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Abstract

This paper proposes the permuton-induced Chinese restaurant process (PCRP),
a stochastic process on rectangular partitioning of a matrix. This distribution
is suitable for use as a prior distribution in Bayesian nonparametric relational
model to find hidden clusters in matrices and network data. Our main contribution
is to introduce the notion of permutons into the well-known Chinese restaurant
process (CRP) for sequence partitioning: a permuton is a probability measure on
[0, 1]× [0, 1] and can be regarded as a geometric interpretation of the scaling limit
of permutations. Specifically, we extend the model that the table order of CRPs has
a random geometric arrangement on [0, 1]× [0, 1] drawn from the permuton. By
analogy with the relationship between the stick-breaking process (SBP) and CRP
for the infinite mixture model of a sequence, this model can be regarded as a multi-
dimensional extension of CRP paired with the block-breaking process (BBP), which
has been recently proposed as a multi-dimensional extension of SBP. While BBP
always has an infinite number of redundant intermediate variables, PCRP can be
composed of varying size intermediate variables in a data-driven manner depending
on the size and quality of the observation data. Experiments show that PCRP can
improve the prediction performance in relational data analysis by reducing the local
optima and slow mixing problems compared with the conventional BNP models
because the local transitions of PCRP in Markov chain Monte Carlo inference are
more flexible than the previous models.

1 Introduction

The multi-dimensional extension of the Chinese restaurant process (CRP) [9, 50] for infinitely
exchangeable random arrays is one of the most significant unsolved issues in the field of Bayesian
nonparametrics and its applications to machine learning. The standard CRP is the stochastic process
representing random clustering of a sequence using the metaphor of customers sitting at tables.
Typically, it is often used when we need to cluster a sequence where the number of clusters is
unknown in advance. The magic of CRP is that it requires only a finite number of parameters for finite
data; nevertheless, the model itself has infinite representational power. Specifically, it is known that a
mixture model using CRP is theoretically equivalent to the Dirichlet process mixture model (DPMM)
[51, 27] represented by the stick-breaking process (SBP) [57] with an infinite number of parameters.
The relationship between the two DPMM representations, CRP and SBP, can be explained by whether
the intermediate random variables in de Finetti’s representation theorem [28, 37] are marginalized
out or not (Figure 1, (a) and (b)). CRP has contributed greatly to the development of the BNP
machine learning field in the sense that it has made BNP not only theoretical but also practical. It
enables models with infinite representational power to be accurately simulated on a computer with a
finite number of parameters without any approximation (e.g., finite truncation). In fact, a variety of
extensions of CRP have been studied, including the nested CRP [16, 17, 60], the Chinese restaurant
franchise [61], the tree-structured CRP [6], the distance-dependent CRP [14, 15, 31]. However, in the
development of CRP, the extension to BNP relational models has remained a historical conundrum.
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Figure 1: (a) SBP representation for sequence partitioning based on de Finetti’s representation. (b)
CRP representation for sequence partitioning. Each customer (triangle) sequentially choose a table
(dark circle). (c) BBP representation for rectangular partitioning based on AHK representation
theorem. (d) Our proposed PCRP. We recall that a certain class of rectangular partitioning has
a bijection to a certain class of permutation. Therefore, if we could add to the order based on
permutations for CRP tables, we could convert the table assignments of data by CRP into rectangular
partitioning. To achieve this, we introduce a random geometric location on [0, 1] × [0, 1] into the
CRP table drawn from permuton. (e) Illustration of permuton. Top shows an array representation
of a permutation σ = 5724163. The horizontally i-th circle has the height σ(i). Bottom shows the
corresponding permuton to σ = 5724163, i.e., the probability measure on [0, 1]× [0, 1].

As a special case of the BNP relational models, the infinite relational model (IRM) [38] consisting
of the product of CRPs was proposed. The IRM can express random rectangular partitioning of
a matrix; however, its representational capability is restricted to a minimal subset of rectangular
partitioning called regular grid (Figure 2, left). Therefore, in order to obtain a model with higher
representational capability, a variety of BNP models for relational data have been rapidly developed
in recent years [38, 55, 54, 20, 53, 58, 46, 36, 19, 7, 23, 26, 43, 44, 30, 21, 25, 24, 56]. Recent
excellent surveys can be found in [22, 49]. In particular, the Mondrian process (MP) [55, 54] and
the rectangular tiling process (RTP) [48] have been proposed as new BNP models to expand the
expressive classes of rectangular partitioning. However, both of them require an infinite number of
parameters as intermediate random variables in the Aldous-Hoover-Kallenberg (AHK) representation
theorem [8, 34, 37] (an extension of de Finetti’s theorem to multi-dimensional arrays), similar to
the SBP representation for DPMM. As a result, Bayesian inference to those models always had to
take care of an infinite number of parameters, which compromise the flexibility of local movements
for the Markov chain Monte Carlo (MCMC) inference and make it highly affected by local optima
and slow mixing problems. As a natural question, we wonder if it is possible to marginalize out the
infinite number of intermediate random variables of these models, as in the CRP representation of
DPMM. Unfortunately, an approach to achieve this has remained unsolved for a long time.

This paper deals with the multi-dimensional extension of CRP to represent wider classes of rectangular
partitioning than regular grid partitioning. As an important stepping stone for this, the block-breaking
process (BBP) [47] has been proposed very recently as a multi-dimensional extension of SBP (Figure
1, (c)). The key insight for the BBP construction is that rectangular partitioning can be represented
indirectly using permutations. Specifically, a special class of permutations called Baxter permutation
[13], which has a one-to-one correspondence with a particular class of rectangular partitioning, is used
to extend the stick-breaking procedures of SBP for a sequence to the block-breaking procedures for a
matrix (Figure 3). Although BBP can indeed be used as an infinitely exchangeable relational model,
it requires an infinite number of redundant parameters, similar to SBP, making Bayesian inference
highly affected by local optima and slow mixing problems. Therefore, a CRP-like representation that
avoids the infinite number of redundant parameters of BBP, analogous to the relationship between
SBP and CRP for DPMM, has been desired. Our contributions are summarized as follows:

