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1 Proofs for Section 2

This section is devoted to proving Theorems 1 and 2. We need the following two lemmas for the
proof of Theorem 1.

Now, we turn to the proof of Theorem 2. The following proof of this theorem follows from some
basic properties of convex sets.

Proof of Theorem 2. Consider the (possibly degenerate) triangle formed by y,R, R̂. We claim that
the angle ](y, R̂,R) ≥ 90◦. Taking this claim as given for the moment, we immediately conclude
that

‖y −R‖ =

√√√√ n∑
i=1

(yi −Ri)2 ≥ ‖R̂−R‖ =

√√√√ n∑
i=1

(
R̂i −Ri

)2
,

as desired.

To finish the proof, suppose on the contrary that ](y, R̂,R) < 90◦. Then there must exist a point
R′ on the segment between R̂ and R such that ‖y −R′‖ < ‖y − R̂‖. Since both R̂ and R belong
to the (convex) isotonic cone {r : rπ?(1) ≥ · · · ≥ rπ?(n)}, the point R′ is also in the isotonic cone.
However, this contradicts the fact that R̂ is the unique point of the isotonic cone with the minimal
distance to y.

Next, we turn to the proof of Theorem 1.

Lemma 1.1. Let x = (x1, . . . , xn) � y = (y1, . . . , yn) in the sense that x1 ≥ y1, x1 + x2 ≥
y1 + y2, . . . , x1 + · · ·+ xn−1 ≥ y1 + · · ·+ yn−1 and x1 + · · ·+ xn = y1 + · · ·+ yn. Let x+ and
y+ be the projections of x and y onto the isotonic cone {r : r1 ≥ r2 ≥ · · · ≥ rn}, respectively.
Then, we have x+ � y+.

Lemma 1.2 (Hardy–Littlewood–Pólya inequality). Let f be a convex function. Assume that x and y
are nonincreasing vectors (that is, x1 ≥ · · · ≥ xn and y1 ≥ · · · ≥ yn) and x � y. Then, we have

n∑
i=1

f(xi) ≥
n∑
i=1

f(yi)

This is well-known result in theory of majorization. For a proof of Lemma 1.2, see [1].
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1.1 Proof of Lemma 1.1

Remark 1.1. See [2] for a proof of this lemma. Throughout this paper, we say x majorizes y if x � y.
This definition of majorization is slightly different from that in the literature [1]. In the literature,
x � y if the condition in Lemma 1.1 holds after ordering both x,y from the largest to the smallest.

Definition 1.3. We call z1 an upward swap of z2 if there exists 1 ≤ i < j ≤ n such that z1
k = z2

k

for all k 6= i, j and z1
i + z1

j = z2
i + z2

j , z
1
i ≥ z2

i .

This definition amounts to saying that z1 is a upward swap of z2 if the former can be derived by
transporting some mass from the an entry of z2 to an earlier entry. It is easy to check that z1 � z2 if
z1 an upward swap of z2.

Lemma 1.4. Let x � y. Then there exists an integer m and z1, . . . ,zm such that z1 = x, zm = y,
and zl is an upward swap of zl+1 for l = 1, . . . ,m− 1.

Proof of Lemma 1.4. We prove by induction. The base case n = 1 is clearly true. Suppose this
lemma is true for n.

Now we aim to prove the lemma for the case n + 1. Let z1 = x = (x1, x2, . . . , xn+1) and
z2 := (y1, x1 + x2 − y1, x3, x4, . . . , xn+1). As is clear, z1 is an upward swamp of z2.

Now we consider operations on the components except for the first one. Let x′ := (x1 + x2 −
y1, x3, x4, . . . , xn+1) and y′ := (y2, . . . , yn+1) be derived by removing the first component of z2

and y, respectively. These two vectors obey x′ � y′. To see this, note that x′1 = x1 + x2 − y1 ≥
y1 + y2 − y1 = y2 = y′1, and

x′1+· · ·+x′k = (x1+x2−y1)+x3+· · ·+xk+1 =

k+1∑
i=1

xi−y1 ≥
k+1∑
i=1

yi−y1 =

k+1∑
i=2

yi = y′1+· · ·+y′k

for 2 ≤ k ≤ n− 1 and

x′1 + · · ·+ x′n = (x1 + x2 − y1) + x3 + · · ·+ xn+1 =

n+1∑
i=1

xi − y1 =

n+1∑
i=1

yi − y1 = y′1 + · · ·+ y′n.

Thus, by induction, there must exist z
′1, . . . ,z

′m such that z
′1 = x′, z

′m = y′, and z
′l is an

upward swap of z
′l+1 for l = 1, . . . ,m − 1. We finish the proof for n + 1 by recognizing that

z1 ≡ x, (y1, z
′1), (y1, z

′2), . . . , (y1, z
′m) ≡ y satisfy the requirement of this lemma.

