
A Proofs of Theorems 1 and 2

We first recall the following lemma in [8], which shows a relationship between iteration points xt and
xt+1.
Lemma 3 ([8]). Suppose thatM is a Hadamard manifold with the sectional curvature lower bounded
by −κ (κ > 0) and K ⊂M is a g-convex set. Then, for any x, xt ∈ K, xt+1 = PK(expxt(−αtgt))
satisfies

〈−gt, exp−1
xt (x)〉 ≤ 1

2αt
(d2(xt, x)− d2(xt+1, x)) +

1

2
ζ(κ, d(xt, x))αt‖gt‖2.

Then we begin our proofs of Theorems 1 and 2.

Proof of Theorem 1. By the g-convexity, we have

ft(xt)− ft(x∗) ≤ 〈−∇ft(xt), exp−1
xt (x∗)〉.

Recalling Lemma 3 gives

ft(xt)− ft(x∗) ≤
1

2αt
(d2(xt, x

∗)− d2(xt+1, x
∗)) +

1

2
ζ
(
κ, d(xt, x

∗)
)
αt‖∇ft(xt)‖2.

With the Lipschitz constant L, we have

ft(xt)− ft(x∗) ≤
1

2αt
(d2(xt, x

∗)− d2(xt+1, x
∗)) +

1

2
ζ
(
κ, d(xt, x

∗)
)
L2αt. (5)

Summing (5) from 1 to T , we obtain

R(T ) =

T∑
t=1

ft(xt)−
T∑
t=1

ft(x
?)

≤
T∑
t=1

1

2αt

(
d2(xt, x

?)− d2(xt+1, x
?)
)

+

T∑
t=1

1

2
ζ
(
κ, d(xt, x

∗)
)
L2αt

=

T∑
t=2

d2(xt, x
?)(

1

2αt
− 1

2αt−1
) +

1

2
α1d

2(x1, x
?) +

1

2
L2

T∑
t=1

ζ
(
κ, d(xt, x

∗)
)
αt.

Since the set K has diameter D, d(xt, x
∗) ≤ D and ζ

(
κ, d(xt, x

∗)
)
≤ ζ(κ,D) for every t =

1, 2, . . . , T , which implies

R(T ) ≤ D2
T∑
t=2

(
1

2αt
− 1

2αt−1
) +D2 1

2
α1 +

1

2
ζ(κ,D)L2

T∑
t=1

αt

= D2 1

2αT
+

1

2
ζ(κ,D)L2

T∑
t=1

αt,

Setting αt = D

L
√
ζ(κ,D)t

, we get

R(T ) ≤
DL
√
ζ(κ,D)

2

√
T +

1

2
ζ(κ,D)L2

T∑
t=1

αt

≤
DL
√
ζ(κ,D)

2

√
T +

1

2
ζ(κ,D)L2 2D

L
√
ζ(κ,D)

√
T

=
3

2
DL
√
ζ(κ,D)T ,

The second inequality is based on the inequality
∑T
t=1

1√
t
≤ 2
√
T , and then we complete our

proof.
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Proof of Theorem 2. By the strong g-convexity, we have

ft(xt)− ft(x∗) ≤ 〈−∇ft(xt), exp−1
xt (x∗)〉 − µ

2
d2(xt, x

∗).

With the help of Lemma 3 and the Lipschitz constant L, we have

ft(xt)− ft(x∗) ≤
1

2αt

(
d2(xt, x

∗)− d2(xt+1, x
∗)
)

+
1

2
ζ
(
κ, d(xt, x

∗)
)
L2αt −

µ

2
d2(xt, x

∗).

(6)

Summing (6) from 1 to T , we obtain

R(T ) =

T∑
t=1

ft(xt)−
T∑
t=1

ft(x
?)

≤
T∑
t=1

1

2αt

(
d2(xt, x

?)− d2(xt+1, x
?)
)

+

T∑
t=1

1

2
ζ(κ, d(xt, x

∗))L2αt −
T∑
t=1

µ

2
d2(xt, x

∗)

=

T∑
t=2

d2(xt, x
?)(

1

2αt
− 1

2αt−1
− µ

2
) + d2(x1, x

?)(
α1

2
− µ

2
) +

1

2
L2

T∑
t=1

ζ(κ, d(xt, x
∗))αt.

Substituting d(xt, x
∗) ≤ D and ζ(κ, d(xt, x

∗)) ≤ ζ(κ,D) for t = 1, 2, . . . , T , we obtain

R(T ) ≤
T∑
t=2

D2(
1

αt
− 1

2αt−1
− µ

2
) +D2(

1

2α1
− µ

2
) +

1

2
L2

T∑
t=1

ζ(κ, d(xt, x
∗))αt

= D2(
1

2αT
− µT

2
) +

1

2
ζ(κ,D)L2

T∑
t=1

αt.