Construction of new stochastic process - Section 3.1 proposes a stochastic process such that each
table of the CRP has a random coordinates on [0, 1] × [0, 1]. Specifically, we suppose that the
coordinates of each table is independent and identically distributed (i.i.d.) random variable drawn
from a permuton [35] on [0, 1]× [0, 1]. Permuton is a probabilistic measure on [0, 1]× [0, 1] and can
also be regarded as a prior model for random permutations. By exploiting the correspondence between
permutations and rectangular partitions [62, 52], PCRP can be used as a generative probabilistic
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Figure 2: Several classes of rectangular partitions appear in this paper. The details of each class
will also be described in the main body of Section 2.1. Left: Regular grid partitioning. Each block
is characterized by the product of the row and column clusters. Second from left: Hierarchical
partitioning. Third from left: Hierarchical partitioning with one place deeper in each layer. Fourth
from left: Diagonal rectangulation. Right: Generic rectangulation.

Figure 3: Illustration of BBP [47], which can be regarded as a multi-dimensional extension of SBP.
First BBP uses a Markov process on Baxter permutations, and transforms the evolution of Baxter
permutations to the evolution of floorplan partitioning (i.e., rectangular partitioning ignoring the
size of each rectangle block) by using the one-to-one correspondence between Baxter permutations
and floorplan partitioning [33] (Left). Next BBP uses the block-breaking procedures to sequentially
assign the random size to each rooms floorplan partitioning (Right).

model of rectangular partitioning of a matrix. While BBP [47] (i.e., a multi-dimensional extension of
SBP) always has an infinite number of redundant intermediate variables, our PCRP can be composed
of varying size (finite) intermediate variables in a data-driven manner depending on the size and
quality of the observation data. As a result, PCRP can lead to very flexible local movements in
Bayesian inference, reducing the problems of local optima and slow mixing.

Unified framework for various classes of rectangular partitioning - Conventionally, the stochastic
processes for each class of rectangular partitioning have been constructed individually. However,
according to the design of the permuton, PCRP provides a unified framework for various classes of
rectangular partitioning. Section 3.2 shows an approach to tune the permuton of PCRP to adapt it to
various classes of rectangular partitioning.

New representation of BNP model - As mentioned earlier, a multi-dimensional extension of CRP is
a historical conundrum, and thus PCRP does not provide a perfect solution to this issue. In Section 4,
the theoretical imperfection of PCRP is clarified. Specifically, we intuitively explain that projectivity
and exchangeability of PCRP change when viewed from two different perspectives: rectangular
partitioning of a matrix and table assignment of data. Thus, we propose a new representation of the
BNP model as a way to overcome this imperfection, that applies PCRP as a bridging state to existing
infinitely exchangeable relational models, inspired by the MCMC inference via bridging [42].

2 Preliminaries

2.1 Permutation, permutation class and its relation to rectangular partitioning

Permutation and rectangulation - A permutation of a set S is defined as a bijection from S
to itself. Specifically, this paper always focus on permutations of natural numbers S = [n] :=
{1, 2, . . . , n} (n ∈ N). For convenience, we use one-line notation for a permutation σ = σ1σ2 . . . σn.
For example, the permutation σ = 312 means σ1 = 3, σ2 = 1, σ3 = 2. A rectangulation (also called
rectangular partitioning) is a tiling of a rectangle by a finite number of disjoint rectangles such that
no four of its rectangles share a single corner. In recent years, it has become clear that there is a close
relationship between permutations and rectangulations. Here we focus in particular on the fact that
every permutation can be uniquely converted into a generic rectangulation (Figure 2, right), that is,
the class of rectangulations without any constraints:

Proposition 2.1 (See Proposition 6.2 in [39] and Proposition 4.2 in [52]) There is a surjective map
from permutations to generic rectangulations.
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Figure 4: Map from permutations (e.g., σ = 34861725) to diagonal rectangulations [39]. We first
draw distinct diagonal points on the diagonal, with one of the points being the top-left corner and
another being the bottom-right corner. We perform the following steps sequentially. Let R be the
union of the rectangles drawn in the first i− 1 steps. To draw the ith rectangle, we consider the label i
on the diagonal. If the diagonal point p on the diagonal immediately above or left of the label i is not
in R, then the upper left corner of the new rectangle is the rightmost point of R immediately to the
left of p. If the diagonal point p immediately below or right of the label i is not in R, then the lower
right corner of the new rectangle is the highest point of R immediately below p. If p is in R, then the
lower-right corner of the new rectangle is the rightmost point of R immediately to the right of p.

Figure 5: Transformation from diagonal rectangulations to generic rectangulations [52]. Left: Two
notions, edge and wall. An edge of the rectangulation is a line segment contained in the side of some
rectangles such that the endpoints of the line segment are vertices and the segment has no vertices in
its interior. A wall of the rectangulation is a maximal union of edges forming a line segment. Middle
and right: Two examples of mapping from permutations (e.g., σ = 34861725 and σ = 34128675)
to generic rectangulations. First, we convert the permutation to a diagonal rectangulation. Then we
assign to the vertex on the walls the label of the block that contains that vertex as its own upper left
or lower right corner. Finally, the order of the vertices on the wall will be rearranged according to the
permutation. Specifically, vertices on the horizontal wall are aligned in permutation order from left to
right, and vertices on the vertical wall are aligned in permutation order from bottom to top.

Fortunately, we can constructively obtain this map as the following two-stage transformation from
a permutation to a general rectangulation by way of a diagonal rectangulation. A rectangulation is
diagonal if the interior of each rectangle has an area that intersects the diagonal. Figure 4 and Figure
5 describe the details of the first and second steps, respectively. We use this transformation as an
important component in our generative model of PCRP (in Section 3.1).

