
A Appendix

A.1 On the ES fairness notion

In this paper, we defined the ES fairness notion as follows,

Pr{E0, Ỹ = 1} = Pr{E1, Ỹ = 1}
Similarly, we could define another fairness notion as follows,

Pr{E0} = Pr{E1} (18)

This definition implies that the probability that a position is filled by an applicant from group A = 0
should be the same as the probability that the position is filled by an applicant from group A = 1.
Consider classifier R = r(X,A). We have,

Pr{Ea} =

∞∑
i=1

Pr{Ri = 1, Ai = a}Pr{Ri−1 = 0} × · · · × Pr{R1 = 0} =
Pr{R = 1, A = a}
1− Pr{R = 0}

This implies that (18) is satisfied if and only if

Pr{R = 1, A = 0} = Pr{R = 1, A = 1}. (19)

Therefore, if equation (18) is our fairness notion, we should design a classifier that satisfies (19). This
implies that all the results in this paper can be easily extended to the fairness notion defined in (18).

A.2 Deriving the ES constraint in terms of αa,ŷ

Based on Theorem1, Z satisfies the ES if the following holds,

Pr{A = 0, Z = 1, Y = 1} = Pr{A = 1, Z = 1, Y = 1} =⇒∑
ŷ∈{0,1}

Pr{A = 0, Z = 1, Y = 1, R = ŷ} =
∑

ŷ∈{0,1}

Pr{A = 1, Z = 1, Y = 1, R = ŷ} =⇒

∑
ŷ∈{0,1}

Pr{Z = 1, Y = 1|A = 0, R = ŷ} × Pr{A = 0, R = ŷ} =

∑
ŷ∈{0,1}

Pr{Z = 1, Y = 1|A = 1, R = ŷ} × Pr{A = 1, R = ŷ} =⇒

∑
ŷ∈{0,1}

α0,ŷ Pr{Y = 1|A = 0, R = ŷ} × Pr{A = 0, R = ŷ} =

∑
ŷ∈{0,1}

α1,ŷ Pr{Y = 1|A = 1, R = ŷ} × Pr{A = 1, R = ŷ} =⇒

∑
ŷ∈{0,1}

α0,ŷ · PR,Y,A(ŷ, 1, 0) =
∑

ŷ∈{0,1}

α1,ŷ · PR,Y,A(ŷ, 1, 1).

Note that Z and Y are conditionally independent given A and R, and we used this fact in the above
derivation.

A.3 On the solution to optimization problem (13)

In this part, first we show that optimization problem (13) can be easily turned into an optimization
problem with one variable. If the probability density function of R given A = a and Y = 1 is
non-zero and continuous over interval [0, 1], then FR|1,1(.) and FR|0,1(.) are both strictly increasing
and their inverse functions exits. For the notional convenience, Let pa,y = PA,Y (a, y) and assume
p0,1 ≤ p1,1. Then, based on the constraint presented in (13), τ1 can be calculated as a function of τ0,

τ1 = F−1
R|1,1

(
1− p0,1

p1,1
(1− FR|0,1(τ0))

)
, τ0 ∈ [0, 1]. (20)

Therefore, optimization problem (13) can be written as a one-variable optimization problem in
interval [0,1] and can be efficiently solved using the Bayesian Optimization algorithm [40].
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Now we solve optimization problem (13) for a case where R|A = a, Y = 1 follows the uniform
distribution.

Case 1: consider the following scenario,

• R|A = 0, Y = 0 follows Uniform(0, b0). 9

• R|A = 1, Y = 0 follows Uniform(0, b1).
• R|A = 0, Y = 1 follows Uniform(c0, 1).
• R|A = 1, Y = 1 follows Uniform(c1, 1).
• c0 < b0 < 1 and c1 < b1 < 1.

