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Abstract

There has been a recent surge of interest in designing Graph Neural Networks
(GNNs) for semi-supervised learning tasks. Unfortunately this work has assumed
that the nodes labeled for use in training were selected uniformly at random (i.e.
are an IID sample). However in many real world scenarios gathering labels for
graph nodes is both expensive and inherently biased – so this assumption can not
be met. GNNs can suffer poor generalization when this occurs, by overfitting
to superfluous regularities present in the training data. In this work we present
a method, Shift-Robust GNN (SR-GNN), designed to account for distributional
differences between biased training data and a graph’s true inference distribution.
SR-GNN adapts GNN models to the presence of distributional shift between the
nodes labeled for training and the rest of the dataset. We illustrate the effectiveness
of SR-GNN in a variety of experiments with biased training datasets on common
GNN benchmark datasets for semi-supervised learning, where we see that SR-
GNN outperforms other GNN baselines in accuracy, addressing at least ∼40% of
the negative effects introduced by biased training data. On the largest dataset we
consider, ogb-arxiv, we observe a 2% absolute improvement over the baseline
and are able to mitigate 30% of the negative effects from training data bias 1.

1 Introduction

The goal of graph-based semi-supervised learning (SSL) is to use relationships between data (its
graph inductive bias), along with a small set of labeled items, to predict the labels for the rest of a
dataset. Unsurprisingly, varying exactly which nodes are labeled can have a profound effect on the
generalization capability of a SSL classifier. Any bias in the sampling process to select nodes for
training can create distributional differences between the training set and the rest of the graph. During
inference any portion of the graph can be used, so any uneven labeling for training data can cause
training and test data to have different distributions. An SSL classifier may then overfit to training
data irregularities, thus hurting the performance at inference time.

Recently, GNNs have emerged as a way to combine graph structure with deep neural networks.
Surprisingly, most work on semi-supervised learning using GNNs for node classification [15, 11, 1]
have ignored this critical problem, and even the most recently proposed GNN benchmarks [12]
assume that an independent and identically distributed (IID) sample is possible for training labels.

1Code and processed data are available at https://github.com/GentleZhu/Shift-Robust-GNNs.
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This problem of biased training labels can be quite pronounced when GNNs are applied for semi-
supervised learning in practice. It commonly happens when the size of the dataset is so large that
only a subset of it can afford to be labeled – the exact situation where graph-based SSL is supposed
to have a value proposition! While the specific source of bias can vary, we have encountered it in
many different settings. For example, sometimes fixed heuristics are used to select a subset of data
(which shares some characteristics) for labeling. Other times, human analysts individually choose
data items for labeling, using complex domain knowledge. However, even this can be rooted in
shared characteristics of data. In yet another scenario, a label source may have some latency, causing
a temporal mismatch between the distribution of data at time of labeling and at the time of inference.
In all of these cases, the core problem is that the GNN overfits to spurious regularities as the subset
of labeled data could not be created in an IID manner.

One particular area where this can apply is in the spam and abuse domain, a common area of
application for GNNs [18, 10, 33]. However, the labels in these problems usually come from explicit
human annotations, which are both sparse (as human labelling is expensive), and also frequently
biased. Since spam and abuse problems typically have very imbalanced label distributions (e.g. in
many problems there are relatively few abusers – typically less than 1:100), labeling nodes IID results
in discovering very few abusive labels. In this case choosing the points to request labels for in an IID
manner is simply not a feasible option if one wants to have a reasonable number of data items from
the rare class.

In this paper, we seek to quantify and address the problem of localized training data in Graph Neural
Networks. We frame the problem as that of transfer learning – seeking to transfer the model’s
performance from a small biased portion of the graph to the entire graph itself. Our proposed
framework for addressing this problem, Shift-Robust GNN (SR-GNN), strives to adapt a biased
sample of labeled nodes to more closely conform to the distributional characteristics present in an
IID sample of the graph. It can handle two kinds of bias that occur in both deeper GNNs and more
recent linearized (shallow) versions of these models.

First we consider the case of addressing distributional shift for standard GNN models such as
GCNs [15], MPNNs [7], and many more [5]. These models create deep networks which iteratively
convolve information over graph structure. SR-GNN addresses this variety of distributional shift
via a regularization over the hidden layers of the network. Second, we consider a class of linearized
models (APPNP [16], SimpleGCN [34], etc) which decouple GNNs into non-linear feature encoding
and linear message passing. These models present an interesting challenge for debiasing, as the graph
can introduce bias over the features after all learnable layers. In cases like this, SR-GNN can use an
instance reweighting paradigm to ensure that the training examples are as representative as possible
over the graph data.

