A Limitations

In Section 2 we make three main assumptions: Assumption 1 (smoothness), Assumption 2 (learning rate separation), and Assumption 3 (KL).

Assumption 1 imposes the necessary smoothness conditions on f to enable second order Taylor expansions of ∇L. These smoothness conditions may not hold, e.g. if ReLU activations are used. This can be easily resolved by using a smooth activation like softplus or SiLU [13].

Assumption 2 is a very general assumption that lets η be arbitrarily close to the maximum cutoff for gradient descent on a quadratic, $2 / \ell$. However, for simplicity we do not track the dependence on ν. This work therefore does not explain the ability of gradient descent to optimize neural networks at the "edge of stability" [4] when $\eta>2 / \ell$. Because we only assume Assumption 1 of the model, our results must apply to quadratics as a special case where any $\eta>2 / \ell$ leads to divergence so this assumption is strictly necessary.
Although Assumption 3 is very general (see Lemma 17), the specific value of δ plays a large role in our Theorem 1 In particular, if L satisfies Assumption 3 for any $\delta \geq 1 / 2$ then the convergence rate in ϵ is ϵ^{-6}. However, this convergence rate can become arbitrarily bad as $\delta \rightarrow 0$. This rate is driven by the bound on $E\left(\theta^{*}\right)$ in Proposition 11, which does not contribute to implicit regularization and cannot be easily controlled. The error introduced at every step from bounding $E(\theta)$ at a minimizer θ^{*} is $\tilde{O}\left(\eta \sqrt{\lambda L\left(\theta^{*}\right)}\right)$ and the size of each step in the regularized trajectory is $\eta \lambda\left\|\nabla R\left(\theta^{*}\right)\right\|$. Therefore if $L\left(\theta^{*}\right)=\Omega(\lambda)$, the error term is greater than the movement of the regularized trajectory. Section 5.2 repeats the argument in Section 3.1 without making Assumption 3 However, the cost is that you can no longer couple to a fixed potential R and instead must couple to a changing potential R_{S}.
One final limitation is our definition of stationarity (Definition 22. As we discuss in Section 2.3 this limitation is fundamental as the more direct statement of converging to an ϵ-stationary point of $\frac{1}{\lambda} \tilde{L}$ is not true. Although we do not do so in this paper, if θ remains in a neighborhood of a fixed ϵ-stationary point θ^{*} for a sufficiently long time, then it might be possible to remove this assumption by tail-averaging the iterates. However, this requires a much stronger notion of stationarity than first order stationarity which does not guarantee that θ remains in a neighborhood of θ^{*} for a sufficiently long time (e.g. it may converge to a saddle point which it then escapes).

B Missing Proofs

Proof of Proposition 11 We have

$$
\begin{equation*}
\nabla L(\theta)=\frac{1}{n} \sum_{i=1}^{n}\left(f_{i}(\theta)-y_{i}\right) \nabla f_{i}(\theta) \tag{10}
\end{equation*}
$$

so

$$
\begin{align*}
\nabla^{2} L(\theta) & =\frac{1}{n} \sum_{i=1}^{n}\left[\nabla f_{i}(\theta) \nabla f_{i}(\theta)^{T}+\left(f_{i}(\theta)-y_{i}\right) \nabla^{2} f_{i}(\theta)\right] \tag{11}\\
& =G(\theta)+E(\theta) \tag{12}
\end{align*}
$$

In addition if we define $e_{i}(\theta)=f_{i}(\theta)-y_{i}$,

$$
\begin{align*}
\|E(\theta)\| & =\frac{1}{n}\left\|\sum_{i=1}^{n} e_{i}(\theta) \nabla^{2} f_{i}(\theta)\right\| \tag{13}\\
& \leq \frac{1}{n}\left[\sum_{i=1}^{n} e_{i}(\theta)^{2}\right]^{1 / 2}\left[\sum_{i=1}^{n}\left\|\nabla^{2} f_{i}(\theta)\right\|^{2}\right]^{1 / 2} \tag{14}\\
& =\frac{1}{n} \sqrt{2 n L(\theta)} \cdot \sqrt{n \rho_{f}^{2}} \tag{15}\\
& =\sqrt{2 \rho_{f} L(\theta)} \tag{16}\\
& =O(\sqrt{L(\theta)}) \tag{17}
\end{align*}
$$

Definition 4. We define the quadratic variation $[\cdot]$ and quadratic covariation $[\cdot, \cdot]$ of a martingale X to be

$$
\begin{equation*}
[X]_{k}=\sum_{j<k}\left\|\xi_{j+1}-\xi_{j}\right\|^{2} \quad \text { and } \quad[X, X]_{k}=\sum_{j<k}\left(\xi_{j+1}-\xi_{j}\right)\left(\xi_{j+1}-\xi_{j}\right)^{T} \tag{18}
\end{equation*}
$$

Lemma 5 (Azuma-Hoeffding). Let $X \in \mathbb{R}^{d}$ be a mean zero martingale with $[X]_{k} \leq \sigma^{2}$. Then with probability at least $1-2 d e^{-\iota}$,

$$
\begin{equation*}
\left\|X_{k}\right\| \leq \sigma \sqrt{2 \iota} \tag{19}
\end{equation*}
$$

Corollary 1. Let $X \in \mathbb{R}^{d}$ be a mean zero martingale with $[X, X]_{k} \preceq M$. Then with probability at least $1-2 d e^{-\iota}$,

$$
\begin{equation*}
\left\|X_{k}\right\| \leq \sqrt{2 \operatorname{tr}(M) \iota} \tag{20}
\end{equation*}
$$

Proof of Proposition 2. A simple induction shows that

$$
\begin{equation*}
\xi_{k}=\sum_{j<k}(I-\eta G)^{j} \epsilon_{k-j-1}^{*} \tag{21}
\end{equation*}
$$

Then

$$
\begin{align*}
\mathbb{E}\left[\xi_{k} \xi_{k}^{T}\right] & =\sum_{j<k}(I-\eta G)^{j} \eta \lambda G(I-\eta G)^{j} \tag{22}\\
& =\eta \lambda G\left(2 \eta G-\eta^{2} G^{2}\right)^{\dagger}\left(I-(I-\eta G)^{2 k}\right) \tag{23}\\
& =\lambda \Pi_{G}(2-\eta G)^{-1}\left(I-(I-\eta G)^{2 k}\right) \tag{24}
\end{align*}
$$

Therefore $\mathbb{E}\left[\xi_{k} \xi_{k}^{T}\right] \preceq \frac{\eta}{\nu} I$ and $\mathbb{E}\left[\xi_{k} \xi_{k}^{T}\right] \rightarrow \lambda \Pi_{G}(2-\eta G)^{-1}$. The partial sums of Equation 211 form a martingale with quadratic covariation bounded by

$$
\begin{align*}
& \sum_{j<k}(I-\eta G)^{j} \epsilon_{k-j-1}^{*}\left(\epsilon_{k-j-1}^{*}\right)^{T}(I-\eta G)^{j} \tag{25}\\
& \preceq \sum_{j<k}(I-\eta G)^{j} n \eta \lambda G(I-\eta G)^{j} \tag{26}\\
& =n \lambda \Pi_{G}(2-\eta G)^{-1}\left(I-(I-\eta G)^{2 k}\right) \tag{27}\\
& \preceq \frac{n \lambda}{\nu} I \tag{28}
\end{align*}
$$

therefore by Corollary 1 , with probability at least $1-2 d e^{-\iota},\left\|\xi_{k}\right\| \leq \mathscr{X}$.
We prove the following version of Proposition 2 for the setting of Lemma 2
Proposition 6. Let ξ_{k} be defined as in Definition 3 Then for any $t \geq 0$, with probability $1-2 d e^{-\iota}$, $\left\|\xi_{t}\right\| \leq \mathscr{X}$.

