t)
$$

Here are some properties of the Busemann function.
Lemma 4 ([1]). For a Busemann function f_{γ},

1) f_{γ} is g-convex;
2) $\nabla f_{\gamma}(\gamma(t))=\dot{\gamma}(t)$ for every $t \in[0, \infty)$;
3) $\left\|\nabla f_{\gamma}(x)\right\| \leq 1$ for every $x \in \mathcal{M}$.

Next, we introduce some notations. Let $D, L>0$ be two constants, \mathcal{M} be a Hadamard manifold, $p \in \mathcal{M}$ and $\gamma: \mathbb{R} \rightarrow \mathcal{M}$ be a geodesic with conditions $\|\dot{\gamma}(0)\|=1$ and $\gamma(0)=p$. Then we consider an instance of R-OCO problem termed Riemannian online Busemann optimization (ROBO) on \mathcal{M}, where the g-convex set \mathcal{K} is the ball centered p with radius D,i.e.,

$$
\mathcal{K}=\{x \in \mathcal{M} \mid d(x, p) \leq D\}
$$

and the loss function f_{t} is randomly and uniformly chosen from the set

$$
\left\{L f_{+}, L f_{-}\right\}
$$

where f_{+}and f_{-}are Busemann functions related to the geodesic rays $\gamma_{+}(t)=\gamma(t)$ and $\gamma_{-}(t)=$ $\gamma(-t)$. The regret of the ROBO problem is

$$
R(T)=\sum_{t=1}^{T} f_{t}\left(x_{t}\right)-\min _{x \in \mathcal{K}} \sum_{t=1}^{T} f_{t}(x)
$$

In the last part of the subsection, we propose a lemma about the minimum of $\sum_{t=1}^{T} f_{t}(x)$.
Lemma 5. The minimum of $a f_{+}(t)+b f_{-}(t),(a, b \in \mathbb{N})$ in \mathcal{K} is $-|a-b| D$.
Proof. By the g-convexity of f_{+}and f_{-}, we have

$$
a f_{+}(x)+b f_{-}(x) \geq a f_{+}(p)+b f_{-}(p)+\left\langle a \nabla f_{+}(p)+b \nabla f_{-}(p), \exp _{p}^{-1}(x)\right\rangle, \forall x \in \mathcal{K}
$$

Because $\nabla f_{+}(p)=\dot{\gamma}(0), \nabla f_{-}(p)=-\dot{\gamma}(0)$ and $f_{ \pm}(p)=0$, we have

$$
a f_{+}(x)+b f_{-}(x) \geq\left\langle(a-b) \dot{\gamma}(0), \exp _{p}^{-1}(x)\right\rangle, \forall x \in \mathcal{K}
$$

Moreover, since $\|\dot{\gamma}(0)\|=1$ and $\left\|\exp _{p}^{-1}(x)\right\|=d(x, p) \leq D$, we have

$$
\begin{equation*}
\min _{x \in \mathcal{K}} a f_{+}(x)+b f_{-}(x) \geq \min _{x \in \mathcal{K}}\left\langle(a-b) \dot{\gamma}(0), \exp _{p}^{-1}(x)\right\rangle \geq-|a-b| D \tag{7}
\end{equation*}
$$

However, we see that $a f_{+}(\gamma(D))+b f_{-}(\gamma(D))=(b-a) D$ and $a f_{+}(\gamma(-D))+b f_{-}(\gamma(-D))=$ $(a-b) D$, which imply

$$
\begin{equation*}
\min _{x \in \mathcal{K}} a f_{+}(x)+b f_{-}(x) \leq \min \{(b-a) D,(a-b) D\}=-|a-b| D \tag{8}
\end{equation*}
$$

Following from (7) and (8), we complete our proof.

B. 2 Proof of Theorem 3

We begin our proof with an analysis of the worst-case regret of the ROBO problem. In the ROBO, the expectation of the regret on loss functions $\left\{f_{1}, f_{2}, \ldots, f_{T}\right\}$ is

$$
\begin{align*}
\mathbb{E}_{f_{1}, \ldots, f_{T}}[R(T)] & =\mathbb{E}_{f_{1}, \ldots, f_{T}}\left[\sum_{t=1}^{T} f_{t}\left(x_{t}\right)-\min _{x \in \mathcal{K}} \sum_{t=1}^{T} f_{t}(x)\right] \\
& =\mathbb{E}_{f_{1}, \ldots, f_{T}}\left[\sum_{t=1}^{T} f_{t}\left(x_{t}\right)\right]-\mathbb{E}_{f_{1}, \ldots, f_{T}}\left[\min _{x \in \mathcal{K}} \sum_{t=1}^{T} f_{t}(x)\right] . \tag{9}
\end{align*}
$$

Since f_{t} is uniformly and independently chosen in $\left\{f_{+}, f_{-}\right\}$, we get

$$
\begin{aligned}
\mathbb{E}_{f_{1}, \ldots, f_{T}}\left[\sum_{t=1}^{T} f_{t}\left(x_{t}\right)\right] & =\sum_{t=1}^{T} \mathbb{E}_{f_{t}}\left[f_{t}\left(x_{t}\right)\right] \\
& =\sum_{t=1}^{T} \frac{1}{2}\left(L f_{+}\left(x_{t}\right)+L f_{-}\left(x_{t}\right)\right) \\
& \geq \frac{L T}{2} \min _{x \in \mathcal{K}}\left(f_{+}(x)+f_{-}(x)\right)
\end{aligned}
$$

From Lemma5,

$$
\begin{equation*}
\mathbb{E}_{f_{1}, \ldots, f_{T}}\left[\sum_{t=1}^{T} f_{t}\left(x_{t}\right)\right] \geq 0 \tag{10}
\end{equation*}
$$

Putting (10) into (9), we obtain

$$
\mathbb{E}_{f_{1}, \ldots, f_{T}}[R(T)] \geq-\mathbb{E}_{f_{1}, \ldots, f_{T}}\left[\min _{x \in \mathcal{K}} \sum_{t=1}^{T} f_{t}(x)\right]
$$