Next, consider the following lemma.

Lemma 1.5. Let x be an upward swap of y. Let x+ and y+ be the projections of x and y onto the
isotonic cone {r : r1 ≥ r2 ≥ · · · ≥ rn}, respectively. Then, we have x+ � y+.

The proof of Lemma 1.1 readily follows from the use of Lemmas 1.4 and 1.5. To see this point, for
any x,y satisfying x � y, note that from Lemma 1.4 we can find z1 = x, z2, . . . ,zm−1, zm = y
such that zl is an upward swap of zl+1 for l = 1, . . . ,m − 1. Then, Lemma 1.5 asserts that
(zl)+ � (zl+1)+ for all l = 1, . . . ,m− 1. Due to the transitivity of majorization, we conclude that
x � y, thereby proving Lemma 1.1.

The following two lemmas will be used in the proof of Lemma 1.5. We relegate the proofs of these
two lemmas to the appendix.

Lemma 1.6. For any δ > 0 and i = 1, . . . , n, we have (x + δei)
+ ≥ x+ in the component-wise

sense.

Remark 1.2. Likewise, the proof of Lemma 1.6 reveals that (x − δei)
+ ≤ x+. As an aside,

recognizing a basic property of isotonic regression that x+1 + · · ·+ x+n = x1 + · · ·+ xn, we have
1>(x + δei)

+ = 1>x+ + δ, where 1 ∈ Rn denotes the ones vector.
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Lemma 1.7. Denote by x̄ the sample mean of x. Then x+ has constant entries—that is, x+1 = · · · =
x+n—if and only if

x1 + · · ·+ xk
k

≤ x̄

for all k = 1, . . . , n.

Proof of Lemma 1.5. Let 1 ≤ i < j ≤ n be the indices such that xi + xj = yi + yj and xi ≥ yi.
Write δ := xi − yi ≥ 0. Then, y = x− δei + δej , where ei, ej are the canonical-basis vectors. If
δ = 0, then x+ = y+ because x = y, in which case the lemma holds trivially. In the remainder of
the proof, we focus on the nontrivial case δ > 0.

The lemma amounts to saying that x+ � (x− δei + δej)
+ for all δ > 0. Due to the continuity of

the projection, it is sufficient to prove the following statement: there exists δ0 > 0 (depending on x)
such that x+ � (x− δei + δej)

+.

Let I be the set of indices where the entries of x+ has the same value as i:

I = {k : x+k = x+i }.
Similarly, define

J = {k : x+k = x+j }.
There are exactly two cases, namely I = J and I ∩ J = ∅.

Case 1. Consider the case I = J . For convenience, write I = {a, a + 1, . . . , b − 1, b}. By
Lemma 1.7, we have

xa + xa+1 + . . .+ xa+l−1
l

≤ x̄I :=
xa + xa+1 + . . .+ xb

b− a+ 1

for l = 1, . . . , b− a+ 1.

Now we consider y = x− δei + δej restricted to I . Assume that δ is sufficiently small so that the
constant pieces of y+ before and after I are the same as those of x+. Since a ≤ i < j ≤ b, we have

ya + ya+1 + . . .+ yb = xa + xa+1 + . . .+ xb.

On the other hand, we have

ya + ya+1 + . . .+ ya+l−1 ≤ xa + xa+1 + . . .+ xa+l−1

since the index i comes earlier than j. Taken together, these observations give

ya + ya+1 + . . .+ ya+l−1
l

≤ ya + ya+1 + . . .+ yb
b− a+ 1

for all l = 1, . . . , b− a+ 1. From Lemma 1.7, it follows that the projection y+ = (x− δei + δej)
+

remains constant on the set I and this value is the same as x+ on I since ya + ya+1 + . . .+ yb =
xa + xa+1 + . . .+ xb. That is, we have y+ = x+ in this case.

Case 2. Assume that I ∩ J = ∅. As earlier, let δ be sufficiently small. Write I = {a, a+ 1, . . . , b}
and J = {c, c + 1, . . . , d}, where b < c. Since the isotonic constraint is inactive between the
(a−1)-th and a-th components, the projection x+

I restricted to I is the same as projecting xI onto the
|I| = b−a+1-dimensional isotonic cone. As δ is sufficiently small, the projection (x−δei+δej)

+
I

restricted to I is also the same as projecting (x− δei + δej)I onto the |I| = b− a+ 1-dimensional
isotonic cone.

