Supplement to "You Are the Best Reviewer of Your Own Papers: An Owner-Assisted Scoring Mechanism"

Weijie J. Su
Department of Statistics and Data Science
University of Pennsylvania
suw@wharton.upenn.edu

1 Proofs for Section 2

This section is devoted to proving Theorems 1 and 2 . We need the following two lemmas for the proof of Theorem 1

Now, we turn to the proof of Theorem 2. The following proof of this theorem follows from some basic properties of convex sets.

Proof of Theorem 2 Consider the (possibly degenerate) triangle formed by $\boldsymbol{y}, \boldsymbol{R}, \widehat{\boldsymbol{R}}$. We claim that the angle $\measuredangle(\boldsymbol{y}, \widehat{\boldsymbol{R}}, \boldsymbol{R}) \geq 90^{\circ}$. Taking this claim as given for the moment, we immediately conclude that

$$
\|\boldsymbol{y}-\boldsymbol{R}\|=\sqrt{\sum_{i=1}^{n}\left(y_{i}-R_{i}\right)^{2}} \geq\|\widehat{\boldsymbol{R}}-\boldsymbol{R}\|=\sqrt{\sum_{i=1}^{n}\left(\widehat{R}_{i}-R_{i}\right)^{2}}
$$

as desired.
To finish the proof, suppose on the contrary that $\measuredangle(\boldsymbol{y}, \widehat{\boldsymbol{R}}, \boldsymbol{R})<90^{\circ}$. Then there must exist a point \boldsymbol{R}^{\prime} on the segment between $\widehat{\boldsymbol{R}}$ and \boldsymbol{R} such that $\left\|\boldsymbol{y}-\boldsymbol{R}^{\prime}\right\|<\|\boldsymbol{y}-\widehat{\boldsymbol{R}}\|$. Since both $\widehat{\boldsymbol{R}}$ and \boldsymbol{R} belong to the (convex) isotonic cone $\left\{\boldsymbol{r}: r_{\pi^{\star}(1)} \geq \cdots \geq r_{\pi^{\star}(n)}\right\}$, the point \boldsymbol{R}^{\prime} is also in the isotonic cone. However, this contradicts the fact that $\widehat{\boldsymbol{R}}$ is the unique point of the isotonic cone with the minimal distance to \boldsymbol{y}.

Next, we turn to the proof of Theorem 1
Lemma 1.1. Let $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right) \succeq \boldsymbol{y}=\left(y_{1}, \ldots, y_{n}\right)$ in the sense that $x_{1} \geq y_{1}, x_{1}+x_{2} \geq$ $y_{1}+y_{2}, \ldots, x_{1}+\cdots+x_{n-1} \geq y_{1}+\cdots+y_{n-1}$ and $x_{1}+\cdots+x_{n}=y_{1}+\cdots+y_{n}$. Let \boldsymbol{x}^{+}and \boldsymbol{y}^{+}be the projections of \boldsymbol{x} and \boldsymbol{y} onto the isotonic cone $\left\{\boldsymbol{r}: r_{1} \geq r_{2} \geq \cdots \geq r_{n}\right\}$, respectively. Then, we have $\boldsymbol{x}^{+} \succeq \boldsymbol{y}^{+}$.

Lemma 1.2 (Hardy-Littlewood-Pólya inequality). Let f be a convex function. Assume that \boldsymbol{x} and \boldsymbol{y} are nonincreasing vectors (that is, $x_{1} \geq \cdots \geq x_{n}$ and $y_{1} \geq \cdots \geq y_{n}$) and $\boldsymbol{x} \succeq \boldsymbol{y}$. Then, we have

$$
\sum_{i=1}^{n} f\left(x_{i}\right) \geq \sum_{i=1}^{n} f\left(y_{i}\right)
$$

This is well-known result in theory of majorization. For a proof of Lemma 1.2, see [1].