Permutation classes and rectangulation classes - To investigate the properties of the permutation,
we can focus on subsets of permutations as permutation classes. To identify a permutation class,
we introduce the notion of occurrences. We suppose that τ and σ are permutations of size k and
n, respectively. The occurrences of pattern τ in σ is a subsequence σi1 , . . . , σik that is order-
isomorphic to τ , that is, for all indices s, t ∈ [k], we have σis < σit ⇐⇒ τs < τt. One way to
characterize a permutation class is often to focus on what patterns (typically very short permutations)
are not contained as occurrences in the permutations belonging to that class. Conventionally, various
permutation classes have been studied in depth, however, here we would like to focus on several
permutation classes that are particularly relevant to rectangular partitioning. The details of each class
will be explained in the supplementary material. It should be emphasized here that, surprisingly,
permutations of a particular class have a one-to-one correspondence with rectangulations of a
particular class. A brief list is given below. We will use this fact in Section 3.2 to show that PCRP
can potentially serve as a unified model for the various classes of rectangular partitioning.

2-clumped permutation: The 2-clumped permutations have a bijection to generic rectangulations
(Figure 2, right) [52], that no restrictions are required.

Baxter permutation: and twisted Baxter permutation: The Baxter permutations have a bijection
to diagonal rectangulations (Figure 2, fourth from left) [62, 5, 32], which has a representative in
which every rectangle’s interior intersects the diagonal.

Separable permutation: Separable permutations have a bijection to hierarchical and diagonal
rectangulations [59, 5], a subset of hierarchical partitioning (Figure 2, second from left), which are
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expressed as binary trees where nodes represent a vertical or horizontal separation of a rectangle into
two disjoint rectangles.

Separable skew-merged permutation: Separable skew-merged permutations have a bijection to a
special subset of hierarchical partitioning, in particular, those where only one rectangle is allowed to
be further cut in each layer (Figure 2, third from left) [45].

2.2 Permuton

In this paper, we introduce permuton [35] as a very useful tool for handling random permutations.
Before defining permuton, we begin with a geometric interpretation of a permutation (Figure 1, (e)
top). To a permutation σ, we can associate a probability measure γσ on [0, 1] × [0, 1] as follows.
We first divide [0, 1]× [0, 1] into an n× n grid of squares of size 1/n× 1/n. Then, we can define
the density of γσ on the square in the i-th row and j-th column to be the constant n if σi = j and 0
otherwise. Therefore, γσ can be regarded as a geometric representation of the permutation matrix of
σ. More generally, we define a permuton to be a probability measure γ on [0, 1]× [0, 1] with uniform
marginals (Figure 1, (e) bottom): γ([a, b]× [0, 1]) = b−a = γ([0, 1]× [a, b]) for all 0 ≤ a ≤ b ≤ 1.
We emphasize that, for any permutation σ, the corresponding probability measure γσ is a permuton.
Specifically, the permutation σ can be interpreted as the permuton γσ given by the sum of Lebesgue
area measures [35]: γσ(A) = n

∑n
i=1 Leb

([
(i− 1)/n, i/n

]
×
[
(σ(i)− 1)/n, σ(i)/n

]
∩A

)
, for all

Borel measurable set A of [0, 1]× [0, 1], where Leb(·) indicates the Lebesgue measure.

We will provide the intuition behind why permuton is useful in dealing with random permutations.
We suppose that τ and σ are permutations of size k and n, respectively. We set õcc(τ, σ) :=
(n!/k!(n − k)!) · #{occurrences of τ in σ}. Intuitively, õcc(τ, σ) means the probability to find
a pattern τ in σ, when we take k elements uniformly at random in σ. Similarly, if we replace
permutation σ with permuton γ, we can consider the probability of occurrence of a pattern τ :
õcc(τ, γ) := P[u1, . . . , uk form a pattern τ ], where u1, . . . , uk are i.i.d. points on [0, 1] × [0, 1]
drawn from the permuton γ. Now, a natural question is whether these two õcc(τ, σ) and õcc(τ, γ)
are generally consistent. The following theorem gives us an answer to this question:

Theorem 2.2 (See, e.g., Theorem 2.5 [29] and Lemma 3.5 [35]) We consider a sequence of per-
mutations σ1, σ2, . . . , σn, . . . of size tending to infinity n → ∞. Then, we have γσn

→ γ ⇐⇒
for every τ, õcc(τ, σn)→ õcc(τ, γ). Moreover, if τ and σ are permutations of size k and n, respec-
tively, then |õcc(τ, σ)− õcc(τ, γσ)| ≤ k(k − 1)/2n.

As a result, random permutations belonging to some class can be controlled by the limit of sequences
of permutons. We use the permuton as a prior model for the PCRP table coordinates (in Section 3.1).

3 Permuton-induced Chinese restaurant process (PCRP)

This section proposes a new stochastic process, which is our main contribution to this paper. First, we
describe the stochastic process, PCRP, in terms of a generative model and show how we can introduce
the notion of the permuton into CRP to obtain a model for rectangular partitioning. Next, we discuss
how to design the permuton so that PCRP can represent some classes of rectangular partitioning.

3.1 Model description of PCRP from generative probabilistic point of view

PCRP is composed of an input matrix, the concentration parameter η > 0, and the permuton γ, i.e., a
probability measure on [0, 1]× [0, 1]. The specific design of the permuton will be discussed in the
next subsection, thus the reader may continue to read assuming, for example, γ(·) = Leb

(
{·}
)
, that

is, the uniform distribution on [0, 1]× [0, 1]. The following four steps represent the overall picture of
PCRP from the viewpoint of a probabilistic generative model.

Step 1: Table assignment process of all row and column elements of the input matrix by a
single CRP (Figure 6, first and second from left) - Each row (white triangle) and each column
(black triangle) of the input matrix chooses either an existing table to sit at with probability St/(S+η)
(t = 1, . . . ,K) or a new table with probability η/(S + η), as in a standard CRP [9], where K is
the number of tables, S is the total number of customers seated at the tables, St is the number of
customers seated at the t-th table. If a new table is chosen, we draw the coordinates of the table
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Figure 6: Overview of permuton-induced CRP, described in Section 3.1.

on [0, 1]× [0, 1] from the permuton γ. Here, for simplicity, we show a model that delivers row and
column elements to a single CRP. However, the model can be easily extended to use different CRPs
for rows and columns as in the conventional IRM [38] (e.g., using the Chinese restaurant franchise
[61], where CRPs for rows and columns share common dishes).