We illustrate the effectiveness of our proposed method on both paradigms with an experimental
framework that introduces bias to the train/test split in a GNN, which lets us simulate the ‘localized
discovery’ pattern observed in real applications on fully-labeled academic datasets. With these
experiments we show that that our method SR-GNN can recover at least 40% of the performance lost
when training a GCN on the same biased input.

Specifically, our contributions are the following:

1. We provide the first focused discussion on the distributional shift problem in GNNs.
2. We propose generalized framework, Shift-Robust GNN (SR-GNN), which can address shift

in both shallow and deep GNNs.
3. We create an experimental framework which allows for creating biased train/test sets for

graph learning datasets.
4. We run extensive experiments and analyze the results, proving that our methods can mitigate

distributional shift.

2 Related Work

2.1 Distributional shift and Domain adaption work

Standard learning theory (i.e. PAC, empirical risk minimization, etc.) assumes that training and
inference data is drawn from the same distribution, but there are many practical cases where this
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does not hold. The question of dealing with different distributions has been widely explored as a part
of the transfer learning literature. In transfer learning, the domain adaptation problem deals with
transferring knowledge from the source domain (used for learning) to the target domain (the ultimate
inference distribution).

One of the first theoretical works on domain adaptation [3] developed a distance function between a
model’s performance on the source and target domains to describe how similar they are. To obtain
a final model, training then happens on a reweighed combination of source and target data, where
weights are a function of the domain’s distance. Much additional theoretical (e.g. [22]) and practical
work expanded this idea and explored models which are co-trained on both source and target data.
These models seek to optimize utility while minimizing the distance between extracted features
distributions on both domains; this in turn led to the field of Domain Invariant Representation Learning
(DIR) [6]. DIR is commonly achieved via co-training on labeled source and (unlabeled) target data.
A modification to the loss either uses an adversarial head or adds additional regularizations.

More recently, various regularizations using discrepancy measures have been shown to be more stable
to hyperparameters and result in better performance than adversarial heads, faster loss convergence
and easier training. Maximum mean discrepancy (MMD) [19, 20] is a metric that measures difference
between means of distributions in some rich Hilbert kernel space. Central moment discrepancy
(CMD) [38] extends this idea and matches means and higher order moments in the original space
(without the projection into the kernel). CMD has been shown to produce superior results and is less
susceptible to the weight with which CMD regularization is added to the loss [20].

It is important to point out that MMD and CMD regularizations are commonly used with non-linear
networks on some hidden layer (e.g. on extracted features). For linear models or non-differentiable
models, prior work for domain adaptation often employed importance-reweighting instead. To find
the appropriate weights, the same MMD distance was often used: in kernel mean matching (KMM)
to find the appropriate weights one essentially minimizes MMD distance w.r.t the instance weights
[17].

2.2 GNNs

Given a graph G = {V,E,X}, the nodes V are associated with their features X (X ∈ R|V |×F )
and the set of edges E (i.e. adjacency matrix A, A ∈ R|V |×|V |) which form connections between
them. Graph neural networks [15] are neural networks that operate on both node features and graph
structures. The core assumption of GNNs is that the structure of data (A) can provide a useful
inductive bias for many modeling problems. GNNs output node representations Z which are used for
unsupervised [30] or semi-supervised [15, 11] learning. We denote the labels for SSL as {yi}.
The general architecture Φ of a GNN consists of K neural network layers which encode the nodes
and their neighborhood information using some learnable weights θ. More specifically the output
of layer k of a GNN contains a row (hki ) which can be used as a representation for each node i, i.e.
zki = hki . Successive layers mix the node representations using graph information, for example:

Hk = σ(ÃHk−1θk) (1)
where Ã is an appropriately normalized adjacency matrix2, σ is the activation function, and H0 = X .
For brevity’s sake, we refer to the final latent representations ZK simply as Z throughout the work.

Although no existing work studies the distributional shift problem in GNNs, transfer learning of
GNNs [13, 39] has explored different node-level and graph-level pre-training tasks across different
graphs. Alternatively, domain adaption methods have been used to optimize a domain classifier
between source and target graphs [21, 35]. In addition, distribution discrepancy minimization (MMD)
has been adopted to train network embedding across domains [28]. Other regularizations for the
latent state of GNNs have been proposed for domains like fairness [23]. We are the first to notice the
importance of distributional shift on the same graph in a realistic setting and analyze its influence on
different kinds of GNNs.