1.1 Proof of Lemma 1.1

Remark 1.1. See [2] for a proof of this lemma. Throughout this paper, we say \boldsymbol{x} majorizes \boldsymbol{y} if $\boldsymbol{x} \succeq \boldsymbol{y}$. This definition of majorization is slightly different from that in the literature [1]. In the literature, $\boldsymbol{x} \succeq \boldsymbol{y}$ if the condition in Lemma 1.1 holds after ordering both $\boldsymbol{x}, \boldsymbol{y}$ from the largest to the smallest.
Definition 1.3. We call \boldsymbol{z}^{1} an upward swap of \boldsymbol{z}^{2} if there exists $1 \leq i<j \leq n$ such that $\boldsymbol{z}_{k}^{1}=\boldsymbol{z}_{k}^{2}$ for all $k \neq i, j$ and $\boldsymbol{z}_{i}^{1}+\boldsymbol{z}_{j}^{1}=\boldsymbol{z}_{i}^{2}+\boldsymbol{z}_{j}^{2}, \boldsymbol{z}_{i}^{1} \geq \boldsymbol{z}_{i}^{2}$.

This definition amounts to saying that z^{1} is a upward swap of \boldsymbol{z}^{2} if the former can be derived by transporting some mass from the an entry of \boldsymbol{z}^{2} to an earlier entry. It is easy to check that $\boldsymbol{z}^{1} \succeq \boldsymbol{z}^{2}$ if \boldsymbol{z}^{1} an upward swap of \boldsymbol{z}^{2}.
Lemma 1.4. Let $\boldsymbol{x} \succeq \boldsymbol{y}$. Then there exists an integer m and $\boldsymbol{z}^{1}, \ldots, \boldsymbol{z}^{m}$ such that $\boldsymbol{z}^{1}=\boldsymbol{x}, \boldsymbol{z}^{m}=\boldsymbol{y}$, and \boldsymbol{z}^{l} is an upward swap of \boldsymbol{z}^{l+1} for $l=1, \ldots, m-1$.

Proof of Lemma 1.4. We prove by induction. The base case $n=1$ is clearly true. Suppose this lemma is true for n.
Now we aim to prove the lemma for the case $n+1$. Let $\boldsymbol{z}^{1}=\boldsymbol{x}=\left(x_{1}, x_{2}, \ldots, x_{n+1}\right)$ and $\boldsymbol{z}^{2}:=\left(y_{1}, x_{1}+x_{2}-y_{1}, x_{3}, x_{4}, \ldots, x_{n+1}\right)$. As is clear, \boldsymbol{z}^{1} is an upward swamp of \boldsymbol{z}^{2}.
Now we consider operations on the components except for the first one. Let $\boldsymbol{x}^{\prime}:=\left(x_{1}+x_{2}-\right.$ $\left.y_{1}, x_{3}, x_{4}, \ldots, x_{n+1}\right)$ and $\boldsymbol{y}^{\prime}:=\left(y_{2}, \ldots, y_{n+1}\right)$ be derived by removing the first component of \boldsymbol{z}^{2} and \boldsymbol{y}, respectively. These two vectors obey $\boldsymbol{x}^{\prime} \succeq \boldsymbol{y}^{\prime}$. To see this, note that $x_{1}^{\prime}=x_{1}+x_{2}-y_{1} \geq$ $y_{1}+y_{2}-y_{1}=y_{2}=y_{1}^{\prime}$, and
$x_{1}^{\prime}+\cdots+x_{k}^{\prime}=\left(x_{1}+x_{2}-y_{1}\right)+x_{3}+\cdots+x_{k+1}=\sum_{i=1}^{k+1} x_{i}-y_{1} \geq \sum_{i=1}^{k+1} y_{i}-y_{1}=\sum_{i=2}^{k+1} y_{i}=y_{1}^{\prime}+\cdots+y_{k}^{\prime}$
for $2 \leq k \leq n-1$ and
$x_{1}^{\prime}+\cdots+x_{n}^{\prime}=\left(x_{1}+x_{2}-y_{1}\right)+x_{3}+\cdots+x_{n+1}=\sum_{i=1}^{n+1} x_{i}-y_{1}=\sum_{i=1}^{n+1} y_{i}-y_{1}=y_{1}^{\prime}+\cdots+y_{n}^{\prime}$.
Thus, by induction, there must exist $\boldsymbol{z}^{\prime 1}, \ldots, \boldsymbol{z}^{\prime m}$ such that $\boldsymbol{z}^{\prime 1}=\boldsymbol{x}^{\prime}, \boldsymbol{z}^{\prime m}=\boldsymbol{y}^{\prime}$, and $\boldsymbol{z}^{\prime l}$ is an upward swap of $\boldsymbol{z}^{\prime l+1}$ for $l=1, \ldots, m-1$. We finish the proof for $n+1$ by recognizing that $\boldsymbol{z}^{1} \equiv \boldsymbol{x},\left(y_{1}, \boldsymbol{z}^{\prime 1}\right),\left(y_{1}, \boldsymbol{z}^{\prime 2}\right), \ldots,\left(y_{1}, \boldsymbol{z}^{\prime m}\right) \equiv \boldsymbol{y}$ satisfy the requirement of this lemma.