Step 2: Numbering the CRP tables and placement of customers on the sides of a rectangle
(Figure 6, second and third from left) - The CRP tables are numbered according to the vertical
order of the coordinates, which leads to a permutation σ = σ1 . . . σK . Note that we recursively
perform this numbering each time we add a new table. Next, we consider a rectangle (referred to as
the outer rectangle) and its main diagonal and divide it into K equal-sized line segments numbered
1, . . .K, from top left to bottom right. The customer corresponding to each row of the input matrix is
moved to the left side position of the outer rectangle corresponding to the table number it belongs to.
Similarly, we move the customer corresponding to each column of the input matrix to the top side
position of the outer rectangle corresponding to the table number it belongs to.

Step 3: Transforming permutation to generic rectangulation (Figure 6, fourth and fifth from
left) - We apply the map from permutations to rectangulations described in Proposition 2.1 (Figure 4
and 5) to the permutation σ derived from the PCRP table coordinates in Step 2. This transformation
is performed in two steps, first converting the PCRP table assignment (Step 1) to a diagonal rectangu-
lation (Figure 6, fourth), and then converting it further to a generic rectangulation (Figure 6, right).
As a result, PCRP yields a random rectangular partition of the input matrix.

Intuitive interpretation of PCRP: We recall that PCRP consists of two components: (1) random
table assignments to all the row and column elements of the input matrix, and (2) random permutations
represented by the table coordinates. The former table assignments serve to roughly group the rows
and columns of the input data, and the latter random table coordinates serve to transform those rough
groupings into detailed rectangular partitioning. The practical advantage of PCRP is that when a new
table of CRPs is added, it can be inserted into every possible place of the rectangular partition (with
the consistency that the whole is a rectangular partition). This allows us to eliminate the problem of
the disadvantage of the conventional BBP, where the insertion of a new rectangle is restricted to a
specific place in the lower right corner (Figure 3).

3.2 Design of permuton to provide various representational capabilities to PCRP

In this subsection, we discuss how to specifically choose a permuton γ to restrict the rectangular
partitions generated by PCRP to a specific class. We start with the simplest case of γ(·) = Leb

(
{·}
)
,

called the uniform permuton [35]. As is well known, if σn is a uniform random permutation of size n,
then γσn

converges in distribution to this uniform permuton. We recall here that every permutation
can be transformed into some rectangular partition. Thus it seems that PCRP with the uniform
permuton can be used as a probabilistic model for arbitrary rectangular partitioning. However, there
is one crucial point to note: The mapping between permutations (a set of all permutations) and
generic rectangulations is not a one-to-one correspondence. This means that even if the random
permutations are uniform, the corresponding random rectangular partitions they are transformed
into are not uniform and have some bias. Namely, there are some biases in PCRP with the uniform
permuton, such that some rectangular partitions are more likely to appear and some are less likely
to appear. We could ignore this bias for practical use, but theoretically, it is essential to know how
to eliminate it. We briefly introduce some permuton designs that are uniform for some class of
rectangular partitioning. Here is a brief list, and details are given in the supplementary material.

Hierarchical partitioning with one place deeper in each layer (Figure 2, third from left) - Uni-
form partitioning of this class can be obtained by restricting the random permutation of coordinates in
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the CRP tables to uniform separable skew-merged. If σn is a uniform separable skew-merged permu-
tation of size n, then γσn converges in distribution to a deterministic permuton γ (See, e.g., Theorem
3.3 and Section 3.2.1 [12]). Intuitively, the permuton γ has an X-shaped density on [0, 1]× [0, 1].

Hierarchical and diagonal rectangulation (Figure 2, second and fourth from left) - Uniform
hierarchical and diagonal rectangulations can be expressed by uniform separable permutations. If
σn is a uniform separable permutation of size n, then γσn converges in distribution to the Brownian
separable permuton [11, 10, 45].

Diagonal rectangulation (Figure 2, fourth from left) - Uniform diagonal rectangulations can be
expressed by uniform Baxter permutations. If σn is a uniform Baxter permutation of size n, then γσn

converges in distribution to the Baxter permuton [18].

Generic rectangulation (Figure 2, right) - To the best of our knowledge, there is still no way to
construct a permuton that corresponds to 2-clumped permutations, which have a bijection to generic
rectangulations. This means that it is currently tricky to explicitly design a clever permuton that will
always restrict its samples to 2-clumped permutations. One possible strategy is to relax the permuton
itself to one that can generate a broad class of permutations (e.g., γ(·) = Leb

(
{·}
)
), and instead use

rejection sampling to restrict the generated permutations so that they are actually 2-clumped. Details
are given in the supplementary material.

4 Intermediate level representation between SBP and CRP

PCRP would be very useful in the practical use of relational data analysis due to the following two
advantages. (1) The model itself adjusts the model complexity in a data-driven manner according to
the quality and size of the input data. (2) The design of permuton allows us to handle various classes
of rectangular partitioning in a unified manner. In this section, we explore the former point more
deeply from the viewpoint of the theory of Bayesian nonparametrics. A precise explanation would
require the notions of projective system, projectivity, and exchangeability, which are far from the
scope of this paper. Therefore, we would like to focus on an intuitive explanation while providing a
rigorous discussion in the supplementary material.