By Lemma 5

$$
\begin{aligned}
\mathbb{E}_{f_{1}, \ldots, f_{T}}[R(T)] & \geq-\mathbb{E}_{f_{1}, \ldots, f_{T}}\left[\min _{x \in \mathcal{K}} \sum_{t=1}^{T} f_{t}(x)\right] \\
& =-\mathbb{E}_{f_{1}, \ldots, f_{T}}\left[-D L\left|\sum_{f_{t}=L f_{+}} 1-\sum_{f_{t}=L f_{-}} 1\right|\right] \\
& =\mathbb{E}_{\epsilon_{1}, \ldots, \epsilon_{T}}\left[D L\left|\sum_{\epsilon_{t}=1} 1+\sum_{\epsilon_{t}=-1}-1\right|\right] \\
& =\mathbb{E}_{\epsilon_{1}, \ldots, \epsilon_{T}}\left[D L\left|\sum_{t=1}^{T} \epsilon_{t}\right|\right]
\end{aligned}
$$

where ϵ_{t} are i.i.d Rademacher variables $\epsilon_{t}= \pm 1$ with probability $1 / 2$. From the Khinchine's inequality [4], we finally get

$$
\begin{equation*}
\mathbb{E}_{f_{1}, \ldots, f_{T}}[R(T)] \geq \frac{D L}{\sqrt{2}} \mathbb{E}_{\epsilon_{1}, \ldots, \epsilon_{T}}\left[\sum_{t=1}^{T} \epsilon_{t}^{2}\right]^{\frac{1}{2}}=\frac{D L}{\sqrt{2}} \sqrt{T} \tag{11}
\end{equation*}
$$

which indicates that no matter how we choose strategies in the ROBO, there are a sequence of functions $\left\{f_{1}, \ldots, f_{T}\right\} \in\left\{L f_{+}, L f_{-}\right\}^{T}$ to make the regret no less than $\frac{D L}{\sqrt{2}} \sqrt{T}$. Considering that the diameter of the set \mathcal{K} is $2 D$ and the Lipschitz constant of $\left\{L f_{+}, L f_{-}\right\}$is L, we complete our proof.

C Proofs of Lemmas 1 and 2

In this appendix, we first introduce some fundamental definitions and technical lemmas, and then we prove Lemmas 1 and 2 in Subsections C. 2 and C.3. respectively.

C. 1 Basic Definitions and Technical Lemmas

We discuss two special kinds of vector fields, namely, the Killing field and the Jacobi field.
Definition 2 (Killing field). A vector field η is a Killing field if it satisfies

$$
\left\langle\nabla_{X} \eta, Y\right\rangle+\left\langle\nabla_{Y} \eta, X\right\rangle=0, \forall X, Y \in \mathfrak{X}(M)
$$

Definition 3 (Jacobi field). A vector field η along a geodesic γ is a Jacobi field if it satisfies the Jacobi equation

$$
\nabla_{\dot{\gamma}} \nabla_{\dot{\gamma}} \eta+R(\dot{\gamma}, \eta) \dot{\gamma}=0
$$

where R is the curvature tensor of \mathcal{M} (see [5, Chapter 4.2]).
For vector fields, we mainly consider about their flows and divergence.
Definition 4 (Flow). Suppose that \mathcal{M} is a smooth manifold, $X \in \mathfrak{X}(\mathcal{M})$ and there is a smooth map $\phi: \mathbb{R} \times \mathcal{M} \rightarrow \mathcal{M}$,

$$
\phi_{t}(p)=\phi(t, p),(t, p) \in \mathbb{R} \times \mathcal{M}
$$

satisfying the following conditions:

1) $\phi_{0}(p)=p$;
2) $\phi_{s} \circ \phi_{t}=\phi_{s+t}$ for any real numbers s, t;
3) $X(p)=\left.\frac{\partial \phi_{t}(p)}{\partial t}\right|_{t=0}$.

Then we call ϕ_{t} the flow (or the one-parameter group of diffeomorphism) of X, and call X the infinitesimal transformation of ϕ_{t}.
Definition 5 (Divergence). For a vector field X, the divergence $\operatorname{Div}(X)$ is the trace of the operator ∇X. More precisely, if $\left\{e_{1}, \ldots, e_{n}\right\}$ is a normal orthogonal basis at tangent space $T_{x} \mathcal{M}$, the divergence of X at x can be expressed as

$$
\operatorname{Div}(X)(x)=\sum_{i=1}^{n}\left\langle\nabla_{e_{i}} X(x), e_{i}\right\rangle .
$$

Then we present some lemmas that are needed in the following proofs.
Lemma 6 ([2]). If $\eta \in \mathfrak{X}(M)$ is a Killing vector field, then

1) For every vector field $X,\left\langle\nabla_{X} \eta, X\right\rangle=0$. As a corollary, the divergence $\operatorname{Div}(\eta) \equiv 0$.
2) For every geodesic $\gamma,\left.\eta\right|_{\gamma}$ is a Jacobi field.

Lemma 7 ([3]). If η is a Jacobi vector field along a geodesic $\gamma:[0,1] \rightarrow \mathbb{R}$. Denote $\eta(t)=\eta(\gamma(t))$. Then

$$
\langle\eta(t), \dot{\gamma}(t)\rangle=\langle\eta(0), \dot{\gamma}(t)\rangle+t\left\langle\nabla_{\dot{\gamma}} \eta(0), \dot{\gamma}(t)\right\rangle
$$

for all $t \in[0,1]$.
Lemma 8 ([7]). Let \mathcal{M} be a simply connected complete Riemannian homogeneous manifold. Then for every $x \in M$ and every $X \in T_{x} \mathcal{M}$, there exists a Killing vector field η such that $\eta(x)=X$. The flow of η exists and consists of a one-parameter group of isometries.
Lemma 9 (Divergence theorem,[6]). Let \mathcal{M} be a Riemannian manifold \mathcal{M} with the volume form ω, $\mathcal{K} \subset \mathcal{M}$ with the boundary $\partial \mathcal{K}$, and \vec{n} be the (outer) unit normal vector field of ∂K. Then, for any vector field X and any differentiable function f,

$$
\int_{\mathcal{K}} X(f)(u) \omega=\int_{\partial \mathcal{K}} f(u)\langle X, \vec{n}\rangle \omega_{\partial \mathcal{K}}-\int_{\mathcal{K}} \operatorname{Div}(X) f(u) \omega,
$$

where $\omega_{\partial \mathcal{K}}$ is the volume form of $\partial \mathcal{K}$ induced by ω.
Lemma 10 (Bishop-Gromov volume comparison theorem, [6]). Let \mathcal{M} be an n-dimensional Riemannian manifold with sectional curvature lower bounded by $-\kappa(\kappa \geq 0)$. Given $p \in \mathcal{M}$, denote V_{r} as the volume of the ball of radius δ about p and $V_{r, \kappa}$ as the volume of a ball of radius r on the n-dimensional hyperbolic space with constant curvature $-\kappa$. Then the function

$$
g(r)=\frac{V_{r}}{V_{r, \kappa}}
$$

is non-increasing.