Since b0 < 1 and b1 < 1, Pr{Ỹ = 1} = 1 if τ0 ∈ [b0, 1] and τ1 ∈ [b1, 1]. Therefore, the optimal
thresholds satisfies the following,

p0,1 · (1− FR|0,1(τ0)) = p1,1 · (1− FR|1,1(τ1)), (21)

p0,1(
1− τ0
1− c0

) = p1,1(
1− τ1
1− c1

). (22)

For instance, if p0,1 · 1−b0
1−c0

≤ p1,1 · 1−b1
1−c1

, then τ0 = b0 and τ1 = 1 − p0,1

p1,1

1−c1
1−c0

are the solution to
(13).

Case 2: consider the following scenario,

• R|A = 0, Y = 0 follows Uniform(b0, 1).
• R|A = 1, Y = 0 follows Uniform(b1, 1).
• R|A = 0, Y = 1 follows Uniform(c0, 1).
• R|A = 1, Y = 1 follows Uniform(c1, 1).
• b0 < c0 < 1 and b1 < c1 < 1.

Without loss of generality, assume that p0,1 ≤ p1,1. Using (21), we can see that τ1 and τ0 satisfy the
following,

p0,1
1− τ0
1− c0

= p1,1 ·
1− τ1
1− c1

=⇒

1− τ1
1− τ0

=
p0,1
p1,1

1− c1
1− c0

, τ0 ∈ [c0, 1], τ1 ∈ [c1, 1]. (23)

Moreover, we can write Pr{Ỹ = 1} as follows,

Pr{Ỹ = 1} =
p0,1 · ( 1−τ0

1−c0
) + p1,1 · 1−τ1

1−c1

p0,1 · 1−τ0
1−c0

+ p0,0 · 1−τ0
1−b0

+ p1,0 · 1−τ1
1−b1

+ p1,1 · 1−τ1
1−c1

=⇒

Pr{Ỹ = 1} =
p0,1 · 1

1−c0
+ p1,1 · 1−τ1

1−τ0
1

1−c1

p0,1 · 1
1−c0

+ p0,0 · 1
1−b0

+ p1,0 · 1−τ1
1−τ0

1
1−b1

+ p1,1 · 1−τ1
1−τ0

1
1−c1

Since Pr{Ỹ = 1} is a function of 1−τ1
1−τ0

, τ0 and τ1 are optimal if they satisfy (23). For instance,
τ0 = c0 and τ1 = 1− p0,1

p1,1
(1− c1) are optimal thresholds.

A.4 Restating Theorem 5 for the statistical parity (SP) fairness notion

Here we restate Theorem 5 for the statistical parity. The proof is similar to the proof of Theorem 5.
Theorem 6. Let Z be the predictor derived by thresholding R ∈ {ρ1, . . . , ρn′} using thresholds
τ0, τ1. Moreover, assume that accuracy (i.e., Pr{Y = 1|Z = 1}) is increasing in τ0 and τ1, and
Pr{R = ρn′ |A = a} ≤ γ,∀a{0, 1}. Then, under γ-SP (i.e., |Pr{Z = 1|A = 0} − Pr{Z = 1|A =
1}| ≤ γ), one of the following pairs of thresholds is fair optimal.

• τ0 > ρn′ and τ1 = ρn′ (in this case, Pr{R ≥ τ0|A = 0} = 0).

• τ1 > ρn′ and τ0 = ρn′ (in this case, Pr{R ≥ τ1|A = 1} = 0).
9Uniform(p, q) denotes the uniform distribution in interval [p, q].
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A.5 Deriving Pr{Ỹ = 1} in terms of τ̃0 and τ̃1

Note that (X,Y ) and Ã are conditionally independent given A.

Pr{Ỹ = 1} =
Pr{Z̃ = 1, Y = 1}

Pr{Z̃ = 1}
=

∑
a,ã∈{0,1} Pr{r(X, Ã) ≥ τ̃ã, Y = 1, A = a, Ã = ã}∑

a,ã∈{0,1} Pr{r(X, Ã) ≥ τ̃ã, A = a, Ã = ã}
.