Next, consider the following lemma.
Lemma 1.5. Let \boldsymbol{x} be an upward swap of \boldsymbol{y}. Let \boldsymbol{x}^{+}and \boldsymbol{y}^{+}be the projections of \boldsymbol{x} and \boldsymbol{y} onto the isotonic cone $\left\{\boldsymbol{r}: r_{1} \geq r_{2} \geq \cdots \geq r_{n}\right\}$, respectively. Then, we have $\boldsymbol{x}^{+} \succeq \boldsymbol{y}^{+}$.

The proof of Lemma 1.1 readily follows from the use of Lemmas 1.4 and 1.5 To see this point, for any $\boldsymbol{x}, \boldsymbol{y}$ satisfying $\boldsymbol{x} \succeq \boldsymbol{y}$, note that from Lemma 1.4 we can find $\boldsymbol{z}^{1}=\boldsymbol{x}, \boldsymbol{z}^{2}, \ldots, \boldsymbol{z}^{m-1}, \boldsymbol{z}^{m}=\boldsymbol{y}$ such that \boldsymbol{z}^{l} is an upward swap of \boldsymbol{z}^{l+1} for $l=1, \ldots, m-1$. Then, Lemma 1.5 asserts that $\left(\boldsymbol{z}^{l}\right)^{+} \succeq\left(\boldsymbol{z}^{l+1}\right)^{+}$for all $l=1, \ldots, m-1$. Due to the transitivity of majorization, we conclude that $\boldsymbol{x} \succeq \boldsymbol{y}$, thereby proving Lemma 1.1 .
The following two lemmas will be used in the proof of Lemma 1.5. We relegate the proofs of these two lemmas to the appendix.
Lemma 1.6. For any $\delta>0$ and $i=1, \ldots, n$, we have $\left(\boldsymbol{x}+\delta \boldsymbol{e}_{i}\right)^{+} \geq \boldsymbol{x}^{+}$in the component-wise sense.
Remark 1.2. Likewise, the proof of Lemma 1.6 reveals that $\left(\boldsymbol{x}-\delta \boldsymbol{e}_{i}\right)^{+} \leq \boldsymbol{x}^{+}$. As an aside, recognizing a basic property of isotonic regression that $x_{1}^{+}+\cdots+x_{n}^{+}=x_{1}+\cdots+x_{n}$, we have $\mathbf{1}^{\top}\left(\boldsymbol{x}+\delta \boldsymbol{e}_{i}\right)^{+}=\mathbf{1}^{\top} \boldsymbol{x}^{+}+\delta$, where $\mathbf{1} \in \mathbb{R}^{n}$ denotes the ones vector.

Lemma 1.7. Denote by \bar{x} the sample mean of \boldsymbol{x}. Then \boldsymbol{x}^{+}has constant entries-that is, $x_{1}^{+}=\cdots=$ x_{n}^{+}-if and only if

$$
\frac{x_{1}+\cdots+x_{k}}{k} \leq \bar{x}
$$

for all $k=1, \ldots, n$.
Proof of Lemma 1.5. Let $1 \leq i<j \leq n$ be the indices such that $\boldsymbol{x}_{i}+\boldsymbol{x}_{j}=\boldsymbol{y}_{i}+\boldsymbol{y}_{j}$ and $\boldsymbol{x}_{i} \geq \boldsymbol{y}_{i}$. Write $\delta:=\boldsymbol{x}_{i}-\boldsymbol{y}_{i} \geq 0$. Then, $\boldsymbol{y}=\overline{\boldsymbol{x}}-\delta \boldsymbol{e}_{i}+\delta \boldsymbol{e}_{j}$, where $\boldsymbol{e}_{i}, \boldsymbol{e}_{j}$ are the canonical-basis vectors. If $\delta=0$, then $\boldsymbol{x}^{+}=\boldsymbol{y}^{+}$because $\boldsymbol{x}=\boldsymbol{y}$, in which case the lemma holds trivially. In the remainder of the proof, we focus on the nontrivial case $\delta>0$.
The lemma amounts to saying that $\boldsymbol{x}^{+} \succeq\left(\boldsymbol{x}-\delta \boldsymbol{e}_{i}+\delta \boldsymbol{e}_{j}\right)^{+}$for all $\delta>0$. Due to the continuity of the projection, it is sufficient to prove the following statement: there exists $\delta_{0}>0$ (depending on \boldsymbol{x}) such that $\boldsymbol{x}^{+} \succeq\left(\boldsymbol{x}-\delta \boldsymbol{e}_{i}+\delta \boldsymbol{e}_{j}\right)^{+}$.
Let I be the set of indices where the entries of \boldsymbol{x}^{+}has the same value as i :