C. 2 Proof of Lemma 1

We start with the first part of the lemma.
Take a vector $X \in M_{x}$ arbitrarily. From Lemma, 8 , we can find a Killing vector field η on \mathcal{M} such that $\eta(x)=X$. The flow of η consists of a one-parameter group of isometries $\left\{\phi_{t}\right\}_{t \in \mathbb{R}}$. Then the directional derivative of \hat{f} along X can be written as

$$
\begin{equation*}
X(\hat{f}(x))=\lim _{t \rightarrow 0} \frac{\hat{f}\left(\phi_{t}(x)\right)-\hat{f}(x)}{t}=\frac{1}{V_{\delta}} \lim _{t \rightarrow 0} \frac{1}{t}\left(\int_{B_{\delta}\left(\phi_{t}(x)\right)} f(u) \omega-\int_{B_{\delta}(x)} f(u) \omega\right) . \tag{12}
\end{equation*}
$$

Since ϕ_{t} is an isometry that preserves the distance, $\phi_{t}\left(B_{\delta}(x)\right)=B_{\delta}\left(\phi_{t}(x)\right)$. By the substitution rule of integration ([5, Chapter 3.3]), we have

$$
\begin{equation*}
\int_{B_{\delta}\left(\phi_{t}(x)\right)} f(u) \omega=\int_{B_{\delta}(x)} f\left(\phi_{t}(u)\right) \phi_{t}^{*}(\omega) . \tag{13}
\end{equation*}
$$

Because ϕ_{t} preserves the metric g, it preserves the volume form, i.e., $\phi_{t}^{*}(\omega)=\omega$, which gives

$$
\begin{equation*}
\int_{B_{\delta}\left(\phi_{t}(x)\right)} f(u) \omega=\int_{B_{\delta}(x)} f\left(\phi_{t}(u)\right) \omega \tag{14}
\end{equation*}
$$

Combining equations 12 and 14) together, we have

$$
\begin{align*}
X(\hat{f}(x)) & =\frac{1}{V_{\delta}} \int_{B_{\delta}(x)} \lim _{t \rightarrow 0} \frac{f\left(\phi_{t}(u)\right)-f(u)}{t} \omega \\
& =\frac{1}{V_{\delta}} \int_{B_{\delta}(x)}\left(\left.\frac{\partial \phi_{t}(p)}{\partial t}\right|_{t=0}\right) f \omega . \tag{15}
\end{align*}
$$

By Definition $4,\left.\frac{\partial \phi_{t}(u)}{\partial t}\right|_{t=0}=\eta(u)$. Hence, we rewrite (15) as

$$
X(\hat{f}(x))=\frac{1}{V_{\delta}} \int_{B_{\delta}(x)} \eta(f) \omega
$$

According to Lemma 9 .

$$
\begin{align*}
X(\hat{f}(x)) & =\frac{1}{V_{\delta}} \int_{S_{\delta}(x)} f(u)\langle\eta(u), \vec{n}(u)\rangle \omega_{S_{\delta}(x)}-\frac{1}{V_{\delta}} \int_{B_{\delta}(x)} \operatorname{Div}(\eta)(u) f(u) \omega \\
& =\frac{1}{V_{\delta}} \int_{S_{\delta}(x)} f(u)\langle\eta(u), \vec{n}(u)\rangle \omega_{S_{\delta}(x)} \tag{16}
\end{align*}
$$

where $\omega_{S_{\delta}(x)}$ is the volume form of $S_{\delta}(x)$ induced by ω and \vec{n} is the (outer) unit normal vector field of $S_{\delta}(x)$. The last equation is because $\operatorname{Div}(\eta) \equiv 0$, as stated in Lemma 6 .
Then we compute $\langle\eta, \vec{n}\rangle$ for each point $u \in S_{\delta}(x)$. Since geodesics start at the center x are normal to the sphere $S_{\delta}(x)$, the outer normal vector $\vec{n}(u)$ can be written as $\frac{\dot{\gamma}_{u}(1)}{\left\|\dot{\gamma}_{u}(1)\right\|}$ for the geodesic γ_{u} such that $\gamma_{u}(0)=x$ and $\gamma_{u}(1)=u$. Therefore,

$$
\langle\eta(u), \vec{n}(u)\rangle=\frac{1}{\left\|\dot{\gamma}_{u}(1)\right\|}\left\langle\eta\left(\gamma_{u}(1)\right), \dot{\gamma}_{u}(1)\right\rangle .
$$

Since η is Killing, by Lemma $6 \eta\left(\gamma_{u}(t)\right)$ is Jacobi. By Lemma 7 ,

$$
\begin{align*}
\langle\eta(u), \vec{n}(u)\rangle & =\frac{1}{\left\|\dot{\gamma}_{u}(1)\right\|}\left\langle\eta\left(\gamma_{u}(1)\right), \dot{\gamma}_{u}(1)\right\rangle \\
& =\frac{1}{\left\|\dot{\gamma}_{u}(1)\right\|}\left\langle\eta\left(\gamma_{u}(0)\right), \dot{\gamma}_{u}(0)\right\rangle+1\left\langle\nabla_{\dot{\gamma}_{u}} \eta\left(\gamma_{u}(0)\right), \dot{\gamma}_{u}(0)\right\rangle \\
& =\frac{1}{\left\|\dot{\gamma}_{u}(0)\right\|}\left\langle\eta\left(\gamma_{u}(0)\right), \dot{\gamma}_{u}(0)\right\rangle+0 \tag{17}
\end{align*}
$$

Applying $\eta\left(\gamma_{u}(0)\right)=\eta(x)=X$ and $\dot{\gamma}_{u}(0)=\exp _{x}^{-1}(u)$ to (17) yields

$$
\begin{equation*}
\langle\eta(u), \vec{n}(u)\rangle=\frac{\left\langle X, \exp _{x}^{-1}(u)\right\rangle}{\left\|\exp _{x}^{-1}(u)\right\|} \tag{18}
\end{equation*}
$$

Substituting (18) to (16), we have

$$
X(\hat{f}(x))=\frac{1}{V_{\delta}} \int_{S_{\delta}(x)} f(u) \frac{\left\langle X, \exp _{x}^{-1}(u)\right\rangle}{\left\|\exp _{x}^{-1}(u)\right\|} \omega_{S_{\delta}(x)}=\left\langle\frac{1}{V_{\delta}} \int_{S_{\delta}(x)} f(u) \frac{\exp _{x}^{-1}(u)}{\left\|\exp _{x}^{-1}(u)\right\|} \omega_{S_{\delta}(x)}, X\right\rangle
$$

Because the directional derivative $X(\hat{f}(x))$ coincides with the term $\langle\nabla \hat{f}(x), X\rangle$, we obtain

$$
\langle\nabla \hat{f}(x), X\rangle=\left\langle\frac{1}{V_{\delta}} \int_{S_{\delta}(x)} f(u) \frac{\exp _{x}^{-1}(u)}{\left\|\exp _{x}^{-1}(u)\right\|} \omega_{S_{\delta}(x)}, X\right\rangle
$$