Pr{r(X, Ã) ≥ τ̃a, Y = 1, A = a, Ã = a} = Pr{A = a} · Pr{r(X, a) ≥ τ̃a, Y = 1, Ã = a|A = a} =

Pr{A = a} · Pr{r(X, a) ≥ τ̃a, Y = 1|A = a} · Pr{Ã = a|A = a} =
eϵ

1 + eϵ
F r(X,a),A,Y (τ̃a, a, 1).

Similarly, we have,

Pr{r(X, Ã) ≥ τ̃a, Y = 1, A = 1− a, Ã = a} =
1

1 + eϵ
F r(X,a),A,Y (τ̃a, 1− a, 1).

Pr{r(X, Ã) ≥ τ̃a, A = a, Ã = a} =
eϵ

1 + eϵ
F r(X,a),A(τ̃a, a).

Pr{r(X, Ã) ≥ τ̃a, A = 1− a, Ã = a} =
1

1 + eϵ
F r(X,a),A(τ̃a, 1− a).

As a result,

Pr{Ỹ = 1} =
eϵ

∑
a F r(X,a),A,Y (τ̃a, a, 1) +

∑
a F r(X,a),A,Y (τ̃a, 1− a, 1)

eϵ
∑

a F r(X,a),A(τ̃a, a) +
∑

a F r(X,a),A(τ̃a, 1− a)
. (24)

A.6 Deriving equal opportunity fairness constraint in terms of βã,ŷ

For the equal opportunity, we have,
Pr{Z = 1|Y = 1, A = 0} = Pr{Z = 1|Y = 1, A = 1}.

Pr{Z = 1|Y = 1, A = 0} =
∑
ã,ŷ

Pr{Z = 1|Y = 1, A = 0, Ã = ã, r(Z, Ã) = ŷ}Pr{Ã = ã, r(Z, Ã) = ŷ|Y = 1, A = 0}

=
∑
ã,ŷ

Pr{Z = 1|Y = 1, A = 0, Ã = ã, r(Z, Ã) = ŷ}Pr{Ã = ã|A = 0}Pr{r(X, ã) = ŷ|Y = 1, A = 0}

=
∑
ŷ

β0,ŷ
eϵ

1 + eϵ
Pr{r(X, 0) = ŷ|Y = 1, A = 0} +

∑
ŷ

β1,ŷ
1

1 + eϵ
Pr{r(X, 1) = ŷ|Y = 1, A = 0}

Similarly, we have,
Pr{Z = 1|Y = 1, A = 1} =

∑
ã,ŷ

Pr{Z = 1|Y = 1, A = 1, Ã = ã, r(Z, Ã) = ŷ}Pr{Ã = ã, r(Z, Ã) = ŷ|Y = 1, A = 1}

=
∑
ã,ŷ

Pr{Z = 1|Y = 1, A = 1, Ã = ã, r(Z, Ã) = ŷ}Pr{Ã = ã|A = 1}Pr{r(X, ã) = ŷ|Y = 1, A = 1}

=
∑
ŷ

β0,ŷ
1

1 + eϵ
Pr{r(X, 0) = ŷ|Y = 1, A = 1} +

∑
ŷ

β1,ŷ
eϵ

1 + eϵ
Pr{r(X, 1) = ŷ|Y = 1, A = 1}

Therefore, the equal opportunity fairness notion can be written as follows,

∑
ŷ

β0,ŷ
1

1 + eϵ
Pr{r(X, 0) = ŷ|Y = 1, A = 1}+

∑
ŷ

β1,ŷ
eϵ

1 + eϵ
Pr{r(X, 1) = ŷ|Y = 1, A = 1}

=
∑
ŷ

β1,ŷ
1

1 + eϵ
Pr{r(X, 1) = ŷ|Y = 1, A = 0}+

∑
ŷ

β0,ŷ
eϵ

1 + eϵ
Pr{r(X, 0) = ŷ|Y = 1, A = 0}

A.7 Numerical Experiment

We compared EO and ES fairness notions in Table 2 after adding the following constraints to (13).