Motivation - As well as the standard CRP for sequence partitioning being an infinitely exchangeable
model, PCRP also has projectivity and exchangeability in terms of the CRP table assignments of
data. However, from the perspective of rectangular partitioning model in relational data analysis,
the projectivity and exchangeability of PCRP, unfortunately, do not hold. The implications of this
fact will be explained in terms of the practical intuition for relational data analysis. We consider a
pair of matrices I ⊂ J ⊂ {1, 2, . . . , } × {1, 2, . . . , }. Namely, a smaller matrix I is an extraction of
some rows and columns of a larger matrix J . As it turns out, the only theoretical imperfection of
PCRP can be explained as follows: the random rectangular partitioning of the smaller matrix I that
follows PCRP cannot be equivalent to the random rectangular partitioning of I when the random
rectangular partitioning of the larger matrix J follows PCRP. In other words, PCRP does not have
perfect self-similarity according to the size of the data in terms of the rectangular partitioning model,
but only in the imaginary object of the CRP table assignments. This implies that PCRP may have to
tune its model complexity (e.g., the concentration parameter of CRP) according to the size of the
data. Nevertheless, in a practical sense, we believe that this is not such a significant issue. Rather,
local optima and slow mixing problems in Bayesian inference have a more significant impact on the
performance of the model. However, readers familiar with the theory of Bayesian nonparametrics
may wish to have a BNP model that is strictly projective and exchangeable in terms of rectangular
partitioning. For such readers, we also propose a new way to create an exact infinite exchangeable
model while using PCRP. Specifically, we apply PCRP as a bridging state to existing infinitely
exchangeable relational models, inspired by the MCMC inference via bridging [42].

We are interested in a set of rectangular partitioning of a matrix I ⊂ {1, 2, . . . , } × {1, 2, . . . , }
whose rows and columns are indexed by natural numbers. We consider probability measures µIX on
(XI ,2XI ) where XI is a set of rectangular partitioning of a matrix I (i.e., a constrained combinatorial
space), and hope to find an exact BNP model (Figure 7, left). Needless to say, a number of the various
BNP models have actually been proposed as the exact BNP model µIX , including the IRM [38], the
MP-based relational model [55], and the BBP-based relational model [47]. However, conventionally,
these exact BNP models have significantly struggled with local optima and slow mixing problems
in Bayesian inference. For example, in the standard MCMC inference phase, we wish to sample
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Figure 7: Illustration of exact BNP model with bridging states. Left: Existing exact BNP model
on rectangular partitioning XI . Middle: PCRP on imaginary table assignments of data YI . Right:
BNP model on extended space XI ∪ YI . Sampling from µIX is equivalent to drawing samples (gray
circles) from XI ∪ YI via the joint chain and discarding those (white circles) from YI .

from the distribution µIX over a constrained combinatorial space XI . Typically, by using some local
moves, we can derive a Markov chain with a transition matrix, which may have slow mixing or
even be non-ergodic. To mitigate these issues, we propose to introduce auxiliary spaces to relax the
local movements in combinatorial spaces and to connect different regions of the sample space where
communication is difficult or impossible.

Exact BNP model with bridging states - First, as the auxiliary space YI , we introduce the table
assignments of I by CRP and a set of coordinates on [0, 1]× [0, 1] of the tables. The corresponding
probability model µIY on (YI ,2YI ) should be PCRP described in the previous section (Figure 7,
middle). Then, connecting the bridging state in the auxiliary spaceYI with samples inXI , we consider
the combined probability model over the union space XI ∪ YI . To address probabilistic models
on the union space XI ∪ YI , we modify the previous probabilistic models µIX and µIY as follows:
µ̂IX(· ∈ 2XI∪YI ) := µIX(· ∩XI) and µ̂IY (· ∈ 2XI∪YI ) := µIY (· ∩YI). For simplicity of notation, the
modified probabilistic models µ̂IX and µ̂IY will be denoted as original µIX and µIY in the following.
Finally, we consider a probabilistic model µI+ (Figure 7, right) in form of µI+ = αµIX + (1− α)µIY ,

where 0 ≤ α ≤ 1 is a tunable real variable. Fortunately, we can treat this new model µI+ as a BNP
model, that is, there uniquely exists a projective limit of µI+ (I → N× N) (See the supplementary
materials for details). In summary, the BNP model with bridging states has the following advantages:
(1) The family 〈µI+〉I∈E can be treated in the same way as the usual BNP model, i.e., the model itself
has self-similarity (self-consistency) regardless of the size of the observed inputs. (2) If we restrict
the space of interest to XI (i.e. forget about the auxiliary space YI ), it becomes equivalent to the
exact BNP model on rectangular partitions. More specifically, we have µIX(·) = (1/α)µI+(· ∩ XI).

5 Application to relational data analysis

5.1 PCRP-based relational model and Bayesian inference

Relational model - The PCRP-based relational model is applied to the input observation matrix
Z = (Zi,j)N×M . We suppose that the input matrix Z consists of categorical elements, i.e., Zi,j ∈
{1, 2, . . . , D} (D ∈ N). The generative model can be constructed as follows. First, a random table
assignment is performed by a single CRP for all rows and columns of the input matrix (Step 1
described in Section 3.1). We will denote by ri (∈ N) the index of the table to which the i-th row
is assigned and by cj (∈ N) the index of the table to which the j-th column is assigned. In the
process of the table assignment by CRP, whenever a new table is generated, random coordinates
for that table on [0, 1] × [0, 1] will be drawn from permuton γ (Step 1). We will denote by Lt
(∈ R2) the coordinates assigned to the t-th table (t = 1, 2, . . . ,K), where K is the number of tables
generated by CRP. With the PCRP table assignments T := (r1, . . . , rN , c1, . . . , cM ) and the PCRP
table coordinates L := (L1, . . . , LK), they can be uniquely transformed into a rectangular partition
of the input matrix Z (Step 2-3). For simplicity, we denote by R(T ,L) the rectangular partition
derived from T and L. Each block indexed by k (∈ N) in the rectangular partition R(T ,L) has a
latent Dirichlet random variable ϑk ∼ Dirichlet(α0) (k = 1, 2, . . . ,K), where α0 = (α0, . . . , α0)
is a D-dimensional non-negative hyper parameter. Each element Zi,j is drawn from the categorical
distribution with the parameter ϑk(i,j), where k(i, j) indicates the block index to which the entry with
the i-th row and the j-th column belongs. In summary, it can be viewed as a problem of estimating
PCRP table assignments T and PCRP table coordinates L, given the input matrix Z and the
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Figure 8: Illustration of generating a new table in Gibbs sampling. Left: Coordinates of existing K
tables with customers already seated. Second from left: (K+ 1)2 subsections that are candidates for
the coordinates from which the new table will be generated. Third from left: Subsection (colored
in gray) [v1, v2] × [h1, h2] chosen as the location where the new table will be generated. Right:
Coordinates of the new table (colored in dark gray) drawn from permuton γ([v1, v2]× [h1, h2]).

hyper-parameters: permuton γ, Dirichlet distribution parameters α0 > 0, and concentration
parameter of PCRP η > 0.