2The exact use of the adjacency matrix varies with specific GNN methods. For instance, the GCN [15]
performs mean-pooling using matrix multiplication: Ã = D− 1

2 (A + I)D− 1
2 where I is the identity matrix,

and D is the degree matrix of (A+ I), Dii =
∑

j(A+ I)ij .
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3 Distributional shift in GNNs

To learn an SSL classifier, a cross-entropy loss function l is commonly used,

L =
1

M

M∑
i=1

l(yi, zi), (2)

where zi is the node representation for the node i learned from a graph neural network, and M is the
number of training examples. When the training and testing data come from the same domain (i.e.
Prtrain(X,Y ) = Prtest(X,Y )), optimizing the cross entropy loss over the training data ensures that a
classifier is well-calibrated for performing inference on the testing data.

3.1 Data shift as representation shift

However, a mismatch between the training and testing distributions (i.e. Prtrain(X,Y ) 6=
Prtest(X,Y )) is a common challenge for machine learning [25, 29].

In this paper, we care about the distributional shift between training and test datasets present in Z,
the output of the last activated hidden layer. Given that the foundation of standard learning theory
assumes Prtrain(Y |Z) = Prtest(Y |Z), the main cause of distribution shift is the representation shift,
i.e. Prtrain(Z, Y ) 6= Prtest(Z, Y ) → Prtrain(Z) 6= Prtest(Z). To measure such a shift, discrepancy
metrics such as MMD [8] or CMD [37] can be used. CMD measures the direct distance between
distributions p and q as the following [37]:

CMD =
1

|b− a|
‖E (p)− E (q)‖2 +

∞∑
k=2

1

|b− a|k
‖ck (p)− ck (q)‖2, (3)

where ck is k-th order moment and a, b denotes the joint distribution support of the distributions. In
practice, only a limited number of moments is usually included (e.g. k=5). In this work we focus on
the use of CMD [37] as a distance metric to measure distributions discrepancy for efficiency.

(a) Cora (b) Citeseer (c) Pubmed

Figure 1: Distribution shift lowers performance on GNN datasets. For each dataset, we show the performance
(F1:y-axis) vs their distribution shift (CMD:x-axis) for 100 biased training set samples .

We note that GNNs (Eq (1)) are different from traditional neural networks, where the output for a
layer K is defined as Hk = σ(Hk−1θk). Instead, the multiplication of the normalized adjacency
matrix (Hk = σ(ÃHk−1θk)) essentially changes the output distribution of the hidden representation
via the graph’s inductive bias. Hence, in a semi-supervised GNN, a biased training sample can lead to
large representation shift due to both the graph’s inductive bias in addition to ‘normal’ shift between
non-IID sampled feature vectors.

Formally, we start the analysis of distributional shift as follows.
Definition 3.1 (Distribution shift in GNNs). Assume node representations Z = {z1, z2, . . . , zn} are
given as an output of the last hidden layer of a graph neural network on graph G with n nodes. Given
labeled data {(xi, yi)} of size M, the labeled node representation Zl = (z1, . . . , zm) is a subset of
the nodes that are labeled, Zl ⊂ Z. Assume Z and Zl are drawn from two probability distributions p
and q. The distribution shift in GNNs is then measured via a distance metric d(Z,Zl).

Interestingly, it can be empirically shown that the effects of distribution shift due to sample bias
directly lower the performance of models. To illustrate this, we plot the distribution shift distance
values (x-axis) and corresponding model accuracy (y-axis) for three common GNN benchmarks using
the classic GCN model [15] in Figure 1. The results demonstrate that the performance of GNNs for
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Figure 2: A comparison between a traditional GNN, a linearized GNN and our framework (SR-GNN).

node classification on these datasets is inversely related to the magnitude of distributional shift and
motivates our investigation into distribution shift.

4 Shift-Robust Graph Neural Networks

In this section, we will address the distributional shift problem (Prtrain(Z) 6= Prtest(Z)) in GNNs by
proposing ways to mitigate the shift for two different GNN models (Section 4.1 and 4.2, respectively).
Subsequently, we introduce SR-GNN (Fig.2) as a general framework that reduces distributional
shifts for both differentiable and non-differentiable (e.g. graph inductive bias) sources simultaneously
in Section 4.3.