Proof. For $k \in\left(T_{m}, T_{m+1}\right]$ define $G_{k}=G\left(\theta_{m}^{*}\right)$. Then we can write for any $k \geq 0$,

$$
\begin{equation*}
\xi_{k+1}=\left(I-\eta G_{k}\right) \xi_{k}+\epsilon_{k}^{*} \tag{29}
\end{equation*}
$$

Let $\mathcal{F}_{t}=\sigma\left\{\mathcal{B}^{(k)}, \epsilon^{(k)}: k<t\right\}$. To each k we will associate a martingale $\left\{X_{j}^{(k)}\right\}_{j \leq k}$ adapted to \mathcal{F} as follows. First let $X_{0}^{(k)}=0$. Then for all $k \geq 0$ and all $j \geq 0$,

$$
X_{j+1}^{(k)}= \begin{cases}\left(I-\eta G_{k-1}\right) X_{j}^{(k-1)} & j<k-1 \\ X_{j}^{(k)}+\epsilon_{k-1}^{*} & j=k-1\end{cases}
$$

First we need to show $X^{(k)}$ is in fact a martingale. We will show this by induction on k. The base case of $k=0$ is trivial. Next, it is easy to see that $X_{j}^{(k)} \in \mathcal{F}_{j}$. Therefore,

$$
\begin{equation*}
\mathbb{E}\left[X_{k}^{(k)} \mid \mathcal{F}_{k-1}\right]=\mathbb{E}\left[X_{k-1}^{(k)} \mid \mathcal{F}_{k-1}\right]=X_{k-1}^{(k)} \tag{30}
\end{equation*}
$$

and for $j<k-1$:

$$
\begin{align*}
\mathbb{E}\left[X_{j+1}^{(k)} \mid \mathcal{F}_{j}\right] & =\left(I-\eta G_{k-1}\right) \mathbb{E}\left[X_{j+1}^{(k-1)} \mid \mathcal{F}_{j}\right] \tag{31}\\
& =\left(I-\eta G_{k-1}\right) X_{j}^{(k-1)} \tag{32}\\
& =X_{j}^{k} \tag{33}
\end{align*}
$$

where the second line followed from the induction hypothesis and the third line followed from the definition of $X_{j}^{(k)}$. Therefore $X^{(k)}$ is a martingale for all k.
Next, I claim that $\xi_{k}=X_{k}^{(k)}$. We can prove this by induction on k. The base case is trivial as $\xi_{0}=X_{0}^{(0)}=0$. Then,

$$
\begin{align*}
X_{k+1}^{(k+1)} & =X_{k}^{(k+1)}+\epsilon_{k}^{*} \tag{34}\\
& =\left(I-\eta G_{k}\right) X_{k}^{(k)}+\epsilon_{k}^{*} \tag{35}\\
& =\xi_{k+1} \tag{36}
\end{align*}
$$

Finally, I claim that $\left[X^{(k)}, X^{(k)}\right]_{k} \preceq \frac{n \lambda}{\nu} I$. We will prove this by induction on k. The base case is trivial as $X_{0}^{(0)}=0$. Then,

$$
\begin{align*}
{\left[X^{(k+1)}, X^{(k+1)}\right]_{k+1} } & =\left[X^{(k+1)}, X^{(k+1)}\right]_{k}+\epsilon_{k}^{*}\left(\epsilon_{k}^{*}\right)^{T} \tag{37}\\
& =\left(I-\eta G_{k}\right)\left[X^{(k)}, X^{(k)}\right]_{k}\left(I-\eta G_{k}\right)+\epsilon_{k}^{*}\left(\epsilon_{k}^{*}\right)^{T} \tag{38}\\
& \preceq \frac{n \lambda}{\nu}\left[\left(I-\eta G_{k}\right)^{2}+\eta \nu G_{k}\right] \tag{39}\\
& \preceq \frac{n \lambda}{\nu}\left[I-G_{k}\left(2-\eta G_{k}-\nu I\right)\right] \tag{40}\\
& \preceq \frac{n \lambda}{\nu} I . \tag{41}
\end{align*}
$$

Therefore by Corollary $1\left\|\xi_{k}\right\| \leq \mathscr{X}$ with probability at least $1-2 d e^{-\iota}$.
We will prove Proposition 3 and Proposition 4 in the more general setting of Lemma 2 . For notational simplicity we will apply the Markov property and assume that $m=0$. We define $\Delta=\Delta_{0}$ and $\theta^{*}=\theta_{0}^{*}$ and note that due to this time change that ξ_{0} is not necessarily 0 . We define $v_{k}=\theta_{k}-\Phi_{k}\left(\theta^{*}+\Delta\right)$ and $r_{k}=\theta_{k}-\xi_{k}-\Phi_{k}\left(\theta^{*}+\Delta\right)$.

Proof of Proposition 3 First, by Proposition $6\left\|\xi_{t}\right\| \leq \mathscr{X}$ with probability at least $1-2 d e^{-\iota}$. Then note that for $k \leq t$,

$$
\begin{equation*}
\left\|\theta_{k}-\theta^{*}\right\| \leq\left\|\xi_{k}\right\|+\left\|r_{k}\right\|+\left\|\Phi_{k}\left(\theta^{*}+\Delta\right)-\theta^{*}\right\|=O(\mathscr{X}) \quad \text { and } \quad \theta_{k}-\theta^{*}=\xi_{k}+O(\mathscr{M}) \tag{42}
\end{equation*}
$$

so Taylor expanding the update in Algorithm 1 and Equation (2) to second order around θ^{*} and subtracting gives

$$
\begin{align*}
v_{k+1}= & (I-\eta G) v_{k}+\epsilon_{k}^{*}+m_{k}+z_{k} \tag{43}\\
& -\eta\left[\frac{1}{2} \nabla^{3} L\left(\theta_{k}-\theta^{*}, \theta_{k}-\theta^{*}\right)-\frac{1}{2} \nabla^{3} L\left(\Phi_{k}\left(\theta^{*}\right)-\theta^{*}, \Phi_{k}\left(\theta^{*}\right)-\theta^{*}\right)-\lambda \nabla R\right] \\
& +O\left(\eta \mathscr{X}\left(\sqrt{\mathscr{L}}+\mathscr{X}^{2}\right)\right) \\
= & (I-\eta G) v_{k}+\epsilon_{k}^{*}+m_{k}+z_{k}-\eta\left[\frac{1}{2} \nabla^{3} L\left(\xi_{k}, \xi_{k}\right)-\lambda \nabla R\right]+O\left(\eta \mathscr{X}\left(\sqrt{\mathscr{L}}+\mathscr{M}+\mathscr{X}^{2}\right)\right) .
\end{align*}
$$

Subtracting Equation (4), we have

$$
\begin{align*}
r_{k+1} & =(I-\eta G) r_{k}-\eta\left[\frac{1}{2} \nabla^{3} L\left(\xi_{k}, \xi_{k}\right)-\lambda \nabla R\right]+m_{k}+z_{k}+O\left(\eta \mathscr{X}\left(\sqrt{\mathscr{L}}+\mathscr{M}+\mathscr{X}^{2}\right)\right) \tag{44}\\
& =(I-\eta G) r_{k}-\eta\left[\frac{1}{2} \nabla^{3} L\left(\xi_{k}, \xi_{k}\right)-\lambda \nabla R\right]+m_{k}+z_{k}+\tilde{O}\left(c^{5 / 2} \eta \lambda^{1+\delta / 2}\right) \tag{45}
\end{align*}
$$