$$
I=\left\{k: x_{k}^{+}=x_{i}^{+}\right\}
$$

Similarly, define

$$
J=\left\{k: x_{k}^{+}=x_{j}^{+}\right\} .
$$

There are exactly two cases, namely $I=J$ and $I \cap J=\emptyset$.
Case 1. Consider the case $I=J$. For convenience, write $I=\{a, a+1, \ldots, b-1, b\}$. By Lemma 1.7, we have

$$
\frac{x_{a}+x_{a+1}+\ldots+x_{a+l-1}}{l} \leq \bar{x}_{I}:=\frac{x_{a}+x_{a+1}+\ldots+x_{b}}{b-a+1}
$$

for $l=1, \ldots, b-a+1$.
Now we consider $\boldsymbol{y}=\boldsymbol{x}-\delta \boldsymbol{e}_{i}+\delta \boldsymbol{e}_{j}$ restricted to I. Assume that δ is sufficiently small so that the constant pieces of \boldsymbol{y}^{+}before and after I are the same as those of \boldsymbol{x}^{+}. Since $a \leq i<j \leq b$, we have

$$
y_{a}+y_{a+1}+\ldots+y_{b}=x_{a}+x_{a+1}+\ldots+x_{b}
$$

On the other hand, we have

$$
y_{a}+y_{a+1}+\ldots+y_{a+l-1} \leq x_{a}+x_{a+1}+\ldots+x_{a+l-1}
$$

since the index i comes earlier than j. Taken together, these observations give

$$
\frac{y_{a}+y_{a+1}+\ldots+y_{a+l-1}}{l} \leq \frac{y_{a}+y_{a+1}+\ldots+y_{b}}{b-a+1}
$$

for all $l=1, \ldots, b-a+1$. From Lemma 1.7 , it follows that the projection $\boldsymbol{y}^{+}=\left(\boldsymbol{x}-\delta \boldsymbol{e}_{i}+\delta \boldsymbol{e}_{j}\right)^{+}$ remains constant on the set I and this value is the same as \boldsymbol{x}^{+}on I since $y_{a}+y_{a+1}+\ldots+y_{b}=$ $x_{a}+x_{a+1}+\ldots+x_{b}$. That is, we have $\boldsymbol{y}^{+}=\boldsymbol{x}^{+}$in this case.

Case 2. Assume that $I \cap J=\emptyset$. As earlier, let δ be sufficiently small. Write $I=\{a, a+1, \ldots, b\}$ and $J=\{c, c+1, \ldots, d\}$, where $b<c$. Since the isotonic constraint is inactive between the ($a-1$)-th and a-th components, the projection \boldsymbol{x}_{I}^{+}restricted to I is the same as projecting \boldsymbol{x}_{I} onto the $|I|=b-a+1$-dimensional isotonic cone. As δ is sufficiently small, the projection $\left(\boldsymbol{x}-\delta \boldsymbol{e}_{i}+\delta \boldsymbol{e}_{j}\right)_{I}^{+}$ restricted to I is also the same as projecting $\left(\boldsymbol{x}-\delta \boldsymbol{e}_{i}+\delta \boldsymbol{e}_{j}\right)_{I}$ onto the $|I|=b-a+1$-dimensional isotonic cone.