Since X is arbitrary,

$$
\nabla \hat{f}(x)=\frac{1}{V_{\delta}} \int_{S_{\delta}(x)} f(u) \frac{\exp _{x}^{-1}(u)}{\left\|\exp _{x}^{-1}(u)\right\|} \omega_{S_{\delta}(x)}=\frac{S_{\delta}}{V_{\delta}} E_{u \in S_{\delta}(x)}\left[f(u) \frac{\exp _{x}^{-1}(u)}{\left\|\exp _{x}^{-1}(u)\right\|}\right]
$$

which completes the proof of the first part.
Then we examine the second part of the lemma.
From the first part, it is clearly to see $\|\nabla \hat{f}(x)\| \leq \frac{S_{\delta}}{V_{\delta}} C$. Since the sectional curvature of \mathcal{M} is lower bounded by $-\kappa$, the function $g(r)=\frac{V_{r}}{V_{r, \kappa}}$ is non-increasing from Lemma 10 and so does $\log g(r)$. Therefore,

$$
\frac{d}{d r} \log (g(r))=\frac{d}{d r} \log V_{r}-\frac{d}{d r} \log V_{r, \kappa} \leq 0
$$

Since deriving the volume of a ball along the radius gives the surface area of its sphere, we write

$$
\begin{equation*}
\frac{d}{d r} \log (g(r))=\frac{S_{r}}{V_{r}}-\frac{S_{r, \kappa}}{V_{r, \kappa}} \leq 0 \tag{19}
\end{equation*}
$$

where S_{r} and $S_{r, \kappa}$ are the surface area of the balls in \mathcal{M} and the hyperbolic space, respectively.
Setting $r=\delta$ in (19), we get $\frac{S_{\delta}}{V_{\delta}} \leq \frac{S_{\delta, \kappa}}{V_{\delta, \kappa}}$. From calculation, it shows that

$$
\frac{S_{\delta, \kappa}}{V_{\delta, \kappa}}=\frac{\sinh ^{n-1}(\sqrt{\kappa} \delta)}{\int_{0}^{\delta} \sinh ^{n-1}(\sqrt{\kappa} t) d t}
$$

Consequently,

$$
\|\nabla \hat{f}(x)\| \leq C \frac{\sinh ^{n-1}(\sqrt{\kappa} \delta)}{\int_{0}^{\delta} \sinh ^{n-1}(\sqrt{\kappa} t) d t}
$$

By a change of variable $u=\sinh t$,

$$
\int_{0}^{\delta} \sinh ^{n-1}(\sqrt{\kappa} t) d t=\kappa^{-1 / 2} \int_{0}^{\sinh (\sqrt{\kappa} \delta)} u^{n-1}(1+u)^{-1 / 2} d u
$$

Integration by parts gives

$$
\begin{aligned}
\int_{0}^{\delta} \sinh ^{n-1}(\sqrt{\kappa} t) d t & =\frac{\sinh ^{n}(\sqrt{\kappa} \delta)}{n \sqrt{\kappa} \cosh (\sqrt{\kappa} \delta)}+\kappa^{-1 / 2} \int_{0}^{\sinh (\sqrt{\kappa} \delta)} u^{n-1}(1+u)^{-1 / 2} d u \\
& \geq \frac{\sinh ^{n}(\sqrt{\kappa} \delta)}{n \sqrt{\kappa} \cosh (\sqrt{\kappa} \delta)}
\end{aligned}
$$

Putting it into the expression of $\frac{S_{\delta}}{V_{\delta}}$, we get

$$
\frac{S_{\delta}}{V_{\delta}} \leq n \sqrt{\kappa} \operatorname{coth}(\sqrt{\kappa} \delta)
$$

Applying the inequality $\operatorname{coth}(x)<x+1 / x$, we have

$$
\frac{S_{\delta}}{V_{\delta}} \leq \frac{n}{\delta}+n \kappa \delta, \quad \forall \delta>0
$$

Hence, for every $\delta>0$,

$$
\|\nabla \hat{f}(x)\| \leq \frac{S_{\delta}}{V_{\delta}} C \leq C\left(\frac{n}{\delta}+n \kappa \delta\right)
$$

which completes our proof.

C. 3 Proof of Lemma 2

Without loss of generality, we assume $f(x)=0$. By the homogeneity of the manifold \mathcal{M}, we find an isometry ϕ such that $\phi(x)=y$. Denote $V(u)$ as the vector field $V(u)=\exp _{u}^{-1}(\phi(u))$. Clearly,

$$
\begin{aligned}
\hat{f}(y)-\hat{f}(x) & =\frac{1}{V_{\delta}}\left(\int_{B_{\delta}(y)} f(u) \omega-\int_{B_{\delta}(x)} f(u) \omega\right) \\
& =\frac{1}{V_{\delta}}\left(\int_{B_{\delta}(\phi(x))} f(u) \omega-\int_{B_{\delta}(x)} f(u) \omega\right) .
\end{aligned}
$$

With the method shown in (13) and (14),

$$
\hat{f}(y)-\hat{f}(x)=\frac{1}{V_{\delta}} \int_{B_{\delta}(x)} f(\phi(u))-f(u) \omega
$$

By the g-convexity of f,

$$
\begin{align*}
\hat{f}(y)-\hat{f}(x) & =\frac{1}{V_{\delta}} \int_{B_{\delta}(x)} f(\phi(u))-f(u) \omega \\
& \geq \frac{1}{V_{\delta}} \int_{B_{\delta}(x)}\left\langle\nabla f(u), \exp _{u}^{-1}(\phi(u))\right\rangle \omega \\
& =\frac{1}{V_{\delta}} \int_{B_{\delta}(x)}\langle\nabla f(u), V(u)\rangle \omega \\
& =\frac{1}{V_{\delta}} \int_{B_{\delta}(x)} V(f(u)) \omega \tag{20}
\end{align*}
$$

By Lemma 9 .

$$
\begin{equation*}
\int_{B_{\delta}(x)} V(f(u)) \omega=\int_{S_{\delta}(x)} f(u)\langle V(u), \vec{n}(u)\rangle \omega_{S_{\delta}(x)}-\int_{B_{\delta}(x)} \operatorname{Div}(V) f(u) \omega \tag{21}
\end{equation*}
$$

Hence, we rewrite (20) as

$$
\begin{equation*}
\hat{f}(y)-\hat{f}(x) \geq \frac{1}{V_{\delta}}\left(\int_{S_{\delta}(x)} f(u)\langle V(u), \vec{n}(u)\rangle \omega_{S_{\delta}(x)}-\int_{B_{\delta}(x)} \operatorname{Div}(V) f(u) \omega\right) \tag{22}
\end{equation*}
$$