Bayesian inference - The PCRP relational model can lead to very simple inference algorithms based
on the MCMC methods. Following the generative model described above, the joint probability
density is expressed as follows:

p (Z,T ,L | γ, α0, η) = pCRP(T | η) ·

(
K∏
t=1

pperm.(Lt | γ)

)
· pobs.(Z | R(T ,L), α0), (1)

where the first term pCRP(T | η) is the probability distribution for the standard CRP, the second term
pperm.(Lt | γ) is the probability density that Lt is drawn from the permuton γ, and the third term is

pobs.(Z | R(T ,L), α0) ∝
K∏
k=1

(
Γ(Dα0)

Γ(Dα0 +
∑D
d=1Nk,d)

D∏
d=1

Γ(α0 +Nk,d)
Γ(α0)

)
, (2)

where Nk,d denotes the number of elements in both the k-th block and the d-th category of the
categorical distribution. The overview of the MCMC inference algorithm is to simulate the above
joint probability by sequentially updating the table assignments T and the table coordinates L.

One simple question is whether PCRP can construct Gibbs sampling in updating table assignments
like the usual CRP. Fortunately, PCRP can lead to Gibbs sampling. Updating table assignments for
rows and columns involves assigning them to existing tables or generating a new table, similar to
the standard CRP. Calculating the probability of the former is straightforward, whereas calculating
the latter, i.e., the probability of generating a new table, requires a little more care. Figure 8 shows
an illustration of the case where a new table is generated in Gibbs sampling. We suppose that there
are currently K tables. The posterior probability of choosing a new table depends on the random
coordinates of that table and the random rectangular partition derived from it, which has at most
(K + 1)2 cases of new rectangular partitions. Specifically, for each of the K tables on [0, 1]× [0, 1],
we draw a horizontal and vertical crosshair line, respectively, to divide [0, 1]× [0, 1] into (K + 1)2

subsections (Figure 8, second). The probability of the new table’s coordinates falling into each
of those (K + 1)2 subsections can be calculated using Equation (1). Therefore, the sum of those
probabilities can be regarded as the probability that the new table will be generated. This can be
calculated exactly without any approximation. Therefore, the conditional posterior distributions
for ri and cj can be calculated explicitly, and Gibbs sampling can be easily performed. The whole
MCMC algorithm will be discussed in the supplementary material. Our code will be available at
https://github.com/nttcslab/permuton-induced-crp.

5.2 Experimental evaluation

We compare PCRP with the existing BNP models for rectangular partitioning, IRM [38], MP [55],
RTP [48], and BBP [47]. The detailed experimental setup is described in the supplementary material.

Datasets - Four social network datasets [40]: Wiki [1], Facebook [2], Twitter [3], and Epinions
[4]. All data is public and does not contain any personally identifiable information (See [41] for
license). We selected the top 1000 active nodes based on their interactions with others; subsequently
we randomly sampled 500 × 500 matrix to construct the relational data, as in [25, 47]. We held
out 20% cells of the input data for testing, and each model was trained by the MCMC using the
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Figure 9: Experimental results of perplexity comparison for four real world data, relationship between
test perplexity (mean±std) evolution and logarithm of wall-clock time.

Wiki data Facebook data Twitter data Epinion data

Figure 10: Four examples of analysis results for each data by BBP (Top) and PCRP (Bottom).

remaining 80% of the cells. We evaluated the models using perplexity as a criterion: perp(Ẑ) =

exp(−(log p(Ẑ))/E), where E is the number of non-missing cells in the partitioned matrix Ẑ.

Experimental results - We ran 10 trials of analysis for each method on each data set. Figure 9
summarizes the test perplexity comparison results. We recall that IRM and MP are limited in the class
of rectangular partitions they can represent, and only PCRP, BBP, and RTP can represent arbitrary
rectangular partitioning. Indeed, it can be seen that these arbitrary rectangular partitioning models
have good prediction accuracy when MCMC converges. Among them, PCRP in particular achieves
the best prediction accuracy for all the data. As another perspective, BBP, RTP, and MP are SBP-type
models, while PCRP and IRM are CRP-type models. It can be seen that PCRP improves the perplexity
from an early stage compared to SBP-like methods. In light of the above, we can confirm that PCRP
can reduce the problems of local optima and slow mixing in Bayesian inference. As shown in Figure
10, BBP extracts a very biased rectangular partition due to the fact that the addition of new blocks
tends to occur in the lower right corner. In other words, BBP only has a high probability of adding
blocks to the lower right, so if a coarse cluster is created in the upper left, it will be difficult to modify
the coarse cluster into a fine one. On the other hand, PCRP has the flexibility to add new blocks to
the entire area, so it can properly find coarse and fine clusters in the entire area.

6 Conclusion and Discussion

Summary - This paper has proposed a new stochastic process for relational data analysis. Our main
contributions are as follows: (1) We introduce the notion of the permuton to the CRP and obtain
a probabilistic model of rectangular partitioning of a matrix. (2) We show a unified framework
for PCRP to various classes of rectangular partitioning based on the design of the permuton. (3)
We discuss the theoretical imperfection of PCRP for projectivity and exchangeability in terms of
rectangular partitioning and propose a new representation of the BNP model as a way to overcome
this imperfection that applies PCRP as a bridging state to existing BNP relational models.

10



Funding disclosure

Funding in direct support of this work is NTT Corporation, without any third party funding.