Proof of Proposition 4 Note that for each $i \in \mathcal{B}^{(k)}$,

$$
\begin{equation*}
\left\|\epsilon_{i}^{(k)}\left(\nabla f_{i}(\theta)-\nabla f_{i}\left(\theta^{*}\right)\right)\right\| \leq \sigma \rho_{f}\left\|\theta-\theta^{*}\right\| . \tag{46}
\end{equation*}
$$

Therefore by Lemma 5 , with probability $1-2 d e^{-\iota}$,

$$
\begin{equation*}
\left\|\sum_{j<k}(I-\eta G)^{j} z_{k-j}\right\|=O(\sqrt{\eta \lambda k \iota} \mathscr{X}) \tag{47}
\end{equation*}
$$

Next, note that because $\left\|\nabla \ell_{i}(\theta)\right\|=O(L(\theta))$, by Lemma 5 . with probability at least $1-2 d e^{-\iota}$,

$$
\begin{equation*}
\left\|\sum_{j<k}(I-\eta G)^{j} m_{k-j}\right\|=O(\sqrt{\eta \lambda k \iota} \sqrt{L(\theta)}) \tag{48}
\end{equation*}
$$

Next, by a second order Taylor expansion around θ^{*} we have

$$
\begin{equation*}
\sqrt{L(\theta)} \leq O(\sqrt{\mathscr{L}}+\mathscr{X}) \tag{49}
\end{equation*}
$$

so

$$
\begin{align*}
r_{t+1}= & -\eta \sum_{k \leq t}(I-\eta G)^{t-k}\left[\frac{1}{2} \nabla^{3} L\left(\xi_{k}, \xi_{k}\right)-\lambda \nabla R\right] \tag{50}\\
& +O\left(\sqrt{\eta \lambda t}(\sqrt{\mathscr{L}}+\mathscr{X})+\eta t \mathscr{X}\left(\sqrt{\mathscr{L}}+\mathscr{M}+\mathscr{X}^{2}\right)\right) \\
= & -\eta \sum_{k \leq t}(I-\eta G)^{t-k}\left[\frac{1}{2} \nabla^{3} L\left(\xi_{k}, \xi_{k}\right)-\lambda \nabla R\right]+\tilde{O}\left(\frac{\lambda^{1 / 2+\delta / 2}}{\sqrt{c}}\right) . \tag{51}
\end{align*}
$$

Now we will turn to concentrating $\xi_{k} \xi_{k}^{T}$. We will use the shorthand $g_{i}=\nabla f_{i}\left(\theta^{*}\right)$. Let

$$
\begin{equation*}
S^{*}=\lambda\left(2-\eta \nabla^{2} L\right)^{-1}, \quad \bar{S}=\lambda(2-\eta G)^{-1}, \quad \text { and } \quad S_{k}=\xi_{k} \xi_{k}^{T} \tag{52}
\end{equation*}
$$

It suffices to bound

$$
\eta \sum_{k \leq t}(I-\eta G)^{t-k} \frac{1}{2} \nabla^{3} L\left(S_{k}-S^{*}\right)
$$

We can expand out $\nabla^{3} L$ using the fact that L is square loss to get

$$
\begin{equation*}
\frac{1}{2} \nabla^{3} L\left(S_{k}-S^{*}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(H_{i}\left(S_{k}-S^{*}\right) g_{i}+\frac{1}{2} g_{i} \operatorname{tr}\left[\left(S_{k}-S^{*}\right) H_{i}\right]\right)+O\left(\sqrt{\mathscr{L}} \mathscr{X}^{2}\right) \tag{53}
\end{equation*}
$$

so it suffices to bound the contribution of the first two terms individually. Starting with the second term, we have $\operatorname{tr}\left[\left(S_{k}-S^{*}\right) H_{i}\right]=O\left(\mathscr{X}^{2}\right)$, so by Lemma 12 ,

$$
\begin{equation*}
\eta \frac{1}{n} \sum_{i=1}^{n} \sum_{k \leq t}(I-\eta G)^{t-k} g_{i} \operatorname{tr}\left[\left(S_{k}-S^{*}\right) H_{i}\right]=O\left(\sqrt{\eta t} \mathscr{X}^{2}\right) \tag{54}
\end{equation*}
$$

For the first term, note that

$$
\begin{equation*}
S^{*}-\bar{S}=\lambda\left[\left(2-\eta \nabla^{2} L\right)^{-1}\left((2-\eta G)-\left(2-\eta \nabla^{2} L\right)\right)(2-\eta G)^{-1}\right]=O(\eta \lambda \sqrt{\mathscr{L}}) \tag{55}
\end{equation*}
$$

so this difference contributes at most $O\left(\eta^{2} \lambda t \sqrt{\mathscr{L}}\right)=O(\eta t \mathscr{X} \sqrt{\mathscr{L}})$ so it suffices to bound

$$
\begin{equation*}
\frac{1}{n} \sum_{i=1}^{n} \sum_{k \leq t}(I-\eta G)^{t-k} H_{i}\left(S_{k}-\bar{S}\right) g_{i} \tag{56}
\end{equation*}
$$

Now note that

$$
\begin{equation*}
S_{k+1}=(I-\eta G) S_{k}(I-\eta G)+(I-\eta G) \xi_{k}\left(\epsilon_{k}^{*}\right)^{T}+\epsilon_{k}^{*} \xi_{k}(I-\eta G)+\left(\epsilon_{k}^{*}\right)\left(\epsilon_{k}^{*}\right)^{T} \tag{57}
\end{equation*}
$$

and tha $\sqrt[4]{4}$

$$
\begin{equation*}
\bar{S}=(I-\eta G) \bar{S}(I-\eta G)+\eta \lambda G \tag{58}
\end{equation*}
$$

Let $D_{k}=S_{k}-\bar{S}$. Then subtracting these two equations gives

$$
D_{k+1}=(I-\eta G) D_{k}(I-\eta G)+(I-\eta G) \xi_{k}\left(\epsilon_{k}^{*}\right)^{T}+\epsilon_{k}^{*} \xi_{k}(I-\eta G)+\left(\left(\epsilon_{k}^{*}\right)\left(\epsilon_{k}^{*}\right)^{T}-\eta \lambda G\right)
$$

Let $W_{k}=(I-\eta G) \xi_{k}\left(\epsilon_{k}^{*}\right)^{T}+\epsilon_{k}^{*} \xi_{k}^{T}(I-\eta G)$ and let $Z_{k}=\left(\left(\epsilon_{k}^{*}\right)\left(\epsilon_{k}^{*}\right)^{T}-\eta \lambda G\right)$ so that

$$
D_{k+1}=(I-\eta G) D_{k}(I-\eta G)+W_{k}+Z_{k}
$$

Then,

$$
D_{k}=(I-\eta G)^{k} D_{0}(I-\eta G)^{k}+\sum_{j<k}(I-\eta G)^{k-j-1}\left(W_{j}+Z_{j}\right)(I-\eta G)^{k-j-1}
$$

Substituting the first term gives

$$
\begin{equation*}
\eta \frac{1}{n} \sum_{i=1}^{n} \sum_{k \leq t}(I-\eta G)^{t-k} H_{i}(I-\eta G)^{k} D_{0}(I-\eta G)^{k} g_{i}=O\left(\sqrt{\eta t} \mathscr{X}^{2}\right) \tag{59}
\end{equation*}
$$

so we are left with the martingale part in the second term. The final term to bound is therefore

$$
\begin{equation*}
\eta \frac{1}{n} \sum_{i=1}^{n} \sum_{k \leq t}(I-\eta G)^{t-k} H_{i}\left[\sum_{j<k}(I-\eta G)^{k-j-1}\left(W_{j}+Z_{j}\right)(I-\eta G)^{k-j-1}\right] g_{i} . \tag{60}
\end{equation*}
$$