Setting αt = 1
µt , we get

R(T ) ≤ 0 +
1

2
ζ(κ,D)L2

T∑
t=1

αt ≤
ζ(κ,D)L2

2µ
(1 + log T ).

The second inequality follows from the inequality
∑T
t=1

1
t ≤ 1 + log T , and then we complete our

proof.

B Proof of Theorem 3

In this appendix, we first introduce an instance of Riemannian online convex optimization called
Riemannian online Busemann optimization (ROBO) and then prove Theorem 3 by analyzing the
worst-case regret of the ROBO problem.

B.1 Riemannian Online Busemann Optimization

It is shown that the Busemann function [1] is useful to study the large-scale geometry of Hadamard
manifolds.
Definition 1 ([1]). LetM be a Hadamard manifold and γ : [0,∞) be a geodesic ray onM with
‖γ̇(0)‖ = 1. Then the Busemann function with γ is defined as

fγ(x) = lim
t→∞

(
d(x, γ(t))− t

)
.

Here are some properties of the Busemann function.
Lemma 4 ([1]). For a Busemann function fγ ,

1) fγ is g-convex;
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2) ∇fγ(γ(t)) = γ̇(t) for every t ∈ [0,∞);

3) ‖∇fγ(x)‖ ≤ 1 for every x ∈M.

Next, we introduce some notations. Let D,L > 0 be two constants,M be a Hadamard manifold,
p ∈M and γ : R→M be a geodesic with conditions ‖γ̇(0)‖ = 1 and γ(0) = p. Then we consider
an instance of R-OCO problem termed Riemannian online Busemann optimization (ROBO) onM,
where the g-convex set K is the ball centered p with radius D ,i.e.,

K = {x ∈M|d(x, p) ≤ D},
and the loss function ft is randomly and uniformly chosen from the set

{Lf+, Lf−},
where f+ and f− are Busemann functions related to the geodesic rays γ+(t) = γ(t) and γ−(t) =
γ(−t). The regret of the ROBO problem is

R(T ) =

T∑
t=1

ft(xt)−min
x∈K

T∑
t=1

ft(x).

In the last part of the subsection, we propose a lemma about the minimum of
∑T
t=1 ft(x).

Lemma 5. The minimum of af+(t) + bf−(t), (a, b ∈ N) in K is −|a− b|D.

Proof. By the g-convexity of f+ and f−, we have

af+(x) + bf−(x) ≥ af+(p) + bf−(p) + 〈a∇f+(p) + b∇f−(p), exp−1
p (x)〉,∀x ∈ K.

Because ∇f+(p) = γ̇(0),∇f−(p) = −γ̇(0) and f±(p) = 0, we have

af+(x) + bf−(x) ≥ 〈(a− b)γ̇(0), exp−1
p (x)〉,∀x ∈ K.

Moreover, since ‖γ̇(0)‖ = 1 and ‖ exp−1
p (x)‖ = d(x, p) ≤ D, we have

min
x∈K

af+(x) + bf−(x) ≥ min
x∈K
〈(a− b)γ̇(0), exp−1

p (x)〉 ≥ −|a− b|D. (7)

However, we see that af+(γ(D)) + bf−(γ(D)) = (b− a)D and af+(γ(−D)) + bf−(γ(−D)) =
(a− b)D, which imply

min
x∈K

af+(x) + bf−(x) ≤ min{(b− a)D, (a− b)D} = −|a− b|D. (8)

Following from (7) and (8), we complete our proof.

B.2 Proof of Theorem 3

We begin our proof with an analysis of the worst-case regret of the ROBO problem. In the ROBO,
the expectation of the regret on loss functions {f1, f2, . . . , fT } is

Ef1,...,fT [R(T )] =Ef1,...,fT [

T∑
t=1

ft(xt)−min
x∈K

T∑
t=1

ft(x)]

=Ef1,...,fT [

T∑
t=1

ft(xt)]− Ef1,...,fT [min
x∈K

T∑
t=1

ft(x)]. (9)

Since ft is uniformly and independently chosen in {f+, f−}, we get

Ef1,...,fT [

T∑
t=1

ft(xt)] =

T∑
t=1

Eft [ft(xt)]

=

T∑
t=1

1

2
(Lf+(xt) + Lf−(xt))

≥ LT

2
min
x∈K

(f+(x) + f−(x)).
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From Lemma 5,

Ef1,...,fT [

T∑
t=1

ft(xt)] ≥ 0. (10)

Putting (10) into (9), we obtain

Ef1,...,fT [R(T )] ≥ −Ef1,...,fT [min
x∈K

T∑
t=1

ft(x)].