4.1 Scenario 1: Traditional GNN models

We begin by considering a traditional GNN model Φ, a learnable function F with parameters Θ, over
some adjacency matrix A:

Φ = F(Θ, Z,A). (4)
In the original GCN [15], the graph inductive bias is multiplicative at each layer and gradients are
back propagated through all of the layers. In the last activated hidden layers, we denote a bounded
node representation3 as Z ≡ Zk = Φ(Θ, Zk−1, A), Zk ∈ [a, b]n, Z0 = X .

Let us denote the training samples as {xi}Mi=1, the node representations are Ztrain = {zi}Mi=1. For the
test samples, we sample an unbiased IID sample from unlabeled data XIID = {x′i}Mi=1 and denote the
output representations as ZIID = {z′i}Mi=1.

In order to mitigate the distributional shift between training and testing, we propose a regularizer
d : [a, b]n × [a, b]n → R+ that is added to the cross entropy loss. Since Φ is fully differentiable, we
can use a distributional shift metric as a regularization to directly minimize the discrepancy between
a biased and unbiased IID sample like so:

L =
1

M

∑
i

l(yi, zi) + λ · d(Ztrain, ZIID). (5)

Here we consider the central moment discrepancy regularizer, dCMD:

dCMD(Ztrain, ZIID) =
1

b− a
‖E(Ztrain)−E(ZIID)‖+

∞∑
k=2

1

|b− a|k
‖ck(Ztrain)− ck(ZIID)‖, (6)

where E(Z) = 1
M

∑
zi and ck(Z) = E(Z −E(Z))k is the k-th order moment. In practice, we use

moments up to the 5th order.

3We use a bounded activation function here, e.g. tanh or sigmoid.
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4.2 Scenario 2: Linearized GNN Models

Another family of recently proposed models for GNNs uses two distinct different functions – one for
non-linear feature transformation, and another for a linear graph spreading stage,

Φ = F2( F1(A)︸ ︷︷ ︸
linear function

,Θ, X). (7)

In such a linearized GNN model, the graph inductive bias is combined with node features by
a linear function F1, which is decoupled from multi-layer neural network feature encoder F2.
SimpleGCN [34] is an example of linearized model when F1(A) = AkX . Another branch of
linearized models [16, 4, 36] employs personalized pagerank to pre-compute the information diffusion
in a graph (i.e. F1(A) = α(I − (1− α)Ã)−1) and apply it on encoded node features F (Θ, X).

In both models, the graph inductive bias is provided as an input feature to a linear F1. Unfortunately,
as there are no learnable layers at this stage in these models, one can not simply apply the distributional
regularizer proposed in the previous section. In this case, we can view training and testing samples as
row-wise samples hi from F1(A). The problem of distribution shift Prtrain(Z) 6= Prtest(Z) can then
be transformed into matching the training and testing graph inductive bias feature space hi ∈ Rn
(where n is the number of the nodes in the graph). Then to generalize from training data to testing,
we can adopt an instance reweighting scheme to correct the bias, such that biased training sample
{hi}Mi=1 will be similar to an IID sample {h′i}Mi=1. The resulting cross entropy loss is then

L =
1

M
βil(yi,Φ(hi)), (8)

where βi be the weight for each training instance, and l is the cross-entropy loss. We can then
compute the optimal β via kernel mean matching (KMM) [9] by solving a quadratic problem,

min
βi

‖ 1

M

M∑
i=1

βiψ(hi)−
1

M ′

M ′∑
i=1

ψ(h′i)‖2, s.t. Bl ≤ β < Bu (9)

It tries to match the mean elements in a kernel space k(·, ·) on the domain Rn × Rn. Specifically,
ψ : Rn → H denotes the feature map to the reproducing kernel Hilbert space(RKHS) introduced
by kernel k. In our experiment, we use a mixture of gaussian kernel k(x, y) =

∑
αi

exp(αi‖x −
y‖2), αi = 1, 0.1, 0.01. The lower Bl and upper bound Bu constraints are there to make sure that
most of the instances get some reasonable weight, as opposed to only a few instances getting non
zero weight. In practice, we have multiple classes in the label space. To prevent label imbalance
introduced by β, we further require that the sum of β for a specific class c remains the same before
and after the correction,

∑M
i βi · I(li = c) =

∑M
i I(li = c),∀c.