We can switch the order of summations to get

$$
\begin{equation*}
\eta \frac{1}{n} \sum_{i=1}^{n} \sum_{j \leq t} \sum_{k=j+1}^{t}(I-\eta G)^{t-k} H_{i}(I-\eta G)^{k-j-1}\left(W_{j}+Z_{j}\right)(I-\eta G)^{k-j-1} g_{i} \tag{61}
\end{equation*}
$$

Now if we extract the inner sum, note that

$$
\begin{equation*}
\sum_{k=j+1}^{t}(I-\eta G)^{t-k} H_{i}(I-\eta G)^{k-j-1}\left(W_{j}+Z_{j}\right)(I-\eta G)^{k-j-1} g_{i} \tag{62}
\end{equation*}
$$

is a martingale difference sequence. Recall that

$$
\begin{equation*}
\epsilon_{j}^{*}=\frac{\eta}{B} \sum_{l \in \mathcal{B}^{(j)}} \epsilon_{l}^{(j)} g_{l} \tag{63}
\end{equation*}
$$

First, isolating the W term, we get

$$
\begin{align*}
& \sum_{k=j+1}^{t}(I-\eta G)^{t-k} H_{i}(I-\eta G)^{k-j} \xi_{j}\left(\epsilon_{j}^{*}\right)^{T}(I-\eta G)^{k-j-1} g_{i} \tag{64}\\
& \quad+\sum_{k=j+1}^{t}(I-\eta G)^{t-k} H_{i}(I-\eta G)^{k-j-1} \epsilon_{j}^{*} \xi_{j}^{T}(I-\eta G)^{k-j} g_{i} \\
& =\frac{\eta}{B} \sum_{l \in \mathcal{B}^{(j)}} \epsilon_{l}^{(j)}\left[\sum_{k=j+1}^{t}(I-\eta G)^{t-k} H_{i}(I-\eta G)^{k-j} \xi_{j} g_{l}^{T}(I-\eta G)^{k-j-1} g_{i}\right. \tag{65}\\
& \left.\quad+\sum_{k=j+1}^{t}(I-\eta G)^{t-k} H_{i}(I-\eta G)^{k-j-1} g_{l} \xi_{j}^{T}(I-\eta G)^{k-j} g_{i}\right]
\end{align*}
$$

[^0]The inner sums are bounded by $O\left(\mathscr{X} \eta^{-1}\right)$ by Lemma 14 Therefore by Lemma 5 , with probability at least $1-2 d e^{-\iota}$, the contribution of the W term in Equation 60 is at most $O(\sqrt{\eta \lambda k \iota} \mathscr{X})=$ $O\left(\sqrt{\eta k} \mathscr{X}^{2}\right)$. The final remaining term to bound is the Z term in 60$)$. We can write the inner sum as

$$
\begin{equation*}
\frac{\eta \lambda}{B^{2}} \sum_{k=j+1}^{t}(I-\eta G)^{t-k} H_{i}(I-\eta G)^{k-j-1}\left(\frac{1}{\sigma^{2}} \sum_{l_{1}, l_{2} \in \mathcal{B}^{(k)}} \epsilon_{l_{1}}^{(j)} \epsilon_{l_{2}}^{(j)} g_{l_{1}} g_{l_{2}}^{T}-G\right)(I-\eta G)^{k-j-1} g_{i} \tag{66}
\end{equation*}
$$

which by Lemma 14 is bounded by $O(\lambda)$. Therefore by Lemma 5 , with probability at least $1-2 d e^{-\iota}$, the full contribution of Z to Equation $\sqrt{60}$ is $O(\eta \lambda \sqrt{t \iota})=O\left(\sqrt{\eta t} \mathscr{X}^{2}\right)$. Putting all of these bounds together we get with probability at least $1-10 d e^{-\iota}$,

$$
\begin{aligned}
\left\|r_{t+1}\right\| & =O\left[\sqrt{\eta \mathscr{T}} \mathscr{X}(\sqrt{\mathscr{L}}+\mathscr{X})+\eta \mathscr{T} \mathscr{X}\left(\sqrt{\mathscr{L}}+\mathscr{M}+\mathscr{X}^{2}\right)\right] \\
& =\tilde{O}\left(\frac{\lambda^{1 / 2+\delta / 2}}{\sqrt{c}}\right) .
\end{aligned}
$$

The following lemma is necessary for some of the proofs below:
Lemma 6. Assume that $L(\theta) \leq \mathscr{L}$. Then for any $k \geq 0, L\left(\Phi_{k}(\theta)\right) \leq \mathscr{L}$.

Proof. By induction it suffices to prove this for $k=1$. Let $\theta^{\prime}=\Phi_{1}(\theta)$. First consider the case when

$$
\begin{equation*}
\left\|\nabla L\left(\theta^{\prime}\right)\right\| \leq\left(\frac{\mathscr{L}}{\mu}\right)^{1 /(1+\delta)} \tag{67}
\end{equation*}
$$

Then by Assumption 3, $L\left(\theta^{\prime}\right) \leq \mathscr{L}$ so we are done. Otherwise, note that

$$
\begin{align*}
\|\nabla L(\theta)\| & \geq\left\|\nabla L\left(\theta^{\prime}\right)\right\|-\ell\left\|\theta-\theta^{\prime}\right\| \tag{68}\\
& \geq \Omega(c \lambda)-\eta \ell\|\nabla L(\theta)\| \tag{69}
\end{align*}
$$

so $\|\nabla L(\theta)\| \geq \Omega(c \lambda)$ and therefore $\|\nabla \tilde{L}(\theta)\| \geq \Omega(c \lambda)$ Then by the standard descent lemma,

$$
\begin{aligned}
L\left(\theta^{\prime}\right) & \leq L(\theta)-\eta \nabla \tilde{L}(\theta)^{T} \nabla L(\theta)+\frac{\eta^{2} \ell}{2}\left\|\nabla \tilde{L}(\theta)^{2}\right\| \\
& \leq L(\theta)-\frac{\eta}{2}(2-\eta \ell)\|\nabla \tilde{L}(\theta)\|^{2}+O(\eta \lambda\|\nabla L(\theta)\|) \\
& =L(\theta)-\frac{\eta \nu}{2}\|\nabla \tilde{L}(\theta)\|^{2}+O(\eta \lambda\|\nabla L(\theta)\|)
\end{aligned}
$$

and for c sufficiently large, the second term is larger than the third so $L\left(\theta^{\prime}\right) \leq L(\theta) \leq \mathscr{L}$.