In Lemma 1, we have already shown that

$$
\begin{align*}
\left\langle\nabla \hat{f}(x), \exp _{x}^{-1}(y)\right\rangle & =\left\langle\frac{1}{V_{\delta}} \int_{S_{\delta}(x)} f(u) \frac{\exp _{x}^{-1}(u)}{\left\|\exp _{x}^{-1}(u)\right\|} \omega_{S_{\delta}(x)}, \exp _{x}^{-1}(y)\right\rangle \\
& =\left\langle\frac{1}{V_{\delta}} \int_{S_{\delta}(x)} f(u) \frac{\exp _{x}^{-1}(u)}{\left\|\exp _{x}^{-1}(u)\right\|} \omega_{S_{\delta}(x)}, V(x)\right\rangle \tag{23}
\end{align*}
$$

Denote $\vec{m}(u)$ as the vector $\frac{\exp _{x}^{-1}(u)}{\left\|\exp _{x}^{-1}(u)\right\|}$. Combining (21) and 23) gives

$$
\begin{align*}
\hat{f}(y)-\hat{f}(x)-\left\langle\nabla \hat{f}(x), \exp _{x}^{-1}(y)\right\rangle \geq \frac{1}{V_{\delta}} & \left(\int_{S_{\delta}(x)} f(u)(\langle V(u), \vec{n}(u)\rangle-\langle V(x), \vec{m}(u)\rangle) \omega_{S_{\delta}(x)}\right) \\
& -\frac{1}{V_{\delta}}\left(\int_{B_{\delta}(x)} \operatorname{Div}(V) f(u) \omega\right) \tag{24}
\end{align*}
$$

Here we claim

$$
\begin{equation*}
\langle V(u), \vec{n}(u)\rangle-\langle V(x), \vec{m}(u)\rangle \leq 0, \quad \forall u \in S_{\delta}(x) \tag{*}
\end{equation*}
$$

If the claim $(*)$ holds (whose proof will be presented in C.4), then, with the g - L-Lipschitz of f and the condition $f(x)=0$, we have

$$
\begin{align*}
\int_{S_{\delta}(x)} f(u) & (\langle V(u), \vec{n}(u)\rangle-\langle V(x), \vec{m}(u)\rangle) \omega_{S_{\delta}(x)} \\
& \geq \int_{S_{\delta}(x)} \delta L(\langle V(u), \vec{n}(u)\rangle-\langle V(x), \vec{m}(u)\rangle) \omega_{S_{\delta}(x)} \\
& =\left(\int_{S_{\delta}(x)} \delta L\langle V(u), \vec{n}(u)\rangle \omega_{S_{\delta}(x)}\right)-\left(\int_{S_{\delta}(x)} \delta L\langle V(x), \vec{m}(u)\rangle \omega_{S_{\delta}(x)}\right) . \tag{25}
\end{align*}
$$

By Lemma $1, \frac{1}{V_{\delta}} \int_{S_{\delta}(x)} \delta L\langle V(x), \vec{m}(u)\rangle \omega_{S_{\delta}(x)}$ in 25) is the gradient of the function

$$
\hat{g}(x)=\frac{1}{V_{\delta}}\left(\int_{B_{\delta}(x)} \delta L \cdot \omega\right) \equiv \delta L
$$

and then

$$
\begin{equation*}
\frac{1}{V_{\delta}} \int_{S_{\delta}(x)} \delta L\langle V(x), \vec{m}(u)\rangle \omega_{S_{\delta}(x)}=0 \tag{26}
\end{equation*}
$$

Combining 24-26, we have

$$
\begin{aligned}
\hat{f}(y)-\hat{f}(x)-\left\langle\nabla \hat{f}(x), \exp _{x}^{-1}(y)\right\rangle \geq \frac{1}{V_{\delta}} & \left(\int_{S_{\delta}(x)} \delta L\langle V(u), \vec{n}(u)\rangle \omega_{S_{\delta}(x)}\right) \\
& -\frac{1}{V_{\delta}}\left(\int_{B_{\delta}(x)} \operatorname{Div}(V) f(u) \omega\right)
\end{aligned}
$$

Applying Lemma 9 again, we obtain

$$
\begin{aligned}
\frac{1}{V_{\delta}} \int_{S_{\delta}(x)} \delta L\langle V(u), \vec{n}(u)\rangle \omega_{S_{\delta}(x)} & =\frac{1}{V_{\delta}} \int_{B_{\delta}(x)} V(\delta L) \omega-\frac{1}{V_{\delta}}\left(\int_{B_{\delta}(x)} \operatorname{Div}(V) \delta L \omega\right) \\
& =-\frac{1}{V_{\delta}}\left(\int_{B_{\delta}(x)} \operatorname{Div}(V) \delta L \omega\right)
\end{aligned}
$$

Therefore,

$$
\begin{align*}
\hat{f}(y)-\hat{f}(x)-\left\langle\nabla \hat{f}(x), \exp _{x}^{-1}(y)\right\rangle & \geq-\frac{1}{V_{\delta}}\left(\int_{B_{\delta}(x)} \operatorname{Div}(V)(f(x)+\delta L) \omega\right) \\
& \geq-2 \delta L \sup _{u \in B_{\delta}(x)}|\operatorname{Div}(V(u))| \tag{27}
\end{align*}
$$

Note that $V(u)=\exp _{u}^{-1}(\phi(u))$ is continuous on p and ϕ, and ϕ is continuous on x and y. Thus, $|\operatorname{Div}(V(u))|$ is a continuous function of $(x, y, u) \in \overline{\mathcal{K}} \times \overline{\mathcal{K}} \times \overline{\mathcal{K}}$. Denote

$$
\rho=\sup _{(x, y, u) \in \overline{\mathcal{K}} \times \overline{\mathcal{K}} \times \overline{\mathcal{K}}}|\operatorname{Div}(V(u))| .
$$

Since the boundedness of \mathcal{K} set yields the compactness of $\overline{\mathcal{K}} \times \overline{\mathcal{K}} \times \overline{\mathcal{K}}$, we have $\rho<\infty$. Putting ρ into (27) establishes the formula in Lemma 7

C. 4 Proof of the Claim (*)

Fix $u \in S_{\delta}(x)$ and denote $\xi_{u}(s)=\exp _{x}(s \vec{m}(u))$ as the geodesic with the initial tangent vector $\vec{m}(u)$. Consider the following rectangle map

$$
\begin{aligned}
\Gamma_{u}:[0,1] \times[0, \delta] & \rightarrow \mathcal{M} \\
(t, s) & \rightarrow \exp _{\xi_{u}(s)}\left(t V\left(\xi_{u}(s)\right)\right) .
\end{aligned}
$$