4.3 Shift-Robust GNN Framework

Now we propose Shift-Robust GNN (SR-GNN) - our general training objective for addressing
distributional shift in GNNs:

LSR-GNN =
1

M
βil(yi,Φ(xi, A)) + λ · d(Ztrain, ZIID). (10)

The framework consists of both a regularization for addressing distributional shift in learnable layers
(Section 4.1) and an instance reweighting component which is capable of handling situations where a
graph inductive bias is added after feature encoding (Section 4.2).

We will now discuss a concrete instance of our framework, by applying it to the APPNP [16] model.
The APPNP model is defined as:

ΦAPPNP =

(
(1− α)kÃk + α

k−1∑
i=0

(1− α)iÃi

)
︸ ︷︷ ︸

approximated personalized page rank

F(Θ, X).︸ ︷︷ ︸
feature encoder

(11)

It first applies a feature encoder F on node features X and approximated personalized pagerank
matrix linearly. Thereby, we have hi = πppr

i , where πppr
i is the personalized pagerank vector. For

this, we mitigate distributional shifts from graph inductive bias via instance weighting. Moreover, let
Z = F(Θ, X) and we can further reduce the distributional shifts from non-linear networks by the
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proposed discrepancy regularizer d. In our experiments, we show the application of SR-GNN on
two other representative GNN models: GCN [15] and DGI [32].

5 Experiments

In this section we first describe how we create training set with a controllable amount of bias, then
discuss our experiment design, demonstrate the efficacy our proposed framework for handling bias as
well as its advantages over domain adaptation baselines, and finally, present a study on sensitivity to
the hyperparameters.

5.1 Biased Training Set Creation

In order to study distribution shift in GNNs, we require a repeatable process which can generate graph-
biased training sets. The core aspect of creating a biased sample for graph learning tasks requires an
efficient method for finding ‘nearby’ nodes in the graph for a particular seed node. In this work, we use
the Personalized PageRank (PPR) vectors to find such nearby nodes, Πppr = (I − (1−α)Ã)−1. PPR
vectors are well suited for this case for a number of reasons. First, several previous studies [36, 16]
have shown strong correlations between the information diffusion in GNNs and PPR vectors. Second,
a PPR vector can be computed for an individual node in time sublinear to the size of the graph [2] – so
biased training samples can be easily generated, even for large datasets. This local algorithm provides
a sparse approximation Πppr(ε) with guaranteed truncation error ε, such that we can efficiently
compute the top-γ entries of a ppr vector with controllable residuals. Therefore, using PPR we can
generate stable localized training data that can effectively challenge GNN models.

We obtain a biased sample from our scalable personalized pagerank sampler (PPR-S) as follows.
For a certain label ratio τ , we compute the number of training nodes needed per label in advance.
Then we repeatedly randomly select nodes that have enough neighbors in their sparse personalized
pagerank vector πppr

i (ε). We add both the seed nodes and their neighbors with the same label into the
training data until we have enough number of nodes for each label.

5.2 Experimental settings

Datasets. In our experiments, we perform semi-supervised node classification tasks on five popular
benchmark datasets: Cora, Citeseer, Pubmed [27], ogb-arxiv [26] and Reddit [11]. We use the
same validation and test splits as in the original GCN paper [15] and OGB benchmark. We use the
remaining nodes for training. For the unbiased baseline’s performance numbers, we use a random
sample from this training data. Similarly, for a biased training sample, we apply our biased sampler
PPR-S on the training nodes to obtain a biased training sample and report its performance. The
dataset statistics can be found in Appendix A.1.

Baselines. Following the two scenarios outlined in Section 4, we consider the following methods to
investigate their performance under distributional shifts: (1) Traditional GNN Models: GCN [15],
GAT [31], (2) Linearized GNNs: SGC [34] and APPNP [16]. We also include methods based on
unsupervised node representation learning (DeepWalk [24] and DGI [32]) as a third category (3). For
these methods, we use a linear classifier learned on top of pretrained node embeddings.

Scalable biased sampler. Our scalable biased sampler uses Personalized PageRank to efficiently
create biased training samples in large graphs. Details are omitted for brevity here, but a full
description can be found in Appendix A.2.

Our Method. If not otherwise specified, we consider the APPNP [16] instance of Shift-Robust as our
base model, and also provide two ablations of it. These ablations independently use the shift-robust
techniques introduced in Section 4.1 and 4.2 to validate the effectiveness of SR-GNN.