We break the proof of Lemma 3 into a sequence of propositions. The idea behind Lemma 3 is to consider the trajectory $\Phi_{k}\left(\theta_{m}^{*}\right)$, for $k \leq \mathscr{T}$. First, we want to carefully pick τ_{m} so that $\eta \sum_{k<\tau_{m}}\left\|\nabla \tilde{L}\left(\Phi_{k}\left(\theta_{m}^{*}\right)\right)\right\|$ is sufficiently large to decrease the regularized loss \tilde{L} but sufficiently small to be able to apply Lemma 2 .
Proposition 7. In the context of Lemma 3 if $\theta_{T_{m}}$ is not an (ϵ, γ)-stationary point, there exists $\tau_{m} \leq \mathscr{T}$ such that:

$$
\begin{equation*}
5 \mathscr{M} \geq \eta \sum_{k<\tau_{n}}\left\|\nabla \tilde{L}\left(\Phi_{k}\left(\theta_{n}^{*}\right)\right)\right\| \geq 4 \mathscr{M} . \tag{70}
\end{equation*}
$$

We can use this to lower bound the decrease in \tilde{L} from θ_{m}^{*} to $\Phi_{\tau_{m}}\left(\theta_{m}^{*}\right)$:
Proposition 8. $\tilde{L}\left(\Phi_{\tau_{m}}\left(\theta_{m}^{*}\right)\right) \leq \tilde{L}\left(\theta_{m}^{*}\right)-8 \frac{\mathscr{D}^{2}}{\eta \nu \tau_{m}}$.

We now bound the increase in \tilde{L} from $\Phi_{\tau_{m}}\left(\theta_{m}^{*}\right)$ to θ_{m+1}^{*}. This requires relating the regularized trajectories starting at θ_{m}^{*} and $\theta_{m}^{*}+\Delta_{m}$. The following proposition shows that the two trajectories converge in the directions where the eigenvalues of $G\left(\theta_{m}^{*}\right)$ are large:
Proposition 9. Let $G=G\left(\theta_{m}^{*}\right)$ and let τ_{m} be chosen as in Proposition 7. Then, $\theta_{m+1}^{*}-\Phi_{\tau_{m}}\left(\theta_{m}^{*}\right)=$ $(I-\eta G)^{\tau_{m}} \Delta_{m}+r$ where $\|r\|=O\left(\eta \tau_{m} \mathscr{M}^{2}\right)$ and $\|r\|_{G}^{2}=O\left(\eta \tau_{m} \mathscr{M}^{4}\right)$.

Substituting the result in Proposition 9 into the second order Taylor expansion of \tilde{L} centered at $\Phi_{\tau_{m}}\left(\theta_{m}^{*}\right)$ gives:
Proposition 10. $\tilde{L}\left(\theta_{m+1}^{*}\right) \leq \tilde{L}\left(\Phi_{\tau_{m}}\left(\theta_{m}^{*}\right)\right)+7 \frac{\mathscr{D}^{2}}{\eta \nu \tau_{m}}$
Combining Propositions 8 and 10, we have that

$$
\begin{equation*}
\tilde{L}\left(\theta_{m+1}^{*}\right)-\tilde{L}\left(\theta_{m}^{*}\right) \leq-\frac{\mathscr{D}^{2}}{\eta \nu \tau_{m}} \leq-\mathscr{F} \tag{71}
\end{equation*}
$$

where the last line follows from $\tau_{m} \leq \mathscr{T}$ and the definition of \mathscr{F}. Finally, the following proposition uses this bound on \tilde{L} and Assumption 3 to bound $L\left(\theta_{m+1}^{*}\right)$:
Proposition 11. $L\left(\theta_{m+1}^{*}\right) \leq \mathscr{L}$.
The following corollary also follows from the choice of τ_{m}, Proposition 9 , and Lemma 2 ;
Corollary 2. $\left\|\Phi_{\tau_{m}}\left(\theta_{m}^{*}+\Delta_{m}\right)-\theta_{m}^{*}\right\| \leq 8 \mathscr{M}$ and with probability at least $1-8 d \tau_{m} e^{-\iota},\left\|\Delta_{m+1}\right\| \leq$ \mathscr{D}.

The proof of Lemma 3 follows directly from Equation (71, Proposition 11, and Corollary 2 The proofs of the above propositions can be found below:

Proof of Proposition 7 First, assume that

$$
\begin{equation*}
\eta \sum_{k<\mathscr{T}}\left\|\nabla \tilde{L}\left(\Phi_{k}\left(\theta_{m}^{*}\right)\right)\right\| \geq 4 \mathscr{M} \tag{72}
\end{equation*}
$$

Then we can upper bound each element in this sum by

$$
\begin{equation*}
\eta\left\|\nabla \tilde{L}\left(\Phi_{k}\left(\theta_{m}^{*}\right)\right)\right\| \leq \eta\left\|\nabla L\left(\Phi_{k}\left(\theta_{m}^{*}\right)\right)\right\|+\eta \lambda\left\|\nabla R\left(\Phi_{k}\left(\theta_{m}^{*}\right)\right)\right\| \tag{73}
\end{equation*}
$$

Note that

$$
\begin{align*}
\|\nabla L(\theta)\| & =\left\|\frac{1}{n} \sum_{i=1}^{n}\left(f_{i}(\theta)-y_{i}\right) \nabla f_{i}(\theta)\right\| \tag{74}\\
& \leq \frac{1}{n}\left[\sum_{i=1}^{n}\left(f_{i}(\theta)-y_{i}\right)^{2}\right]^{1 / 2}\left[\sum_{i=1}^{n}\left\|\nabla f_{i}(\theta)\right\|^{2}\right]^{1 / 2} \tag{75}\\
& \leq \sqrt{2 \ell_{f} L(\theta)} \tag{76}
\end{align*}
$$

and because ∇R is bounded,

$$
\begin{equation*}
\eta\left\|\nabla \tilde{L}\left(\Phi_{k}\left(\theta_{m}^{*}\right)\right)\right\| \leq O\left(\eta L\left(\Phi_{k}\left(\theta_{m}^{*}\right)\right)+\eta \lambda\right) \tag{77}
\end{equation*}
$$

Then by Lemma 6

$$
\begin{equation*}
\eta\left\|\nabla \tilde{L}\left(\Phi_{k}\left(\theta_{m}^{*}\right)\right)\right\| \leq O(\eta \sqrt{\mathscr{L}}+\eta \lambda) \leq \mathscr{M} \tag{78}
\end{equation*}
$$

for sufficiently large c. Therefore there must exist τ_{m} such that

$$
\begin{equation*}
5 \mathscr{M} \geq \eta \sum_{k<\mathscr{T}}\left\|\nabla \tilde{L}\left(\Phi_{k}\left(\theta_{m}^{*}\right)\right)\right\| \geq 4 \mathscr{M} \tag{79}
\end{equation*}
$$

Otherwise,

$$
\begin{equation*}
\eta \sum_{k<\mathscr{T}}\left\|\nabla \tilde{L}\left(\Phi_{k}\left(\theta_{m}^{*}\right)\right)\right\|<4 \mathscr{M} . \tag{80}
\end{equation*}
$$

Therefore there must exist some k such that

$$
\begin{equation*}
\frac{1}{\lambda}\left\|\nabla \tilde{L}\left(\Phi_{k}\left(\theta_{m}^{*}\right)\right)\right\|<\frac{4 \mathscr{M}}{\eta \lambda \mathscr{T}}=O\left(\lambda^{\delta / 2} \iota^{3 / 2}\right) \leq \epsilon \tag{81}
\end{equation*}
$$

by the choice of λ in Theorem 11. In addition,

$$
\begin{equation*}
\left\|\theta_{T_{m}}-\Phi_{k}\left(\theta_{m}^{*}\right)\right\| \leq\left\|\theta_{T_{m}}-\theta_{m}^{*}\right\|+4 \mathscr{M} \leq \mathscr{X}+\mathscr{D}+4 \mathscr{M} \leq \gamma \tag{82}
\end{equation*}
$$

again by the choice of λ. Therefore $\theta_{T_{m}}$ is an (ϵ, γ)-stationary point.
Proof of Proposition 8 . We have by the standard descent lemma

$$
\begin{align*}
\tilde{L}\left(\Phi_{\tau_{m}}\left(\theta_{m}^{*}\right)\right) & \leq-\frac{\eta \nu}{2} \sum_{k<\tau_{m}}\left\|\nabla \tilde{L}\left(\Phi_{\tau_{k}}\left(\theta_{m}^{*}\right)\right)\right\|^{2} \tag{83}\\
& \leq-\frac{\eta \nu}{2 \tau_{m}}\left[\sum_{k<\tau_{m}}\left\|\nabla \tilde{L}\left(\Phi_{\tau_{k}}\left(\theta_{m}^{*}\right)\right)\right\|^{2}\right. \tag{84}\\
& \leq-\frac{\nu \mathscr{M}^{2}}{2 \eta \tau_{m}} \tag{85}\\
& =-8 \frac{\mathscr{D}^{2}}{\eta \nu \tau_{m}} \tag{86}
\end{align*}
$$