However, since i ∈ I but j /∈ J , we see that (x− δei + δej)I = xI − δei, where ei now should be
regarded as the (i− a+ 1)-th canonical-basis vector in the reduced (b− a+ 1)-dimensional space.
Then, by Lemma 1.6 and the following remark, we see that

y+
I = (xI − δei)+ ≤ x+

I

in the component-wise sense, which, together with the fact that y+l = x+l for l ∈ {1, . . . , a− 1} ∪
{b+ 1, . . . , c− 1} ∪ {d+ 1, . . . , n}, gives

y+1 + · · ·+ y+l ≤ x
+
1 + · · ·+ x+l
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for all l = 1, . . . , c− 1. Moreover,

y+1 + · · ·+ y+l − (x+1 + · · ·+ x+l ) = y+a + · · ·+ y+b − (x+a + · · ·+ x+b )

= ya + · · ·+ yb − (xa + · · ·+ xb)

= −δ
(1)

when b+ 1 ≤ l ≤ c− 1.

Now we turn to the case c ≤ l ≤ d. As earlier, for sufficiently small δ, the projection (x−δei+δej)+J
restricted to J is the same as projecting (x − δei + δej)J onto the |J | = d − c + 1-dimensional
isotonic cone. Then, since yJ = (x− δei + δej)J = xJ + δej , it follows from Lemma 1.6 that

y+
J ≥ x+

J , (2)

and meanwhile, we have

y+c + · · ·+ y+d − (x+c + · · ·+ x+d ) = yc + · · ·+ yd − (xc + · · ·+ xd) = δ. (3)

Thus, for any c ≤ l ≤ d, (2) and (3) give

y+c + · · ·+ y+l − (x+c + · · ·+ x+l ) ≤ y+c + · · ·+ y+d − (x+c + · · ·+ x+d ) = δ.

Therefore, we get

y+1 + · · ·+ y+l − (x+1 + · · ·+ x+l )

= y+1 + · · ·+ y+c−1 − (x+1 + · · ·+ x+c−1) + y+c + · · ·+ y+l − (x+c + · · ·+ x+l )

= −δ + y+c + · · ·+ y+l − (x+c + · · ·+ x+l )

≤ −δ + δ

= 0,

where the second equality follows from (1).

Taken together, the results above show that

y+1 + · · ·+ y+l ≤ x
+
1 + · · ·+ x+l

for 1 ≤ l ≤ d, with equality when l ≤ a− 1 or l = d. In addition, this inequality remains true—in
fact, reduced to equality—when l > d. This completes the proof.

2 Proofs for Section 3

The proof of Theorem 4 relies on the following lemma, which generalizes Lemma 1.1. The proof of
this lemma follows the same reasoning as in Lemma 1.1.
Lemma 2.1. Let x = (x1, . . . , xn) � y = (y1, . . . , yn) in the sense that x1 ≥ y1, x1 + x2 ≥
y1 + y2, . . . , x1 + · · ·+xn−1 ≥ y1 + · · ·+ yn−1 and x1 + · · ·+xn = y1 + · · ·+ yn. Let I1, . . . , Im
be a partition such that I1 = {1, 2, . . . , n1}, I2 = {n1 + 1, . . . , n1 + n2}, . . .. Let x+ and y+ be
the projections of x and y onto the isotonic cone {r : rI1 ≥ rI2 ≥ · · · ≥ rIm}, respectively. Then,
we have x+ � y+.

Proof of Theorem 4. Without loss of generality, assume that R1 ≥ R2 ≥ · · · ≥ Rn and therefore
the true block ranking satisfies I?1 = {1, 2, . . . , n1}, I?2 = {n1 + 1, . . . , n1 + n2}, . . . , Im =
{n1 + . . .+ nm−1 + 1, . . . , n}. For an appropriate permutation we must have y � π ◦R + z. Thus
we finish the proof by invoking Lemma 2.1.

Proof of Theorem 5. The proof of this theorem follows immediately by noting

π1 ◦R + z � π2 ◦R + z.

4



Proof of Proposition 3.6. Without loss of generality, assume R1 ≥ R2. We complete the proof by
considering several difference cases regarding fixed z1, z2, and λ. First, consider the case where z2 >
R1−R2+z1 and λ ≥ (R1+z2−R2−z1)/2. Then, when (y1, y2) = (R1+z1, R2+z2), the adjusted
scores of reporting the true ranking are (R1+R2+z1+z2

2 , R1+R2+z1+z2
2 ), and are (R1 +z1, R2 +z2) if

reporting the opposite ranking. When (y1, y2) = (R1 + z2, R2 + z1), the adjusted scores of reporting
the true ranking are (R1 + z2, R2 + z1), and otherwise are (R1+R2+z1+z2

2 , R1+R2+z1+z2
2 ). As is

clear, we have

U(
R1 +R2 + z1 + z2

2
)+U(

R1 +R2 + z1 + z2
2

)+U(R1+z2)+U(R2+z1) ≥ +U(R1+z1)+U(R2+z2)+U(
R1 +R2 + z1 + z2

2
)+U(

R1 +R2 + z1 + z2
2

)

since (R1 + z2, R2 + z1) � (R1 + z1, R2 + z2). The proof of the remaining cases are similar.
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