By Lemma 5,

Ef1,...,fT [R(T )] ≥ −Ef1,...,fT [min
x∈K

T∑
t=1

ft(x)]

= −Ef1,...,fT
[
−DL

∣∣ ∑
ft=Lf+

1−
∑

ft=Lf−

1
∣∣]

= Eε1,...,εT
[
DL
∣∣ ∑
εt=1

1 +
∑
εt=−1

−1
∣∣]

= Eε1,...,εT
[
DL
∣∣ T∑
t=1

εt
∣∣],

where εt are i.i.d Rademacher variables εt = ±1 with probability 1/2. From the Khinchine’s
inequality [4], we finally get

Ef1,...,fT [R(T )] ≥ DL√
2
Eε1,...,εT

[ T∑
t=1

ε2t

] 1
2

=
DL√

2

√
T , (11)

which indicates that no matter how we choose strategies in the ROBO, there are a sequence of
functions {f1, . . . , fT } ∈ {Lf+, Lf−}T to make the regret no less than DL√

2

√
T . Considering that

the diameter of the set K is 2D and the Lipschitz constant of {Lf+, Lf−} is L, we complete our
proof.

C Proofs of Lemmas 1 and 2

In this appendix, we first introduce some fundamental definitions and technical lemmas, and then we
prove Lemmas 1 and 2 in Subsections C.2 and C.3, respectively.

C.1 Basic Definitions and Technical Lemmas

We discuss two special kinds of vector fields, namely, the Killing field and the Jacobi field.
Definition 2 (Killing field). A vector field η is a Killing field if it satisfies

〈∇Xη, Y 〉+ 〈∇Y η,X〉 = 0,∀X,Y ∈ X(M),

Definition 3 (Jacobi field). A vector field η along a geodesic γ is a Jacobi field if it satisfies the
Jacobi equation

∇γ̇∇γ̇η +R(γ̇, η)γ̇ = 0,

where R is the curvature tensor ofM (see [5, Chapter 4.2]).

For vector fields, we mainly consider about their flows and divergence.
Definition 4 (Flow). Suppose thatM is a smooth manifold, X ∈ X(M) and there is a smooth map
φ : R×M→M,

φt(p) = φ(t, p), (t, p) ∈ R×M,

satisfying the following conditions:
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1) φ0(p) = p;

2) φs ◦ φt = φs+t for any real numbers s, t;

3) X(p) = ∂φt(p)
∂t |t=0.

Then we call φt the flow (or the one-parameter group of diffeomorphism) of X , and call X the
infinitesimal transformation of φt.
Definition 5 (Divergence). For a vector field X , the divergence Div(X) is the trace of the operator
∇X . More precisely, if {e1, . . . , en} is a normal orthogonal basis at tangent space TxM, the
divergence of X at x can be expressed as

Div(X)(x) =

n∑
i=1

〈∇eiX(x), ei〉.

Then we present some lemmas that are needed in the following proofs.
Lemma 6 ([2]). If η ∈ X(M) is a Killing vector field, then

1) For every vector field X , 〈∇Xη,X〉 = 0. As a corollary, the divergence Div(η) ≡ 0.

2) For every geodesic γ, η|γ is a Jacobi field.
Lemma 7 ([3]). If η is a Jacobi vector field along a geodesic γ : [0, 1]→ R. Denote η(t) = η(γ(t)).
Then

〈η(t), γ̇(t)〉 = 〈η(0), γ̇(t)〉+ t〈∇γ̇η(0), γ̇(t)〉
for all t ∈ [0, 1].
Lemma 8 ([7]). LetM be a simply connected complete Riemannian homogeneous manifold. Then
for every x ∈M and every X ∈ TxM, there exists a Killing vector field η such that η(x) = X . The
flow of η exists and consists of a one-parameter group of isometries.
Lemma 9 (Divergence theorem,[6]). LetM be a Riemannian manifoldM with the volume form ω,
K ⊂M with the boundary ∂K, and ~n be the (outer) unit normal vector field of ∂K. Then, for any
vector field X and any differentiable function f ,∫

K
X(f)(u)ω =

∫
∂K
f(u)〈X,~n〉ω∂K −

∫
K
Div(X)f(u)ω,

where ω∂K is the volume form of ∂K induced by ω.
Lemma 10 (Bishop-Gromov volume comparison theorem, [6]). LetM be an n-dimensional Rie-
mannian manifold with sectional curvature lower bounded by −κ (κ ≥ 0). Given p ∈ M, denote
Vr as the volume of the ball of radius δ about p and Vr,κ as the volume of a ball of radius r on the
n-dimensional hyperbolic space with constant curvature −κ. Then the function

g(r) =
Vr
Vr,κ

is non-increasing.