References
[1] http://snap.stanford.edu/data/wiki-Vote.html

[2] http://snap.stanford.edu/data/ego-Facebook.html

[3] http://snap.stanford.edu/data/ego-Twitter.html

[4] http://snap.stanford.edu/data/soc-Epinions1.html

[5] Ackerman, E., Barequet, G., Pinter, R.Y.: A bijection between permutations and floorplans, and its
applications. Discrete Applied Mathematics 154(12), 1674–1684 (2006)

[6] Adams, R.P., Jordan, M.I., Ghahramani, Z.: Tree-structured stick breaking for hierarchical data. In:
Lafferty, J., Williams, C., Shawe-Taylor, J., Zemel, R., Culotta, A. (eds.) Advances in Neural Information
Processing Systems. vol. 23. Curran Associates, Inc. (2010)

[7] Airoldi, E.M., Costa, T.B., Chan, S.H.: Stochastic blockmodel approximation of a graphon: Theory
andconsistent estimation. In: Advances in Neural Information Processing Systems (2013)

[8] Aldous, D.J.: Representations for partially exchangeable arrays of random variables. Journal of Multivariate
Analysis 11, 581–598 (1981)

[9] Aldous, D.J.: Exchangeability and related topics. École d’Été St Flour, Lecture Notes in Mathematics
1117, 1–198 (1985)

[10] Bassino, F., Bouvel, M., Feray, V., Gerin, L., Maazoun, M., Pierrot, A.: Universal limits of substitution-
closed permutation classes. Journal of the European Mathematical Society 22(11), 3565–3639 (2019)

[11] Bassino, F., Bouvel, M., Féray, V., Gerin, L., Pierrot, A.: The Brownian limit of separable permutations.
The Annals of Probability 46(4), 2134—-2189 (2018)

[12] Bassino, F., Bouvel, M., Féray, V., Gerin, L., Maazoun, M., Pierrot, A.: Scaling limits of permutation
classes with a finite specification: a dichotomy. arXiv:1903.07522 (2019)

[13] Baxter, G.: On fixed points of the composite of commuting functions. Proceedings of American Mathemat-
ical Society 15, 851–855 (1964)

[14] Blei, D., Frazier, P.: Distance dependent Chinese restaurant processes. In: International Conference on
Machine Learning (2010)

[15] Blei, D., Frazier, P.: Distance dependent Chinese restaurant processes. Journal of Machine Learning
Reseach 12, 2461–2488 (2011)

[16] Blei, D.M., Jordan, M.I., Griffiths, T.L., Tenenbaum, J.B.: Hierarchical topic models and the nested
Chinese restaurant process. pp. 17–24 (2003)

[17] Blei, D.M., Griffiths, T.L., Jordan, M.I.: The nested Chinese restaurant process and Bayesian nonparametric
inference of topic hierarchies. J. ACM 57(2) (2010)

[18] Borga, J., Maazoun, M.: Scaling and local limits of Baxter permutations and bipolar orientations through
coalescent-walk processes. arXiv:2008.09086 (2020)

[19] Caldas, J., Kaski, S.: Bayesian biclustering with the plaid model. In: 2008 IEEE Workshop on Machine
Learning for Signal Processing. pp. 291–296 (2008)

[20] Choi, D.S., Wolfe, P.J.: Co-clustering separately exchangeable network data. Annals of Statistics 42, 29–63
(2014)

[21] Fan, X., Li, B., Sisson, S.A.: The binary space partitioning-tree process. In: International Conference on
Artificial Intelligence and Statistics. pp. 1859–1867 (2018)

[22] Fan, X., Li, B., Luo, L., Sisson, S.A.: Bayesian nonparametric space partitions: A survey. arXiv:2002.11394
(2020)

11

http://snap.stanford.edu/data/wiki-Vote.html
http://snap.stanford.edu/data/ego-Facebook.html
http://snap.stanford.edu/data/ego-Twitter.html
http://snap.stanford.edu/data/soc-Epinions1.html


[23] Fan, X., Li, B., Sisson, S.: Rectangular bounding process. In: Advances in Neural Information Processing
Systems. pp. 7631–7641 (2018)

[24] Fan, X., Li, B., Sisson, S.A.: Online binary space partitioning forests. arXiv:2003.00269 (2020)

[25] Fan, X., Li, B., Sisson, S.A.: Binary space partitioning forests. arXiv:1903.09348 (2019)

[26] Fan, X., Li, B., Wang, Y., Wang, Y., Chen, F.: The Ostomachion Process. In: AAAI Conference on
Artificial Intelligence. pp. 1547–1553 (2016)

[27] Ferguson, T.: Bayesian analysis of some nonparametric problems. Annals of Statistics 2(1), 209–230
(1973)

[28] de Finetti, B.: Funzione caratteristica di un fenomeno aleatorio. Memorie della R. Academia Nazionale dei
Lincei 4(5), 251–299 (1930)

[29] Frédérique, B., B. Mathilde, F.V., Lucas, G., M. Mickaël, P.A.: Universal limits of substitution-closed
permutation classes. Journal of European Mathematical Society 22, 3565–3639 (2020)

[30] Ge, S., Wang, S., Teh, Y.W., Wang, L., Elliott, L.: Random tessellation forests. In: Advances in Neural
Information Processing Systems 32, pp. 9575–9585 (2019)

[31] Ghosh, S., Ungureunu, A., Sudderth, E., Blei, D.: Spatial distance dependent Chinese restaurant processes
for image segmentation. In: Advances in Neural Information Processing Systems (2011)

[32] He, B.D.: A simple optimal binary representation of mosaic floorplans and Baxter permutations. Theoretical
Computer Science 532(1), 40–50 (2014)

[33] Hong, X., Huang, G., Cai, Y., Gu, J., Dong, S., Cheng, C., Gu, J.: Corner block list: an effective and
efficient topological representation of non-slicing floorplan. In: Proceedings of the IEEE/ACM International
Conference on Computer-Aided Design (2000)

[34] Hoover, D.N.: Relations on probability spaces and arrays of random variables. Tech. rep., Institute of
Advanced Study, Princeton (1979)

[35] Hoppen, C., Kohayakawa, Y., Moreira, C.G., Ráth, B., Sampaio, R.M.: Limits of permutation sequences.
Journal of Combinatorial Theory, Series B 103(1), 93—-113 (2013)

[36] Ishiguro, K., Sato, I., Nakano, M., Kimura, A., Ueda, N.: Infinite plaid models for infinite bi-clustering. pp.
1701–1708 (2016)