Pr{No one is selected in 100 time steps} =
(
Pr{R < τA}

)100
=

(
Pr{A = 0}Pr{R < τ0|A = 0}+ Pr{A = 1}Pr{R < τ1|A = 1}

)100 ≤ ψ, (25)
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Figure 2: Effect of the time constraint on the accuracy and disparity.

where ψ was equal to 0.5 in that experiment. The above condition makes the experiment more
practical and implies that there is a time limit in selecting an individual/applicant.

In this part, we study the effect of probability ψ on the selection rate and accuracy. Smaller ψ implies
that the time constraint is more strict. Figure 2a illustrates the accuracy as a function of ψ. As
expected, smaller ψ worsens the accuracy under EO and ES. However, the parameter ψ has relatively
stronger impact on the accuracy under ES.

Figure 2b illustrates Pr{Ea, Ỹ = 1} as a function of ψ. It shows that smaller ψ is able to improve
the disparity (i.e., γ = |Pr{Ỹ = 1, E0} − Pr{Ỹ = 1, E1}|) under EO.

A.8 Proofs

Theorem1.

Pr{Ea, Ỹ = 1} =

∞∑
i=1

Pr{Ai = a,Ri = 1, Yi = 1} × Pr{Ri−1 = 0} × · · · × Pr{R1 = 0}

=
Pr{A = a,R = 1, Y = 1}

1− Pr{R = 0}

To ensure that Pr{E0, Ỹ = 1} = Pr{E1, Ỹ = 1}, we must have,

Pr{E0, Ỹ = 1} = Pr{E1, Ỹ = 1}

⇔ Pr{A = 0, R = 1, Y = 1}
1− Pr{R = 0}

=
Pr{A = 1, R = 1, Y = 1}

1− Pr{R = 0}
⇔ Pr{A = 0, R = 1, Y = 1} = Pr{A = 1, R = 1, Y = 1}.

Corollary 1. Suppose the binary classifier r(·, ·) satisfies equal opportunity fairness, i.e., R satisfies
the following constraint,

Pr{R = 1|A = 0, Y = 1} = Pr{R = 1|A = 1, Y = 1}. (26)

Based on Theorem 1, equation (26) implies equation (3) if and only if

Pr{A = 0, Y = 1} = Pr{A = 1, Y = 1}.
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Theorem 2. Let α̂a,ŷ be the solution to (5) and
∑

ŷ,a :=
∑

ŷ∈{0,1},a∈{0,1}. Note that α̂a,ŷ is also a
feasible point for (4). We prove the theorem by contradiction. Assume that α̂a,ŷ is not the optimal
solution for (4). Therefore, there exists αa,ŷ, a ∈ {0, 1}, ŷ ∈ {0, 1} such that,∑

ŷ,a αa,ŷ · Pr{R = ŷ, Y = 1, A = a}∑
ŷ,a αa,ŷ · Pr{A = a,R = ŷ}

>

∑
ŷ,a α̂a,ŷ · Pr{R = ŷ, Y = 1, A = a}∑

ŷ,a α̂a,ŷ · Pr{A = a,R = ŷ}
.

Let αmax = maxa,ŷ αa,ŷ .We define α̃a,ŷ as follows,

α̃a,ŷ =
αa,ŷ

αmax

minŷ,a Pr{A = a,R = ŷ}∑
ŷ,a

αa,ŷ

αmax
· Pr{A = a,R = ŷ}

. (27)

It is easy to see that α̃a,ŷ ∈ [0, 1], a ∈ {0, 1}, ŷ ∈ {0, 1}, and it is a feasible point for optimization
problem (5). Moreover, we have,∑

ŷ,a αa,ŷ · Pr{R = ŷ, Y = 1, A = a}∑
ŷ,a αa,ŷ · Pr{A = a,R = ŷ}

=

∑
ŷ,a α̃a,ŷ · Pr{R = ŷ, Y = 1, A = a}∑

ŷ,a α̃a,ŷ · Pr{A = a,R = ŷ}

>

∑
ŷ,a α̂a,ŷ · Pr{R = ŷ, Y = 1, A = a}∑

ŷ,a α̂a,ŷ · Pr{A = a,R = ŷ}
.