C.2 Proof of Lemma 1

We start with the first part of the lemma.

Take a vector X ∈Mx arbitrarily. From Lemma 8, we can find a Killing vector field η onM such
that η(x) = X . The flow of η consists of a one-parameter group of isometries {φt}t∈R. Then the
directional derivative of f̂ along X can be written as

X(f̂(x)) = lim
t→0

f̂(φt(x))− f̂(x)

t
=

1

Vδ
lim
t→0

1

t

(∫
Bδ(φt(x))

f(u)ω −
∫
Bδ(x)

f(u)ω
)
. (12)

Since φt is an isometry that preserves the distance, φt(Bδ(x)) = Bδ(φt(x)). By the substitution rule
of integration ([5, Chapter 3.3]), we have∫

Bδ(φt(x))

f(u)ω =

∫
Bδ(x)

f(φt(u))φ∗t (ω). (13)
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Because φt preserves the metric g, it preserves the volume form, i.e., φ∗t (ω) = ω, which gives∫
Bδ(φt(x))

f(u)ω =

∫
Bδ(x)

f(φt(u))ω. (14)

Combining equations (12) and (14) together, we have

X(f̂(x)) =
1

Vδ

∫
Bδ(x)

lim
t→0

f(φt(u))− f(u)

t
ω

=
1

Vδ

∫
Bδ(x)

(
∂φt(p)

∂t
|t=0)fω. (15)

By Definition 4, ∂φt(u)
∂t |t=0 = η(u). Hence, we rewrite (15) as

X(f̂(x)) =
1

Vδ

∫
Bδ(x)

η(f)ω.

According to Lemma 9,

X(f̂(x)) =
1

Vδ

∫
Sδ(x)

f(u)〈η(u), ~n(u)〉ωSδ(x) −
1

Vδ

∫
Bδ(x)

Div(η)(u)f(u)ω

=
1

Vδ

∫
Sδ(x)

f(u)〈η(u), ~n(u)〉ωSδ(x), (16)

where ωSδ(x) is the volume form of Sδ(x) induced by ω and ~n is the (outer) unit normal vector field
of Sδ(x). The last equation is because Div(η) ≡ 0, as stated in Lemma 6.

Then we compute 〈η, ~n〉 for each point u ∈ Sδ(x). Since geodesics start at the center x are normal to
the sphere Sδ(x), the outer normal vector ~n(u) can be written as γ̇u(1)

‖γ̇u(1)‖ for the geodesic γu such
that γu(0) = x and γu(1) = u. Therefore,

〈η(u), ~n(u)〉 =
1

‖γ̇u(1)‖
〈η(γu(1)), γ̇u(1)〉.

Since η is Killing, by Lemma 6, η(γu(t)) is Jacobi. By Lemma 7,

〈η(u), ~n(u)〉 =
1

‖γ̇u(1)‖
〈η(γu(1)), γ̇u(1)〉

=
1

‖γ̇u(1)‖
〈η(γu(0)), γ̇u(0)〉+ 1〈∇γ̇uη(γu(0)), γ̇u(0)〉

=
1

‖γ̇u(0)‖
〈η(γu(0)), γ̇u(0)〉+ 0. (17)

Applying η(γu(0)) = η(x) = X and γ̇u(0) = exp−1
x (u) to (17) yields

〈η(u), ~n(u)〉 =
〈X, exp−1

x (u)〉
‖ exp−1

x (u)‖
. (18)

Substituting (18) to (16), we have

X(f̂(x)) =
1

Vδ

∫
Sδ(x)

f(u)
〈X, exp−1

x (u)〉
‖ exp−1

x (u)‖
ωSδ(x) = 〈 1

Vδ

∫
Sδ(x)

f(u)
exp−1

x (u)

‖ exp−1
x (u)‖

ωSδ(x), X〉.

Because the directional derivative X(f̂(x)) coincides with the term 〈∇f̂(x), X〉, we obtain

〈∇f̂(x), X〉 = 〈 1

Vδ

∫
Sδ(x)

f(u)
exp−1

x (u)

‖ exp−1
x (u)‖

ωSδ(x), X〉.

Since X is arbitrary,

∇f̂(x) =
1

Vδ

∫
Sδ(x)

f(u)
exp−1

x (u)

‖ exp−1
x (u)‖

ωSδ(x) =
Sδ
Vδ
Eu∈Sδ(x)

[
f(u)

exp−1
x (u)

‖ exp−1
x (u)‖

]
,
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which completes the proof of the first part.

Then we examine the second part of the lemma.