[37] Kallenberg, O.: Symmetries on random arrays and set-indexed processes. Journal of Theoretical Probability
5(4), 727–765 (1992)

[38] Kemp, C., Tenenbaum, J.B., Griffiths, T.L., Yamada, T., Ueda, N.: Learning systems of concepts with an
infinite relational model. In: AAAI Conference on Artificial Intelligence. pp. 381–388 (2006)

[39] Law, S., Reading, N.: The hopf algebra of diagonal rectangulations. Journal of Combinatorial Theory,
Series A 119(3), 788–824 (2012)

[40] Leskovec, J., Huttenlocher, D., Kleinberg, J.: Predicting positive and negative links in online social
networks. In: Proceedings of the 19th International Conference on World Wide Web. pp. 641–650 (2010)

[41] Leskovec, J., Krevl, A.: SNAP Datasets: Stanford large network dataset collection. http://snap.
stanford.edu/data (Jun 2014)

[42] Lin, D., Fisher, J.: Efficient sampling from combinatorial space via bridging. In: International Conference
on Artificial Intelligence and Statistics (2012)

[43] Lloyd, J., Orbanz, P., Ghahramani, Z., Roy, D.M.: Random function priors for exchangeable arrays with
applications to graphs and relational data. In: Advances in Neural Information Processing Systems (2012)

[44] Lovász, L.: Very large graphs. Current Developments in Mathematics 11, 67–128 (2009)

[45] Maazoun, M.: On the brownian separable permuton. Combinatorics, Probability and Computing 29(2),
241–266 (2019)

[46] Miller, K., Jordan, M.I., Griffiths, T.L.: Nonparametric latent feature models for link prediction. pp.
1276–1284 (2009)

12

http://snap.stanford.edu/data
http://snap.stanford.edu/data


[47] Nakano, M., Kimura, A., Yamada, T., Ueda, N.: Baxter permutation process. In: Advances in Neural
Information Processing Systems (2020)

[48] Nakano, M., Ishiguro, K., Kimura, A., Yamada, T., Ueda, N.: Rectangular tiling process. In: Proceedings
of the 31st International Conference on Machine Learning. Proceedings of Machine Learning Research,
vol. 32, pp. 361–369 (2014)

[49] Orbanz, P., Roy, D.M.: Bayesian models of graphs, arrays and other exchangeable random structures. IEEE
Transactions on Pattern Analysis and Machine Intelligence 37, 437–461 (2013)

[50] Pitman, J., Yor, M.: The two-parameter poisson-dirichlet distribution derived from a stable subordinator.
IBM Journal of Research and Development 2(25), 855–900 (1997)

[51] Rasmussen, C.: The infinite gaussian mixture model. In: Advances in Nueral Information Processing
Systems (2000)

[52] Reading, N.: Generic rectangulations. European Journal of Combinatorics 33(4), 610–623 (2012)

[53] Rodriguez, A., Ghosh, K.: Nested partition models. Tech. rep., JackBaskin School of Engineering (2009)

[54] Roy, D.M.: Computability, inference and modeling in probabilistic programming. Ph.D. thesis, Mas-
sachusetts Institute of Technology (2011)

[55] Roy, D.M., Teh, Y.W.: The Mondrian process. In: Advances in Neural Information Processing Systems
(2009)

[56] Saad, F.A., Mansinghka, V.K.: Hierarchical infinite relational model. In: Proceedings of the 37th Confer-
ence on Uncertainty in Artificial Intelligence. AUAI Press, Arlington, VA, USA (2021)

[57] Sethuraman, J.: A constructive definition of Dirichlet priors. Statistica Sinica 4, 639–650 (1994)

[58] Shan, H., Banerjee, A.: Bayesian co-clustering. In: IEEE International Conference on Data Mining. pp.
530–539 (2008)

[59] Shen, Z.C., Chu, C.C.N.: Bounds on the number of slicing, mosaic, and general floorplans. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 22(10), 1354–1361 (2003)

[60] Tan, X., Rao, V., Neville, J.: Nested crp with hawkes-gaussian processes. In: Storkey, A., Perez-Cruz, F.
(eds.) Proceedings of the Twenty-First International Conference on Artificial Intelligence and Statistics.
Proceedings of Machine Learning Research, vol. 84, pp. 1289–1298 (2018)

[61] Teh, Y.W., Jordan, M.I., Beal, M., Blei, D.: Hierarchical Dirichlet processes. Journal of the AmericanSta-
tistical Association 101, 1566–1581 (2006)

[62] Yao, B., Chen, H., Cheng, C.K., Graham, R.L.: Floorplan representations: Complexity and connections.
ACM Transactions on Design Automation of Electronic Systems 8(1), 55–80 (2003)

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] See Section 1. We have clarified the main contributions
of this paper under three headings.

(b) Did you describe the limitations of your work? [Yes] See Section 4. We have simul-
taneously clarified the technical imperfection of our proposed PCRP and proposed a
reasonable proposal to solve it.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] See
Ethical perspective in Supplementary material.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes] Section 4 is

an intuitive sketch of the theoretical results. Details are given in the supplementary
material.

13



(b) Did you include complete proofs of all theoretical results? [Yes] See Supplementary
material.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes] See experimental settings in Supplementary material
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [Yes]
(d) Did you include the total amount of compute and the type of resources used (e.g.,

type of GPUs, internal cluster, or cloud provider)? [Yes] See experimental settings in
Supplementary material

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] See Relational

models in Section 5
(b) Did you mention the license of the assets? [Yes] See Datasets in Section 5
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes] See Datasets in Section 5
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [Yes] See Datasets in Section 5
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

14


	Introduction
	Preliminaries
	Permutation, permutation class and its relation to rectangular partitioning
	Permuton

	Permuton-induced Chinese restaurant process (PCRP)
	Model description of PCRP from generative probabilistic point of view
	Design of permuton to provide various representational capabilities to PCRP

	Intermediate level representation between SBP and CRP
	Application to relational data analysis
	PCRP-based relational model and Bayesian inference
	Experimental evaluation

	Conclusion and Discussion