Proof of Proposition 9 Let $v_{k}=\Phi_{k}\left(\theta_{m}^{*}+\Delta_{m}\right)-\Phi_{k}\left(\theta_{m}^{*}\right)$, so that $v_{0}=\Delta_{m}$ and let $r_{k}=v_{k}-(I-$ $\eta G)^{\tau_{m}}$ so that $r_{0}=0$. Let C be a sufficiently large absolute constant. We will prove by induction that $r_{k} \leq C \eta \tau_{m} \mathscr{M}^{2}$. Note that

$$
\begin{align*}
\left\|\Phi_{k}\left(\theta_{m}^{*}+\Delta_{m}\right)-\theta_{m}^{*}\right\| & \leq\left\|\Delta_{m}\right\|+\left\|\Phi_{k}\left(\theta_{m}^{*}\right)-\theta_{m}^{*}\right\|+\left\|v_{k}\right\| \tag{87}\\
& \leq O\left(\mathscr{M}+\eta \mathscr{T} \mathscr{M}^{2}\right) \tag{88}\\
& =O(\mathscr{M}) \tag{89}
\end{align*}
$$

because of the values chosen for \mathscr{M}, \mathscr{T}. Therefore Taylor expanding around θ_{m}^{*} gives:

$$
\begin{align*}
v_{k+1} & =v_{k}-\eta\left[\nabla \tilde{L}\left(\Phi_{k}\left(\theta_{m}^{*}+\Delta_{m}\right)\right)-\nabla \tilde{L}\left(\Phi_{k}\left(\theta_{m}^{*}\right)\right)\right] \tag{90}\\
& =v_{k}-\eta \nabla^{2} \tilde{L} v_{k}+O\left(\eta \mathscr{M}^{2}\right) \tag{91}\\
& =(I-\eta G) v_{k}+O\left(\eta \mathscr{M}^{2}+\eta \lambda \mathscr{M}+\eta \sqrt{\mathscr{L}} \mathscr{M}\right) \tag{92}\\
& =(I-\eta G) v_{k}+s_{k} \tag{93}
\end{align*}
$$

where $\left\|s_{k}\right\|=O\left(\eta \mathscr{M}^{2}\right)$ by the definition of \mathscr{M}. Therefore

$$
\begin{equation*}
v_{k}=(I-\eta G)^{k} \Delta_{m}+O\left(\eta k \mathscr{M}^{2}\right) \tag{94}
\end{equation*}
$$

In addition,

$$
\begin{equation*}
r_{k}=\sum_{j<k}(I-\eta G)^{j} s_{k-j} \tag{95}
\end{equation*}
$$

so if $g_{i}=\nabla f_{i}\left(\theta_{m}^{*}\right)$,

$$
\begin{align*}
r_{k}^{T} G r_{k} & =\frac{1}{n} \sum_{i=1}^{n}\left(s_{k-j}^{T} \sum_{j<k}(I-\eta G)^{j} g_{i}\right)^{2} \tag{96}\\
& \leq O\left(\eta^{2} \mathscr{M}^{4}\right) \frac{1}{n} \sum_{i=1}^{n}\left\|\sum_{j<k}(I-\eta G)^{j} g_{i}\right\|^{2} \tag{97}\\
& =O\left(\eta \tau_{m} \mathscr{M}^{4}\right) \tag{98}
\end{align*}
$$

by Lemma 12 , so we are done.

We will need the following lemma before the next proof:
Lemma 7. For any $k<\tau_{m}$,

$$
\begin{equation*}
\left\|\nabla \tilde{L}\left(\Phi_{k}\left(\theta_{m}^{*}\right)\right)\right\| \geq 11\left\|\nabla \tilde{L}\left(\Phi_{\tau_{m}}\left(\theta_{m}^{*}\right)\right)\right\| / 12 \tag{99}
\end{equation*}
$$

Proof.

$$
\begin{equation*}
\nabla \tilde{L}\left(\Phi_{k+1}(\theta)\right)=\left(I-\eta \nabla^{2} L\left(\Phi_{k}(\theta)\right)\right) \nabla \tilde{L}\left(\Phi_{k}(\theta)\right)+O\left(\eta^{2}\left\|\nabla \tilde{L}\left(\Phi_{k}(\theta)\right)\right\|^{2}\right) \tag{100}
\end{equation*}
$$

By Lemma 6 and Proposition 1 .

$$
\left\|I-\eta \nabla^{2} L\left(\Phi_{k}(\theta)\right)\right\| \leq 1+\eta \sqrt{2 \rho_{f} \mathscr{L}} .
$$

In addition,

$$
\begin{equation*}
\left\|\nabla \tilde{L}\left(\Phi_{k}(\theta)\right)\right\|=O(\lambda+\sqrt{\mathscr{L}}) \tag{101}
\end{equation*}
$$

so

$$
\begin{equation*}
\left\|\nabla \tilde{L}\left(\Phi_{k+1}(\theta)\right)\right\| \leq(1+O(\mathscr{L}))\left\|\nabla \tilde{L}\left(\Phi_{k}(\theta)\right)\right\| \tag{102}
\end{equation*}
$$

Therefore,

$$
\begin{align*}
\left\|\nabla \tilde{L}\left(\Phi_{\tau_{m}}(\theta)\right)\right\| & \leq(1+O(\mathscr{L}))^{\tau_{m}-k}\left\|\nabla \tilde{L}\left(\Phi_{k}(\theta)\right)\right\| \tag{103}\\
& \leq \exp (O(\mathscr{T} \mathscr{L}))\left\|\nabla \tilde{L}\left(\Phi_{k}(\theta)\right)\right\| \tag{104}\\
& \leq 12\left\|\nabla \tilde{L}\left(\Phi_{k}(\theta)\right)\right\| / 11 \tag{105}
\end{align*}
$$

for sufficiently large c.
Proof of Proposition 10 Let $v=\theta_{m+1}-\Phi_{\tau_{m}}\left(\theta_{m}^{*}\right)=(I-\eta G)^{\tau_{m}} \Delta_{m}+r$ where by Proposition 9 , $\|r\|=O\left(\eta \tau_{m} \mathscr{M}^{2}\right), G=G\left(\theta_{m}^{*}\right)$, and $r^{T} G r=O\left(\eta \tau_{m} \mathscr{M}^{4}\right)$. Then,

$$
\begin{align*}
& \tilde{L}\left(\theta_{m+1}^{*}\right)-\tilde{L}\left(\Phi_{\tau_{m}}\left(\theta_{m}^{*}\right)\right) \tag{106}\\
& \leq\|v\|\| \| \tilde{L}\left(\Phi_{\tau_{m}}\left(\theta_{m}^{*}\right) \|+\frac{1}{2} v^{T} \nabla^{2} \tilde{L}\left(\Phi_{\tau_{m}}\left(\theta_{m}^{*}\right)\right) v+O\left(\|v\|^{3}\right)\right. \tag{107}\\
& \leq\|v\| \| \tilde{L}\left(\Phi_{\tau_{m}}\left(\theta_{m}^{*}\right) \|+\frac{1}{2} v^{T} G v+O\left(\mathscr{D}^{2}(\mathscr{D}+\sqrt{\mathscr{L}}+\lambda)\right)\right. \tag{108}\\
& \leq\|v\| \| \tilde{L}\left(\Phi_{\tau_{m}}\left(\theta_{m}^{*}\right) \|+\Delta_{m}^{T}(I-\eta G)^{\tau_{m}} G(I-\eta G)^{\tau_{m}} \Delta_{m}+r^{T} G r\right. \tag{109}\\
& \quad+O\left(\mathscr{D}^{2}(\mathscr{D}+\sqrt{\mathscr{L}}+\lambda)\right) . \tag{110}
\end{align*}
$$