Note that since α̃a,ỹ and α̃a,ỹ, a ∈ {0, 1}, ŷ ∈ {0, 1} are feasible for problem (5), we conclude that,∑
ŷ,a

α̃a,ŷ · Pr{R = ŷ, Y = 1, A = a} >
∑
ŷ,a

α̂a,ŷ · Pr{R = ŷ, Y = 1, A = a}.

This implies that α̂a,ŷ, a ∈ {0, 1}, ŷ ∈ {0, 1} is not optimal for (5). This is a contradiction, and
α̂a,ŷ, a ∈ {0, 1}, ŷ ∈ {0, 1} is the solution for both (4) and (5).

Next, we prove the second part of the theorem.

Proof by contradiction. Assume that optimization problem (5) does not have a solution, and αa,ŷ ∈
[0, 1], a ∈ {0, 1}, ŷ ∈ {0, 1} is the solution to (4). It is easy to see that α̃a,ŷ define in (27) is a feasible
point for (5). This is a contradiction because a linear optimization with a closed and bounded and
non-empty feasible set has an optimal solution. This concludes the proof.

Theorem 3. Let predictor Z be the solution to optimization problem (4). Without loss of generality,
suppose Pr{R = 1, Y = 1, A = 0} ≤ Pr{R = 1, Y = 1, A = 1}. Consider the following feasible
point of optimization problem (4):

α̂00 = 0, α̂10 = 0, α̂01 = 1, α̂11 =
Pr{R = 1, Y = 1, A = 0}
Pr{R = 1, Y = 1, A = 1}

.

Using these parameters, we can derive a new predictor noted as Ẑ. Note that Pr{R = 1|Ẑ = 1} = 1

holds. Moreover, Since Ẑ is a suboptimal solution to optimization problem (4), Pr{Y = 1|Ẑ =
1} ≤ Pr{Y = 1|Z = 1} and we have,

|Pr{Y = 1|Z∗ = 1} − Pr{Y = 1|Z = 1}| ≤ |Pr{Y = 1|Z∗ = 1} − Pr{Y = 1|Ẑ = 1}| ≤

|Pr{Y = 1|Z∗ = 1} − Pr{Y = 1|R = 1}|+ |Pr{Y = 1|Ẑ = 1} − Pr{Y = 1|R = 1}| ≤

ϵ+ |Pr{Y = 1|Ẑ = 1} − Pr{Y = 1|R = 1}|.

Moreover, we have,

Pr{Y = 1|Ẑ = 1} = Pr{Y = 1|Ẑ = 1, R = 1}·Pr{R = 1|Ẑ = 1}︸ ︷︷ ︸
1

=
Pr{Y = 1|R = 1}
Pr{Ẑ = 1|R = 1}

Pr{Ẑ = 1|Y = 1, R = 1},

Pr{Ẑ = 1|R = 1} = P (A = 0|R = 1) + P (A = 1|R = 1)α̂11,
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Pr{Ẑ = 1|Y = 1, R = 1} = Pr{A = 0|Y = 1, R = 1}+ Pr{A = 1|Y = 1, R = 1}α̂11,

=⇒ |Pr{Y = 1|Z∗ = 1} − Pr{Y = 1|Z = 1}| ≤

ϵ+ |Pr{Y = 1|R = 1} (1− Pr{A = 0|Y = 1, R = 1}+ Pr{A = 1|Y = 1, R = 1}α̂11

P (A = 0|R = 1) + P (A = 1|R = 1)α̂11
)︸ ︷︷ ︸

0

|.

Since we assumed Pr{A = a|Y = 1, R = 1} ∈ Pr{A = a|R = 1},∀a{0, 1}, the second term in
above equation is zero, and the theorem has been proved.

=⇒ |Pr{Y = 1|Z∗ = 1} − Pr{Y = 1|Z = 1}| ≤ ϵ.

Lemma 1. Based on the Theorem 1, predictor Z satisfies the ES fairness notion if

Pr{Z = 1, A = 0, Y = 1} = Pr{Z = 1, A = 1, Y = 1}.