Hyperparameters. The main hyper parameters in our sampler PPR-S are α = 0.1,γ = 100. When
the graph is large, we set ε = 0.001 in the local algorithm for sparse PPR approximation. In SR-
GNN, λ = 1.0 is the penalty parameter for the discrepancy regularizer d, the lower bound for the
instance weight Bl is 0.2. For all of the GNN methods except DGI, we set the hidden dimension as
32 for Cora, Citeseer, Pubmed and 256 for ogb-arxiv, with a dropout of 0.5. In order to learn effective
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Table 1: Semi-supervised classification on three different citation networks using biased training samples. Our
proposed framework (SR-GNN) outperforms all baselines on biased training input.

Method Cora Citeseer PubMed
Micro-F1↑ Macro-F1↑ ∆F1 ↓ Micro-F1↑ Macro-F1↑ ∆F1 ↓ Micro-F1↑ Macro-F1↑ ∆F1 ↓

GCN (IID) 80.8 ± 1.6 80.1 ± 1.3 0 70.3 ± 1.9 66.8 ± 1.3 0 79.8 ± 1.4 78.8 ± 1.4 0

Feat.+MLP 49.7 ± 2.5 48.3 ± 2.2 31.1 55.1 ± 1.3 52.7 ± 1.3 25.2 51.3 ± 2.8 41.8 ± 6.2 28.5
Emb.+MLP 57.6 ± 3.0 56.2 ± 3.0 23.2 38.5 ± 1.2 38.6 ± 1.1 31.8 60.4 ± 2.1 56.6 ± 2.0 19.4
DGI 71.7 ± 4.2 69.2 ± 3.7 9.1 62.6 ± 1.6 60.0 ± 1.6 7.6 58.0 ± 5.3 52.4 ± 8.3 21.8
GCN 67.6 ± 3.5 66.4 ± 3.0 13.2 62.7 ± 1.8 60.4 ± 1.6 7.6 60.6 ± 3.8 56.0 ± 6.0 19.2
GAT 58.4 ± 5.7 58.5 ± 5.0 22.4 58.0 ± 3.5 55.0 ± 2.7 12.3 55.2 ± 3.7 46.0 ± 6.4 14.6
SGC 70.2 ± 3.0 68.0 ± 3.8 10.6 65.4 ± 0.8 62.5 ± 0.8 4.9 61.8 ± 4.5 57.4 ± 7.2 18.0
APPNP 71.3 ± 4.1 69.2 ± 3.4 9.5 63.4 ± 1.8 61.2 ± 1.6 6.9 63.4 ± 4.2 58.7 ± 7.0 16.4

SR-GNN w.o. IR 72.1 ± 4.4 69.8 ± 3.7 8.7 63.9 ± 0.7 61.8 ± 0.6 6.4 69.4± 3.4 67.6 ± 4.0 10.4
SR-GNN w.o. Reg. 72.0 ± 3.2 69.5 ± 3.7 8.8 66.1 ± 0.9 63.4 ± 0.9 4.2 66.4 ± 4.0 64.0 ± 5.5 13.4
SR-GNN (Ours) 73.5 ± 3.3 71.4± 3.5 7.3 67.1 ± 0.9 64.0 ± 0.9 3.2 71.3 ± 2.2 70.2 ± 2.4 8.5

representations, DGI [32] usually needs a higher dimensional hidden space and so, following the
DGI paper we set it as 512 across all of our experiments. We use Adam [14] as an optimizer, and set
the learning rate to 0.01 and L2 regularization to 5e-4.

Scalability. In this paper, we introduce two shift-robust techniques for GNN training: discrepancy
regularization and instance reweighting. Let O(Φ) be the time some GNN Φ takes to compute a
single node embedding, and M be the number of training examples. The IID sample in Eq (5)
introduces M extra forward passes and 2M extra backward propagation in total. Overall, the extra
cost is therefore linear to and does not increase the existing asymptotic complexity. The Gaussian
kernel computation in Eq (9) (for instance reweighting) takes O(M2n) time before training, where
hi ∈ Rn. The total complexity of SR-GNN is therefore O(MΦ +M2n). Our experiments were run
on a single machine with 8 CPU and 1 Nvidia T4 GPU.