By Proposition 9

$$
\|v\| \leq \mathscr{D}+O\left(\eta \tau_{m} \mathscr{M}^{2}\right)=\mathscr{D}+\mathscr{D} \cdot O\left(\frac{\lambda^{\delta / 2}}{\sqrt{c}}\right) \leq 11 \mathscr{D} / 10
$$

for sufficiently large c. Therefore by Lemma 7 and Proposition 7 ,

$$
\begin{equation*}
\|v\| \| \tilde{L}\left(\Phi _ { \tau _ { m } } (\theta _ { m } ^ { * }) \| \leq \mathscr { D } \frac { 6 } { 5 \tau _ { m } } \sum _ { k < \tau _ { m } } \| \tilde { L } \left(\Phi_{k}\left(\theta_{m}^{*}\right) \| \leq \frac{6 \mathscr{D}^{2}}{\eta \nu \tau_{m}}\right.\right. \tag{111}
\end{equation*}
$$

By Lemma 10 .

$$
\begin{equation*}
\Delta_{m}^{T}(I-\eta G)^{\tau_{m}} G(I-\eta G)^{\tau_{m}} \Delta_{m} \leq \frac{\mathscr{D}^{2}}{2 \eta \nu \tau_{m}} \tag{112}
\end{equation*}
$$

By Proposition 9

$$
\begin{align*}
r^{T} G r=O\left(\eta \tau_{m} \mathscr{M}^{4}\right) & =\frac{\mathscr{D}^{2}}{\eta \nu \tau_{m}} O\left(\eta^{2} \tau_{m}^{2} \mathscr{D}^{2}\right) \tag{113}\\
& =\frac{\mathscr{D}^{2}}{\eta \nu \tau_{m}} O\left(\frac{\lambda^{\delta}}{c}\right) \tag{114}\\
& \leq \frac{\mathscr{D}^{2}}{4 \eta \nu \tau_{m}} \tag{115}
\end{align*}
$$

for sufficiently large c. Finally, the remainder term is bounded by

$$
\begin{equation*}
\frac{\mathscr{D}^{2}}{\eta \nu \tau_{m}} \cdot O\left(\eta \tau_{m} \mathscr{D}\right) \leq \frac{\mathscr{D}^{2}}{4 \eta \nu \tau_{m}} \tag{116}
\end{equation*}
$$

for sufficiently large c for the same reason as above. Putting it all together,

$$
\begin{equation*}
\tilde{L}\left(\theta_{m+1}^{*}\right)-\tilde{L}\left(\Phi_{\tau_{m}}\left(\theta_{m}^{*}\right)\right) \leq \frac{6 \mathscr{D}^{2}}{\eta \nu \tau_{m}}+\frac{\mathscr{D}^{2}}{2 \eta \nu \tau_{m}}+\frac{\mathscr{D}^{2}}{4 \eta \nu \tau_{m}}+\frac{\mathscr{D}^{2}}{4 \eta \nu \tau_{m}}=\frac{7 \mathscr{D}^{2}}{\eta \nu \tau_{m}} . \tag{117}
\end{equation*}
$$

Proof of Proposition 11 Assume otherwise for the sake of contradiction. Because ∇R is Lipschitz, $R\left(\theta_{m+1}^{*}\right)-R\left(\theta_{m}^{*}\right)=O(\mathscr{M})$. Therefore by Equation 71 ,

$$
L\left(\theta_{m+1}^{*}\right) \leq L\left(\theta_{m}^{*}\right)-\frac{\mathscr{D}^{2}}{\eta \nu \tau_{m}}+O(\lambda \mathscr{M})
$$

Therefore we must have $\mathscr{D}=O\left(\eta \lambda \tau_{m}\right)$ so by Proposition 7 and Lemma 7 we have that $\left\|\nabla \tilde{L}\left(\Phi_{\tau_{m}}\left(\theta_{m}^{*}\right)\right)\right\|=O(\lambda)$ and because $\lambda \nabla R=O(\lambda)$ we must have $\left\|\nabla L\left(\Phi_{\tau_{m}}\left(\theta_{m}^{*}\right)\right)\right\|=O(\lambda)$. Therefore by Assumption 3 .

$$
\begin{equation*}
L\left(\Phi_{\tau_{m}}\left(\theta_{m}^{*}\right)\right)=O\left(\lambda^{1+\delta}\right) \tag{118}
\end{equation*}
$$

Then by the same arguments as in Proposition 10, we can Taylor expand around $\Phi_{\tau_{m}}\left(\theta_{m}^{*}\right)$ to get

$$
\begin{align*}
& L\left(\theta_{m+1}^{*}\right)-L\left(\Phi_{\tau_{m}}\left(\theta_{m}^{*}\right)\right) \tag{119}\\
& \leq\left\|\nabla L\left(\Phi_{\tau_{m}}\left(\theta_{m}^{*}\right)\right)\right\| v+\frac{1}{2} v^{T} \nabla^{2} L\left(\Phi_{\tau_{m}}\left(\theta_{m}^{*}\right)\right) v+O\left(\mathscr{D}^{3}\right) \tag{120}\\
& \leq O\left(\lambda \mathscr{D}+\frac{\mathscr{D}^{2}}{\eta \tau}+\mathscr{D}^{3}\right) \tag{121}\\
& \leq O\left(\lambda^{1+\delta}\right) \tag{122}
\end{align*}
$$

because $\delta \leq 1 / 2$. Therefore $L\left(\theta_{m+1}^{*}\right)=O\left(\lambda^{1+\delta}\right) \leq \mathscr{L}$ for sufficiently large c.

C Reaching a global minimizer with NTK

It is well known that overparameterized neural networks in the kernel regime trained by gradient descent reach global minimizers of the training loss [14, 5]. In this section we describe how to extend the proof in [5] to show that SGD with label noise (Algorithm 1) converges to a neighborhood of a global minimizer θ^{*} as required by Theorem 1. We will use the following lemma from [5]:
Lemma 8 ([5], Lemma B.4). There exists $R=\tilde{O}\left(\sqrt{m} \lambda_{0}\right)$ such that every $\theta \in B_{R}\left(\theta_{0}\right)$ satisfies $\lambda_{\min }(\mathcal{G}(\theta)) \geq \lambda_{0} / 2$ where $\mathcal{G}_{i j}(\theta)=\left\langle\nabla f_{i}(\theta), \nabla f_{j}(\theta)\right\rangle$ and λ_{0} is the minimum eigenvalue of the infinite width NTK matrix.