We use the law of total probability to rewrite the above condition using βa,ŷ. Note that Ã is derived
directly from A and is conditionally independent of (X,Y ) given A. We have,

Pr{Z = 1, A = 1, Y = 1}
=

∑
ã,ŷ

Pr{Z = 1, Ã = ã, r(X, Ã) = ŷ, A = 1, Y = 1}

=
∑
ã,ŷ

Pr{Z = 1|Ã = ã, r(X, Ã) = ŷ, A = 1, Y = 1} · Pr{Ã = ã, r(X, Ã) = ŷ, A = 1, Y = 1}

=
∑
ã,ŷ

Pr{Z = 1|Ã = ã, r(X, Ã) = ŷ} · Pr{Ã = ã, r(X, ã) = ŷ|A = 1, Y = 1}Pr{A = 1, Y = 1}

=
∑
ã,ŷ

βã,ŷ · Pr{Ã = ã|A = 1, Y = 1}Pr{r(X, ã) = ŷ|A = 1, Y = 1}Pr{A = 1, Y = 1}

=
∑
ã,ŷ

βã,ŷ ·
exp{ϵ · I(ã = 1)}

1 + exp{ϵ}
Pr{r(X, ã) = ŷ, A = 1, Y = 1},

where indicator function I(s) = 1 if statement s is true, otherwise I(s) = 0. Similarly, we have,

Pr{Z = 1, A = 0, Y = 1} =
∑
ã,ŷ

βã,ŷ ·
exp{ϵ · I(ã = 0)}

1 + exp{ϵ}
Pr{r(X, ã) = ŷ, A = 0, Y = 1}.

Therefore, Z satisfies the ES fairness notion if the following holds,

Pr{Z = 1, A = 0, Y = 1} = Pr{Z = 1, A = 1, Y = 1}
⇔ β0,0 · eϵ · Pr{r(X, 0) = 0, A = 0, Y = 1}+ β0,1 · eϵ · Pr{r(X, 0) = 1, A = 0, Y = 1}

+β1,0 · Pr{r(X, 1) = 0, A = 0, Y = 1}+ β1,1 · Pr{r(X, 1) = 1, A = 0, Y = 1}
= β0,0 · Pr{r(X, 0) = 0, A = 1, Y = 1}+ β0,1 · Pr{r(X, 0) = 1, A = 1, Y = 1}

+β1,0 · eϵ Pr{r(X, 1) = 0, A = 1, Y = 1} + β1,1 · eϵ · Pr{r(X, 1) = 1, A = 1, Y = 1}.
(28)

Lemma 2. We rewrite (28) as follows,

0 = β0,0 · (eϵ · Pr{r(X, 0) = 0, A = 0, Y = 1} − Pr{r(X, 0) = 0, A = 1, Y = 1})
+β0,1 · (eϵ · Pr{r(X, 0) = 1, A = 0, Y = 1} − Pr{r(X, 0) = 1, A = 1, Y = 1})
+β1,0 · (Pr{r(X, 1) = 0, A = 0, Y = 1} − eϵ Pr{r(X, 1) = 0, A = 1, Y = 1})
+β1,1 · (Pr{r(X, 1) = 1, A = 0, Y = 1} − eϵ Pr{r(X, 1) = 1, A = 1, Y = 1}).
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If Equation (8) holds, then eϵ · Pr{r(X, a) = 1, A = a, Y = 1} > 1,∀a ∈ {0, 1}. Therefore,
(eϵ · Pr{r(X, 0) = 0, A = 0, Y = 1} − Pr{r(X, 0) = 0, A = 1, Y = 1}) is a positive coefficient
and (Pr{r(X, 1) = 1, A = 0, Y = 1}−eϵ Pr{r(X, 1) = 1, A = 1, Y = 1}) is a negative coefficient.
Therefore, above linear equation has a feasible point other than β0,0 = β0,1 = β1,0 = β1,1 = 0.