From the first part, it is clearly to see ‖∇f̂(x)‖ ≤ Sδ
Vδ
C. Since the sectional curvature ofM is lower

bounded by −κ, the function g(r) = Vr
Vr,κ

is non-increasing from Lemma 10 and so does log g(r).
Therefore,

d

dr
log(g(r)) =

d

dr
log Vr −

d

dr
log Vr,κ ≤ 0.

Since deriving the volume of a ball along the radius gives the surface area of its sphere, we write

d

dr
log(g(r)) =

Sr
Vr
− Sr,κ
Vr,κ

≤ 0, (19)

where Sr and Sr,κ are the surface area of the balls inM and the hyperbolic space, respectively.

Setting r = δ in (19), we get SδVδ ≤
Sδ,κ
Vδ,κ

. From calculation, it shows that

Sδ,κ
Vδ,κ

=
sinhn−1(

√
κδ)∫ δ

0
sinhn−1(

√
κt)dt

.

Consequently,

‖∇f̂(x)‖ ≤ C sinhn−1(
√
κδ)∫ δ

0
sinhn−1(

√
κt)dt

.

By a change of variable u = sinh t,∫ δ

0

sinhn−1(
√
κt)dt = κ−1/2

∫ sinh(
√
κδ)

0

un−1(1 + u)−1/2du.

Integration by parts gives∫ δ

0

sinhn−1(
√
κt)dt =

sinhn(
√
κδ)

n
√
κ cosh(

√
κδ)

+ κ−1/2

∫ sinh (
√
κδ)

0

un−1(1 + u)−1/2du

≥ sinhn(
√
κδ)

n
√
κ cosh(

√
κδ)

.

Putting it into the expression of SδVδ , we get

Sδ
Vδ
≤ n
√
κ coth(

√
κδ).

Applying the inequality coth(x) < x+ 1/x, we have

Sδ
Vδ
≤ n

δ
+ nκδ, ∀δ > 0.

Hence, for every δ > 0,

‖∇f̂(x)‖ ≤ Sδ
Vδ
C ≤ C

(n
δ

+ nκδ
)
,

which completes our proof.

C.3 Proof of Lemma 2

Without loss of generality, we assume f(x) = 0. By the homogeneity of the manifoldM, we find an
isometry φ such that φ(x) = y. Denote V (u) as the vector field V (u) = exp−1

u (φ(u)). Clearly,

f̂(y)− f̂(x) =
1

Vδ

(∫
Bδ(y)

f(u)ω −
∫
Bδ(x)

f(u)ω
)

=
1

Vδ

(∫
Bδ(φ(x))

f(u)ω −
∫
Bδ(x)

f(u)ω
)
.
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With the method shown in (13) and (14),

f̂(y)− f̂(x) =
1

Vδ

∫
Bδ(x)

f(φ(u))− f(u)ω.

By the g-convexity of f ,

f̂(y)− f̂(x) =
1

Vδ

∫
Bδ(x)

f(φ(u))− f(u)ω

≥ 1

Vδ

∫
Bδ(x)

〈∇f(u), exp−1
u (φ(u))〉ω

=
1

Vδ

∫
Bδ(x)

〈∇f(u), V (u)〉ω

=
1

Vδ

∫
Bδ(x)

V (f(u))ω. (20)

By Lemma 9,∫
Bδ(x)

V (f(u))ω =

∫
Sδ(x)

f(u)〈V (u), ~n(u)〉ωSδ(x) −
∫
Bδ(x)

Div(V )f(u)ω. (21)

Hence, we rewrite (20) as

f̂(y)− f̂(x) ≥ 1

Vδ

(∫
Sδ(x)

f(u)〈V (u), ~n(u)〉ωSδ(x) −
∫
Bδ(x)

Div(V )f(u)ω
)
. (22)

In Lemma 1, we have already shown that

〈∇f̂(x), exp−1
x (y)〉 = 〈 1

Vδ

∫
Sδ(x)

f(u)
exp−1

x (u)

‖ exp−1
x (u)‖

ωSδ(x), exp−1
x (y)〉

= 〈 1

Vδ

∫
Sδ(x)

f(u)
exp−1

x (u)

‖ exp−1
x (u)‖

ωSδ(x), V (x)〉 (23)

Denote ~m(u) as the vector exp−1
x (u)

‖ exp−1
x (u)‖ . Combining (21) and (23) gives

f̂(y)− f̂(x)− 〈∇f̂(x), exp−1
x (y)〉 ≥ 1

Vδ

(∫
Sδ(x)

f(u)
(
〈V (u), ~n(u)〉 − 〈V (x), ~m(u)〉

)
ωSδ(x)

)
− 1

Vδ

(∫
Bδ(x)

Div(V )f(u)ω
)
. (24)