Set $T(t, s)=\frac{\partial \Gamma_{u}}{\partial t}(t, s)$ and $S(t, s)=\frac{\partial \Gamma_{u}}{\partial s}(t, s)$. For a fixed t, the length of the curve $\gamma_{t}(s)=$ $\Gamma_{u}(t, s),(0 \leq s \leq \delta)$ is defined as

$$
l_{u}(t)=\int_{0}^{\delta} \sqrt{\langle S(t, s), S(t, s)\rangle} d s
$$

The first variation formula (see [6, Theorem 6.3]) gives,

$$
l_{u}^{\prime}(0)=\langle T(0, \delta), S(0, \delta)\rangle-\langle T(0,0), S(0,0)\rangle
$$

Because

$$
T(0, s)=V\left(\xi_{u}(s)\right), \forall s \in[0, \delta]
$$

and

$$
S(0,0)=\vec{m}(u), S(0, \delta)=\vec{n}(u)
$$

we have

$$
l_{u}^{\prime}(0)=\langle V(u), \vec{n}(u)\rangle-\langle V(x), \vec{m}(u)\rangle .
$$

To prove $(*)$, it is sufficient to show that $l_{u}^{\prime}(0) \leq 0$. Let us focus on the second derivative of the function $l_{u}(t)$, that is,

$$
\begin{align*}
l_{u}^{\prime \prime}(t) & =\frac{d^{2}}{d t^{2}} \int_{0}^{\delta} \sqrt{\langle S(t, s), S(t, s)\rangle} d s \\
& =\int_{0}^{\delta} \frac{d^{2}}{d t^{2}} \sqrt{\langle S(t, s), S(t, s)\rangle} d s \\
& =\int_{0}^{\delta} \frac{d}{d t}\left(\frac{1}{\|S\|}\left\langle\nabla_{T} S, S\right\rangle\right) d s \\
& =\int_{0}^{\delta}-\frac{1}{\|S\|^{3}}\left\langle\nabla_{T} S, S\right\rangle^{2}+\frac{1}{\|S\|}\left\langle\nabla_{T} S, \nabla_{T} S\right\rangle+\frac{1}{\|S\|}\left\langle\nabla_{T} \nabla_{T} S, S\right\rangle d s \tag{28}
\end{align*}
$$

For every fixed s, the curve $\gamma_{s}(t)=\Gamma_{u}(t, s)$ is a geodesic, hence, S is the variation field of the geodesic $\gamma_{s}(t)$ and becomes a Jacobi field. Putting the Jaboci equation (Definition 4 into (28), we have

$$
l_{u}^{\prime \prime}(t)=\int_{0}^{\delta}-\frac{1}{\|S\|^{3}}\left\langle\nabla_{T} S, S\right\rangle^{2}+\frac{1}{\|S\|}\left\langle\nabla_{T} S, \nabla_{T} S\right\rangle+\frac{1}{\|S\|}-R(T, S, S, T) d s
$$

By the Cauchy-Schwarz inequality, $-\left\langle\nabla_{T} S, S\right\rangle^{2} \geq-\|S\|^{2}\left\|\nabla_{T} S\right\|^{2}$, which yields

$$
\begin{aligned}
l_{u}^{\prime \prime}(t) & \geq \int_{0}^{\delta}-\frac{1}{\|S\|^{3}}-\|S\|^{2}\left\|\nabla_{T} S\right\|^{2}+\frac{1}{\|S\|}\left\langle\nabla_{T} S, \nabla_{T} S\right\rangle+\frac{1}{\|S\|}-R(T, S, S, T) d s \\
& \geq \int_{0}^{\delta} \frac{1}{\|S\|}-R(T, S, S, T) d s
\end{aligned}
$$

From the definition of the sectional curvature, $R(T, S, S, T)=K(\Pi)|T \wedge S|^{2}$, where $K(\Pi)$ is the sectional curvature of the two-dimensional submanifold spanned by T and S. Since \mathcal{M} has nonpostive sectional curvature, we get

$$
l_{u}^{\prime \prime}(t) \geq \int_{0}^{\delta} \frac{1}{\|S\|}-R(T, S, S, T) d s \geq 0
$$

which means that $l_{u}(t)$ is convex in $[0,1]$.
Let us look back on the function $l_{u}(t)$. Note that the 0 -curve is

$$
\gamma_{s}(0)=\xi(s)
$$

and the 1-curve is

$$
\gamma_{s}(1)=\exp _{\xi(s)}(V(\xi(s)))=\exp _{\xi(s)}\left(\exp _{\xi(s)}^{-1}(\phi(\xi(s)))=\phi(\xi(s))\right.
$$

Since the mapping ϕ is an isometry, the length of $\xi(s)$ is equal to the length of $\phi(\xi(s))$. As a result,

$$
l_{u}(0)=l_{u}(1)
$$

The convexity of l_{u} immediately leads to

$$
l_{u}^{\prime}(0) \leq 0
$$

which proves the claim $(*)$.

D Proof of Theorem 4

Before the proof, we propose two lemmas. Lemma 11 is about the expected online gradient descent on Riemannian manifolds.
Lemma 11. Suppose that S is a g-convex set of \mathcal{M} with diameter D and $\left\{f_{t}\right\}_{t=1,2, \ldots, T}$ is a series of smooth functions and there exists a constant $\lambda \geq 0$ such that

$$
\begin{equation*}
f_{t}(x)-f_{t}(y)-\left\langle\nabla f_{t}(x), \exp _{x}^{-1}(y)\right\rangle \geq-\lambda, \tag{29}
\end{equation*}
$$

for any $x, y \in S$ and $t=1,2, \ldots, T$. If the sequence $\left\{x_{t}\right\}_{t=1,2, \ldots, T}$ is generated by

$$
x_{t+1}=P_{S}\left(\exp _{x_{t}}\left(-\alpha g_{t}\right)\right)
$$

where $\alpha>0$ and g_{t} is a random vector bounded by G such that $\mathbb{E}\left[g_{t} \mid x_{t}\right]=\nabla f_{t}\left(x_{t}\right)$ for every $t=1,2, \ldots, T$, then, with taking $\alpha=\frac{D}{G \sqrt{\zeta(\kappa, D) T}}$, we have

$$
\mathbb{E}\left[\sum_{t=1}^{T} f_{t}\left(x_{t}\right)\right]-\min _{x \in \mathcal{K}} \sum_{t=1}^{T} f_{t}(x) \leq D G \sqrt{\zeta(\kappa, D) T}+\lambda T
$$