However, since $i \in I$ but $j \notin J$, we see that $\left(\boldsymbol{x}-\delta \boldsymbol{e}_{i}+\delta \boldsymbol{e}_{j}\right)_{I}=\boldsymbol{x}_{I}-\delta \boldsymbol{e}_{i}$, where \boldsymbol{e}_{i} now should be regarded as the $(i-a+1)$-th canonical-basis vector in the reduced $(b-a+1)$-dimensional space. Then, by Lemma 1.6 and the following remark, we see that

$$
\boldsymbol{y}_{I}^{+}=\left(\boldsymbol{x}_{I}-\delta \boldsymbol{e}_{i}\right)^{+} \leq \boldsymbol{x}_{I}^{+}
$$

in the component-wise sense, which, together with the fact that $y_{l}^{+}=x_{l}^{+}$for $l \in\{1, \ldots, a-1\} \cup$ $\{b+1, \ldots, c-1\} \cup\{d+1, \ldots, n\}$, gives

$$
y_{1}^{+}+\cdots+y_{l}^{+} \leq x_{1}^{+}+\cdots+x_{l}^{+}
$$

for all $l=1, \ldots, c-1$. Moreover,

$$
\begin{align*}
y_{1}^{+}+\cdots+y_{l}^{+}-\left(x_{1}^{+}+\cdots+x_{l}^{+}\right) & =y_{a}^{+}+\cdots+y_{b}^{+}-\left(x_{a}^{+}+\cdots+x_{b}^{+}\right) \\
& =y_{a}+\cdots+y_{b}-\left(x_{a}+\cdots+x_{b}\right) \tag{1}\\
& =-\delta
\end{align*}
$$

when $b+1 \leq l \leq c-1$.
Now we turn to the case $c \leq l \leq d$. As earlier, for sufficiently small δ, the projection $\left(\boldsymbol{x}-\delta \boldsymbol{e}_{i}+\delta \boldsymbol{e}_{j}\right)_{J}^{+}$ restricted to J is the same as projecting $\left(\boldsymbol{x}-\delta \boldsymbol{e}_{i}+\delta \boldsymbol{e}_{j}\right)_{J}$ onto the $|J|=d-c+1$-dimensional isotonic cone. Then, since $\boldsymbol{y}_{J}=\left(\boldsymbol{x}-\delta \boldsymbol{e}_{i}+\delta \boldsymbol{e}_{j}\right)_{J}=\boldsymbol{x}_{J}+\delta \boldsymbol{e}_{j}$, it follows from Lemma 1.6 that

$$
\begin{equation*}
\boldsymbol{y}_{J}^{+} \geq \boldsymbol{x}_{J}^{+} \tag{2}
\end{equation*}
$$

and meanwhile, we have

$$
\begin{equation*}
y_{c}^{+}+\cdots+y_{d}^{+}-\left(x_{c}^{+}+\cdots+x_{d}^{+}\right)=y_{c}+\cdots+y_{d}-\left(x_{c}+\cdots+x_{d}\right)=\delta \tag{3}
\end{equation*}
$$

Thus, for any $c \leq l \leq d,(2)$ and (3) give

$$
y_{c}^{+}+\cdots+y_{l}^{+}-\left(x_{c}^{+}+\cdots+x_{l}^{+}\right) \leq y_{c}^{+}+\cdots+y_{d}^{+}-\left(x_{c}^{+}+\cdots+x_{d}^{+}\right)=\delta
$$

Therefore, we get

$$
\begin{aligned}
& y_{1}^{+}+\cdots+y_{l}^{+}-\left(x_{1}^{+}+\cdots+x_{l}^{+}\right) \\
& =y_{1}^{+}+\cdots+y_{c-1}^{+}-\left(x_{1}^{+}+\cdots+x_{c-1}^{+}\right)+y_{c}^{+}+\cdots+y_{l}^{+}-\left(x_{c}^{+}+\cdots+x_{l}^{+}\right) \\
& =-\delta+y_{c}^{+}+\cdots+y_{l}^{+}-\left(x_{c}^{+}+\cdots+x_{l}^{+}\right) \\
& \leq-\delta+\delta \\
& =0
\end{aligned}
$$

where the second equality follows from (1).
Taken together, the results above show that

$$
y_{1}^{+}+\cdots+y_{l}^{+} \leq x_{1}^{+}+\cdots+x_{l}^{+}
$$

for $1 \leq l \leq d$, with equality when $l \leq a-1$ or $l=d$. In addition, this inequality remains true-in fact, reduced to equality-when $l>d$. This completes the proof.