Theorem 4. First, we find Pr{Ỹ = 1} as a function of βã,ŷ . We have,

Pr{Ỹ = 1} =

∞∑
i=1

Pr{Zi = 1, Yi = 1} × Pr{Zi−1 = 0} × · · · × Pr{Z1 = 0}

=
Pr{Z = 1, Y = 1}
1− Pr{Z = 0}

=
Pr{Z = 1, Y = 1}

Pr{Z = 1}
= Pr{Y = 1|Z = 1},

Pr{Z = 1, Y = 1} =
∑
ã,ŷ

Pr{Z = 1, Y = 1|Ã = ã, r(X, Ã) = ŷ} · Pr{Ã = ã, r(X, Ã) = ŷ}

=
∑
ã,ŷ

βã,ŷ · Pr{Y = 1|Ã = ã, r(X, Ã) = ŷ} · Pr{Ã = ã, r(X, Ã) = ŷ}

=
∑
ã,ŷ

βã,ŷ · Pr{Y = 1, Ã = ã, r(X, Ã) = ŷ}

=
∑
ã,ŷ

βã,ŷ ·
(
Pr{Y = 1, Ã = ã, r(X, Ã) = ŷ, A = ã}

+ Pr{Y = 1, Ã = ã, r(X, Ã) = ŷ, A = 1− ã}
)

=
∑
ã,ŷ

βã,ŷ ·
(
Pr{Ã = ã|A = ã}Pr{Y = 1, r(X, ã) = ŷ|A = ã}Pr{A = ã}

+ Pr{Ã = ã|A = 1− ã}Pr{Y = 1, r(X, ã) = ŷ|A = 1− ã}Pr{A = 1− ã}
)

=
∑
ã,ŷ

βã,ŷ ·
( eϵ

1 + eϵ
Pr{Y = 1, r(X, ã) = ŷ|A = ã}Pr{A = ã}

+
1

1 + eϵ
Pr{Y = 1, r(X, ã) = ŷ|A = 1− ã}Pr{A = 1− ã}

)
Pr{Z = 1} =

∑
ã,ŷ

βã,ŷ ·
( eϵ

1 + eϵ
Pr{r(X, ã) = ŷ|A = ã}Pr{A = ã}

+
1

1 + eϵ
Pr{r(X, ã) = ŷ|A = 1− ã}Pr{A = 1− ã}

)
.

We can see that Pr{Ỹ = 1} is not a linear function in βã,ŷ. As a result, optimization problem (9) is
not a linear program.

Now we prove the first part of the theorem using contradiction. Note that β̂ã,ŷ is a feasible point for
optimization problem (9). If β̂ã,ŷ is not optimal for (9), then there exists βã,ŷ such that the objective
function of (9) at βã,ŷ is higher than that at β̂ã,ŷ . With the similar approach as the proof of Theorem 1,
we can show that the existence of βã,ŷ implies that β̂ã,ŷ is not optimal for (10) because β̃ã,ŷ defined
as follows is feasible and improves the objective function in (10).

β̃ã,ŷ =
βã,ŷ

βmax
·

minã,ŷ PA(ã) · eϵ · Pr(X,ã)|A(ŷ|ã) + PA(1− ã) · Pr(X,ã)|A(ŷ|1− ã)∑
ã,ŷ

βã,ŷ

βmax

(
PA(ã) · eϵ · Pr(X,ã)|A(ŷ|ã) + PA(1− ã) · Pr(X,ã)|A(ŷ|1− ã)

) ,
where βmax = maxã∈{0,1},ŷ∈{0,1} βã,ŷ and Pr(X,ã)|A(ŷ|ã) := Pr{r(X, ã) = ŷ|A = ã}, PA(ã) :=
Pr{A = ã} are defined to simplify notations.

This contradiction shows that β̂ã,ŷ is optimal for optimization problem (9).

The proof of the second part of the theorem is similar to the first part. Proof by contradiction. Assume
that βã,ŷ is the solution to optimization problem (9), and (10) does not have a solution. In this case,
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we can show that β̃ã,ŷ defined as follows is a feasible point for (10).