Proof. Let $x^{*}=\arg \min _{x \in \mathcal{K}} \sum_{t=1}^{T} f_{t}(x)$. From (29), the difference between $f_{t}\left(x_{t}\right)$ and $f_{t}\left(x^{*}\right)$ is bounded by

$$
\begin{aligned}
f_{t}\left(x_{t}\right)-f_{t}\left(x^{*}\right) & \leq\left\langle\nabla f_{t}\left(x_{t}\right), \exp _{x_{t}}^{-1}\left(x^{*}\right)\right\rangle+\lambda \\
& =\left\langle\mathbb{E}\left[g_{t} \mid x_{t}\right], \exp _{x_{t}}^{-1}\left(x^{*}\right)\right\rangle+\lambda \\
& =\mathbb{E}\left[\left\langle g_{t}, \exp _{x_{t}}^{-1}\left(x^{*}\right)\right\rangle \mid x_{t}\right]+\lambda
\end{aligned}
$$

Taking the expectation on both sides yields

$$
\mathbb{E}\left[f_{t}\left(x_{t}\right)-f_{t}\left(x^{*}\right)\right] \leq \mathbb{E}\left[\left\langle g_{t}, \exp _{x_{t}}^{-1}\left(x^{*}\right)\right\rangle\right]+\lambda
$$

From Lemma 3 ,

$$
\begin{equation*}
\mathbb{E}\left[f_{t}\left(x_{t}\right)-f_{t}\left(x^{*}\right)\right] \leq \mathbb{E}\left[\frac{1}{2 \alpha}\left(d^{2}\left(x_{t}, x^{*}\right)-d^{2}\left(x_{t+1}, x^{*}\right)\right)+\frac{1}{2} \zeta\left(\kappa, d\left(x_{t}, x^{*}\right)\right) \alpha\left\|g_{t}\right\|^{2}\right]+\lambda \tag{30}
\end{equation*}
$$

Summing from 1 to T, we have

$$
\begin{align*}
\sum_{t=1}^{T} \mathbb{E}\left[f_{t}\left(x_{t}\right)-f_{t}\left(x^{*}\right)\right] & \leq \sum_{t=1}^{T} \mathbb{E}\left[\frac{1}{2 \alpha}\left(d^{2}\left(x_{t}, x^{*}\right)-d^{2}\left(x_{t+1}, x^{*}\right)\right)+\frac{\alpha}{2} \zeta\left(\kappa, d\left(x_{t}, x^{*}\right)\right)\left\|g_{t}\right\|^{2}\right]+\lambda T \\
& \leq \mathbb{E}\left[\frac{1}{2 \alpha} d^{2}\left(x_{1}, x^{*}\right)\right]+\sum_{t=1}^{T} \mathbb{E}\left[\frac{\alpha}{2} \zeta\left(\kappa, d^{2}\left(x_{t}, x^{*}\right)\right) G^{2}\right]+\lambda T \\
& \leq \frac{D^{2}}{2 \alpha}+\frac{\alpha}{2} \zeta(\kappa, D) G^{2} T+\lambda T \tag{31}
\end{align*}
$$

The last inequality is because S is of diameter D. Putting $\alpha=\frac{D}{G \sqrt{\zeta(\kappa, D) T}}$ in 31, we complete our proof.

Lemma 12 reveals a relationship between the offline optimum in $(1-\tau) \mathcal{K}$ and \mathcal{K}.
Lemma 12. Suppose that Assumption 6 holds, and $\left\{f_{t}\right\}_{t=1, \ldots, T}$ is a sequence of g-convex function defined on \mathcal{K} bounded by C. Then

$$
\min _{x \in(1-\tau) \mathcal{K}} \sum_{t=1}^{T} f_{t}(x) \leq 2 \tau C T+\min _{x \in \mathcal{K}} \sum_{t=1}^{T} f_{t}(x)
$$

Proof. Since $(1-\tau) \mathcal{K}=\left\{\exp _{p}((1-\tau) u) \mid u=\exp _{p}^{-1}(x) \in \mathcal{K}\right\}$, it is easy to check

$$
\min _{x \in(1-\tau) \mathcal{K}} \sum_{t=1}^{T} f_{t}(x)=\min _{x \in \mathcal{K}} \sum_{t=1}^{T} f_{t}\left(\exp _{p}\left((1-\tau) \exp _{p}^{-1}(x)\right)\right)
$$

By the g-convexity of f_{t}, we have

$$
\begin{aligned}
\min _{x \in \mathcal{K}} \sum_{t=1}^{T} f_{t}\left(\exp _{p}\left((1-\tau) \exp _{p}^{-1}(x)\right)\right) & \leq \min _{x \in \mathcal{K}} \sum_{t=1}^{T} \tau f_{t}(p)+(1-\tau) f_{t}(x) \\
& \leq \min _{x \in \mathcal{K}} \sum_{t=1}^{T} \tau\left(f_{t}(p)-f_{t}(x)\right)+f_{t}(x) \\
& \leq \min _{x \in \mathcal{K}} \sum_{t=1}^{T} \tau 2 C+f_{t}(x) \\
& \leq 2 \tau C T+\min _{x \in \mathcal{K}} \sum_{t=1}^{T} f_{t}(x)
\end{aligned}
$$

which completes our proof.
Now it is time to prove Theorem 4
Proof of Theorem 4 Denote x_{τ}^{*} as the minimizer of the problem $\min _{x \in(1-\tau) \mathcal{K}} \sum_{t=1}^{T} f_{t}(x)$, and then the expectation can be reformulated as

$$
\begin{aligned}
\mathbb{E}[R(T)]= & \sum_{t=1}^{T} \mathbb{E}\left[f_{t}\left(x_{t}\right)-f_{t}\left(x^{*}\right)\right] \\
= & \mathbb{E}\left[\sum_{t=1}^{T}\left(f_{t}\left(x_{t}\right)-f_{t}\left(y_{t}\right)\right)\right]+\mathbb{E}\left[\sum_{t=1}^{T}\left(f_{t}\left(y_{t}\right)-\hat{f}_{t}\left(y_{t}\right)\right)\right]+\mathbb{E}\left[\sum_{t=1}^{T}\left(\hat{f}_{t}\left(y_{t}\right)-\hat{f}_{t}\left(x_{\tau}^{*}\right)\right)\right] \\
& +\mathbb{E}\left[\sum_{t=1}^{T}\left(\hat{f}_{t}\left(x_{\tau}^{*}\right)-f_{t}\left(x_{\tau}^{*}\right)\right)\right]+\mathbb{E}\left[\sum_{t=1}^{T}\left(f_{t}\left(x_{\tau}^{*}\right)-f_{t}\left(x^{*}\right)\right)\right]
\end{aligned}
$$