Here we claim

〈V (u), ~n(u)〉 − 〈V (x), ~m(u)〉 ≤ 0, ∀u ∈ Sδ(x). (∗)

If the claim (∗) holds (whose proof will be presented in C.4), then, with the g-L-Lipschitz of f and
the condition f(x) = 0, we have∫

Sδ(x)

f(u)
(
〈V (u), ~n(u)〉 − 〈V (x), ~m(u)〉

)
ωSδ(x)

≥
∫
Sδ(x)

δL
(
〈V (u), ~n(u)〉 − 〈V (x), ~m(u)〉

)
ωSδ(x)

=
(∫

Sδ(x)

δL〈V (u), ~n(u)〉ωSδ(x)

)
−
(∫

Sδ(x)

δL〈V (x), ~m(u)〉ωSδ(x)

)
. (25)

By Lemma 1, 1
Vδ

∫
Sδ(x)

δL〈V (x), ~m(u)〉ωSδ(x) in (25) is the gradient of the function

ĝ(x) =
1

Vδ

(∫
Bδ(x)

δL · ω
)
≡ δL,
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and then
1

Vδ

∫
Sδ(x)

δL〈V (x), ~m(u)〉ωSδ(x) = 0. (26)

Combining (24)-(26), we have

f̂(y)− f̂(x)− 〈∇f̂(x), exp−1
x (y)〉 ≥ 1

Vδ

(∫
Sδ(x)

δL〈V (u), ~n(u)〉ωSδ(x)

)
− 1

Vδ

(∫
Bδ(x)

Div(V )f(u)ω
)
.

Applying Lemma 9 again, we obtain

1

Vδ

∫
Sδ(x)

δL〈V (u), ~n(u)〉ωSδ(x) =
1

Vδ

∫
Bδ(x)

V (δL)ω − 1

Vδ

(∫
Bδ(x)

Div(V )δLω
)

= − 1

Vδ

(∫
Bδ(x)

Div(V )δLω
)
.

Therefore,

f̂(y)− f̂(x)− 〈∇f̂(x), exp−1
x (y)〉 ≥ − 1

Vδ

(∫
Bδ(x)

Div(V )(f(x) + δL)ω
)

≥ −2δL sup
u∈Bδ(x)

|Div(V (u))|. (27)

Note that V (u) = exp−1
u (φ(u)) is continuous on p and φ, and φ is continuous on x and y. Thus,

|Div(V (u))| is a continuous function of (x, y, u) ∈ K̄ × K̄ × K̄. Denote

ρ = sup
(x,y,u)∈K̄×K̄×K̄

|Div(V (u))|.

Since the boundedness of K set yields the compactness of K̄ × K̄ × K̄, we have ρ <∞. Putting ρ
into (27) establishes the formula in Lemma 7.

C.4 Proof of the Claim (∗)

Fix u ∈ Sδ(x) and denote ξu(s) = expx(s~m(u)) as the geodesic with the initial tangent vector
~m(u). Consider the following rectangle map

Γu : [0, 1]× [0, δ]→M
(t, s)→ expξu(s)(tV (ξu(s))).

Set T (t, s) = ∂Γu
∂t (t, s) and S(t, s) = ∂Γu

∂s (t, s). For a fixed t, the length of the curve γt(s) =
Γu(t, s), (0 ≤ s ≤ δ) is defined as

lu(t) =

∫ δ

0

√
〈S(t, s), S(t, s)〉ds.

The first variation formula (see [6, Theorem 6.3]) gives,

l′u(0) = 〈T (0, δ), S(0, δ)〉 − 〈T (0, 0), S(0, 0)〉.

Because

T (0, s) = V (ξu(s)),∀s ∈ [0, δ]

and

S(0, 0) = ~m(u), S(0, δ) = ~n(u),

we have

l′u(0) = 〈V (u), ~n(u)〉 − 〈V (x), ~m(u)〉.
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To prove (∗), it is sufficient to show that l′u(0) ≤ 0. Let us focus on the second derivative of the
function lu(t), that is,

l′′u(t) =
d2

dt2

∫ δ

0

√
〈S(t, s), S(t, s)〉ds

=

∫ δ

0

d2

dt2

√
〈S(t, s), S(t, s)〉ds

=

∫ δ

0

d

dt
(

1

‖S‖
〈∇TS, S〉)ds

=

∫ δ

0

− 1

‖S‖3
〈∇TS, S〉2 +

1

‖S‖
〈∇TS,∇TS〉+

1

‖S‖
〈∇T∇TS, S〉ds. (28)

For every fixed s, the curve γs(t) = Γu(t, s) is a geodesic, hence, S is the variation field of the
geodesic γs(t) and becomes a Jacobi field. Putting the Jaboci equation (Definition 4) into (28), we
have

l′′u(t) =

∫ δ

0

− 1

‖S‖3
〈∇TS, S〉2 +

1

‖S‖
〈∇TS,∇TS〉+

1

‖S‖
−R(T, S, S, T )ds.