β̃ã,ŷ =
βã,ŷ

βmax
·

minã,ŷ PA(ã) · eϵ · Pr(X,ã)|A(ŷ|ã) + PA(1− ã) · Pr(X,ã)|A(ŷ|1− ã)∑
ã,ŷ

βã,ŷ

βmax

(
PA(ã) · eϵ · Pr(X,ã)|A(ŷ|ã) + PA(1− ã) · Pr(X,ã)|A(ŷ|1− ã)

) .
Since (10) is a linear program and with a bounded and non-empty feasible set, it has at least a solution.
This is a contradiction which proves the second part of the theorem.

Theorem 5. Note that the assumption that accuracy Pr{Y = 1|Z = 1} is increasing in τ0 and τ1
implies that an applicant with a higher score is more likely to be qualified and the policy with a larger
threshold leads to higher accuracy. In other words, under this assumption, the decision-maker should
make thresholds as large as possible to maximize the accuracy. We have,

Pr{Y = 1|Z = 1} =

Pr{Y = 1|R ≥ τ0, A = 0}Pr{A = 0|Z = 1}+ Pr{Y = 1|R ≥ τ1, A = 1}Pr{A = 1|Z = 1}.

Since Pr{Y = 1|Z = 1} is increasing in thresholds τ0 and τ1, it is optimal to select τ0 = ρn′

and τ1 > ρn′ if Pr{Y = 1|R = ρn′ , A = 0} ≥ Pr{Y = 1|R = ρn′ , A = 1}. That is, no one
with sensitive attribute A = 1 is selected, and only an applicant with sensitive attribute A = 0
and the highest possible score is selected. Note that τ0 and τ1 satisfy EO because we assumed that
Pr{R = ρn′ |A = a, Y = 1} < γ.

Similarly, it is optimal to select τ1 = ρn′ and τ0 > ρn′ if Pr{Y = 1|R = ρn′ , A = 1} ≥ Pr{Y =
1|R = ρn′ , A = 0}.

Lemma 3 . Based on Theorem 1, to satisfy the ES fairness notion, the following should hold,

Pr{r(X, Ã) ≥ τ̃Ã, A = 0, Y = 1} = Pr{r(X, Ã) ≥ τ̃Ã, A = 1, Y = 1},

where

Pr{r(X, Ã) ≥ τ̃Ã, A = a, Y = 1}
= Pr{r(X, Ã) ≥ τ̃Ã, A = a, Y = 1, Ã = a}+ Pr{r(X, Ã) ≥ τ̃Ã, A = a, Y = 1, Ã = 1− a}
= Pr{r(X, a) ≥ τ̃a|Y = 1, A = a} · Pr{Ã = a|Y = 1, A = a} · Pr{Y = 1, A = a}

+Pr{r(X, 1− a) ≥ τ̃1−a|Y = 1, A = a} · Pr{Ã = 1− a|Y = 1, A = a} · Pr{Y = 1, A = a}

= Pr{r(X, a) ≥ τ̃a|Y = 1, A = a} · eϵ

1 + eϵ
· Pr{Y = 1, A = a}

+Pr{r(X, 1− a) ≥ τ̃1−a|Y = 1, A = a} · 1

1 + eϵ
· Pr{Y = 1, A = a}

Therefore, the ES fairness notion is satisfied if and only if

Pr{r(X, 0) ≥ τ̃0|Y = 1, A = 0} · eϵ

1 + eϵ
· Pr{Y = 1, A = 0}

+ Pr{r(X, 1) ≥ τ̃1|Y = 1, A = 0} · 1

1 + eϵ
· Pr{Y = 1, A = 0}

= Pr{r(X, 1) ≥ τ̃1|Y = 1, A = 1} · eϵ

1 + eϵ
· Pr{Y = 1, A = 1}

+ Pr{r(X, 0) ≥ τ̃0|Y = 1, A = 1} · 1

1 + eϵ
· Pr{Y = 1, A = 1}
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