2 Proofs for Section 3

The proof of Theorem 4 relies on the following lemma, which generalizes Lemma 1.1 . The proof of this lemma follows the same reasoning as in Lemma 1.1
Lemma 2.1. Let $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right) \succeq \boldsymbol{y}=\left(y_{1}, \ldots, y_{n}\right)$ in the sense that $x_{1} \geq y_{1}, x_{1}+x_{2} \geq$ $y_{1}+y_{2}, \ldots, x_{1}+\cdots+x_{n-1} \geq y_{1}+\cdots+y_{n-1}$ and $x_{1}+\cdots+x_{n}=y_{1}+\cdots+y_{n}$. Let I_{1}, \ldots, I_{m} be a partition such that $I_{1}=\left\{1,2, \ldots, n_{1}\right\}, I_{2}=\left\{n_{1}+1, \ldots, n_{1}+n_{2}\right\}, \ldots$. Let \boldsymbol{x}^{+}and \boldsymbol{y}^{+}be the projections of \boldsymbol{x} and \boldsymbol{y} onto the isotonic cone $\left\{\boldsymbol{r}: \boldsymbol{r}_{I_{1}} \geq \boldsymbol{r}_{I_{2}} \geq \cdots \geq \boldsymbol{r}_{I_{m}}\right\}$, respectively. Then, we have $\boldsymbol{x}^{+} \succeq \boldsymbol{y}^{+}$.

Proof of Theorem 4 Without loss of generality, assume that $R_{1} \geq R_{2} \geq \cdots \geq R_{n}$ and therefore the true block ranking satisfies $I_{1}^{\star}=\left\{1,2, \ldots, n_{1}\right\}, I_{2}^{\star}=\left\{n_{1}+1, \ldots, n_{1}+n_{2}\right\}, \ldots, I_{m}=$ $\left\{n_{1}+\ldots+n_{m-1}+1, \ldots, n\right\}$. For an appropriate permutation we must have $\boldsymbol{y} \succeq \pi \circ \boldsymbol{R}+\boldsymbol{z}$. Thus we finish the proof by invoking Lemma 2.1 .

Proof of Theorem 5. The proof of this theorem follows immediately by noting

$$
\pi_{1} \circ \boldsymbol{R}+\boldsymbol{z} \succeq \pi_{2} \circ \boldsymbol{R}+\boldsymbol{z}
$$

Proof of Proposition 3.6. Without loss of generality, assume $R_{1} \geq R_{2}$. We complete the proof by considering several difference cases regarding fixed z_{1}, z_{2}, and λ. First, consider the case where $z_{2}>$ $R_{1}-R_{2}+z_{1}$ and $\lambda \geq\left(R_{1}+z_{2}-R_{2}-z_{1}\right) / 2$. Then, when $\left(y_{1}, y_{2}\right)=\left(R_{1}+z_{1}, R_{2}+z_{2}\right)$, the adjusted scores of reporting the true ranking are $\left(\frac{R_{1}+R_{2}+z_{1}+z_{2}}{2}, \frac{R_{1}+R_{2}+z_{1}+z_{2}}{2}\right)$, and are $\left(R_{1}+z_{1}, R_{2}+z_{2}\right)$ if reporting the opposite ranking. When $\left(y_{1}, y_{2}\right) \stackrel{2}{=}\left(R_{1}+z_{2}, R_{2}+z_{1}\right)$, the adjusted scores of reporting the true ranking are $\left(R_{1}+z_{2}, R_{2}+z_{1}\right)$, and otherwise are $\left(\frac{R_{1}+R_{2}+z_{1}+z_{2}}{2}, \frac{R_{1}+R_{2}+z_{1}+z_{2}}{2}\right)$. As is clear, we have
$U\left(\frac{R_{1}+R_{2}+z_{1}+z_{2}}{2}\right)+U\left(\frac{R_{1}+R_{2}+z_{1}+z_{2}}{2}\right)+U\left(R_{1}+z_{2}\right)+U\left(R_{2}+z_{1}\right) \geq+U\left(R_{1}+z_{1}\right)+U\left(R_{2}+z_{2}\right)+U\left(\frac{R_{1}+R_{2}+z_{1}}{2}\right.$
since $\left(R_{1}+z_{2}, R_{2}+z_{1}\right) \succeq\left(R_{1}+z_{1}, R_{2}+z_{2}\right)$. The proof of the remaining cases are similar.

References

[1] A. W. Marshall, I. Olkin, and B. C. Arnold. Inequalities: theory of majorization and its applications, volume 143. Springer, 1979.
[2] A. Németh and S. Németh. Isotonic regression and isotonic projection. Linear Algebra and its Applications, 494:80-89, 2016.