By the Cauchy–Schwarz inequality, −〈∇TS, S〉2 ≥ −‖S‖2‖∇TS‖2, which yields

l′′u(t) ≥
∫ δ

0

− 1

‖S‖3
− ‖S‖2‖∇TS‖2 +

1

‖S‖
〈∇TS,∇TS〉+

1

‖S‖
−R(T, S, S, T )ds

≥
∫ δ

0

1

‖S‖
−R(T, S, S, T )ds

From the definition of the sectional curvature, R(T, S, S, T ) = K(Π)|T ∧ S|2, where K(Π) is
the sectional curvature of the two-dimensional submanifold spanned by T and S. Since M has
nonpostive sectional curvature, we get

l′′u(t) ≥
∫ δ

0

1

‖S‖
−R(T, S, S, T )ds ≥ 0,

which means that lu(t) is convex in [0, 1].

Let us look back on the function lu(t). Note that the 0-curve is

γs(0) = ξ(s),

and the 1-curve is

γs(1) = expξ(s)(V (ξ(s))) = expξ(s)(exp−1
ξ(s)(φ(ξ(s))) = φ(ξ(s)).

Since the mapping φ is an isometry, the length of ξ(s) is equal to the length of φ(ξ(s)). As a result,

lu(0) = lu(1).

The convexity of lu immediately leads to

l′u(0) ≤ 0,

which proves the claim (∗).

D Proof of Theorem 4

Before the proof, we propose two lemmas. Lemma 11 is about the expected online gradient descent
on Riemannian manifolds.
Lemma 11. Suppose that S is a g-convex set ofM with diameter D and {ft}t=1,2,...,T is a series
of smooth functions and there exists a constant λ ≥ 0 such that

ft(x)− ft(y)− 〈∇ft(x), exp−1
x (y)〉 ≥ −λ, (29)
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for any x, y ∈ S and t = 1, 2, . . . , T . If the sequence {xt}t=1,2,...,T is generated by

xt+1 = PS(expxt(−αgt)),

where α > 0 and gt is a random vector bounded by G such that E[gt|xt] = ∇ft(xt) for every
t = 1, 2, . . . , T , then, with taking α = D

G
√
ζ(κ,D)T

, we have

E
[ T∑
t=1

ft(xt)
]
−min
x∈K

T∑
t=1

ft(x) ≤ DG
√
ζ(κ,D)T + λT.

Proof. Let x∗ = arg minx∈K
∑T
t=1 ft(x). From (29), the difference between ft(xt) and ft(x∗) is

bounded by

ft(xt)− ft(x∗) ≤ 〈∇ft(xt), exp−1
xt (x∗)〉+ λ

= 〈E[gt|xt], exp−1
xt (x∗)〉+ λ

= E
[
〈gt, exp−1

xt (x∗)〉|xt
]

+ λ.

Taking the expectation on both sides yields

E[ft(xt)− ft(x∗)] ≤ E
[
〈gt, exp−1

xt (x∗)〉
]

+ λ.

From Lemma 3,

E[ft(xt)− ft(x∗)] ≤ E
[ 1

2α
(d2(xt, x

∗)− d2(xt+1, x
∗)) +

1

2
ζ(κ, d(xt, x

∗))α‖gt‖2
]

+ λ. (30)

Summing (30) from 1 to T , we have

T∑
t=1

E[ft(xt)− ft(x∗)] ≤
T∑
t=1

E
[ 1

2α
(d2(xt, x

∗)− d2(xt+1, x
∗)) +

α

2
ζ(κ, d(xt, x

∗))‖gt‖2
]

+ λT

≤ E
[ 1

2α
d2(x1, x

∗)
]

+

T∑
t=1

E
[α

2
ζ(κ, d2(xt, x

∗))G2
]

+ λT

≤ D2

2α
+
α

2
ζ(κ,D)G2T + λT. (31)

The last inequality is because S is of diameter D. Putting α = D

G
√
ζ(κ,D)T

in (31), we complete our

proof.

Lemma 12 reveals a relationship between the offline optimum in (1− τ)K and K.