The Lipschitz condition leads to $\left|f_{t}\left(x_{t}\right)-f_{t}\left(y_{t}\right)\right| \leq \delta L$ and $\left|f_{t}(x)-\hat{f}_{t}(x)\right|<\delta L$, and recalling Lemma 12 yields $\sum_{t=1}^{T}\left(f_{t}\left(x_{\tau}^{*}\right)-f_{t}\left(x^{*}\right)\right) \leq 2 \tau C T$. Putting them altogether,

$$
\begin{equation*}
\mathbb{E}[R(T)] \leq \mathbb{E}\left[\sum_{t=1}^{T}\left(\hat{f}_{t}\left(y_{t}\right)-\hat{f}_{t}\left(x_{\tau}^{*}\right)\right)\right]+3 \delta L T+2 \tau C T \tag{32}
\end{equation*}
$$

To estimate the term $\mathbb{E}\left[\sum_{t=1}^{T}\left(\hat{f}_{t}\left(y_{t}\right)-\hat{f}_{t}\left(x_{\tau}^{*}\right)\right)\right]$, we focus on the update rule of y_{t}, that is,

$$
\begin{aligned}
y_{t+1} & =P_{(1-\tau) \mathcal{K}}\left(\exp _{y_{t}}\left(\alpha f_{t}\left(x_{t}\right) \frac{\exp _{y_{t}}^{-1}\left(x_{t}\right)}{\left\|\exp _{y_{t}}^{-1}\left(x_{t}\right)\right\|}\right)\right) \\
& =P_{(1-\tau) \mathcal{K}}\left(\exp _{y_{t}}\left(\frac{D}{C \sqrt{\zeta(\kappa, D) T}} f_{t}\left(x_{t}\right) \frac{\exp _{y_{t}}^{-1}\left(x_{t}\right)}{\left\|\exp _{y_{t}}^{-1}\left(x_{t}\right)\right\|}\right)\right) \\
& =P_{(1-\tau) \mathcal{K}}\left(\exp _{y_{t}}\left(\frac{D}{\frac{S_{\delta}}{V_{\delta}} C \sqrt{\zeta(\kappa, D) T}} \frac{S_{\delta}}{V_{\delta}} f_{t}\left(x_{t}\right) \frac{\exp _{y_{t}}^{-1}\left(x_{t}\right)}{\left\|\exp _{y_{t}}^{-1}\left(x_{t}\right)\right\|}\right)\right) .
\end{aligned}
$$

From what we have proved in Lemma 1 we obtain $\mathbb{E}\left[\left.\frac{S_{\delta}}{V_{\delta}} f_{t}\left(x_{t}\right) \frac{\exp _{y_{t}}^{-1}\left(x_{t}\right)}{\left\|\exp _{y_{t}}^{-1}\left(x_{t}\right)\right\|} \right\rvert\, y_{t}\right]=\nabla \hat{f}\left(y_{t}\right)$ and $\left\|\hat{f}\left(y_{t}\right)\right\| \leq \frac{S_{\delta}}{V_{\delta}} C$. Consequently, it is clear to see that the update rule here is that of expected gradient descent in Lemma 11 with parameters $S=(1-\tau) \mathcal{K}, G=\frac{S_{\delta}}{V_{\delta}} C, \lambda=2 \delta \rho L$ and the step size $\alpha=\frac{D}{G \sqrt{\zeta(\kappa, D) T}}$. Thus,

$$
\begin{equation*}
\mathbb{E}\left[\sum_{t=1}^{T} f_{t}\left(x_{t}\right)\right]-\min _{x \in(1-\tau) \mathcal{K}} \sum_{t=1}^{T} f_{t}(x) \leq \frac{S_{\delta}}{V_{\delta}} D C \sqrt{\zeta(\kappa, D) T}+2 \delta \rho L T \tag{33}
\end{equation*}
$$

Applying (33), we rewrite (32) as

$$
\mathbb{E}[R(T)] \leq \frac{S_{\delta}}{V_{\delta}} D C \sqrt{\zeta(\kappa, D) T}+3 \delta L T+2 \tau C T+2 \delta \rho L T
$$

By Lemma 1 .

$$
\frac{S_{\delta}}{V_{\delta}} \leq \frac{n}{\delta}+n \kappa \delta=\frac{n}{\delta}+B \delta
$$

Then

$$
\begin{equation*}
\mathbb{E}[R(T)] \leq\left(\frac{n}{\delta}+B \delta\right) D C \sqrt{\zeta(\kappa, D) T}+3 \delta L T+2 \tau C T+2 \delta \rho L T \tag{34}
\end{equation*}
$$

Taking $\tau=\frac{\delta}{r}, \Delta=B C D \sqrt{\zeta(\kappa, D)}+3 L+2 C / r$ and $\delta=T^{-\frac{1}{4}} \sqrt{\frac{C D r \sqrt{\zeta(\kappa, D)}}{\Delta}}$, we have,

$$
\begin{aligned}
\mathbb{E}[R(T)] & \leq \frac{n}{\delta} D C \sqrt{\zeta(\kappa, D) T}+B \delta D C \sqrt{\zeta(\kappa, D) T}+3 \delta L T+2 \tau C T+2 \delta \rho L T \\
& \leq \frac{n}{\delta} D C \sqrt{\zeta(\kappa, D) T}+(B \delta D C \sqrt{\zeta(\kappa, D)}+3 \delta L+2 \tau C) T+2 \delta \rho L T \\
& =2 T^{\frac{3}{4}} \sqrt{n C D \sqrt{\zeta(\kappa, D)}}\left(\sqrt{\Delta}+\frac{2 \rho L}{\sqrt{\Delta}}\right) .
\end{aligned}
$$

Also with $\Lambda=\sqrt{\Delta}+\frac{2 \rho L}{\sqrt{\Delta}}$, we get

$$
\mathbb{E}[R(T)] \leq 2 T^{\frac{3}{4}} \sqrt{n C D \sqrt{\zeta(\kappa, D)}} \Lambda
$$

which completes our proof.

References

[1] Werner Ballmann. Lectures on spaces of nonpositive curvature, volume 25. Birkhäuser, 2012.
[2] Valerii Berestovskii and Yurii Nikonorov. Riemannian manifolds and homogeneous geodesics. Springer, 2020.
[3] Manfredo Perdigao do Carmo. Riemannian geometry. Birkhäuser, 1992.
[4] Nicolo Cesa-Bianchi and Gábor Lugosi. Prediction, learning, and games. Cambridge university press, 2006.
[5] Shiing-Shen Chern, Weihuan Chen, and Kai Shue Lam. Lectures on differential geometry, volume 1. World Scientific, 1999.
[6] John M Lee. Introduction to Riemannian manifolds. Springer, 2018.
[7] Katsumi Nomizu. On local and global existence of killing vector fields. Annals of Mathematics, 72(1):105-120, 1960.
[8] Hongyi Zhang and Suvrit Sra. First-order methods for geodesically convex optimization. In Conference on Learning Theory, pages 1617-1638, 2016.