5.3 Experiment results

We first show the performance comparison of SR-GNN (ours) and other baselines on three well-
known citation GNN benchmarks in Table 6. We report the Micro-F1, and Macro-F1 for each method.
We compare each method trained on a biased sample to a GCN trained on an unbiased sample,
and report its performance drop in Micro-F1 (∆F1). We begin by noting that when the training
sample is biased, every method suffers a substantial performance drop (as indicated by the column
∆F1). However, SR-GNN consistently reduces the influence of distributional shift and decreases the
performance drop (∆F1) relative to a GCN model trained on biased input by at least 40%. We note
that on these three datasets, the largest decrease in performance occurs on PubMed, where all of the
existing methods experience more than a 10% absolute drop in their performance due to the biased
samples. However we note that in this challenging case, the improvements of SR-GNN against
APPNP (base model) also grow when the shift is larger. Finally, we see from the ablation models
that the combination of both the regularization and instance reweighting appears to work better than
either bias correction on its own. Our results demonstrate that our shift-robust framework is effective
at minimizing the effects of distributional shift in GNN training data.

On two large benchmarks in Table 2 we see that the performance loss from biased sample is smaller
but still significant. Even in a dense network like reddit, the localized training data still affect the
GNN model performance. Compared with baselines, SR-GNN can effectively mitigate the 30% of
the negative effect (∆) relative to an unbiased GCN. When more training data is provided (5%) we
can further minimize this performance gap.

Finally, we also study how our Shift-Robust framework can be applied to two other representative
models – GCNs [15], and DGI [32]. For the GCN model, we apply the regularized loss from
the Equation (4) to the final node representations. For DGI, the embeddings are first trained via
unsupervised learning over the entire graph. In this case, as we are optimizing a simple logistic
regression over the DGI representations we can use only the instance reweighting regularization
from Equation (9). Table 3 confirms that the the Shift-Robust framework successfully improves task
performance in the face of biased training labels, and that it can be easily applied to a variety of
different GNN models.
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Table 2: Semi-supervised classification on ogb-arxiv and reddit varying label ratio.
ogb-arxiv reddit

label(%) 1 % 5 % 1 % 5 %
Method Accuracy ∆ ↓ Accuracy ∆ ↓ Accuracy ∆ ↓ Accuracy ∆ ↓
GCN (IID) 66.0± 0.6 0 69.1± 0.6 0 93.8 ± 0.3 0 94.0 ± 0.1 0

Feat.+MLP 45.5± 0.6 21.5 43.7± 0.3 25.4 46.6±0.6 47.2 57.2±0.2 36.8
Emb.+MLP 51.1± 1.3 14.9 56.9± 0.8 13.2 89.6 ± 0.8 4.2 90.9 ± 0.3 3.1
DGI 44.8± 3.0 21.2 49.7± 3.3 19.4 83.7±1.2 10.1 85.4±0.6 8.6
GCN 59.3± 1.2 6.7 65.3 ± 0.6 3.8 89.7±1.0 4.1 90.9±0.3 3.1
GAT 58.6± 1.0 7.4 63.4 ± 1.0 5.7 80.5±5.4 13.3 82.0±3.6 12.0
SGC 59.0± 0.7 7.0 64.2 ± 1.3 4.9 88.6±1.0 5.2 90.6±0.2 3.4
APPNP 59.8± 1.1 6.2 65.1 ± 2.6 4.0 88.4±1.0 5.4 88.9±0.8 5.1

SR-GNN w.o. IR 60.6± 0.2 5.4 65.1±1.8 4.0 90.4± 0.6 3.4 91.2± 0.2 2.8
SR-GNN w.o. Reg. 61.0± 0.3 5.0 65.8±2.0 3.3 89.4± 0.8 4.4 91.9± 0.1 2.1
SR-GNN (Ours) 61.6±0.6 4.4 66.5±0.6 2.6 91.5± 0.5 2.3 92.1± 0.3 1.9

Table 3: Comparison of baseline and our SR(Shift-Robust) version (∆(%) -relative loss with biased sample) .
Cora Citeseer PubMed

Method Micro-F1↑ Macro-F1↑ ∆(%) Micro-F1↑ Macro-F1↑ ∆(%) Micro-F1↑ Macro-F1↑ ∆(%)

GCN (IID) 80.8 80.1 0% 70.3 66.8 0% 79.8 78.8 0%
GCN 67.6 66.4 -12% 62.7 60.4 -8% 60.6 56.0 -19%
SR-GCN 69.6 68.2 -10% 64.7 62.0 -6% 67.0 65.2 -13%

DGI (IID) 80.6 79.3 0% 70.8 66.7 0% 77.6 77.0 0%
DGI 71.7 69.2 -9% 62.6 60.0 -8% 58.0 52.4 -20%
SR-DGI 74.3 72.6 -6% 65.8 62.6 -6% 62.0 57.8 -16%