Lemma 12. Suppose that Assumption 6 holds, and {ft}t=1,...,T is a sequence of g-convex function
defined on K bounded by C. Then

min
x∈(1−τ)K

T∑
t=1

ft(x) ≤ 2τCT + min
x∈K

T∑
t=1

ft(x)

Proof. Since (1− τ)K = {expp((1− τ)u)|u = exp−1
p (x) ∈ K}, it is easy to check

min
x∈(1−τ)K

T∑
t=1

ft(x) = min
x∈K

T∑
t=1

ft

(
expp((1− τ) exp−1

p (x))
)
.
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By the g-convexity of ft, we have

min
x∈K

T∑
t=1

ft

(
expp((1− τ) exp−1

p (x))
)
≤ min

x∈K

T∑
t=1

τft(p) + (1− τ)ft(x)

≤ min
x∈K

T∑
t=1

τ(ft(p)− ft(x)) + ft(x)

≤ min
x∈K

T∑
t=1

τ2C + ft(x)

≤ 2τCT + min
x∈K

T∑
t=1

ft(x),

which completes our proof.

Now it is time to prove Theorem 4.

Proof of Theorem 4. Denote x∗τ as the minimizer of the problem minx∈(1−τ)K
∑T
t=1 ft(x), and then

the expectation can be reformulated as

E[R(T )] =

T∑
t=1

E
[
ft(xt)− ft(x∗)

]
= E

[ T∑
t=1

(ft(xt)− ft(yt))
]

+ E
[ T∑
t=1

(ft(yt)− f̂t(yt))
]

+ E
[ T∑
t=1

(f̂t(yt)− f̂t(x∗τ ))
]

+ E
[ T∑
t=1

(f̂t(x
∗
τ )− ft(x∗τ ))

]
+ E

[ T∑
t=1

(ft(x
∗
τ )− ft(x∗))

]
.

The Lipschitz condition leads to |ft(xt) − ft(yt)| ≤ δL and |ft(x) − f̂t(x)| < δL, and recalling
Lemma 12 yields

∑T
t=1(ft(x

∗
τ )− ft(x∗)) ≤ 2τCT . Putting them altogether,

E[R(T )] ≤ E
[ T∑
t=1

(f̂t(yt)− f̂t(x∗τ ))
]

+ 3δLT + 2τCT (32)

To estimate the term E
[∑T

t=1(f̂t(yt)− f̂t(x∗τ ))
]
, we focus on the update rule of yt, that is,

yt+1 = P(1−τ)K

(
expyt(αft(xt)

exp−1
yt (xt)

‖ exp−1
yt (xt)‖

)

)

= P(1−τ)K

(
expyt(

D

C
√
ζ(κ,D)T

ft(xt)
exp−1

yt (xt)

‖ exp−1
yt (xt)‖

)

)

= P(1−τ)K

(
expyt(

D
Sδ
Vδ
C
√
ζ(κ,D)T

Sδ
Vδ
ft(xt)

exp−1
yt (xt)

‖ exp−1
yt (xt)‖

)

)
.

From what we have proved in Lemma 1 we obtain E
[
Sδ
Vδ
ft(xt)

exp−1
yt

(xt)

‖ exp−1
yt (xt)‖

∣∣∣yt] = ∇f̂(yt) and

‖f̂(yt)‖ ≤ Sδ
Vδ
C. Consequently, it is clear to see that the update rule here is that of expected gradient

descent in Lemma 11 with parameters S = (1 − τ)K, G = Sδ
Vδ
C, λ = 2δρL and the step size

α = D

G
√
ζ(κ,D)T

. Thus,

E
[ T∑
t=1

ft(xt)
]
− min
x∈(1−τ)K

T∑
t=1

ft(x) ≤ Sδ
Vδ
DC

√
ζ(κ,D)T + 2δρLT. (33)
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Applying (33), we rewrite (32) as

E[R(T )] ≤ Sδ
Vδ
DC

√
ζ(κ,D)T + 3δLT + 2τCT + 2δρLT.

By Lemma 1,
Sδ
Vδ
≤ n

δ
+ nκδ =

n

δ
+Bδ.

Then

E[R(T )] ≤ (
n

δ
+Bδ)DC

√
ζ(κ,D)T + 3δLT + 2τCT + 2δρLT. (34)

Taking τ = δ
r , ∆ = BCD

√
ζ(κ,D) + 3L+ 2C/r and δ = T−

1
4

√
CDr
√
ζ(κ,D)

∆ , we have,

E[R(T )] ≤ n

δ
DC

√
ζ(κ,D)T +BδDC

√
ζ(κ,D)T + 3δLT + 2τCT + 2δρLT

≤ n

δ
DC

√
ζ(κ,D)T + (BδDC

√
ζ(κ,D) + 3δL+ 2τC)T + 2δρLT,

= 2T
3
4

√
nCD

√
ζ(κ,D)

(√
∆ +

2ρL√
∆

)
.

Also with Λ =
√

∆ + 2ρL√
∆

, we get

E[R(T )] ≤ 2T
3
4

√
nCD

√
ζ(κ,D)Λ,

which completes our proof.
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