5.4 Comparison with other domain invariant learning methods

In SR-GNN, we utilize the unlabeled data ZIID sampled from the unifying set of training and test
dataset. In domain invariant learning [6, 37], unlabeled data from target domain is also used to
regularize latent space between source and target domain. DANN [6] is a method that uses an
adversarial domain classifier to encourage similar feature distributions between different domains. In
our case, the domains are a biased training data (source) and IID unlabeled data (target). We compare
the CMD regularizer and DANN regularizer using the same GNN architectures (i.e. GCN [15],
APPNP [16]). The hyper parameter λ is used to weight the domain loss and the CMD regularization
respectively. We tune this hyper parameter on the validation set and report models’ performance under
the best λ (1 for Cora and Citeseer, 0.1 for PubMed). In Table 4, as discussed in the related work, the
discrepancy measures generally perform better than adversarial domain invariant learning (and CMD
has been shown to be less sensitive to the regularizer weight). Especially under semi-supervised
setting, the performance of DANN is more sensitive to the domain loss. Notice that CMD (Ours)
is the ablation (SR-GNN w.o. IR) in the main paper – we note that we have already shown its
performance can be further boosted using instance reweighting.

Table 4: Comparison of Domain-Adversarial Neural Network (DANN) and CMD regularizer used in SR-GNN
with biased training data.

Cora Citeseer PubMed
Method Micro-F1↑ Macro-F1↑ Micro-F1↑ Macro-F1↑ Micro-F1↑ Macro-F1↑
GCN 68.3 67.2 62.4 60.2 59.2 53.8
DANN 69.8 68.5 63.8 61.0 64.8 61.8
CMD (Ours) 71.0 69.4 65.0 62.3 67.5 66.2
APPNP 71.3 69.2 63.9 61.6 64.8 60.4
DANN 71.6 69.5 64.3 61.8 67.8 65.4
CMD (Ours) 72.4 70.1 65.0 62.4 70.4 68.7

5.5 Parameter sensitivity of SR-GNN

In this section we study how varying some of our hyper-parameters affects the performance. We
perform 20 runs for each parameter and fix the initialization for all the models per run. Studies on
SR-GNN with more layers (deeper models) and different biased samples are in Appendix A.3.
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Performance with different α in PPR-S. Previously, we set α = 0.1 in the biased sampler PPR-S.
In Figure 3, we vary α between [0.05, 0.3] to evaluate the performance of APPNP and SR-GNN
as the bias of the sample changes. While the absolute accuracy varies with different α, SR-GNN
consistently beats its base model by a clear margin. The different patterns across three datasets are
expected, since as α grows, the PPR-neighbors can have different topological properties and structure.

(a) Cora (b) Citeseer (c) Pubmed

Figure 3: Varying α of biased sampler on three benchmarks.

Performance with different Bl, λ in SR-GNN. In our framework, there are three major hyper
parameters: the regularization strength λ, the number of moments used in CMD k, and the bounds
of instance weights: Bl, Bu. In Figure 4a, the performance of SR-GNN with different k and λ is
reported. Even when only one moment is used for the CMD estimation, the method can still perform
well with a reasonable penalty λ. We study different choices of Bl (for a constant Bu) in Figure 4b.
The result shows a smaller Bl is better for training since larger values limit the expressive range.

(a) Varying λ, k in regularization (b) Varying Bl in instance weighting

Figure 4: Parameter sensitivity of SR-GNN.

6 Conclusion

In this paper we were the first to demonstrate that unbiased training data is very important for
performance of GNNs. We argued that biased training data is extremely common in real world
scenarios and can arise due to a variety of reasons including: difficulties of labelling large amount
of data, the various heuristics or inconsistent techniques that are used to choose nodes for labelling,
delayed label assignment, and other constraints from real world problems. We presented a general
framework (SR-GNN) that is able to reduce influence of biased training data and can be applied to
various types of GNNs, including both deeper GNNs and more recent linearized (shallow) versions
of these models. With a number of experiments, we demonstrated both GNNs susceptibility to biased
data and the success of our method in mitigating performance drops due to this bias: our method
outperforms other GNN baselines on biased data and eliminates between (30− 50%) of the negative
effects introduced by training a GCN on biased training data.

However, there is still much to do. For instance, while we have considered the general problem of
distributional shift in GNNs, there is much specific work that can (and should) be done in specific
domains! Future work in this area should include regularizations to maximize performance for
particular kinds of distribution shift (e.g. in spam & abuse detection) and to ensure constraints (e.g.
fairness) in the presence of imbalanced training data.
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