Let $\xi_{0}=0$ and $\theta_{0}^{*}=\theta_{0}$. We will define ξ_{k}, θ_{k}^{*} iteratively as follows:

$$
\begin{equation*}
\xi_{k+1}=\left(I-\eta G\left(\theta_{k}^{*}\right)\right) \xi_{k}+\epsilon_{k} \quad \text { and } \quad \theta_{k+1}^{*}=\theta_{k}^{*}-\eta \nabla L\left(\theta_{k}^{*}\right)-\eta E\left(\theta_{k}^{*}\right)\left(\theta_{k}-\theta_{k}^{*}\right)-z_{k} \tag{123}
\end{equation*}
$$

Let $v_{k}=\theta_{k}-\theta_{k}^{*}$ and let $r_{k}=v_{k}-\xi_{k}$. We will prove by induction that for all $t \leq T=$ $\frac{4 \log \left[L\left(\theta_{0}\right) \lambda_{0} / \lambda^{2}\right]}{\eta \lambda_{0}}$ we have $\left\|r_{k}\right\| \leq \mathscr{D}$. The base case follows from $r_{0}=0$. For $k \geq 0$ we have

$$
\begin{aligned}
v_{k+1} & =v_{k}-\eta\left[\nabla L\left(\theta_{k}\right)-\nabla L\left(\theta_{k}^{*}\right)-E\left(\theta_{k}^{*}\right) v_{k}\right]+\epsilon_{k}^{*} \\
& =(I-\eta G) v_{k}+\epsilon_{k}^{*}+O\left(\eta \mathscr{X}^{2}\right)
\end{aligned}
$$

so

$$
\begin{aligned}
r_{k+1} & =(I-\eta G) r_{k}+O\left(\eta \mathscr{X}^{2}\right) \\
& =O\left(\eta T \mathscr{X}^{2}\right) \\
& =O(\mathscr{D})
\end{aligned}
$$

which completes the induction. Therefore it suffices to show that the loss of θ_{T}^{*} is small. We have

$$
\begin{aligned}
\mathbb{E}\left[L\left(\theta_{k+1}^{*}\right) \mid \theta_{k}^{*}\right] \leq & L\left(\theta_{k}^{*}\right)-\nabla L\left(\theta_{k}^{*}\right)^{T}\left[\eta \nabla L+\eta E\left(\theta_{k}^{*}\right) v_{k}\right] \\
& +O\left[\eta^{2}\|\nabla L\|^{2}+\eta^{2}\left\|E\left(\theta_{k}^{*}\right)\right\|^{2}\left\|v_{k}\right\|^{2}+\left\|\epsilon_{k}-\epsilon_{k}^{*}\right\|^{2}\right] \\
\leq & L\left(\theta_{k}^{*}\right)-\frac{\eta}{4}\left\|\nabla L\left(\theta_{k}^{*}\right)\right\|^{2}+O\left(\eta\left\|E\left(\theta_{k}^{*}\right)\right\|^{2}\left\|v_{k}\right\|^{2}+\left\|\epsilon_{k}-\epsilon_{k}^{*}\right\|^{2}\right)
\end{aligned}
$$

where the last line follows from Young's inequality. Therefore,

$$
\begin{aligned}
L\left(\theta_{k+1}^{*}\right) & \leq L\left(\theta_{k}^{*}\right)-\frac{\eta}{4}\left\|\nabla L\left(\theta_{k}^{*}\right)\right\|^{2}+O\left(\eta L\left(\theta_{k}^{*}\right) \mathscr{X}^{2}+\eta \lambda \mathscr{X}^{2}\right) \\
& =L\left(\theta_{k}^{*}\right)-\frac{\eta}{4}\left\|\nabla L\left(\theta_{k}^{*}\right)\right\|^{2}+\tilde{O}\left(\eta \lambda L\left(\theta_{k}^{*}\right)+\eta \lambda^{2}\right) \\
& =(1+\tilde{O}(\eta \lambda)) L\left(\theta_{k}^{*}\right)-\frac{\eta}{4}\left\|\nabla L\left(\theta_{k}^{*}\right)\right\|^{2}+\tilde{O}\left(\eta \lambda^{2}\right)
\end{aligned}
$$

Let J be the Jacobian of f and e be the vector of residuals. Then $\nabla L=J e$. Now so long as $\left\|\theta_{k}^{*}-\theta_{0}\right\| \leq R$,

$$
\begin{equation*}
\left\|\nabla L\left(\theta_{k}^{*}\right)\right\|^{2}=e\left(\theta_{k}^{*}\right)^{T} J\left(\theta_{k}^{*}\right)^{T} J\left(\theta_{k}^{*}\right) e\left(\theta_{k}^{*}\right) \geq \lambda_{0}\left\|e\left(\theta_{k}^{*}\right)\right\|^{2}=2 \lambda_{0} L\left(\theta_{k}^{*}\right) \tag{124}
\end{equation*}
$$

Therefore,

$$
L\left(\theta_{k+1}^{*}\right) \leq\left(1-\frac{\eta \lambda_{0}}{2}+\tilde{O}(\eta \lambda)\right) L\left(\theta_{k}^{*}\right)+\tilde{O}\left(\eta \lambda^{2}\right)
$$

Now for $\lambda=\tilde{O}\left(\lambda_{0}\right)$,

$$
L\left(\theta_{k+1}^{*}\right) \leq\left(1-\frac{\eta \lambda_{0}}{4}\right) L\left(\theta_{k}^{*}\right)+\tilde{O}\left(\eta \lambda^{2}\right)
$$

so

$$
\begin{aligned}
L\left(\theta_{T}^{*}\right) & \leq\left(1-\frac{\eta \lambda_{0}}{4}\right)^{T} L\left(\theta_{0}\right)+\tilde{O}\left(\frac{\lambda^{2}}{\lambda_{0}}\right) \\
& \leq \tilde{O}\left(\frac{\lambda^{2}}{\lambda_{0}}\right)=O\left(\lambda^{1+\delta}\right)
\end{aligned}
$$

for small λ by the choice of T. It only remains to check that $\left\|\theta_{k}^{*}-\theta_{0}\right\| \leq R$. Note that

$$
\begin{align*}
\left\|\theta_{k}^{*}-\theta_{0}\right\| & \leq \eta \sum_{j<k}\left\|\nabla L\left(\theta_{j}^{*}\right)\right\|+\tilde{O}\left(\eta T \sqrt{\lambda}+\sqrt{\eta T \lambda^{2}}\right) \tag{125}\\
& \leq \tilde{O}\left(\eta \sum_{j \leq k} \sqrt{L\left(\theta_{j}^{*}\right)}+\sqrt{\lambda}\right) \tag{126}\\
& \leq \tilde{O}\left(\frac{L\left(\theta_{0}\right)}{\lambda_{0}}\right) \tag{127}
\end{align*}
$$

so for $m \geq \tilde{\Omega}\left(1 / \lambda_{0}^{4}\right)$ we are done.
Note that a direct application of Theorem 1 requires starting ξ at 0 . However, this does not affect the proof in any way and the ξ from this proof can simply be continued.
Finally, note that although $\left\|\frac{1}{\lambda} \nabla \tilde{L}(\theta)\right\|=O(1 / \sqrt{m})$ at any global minimizer, Theorem 1 guarantees that for any $\lambda>0$ we can find a point θ where $\left\|\frac{1}{\lambda} \nabla \tilde{L}(\theta)\right\| \lesssim \lambda^{\delta / 2} \ll 1 / \sqrt{m}$, as m only needs to be larger than a fixed constant depending on the condition number of the infinite width NTK kernel.

D Additional Experimental Details

The model used in our experiments is ResNet 18 with GroupNorm instead of BatchNorm to maintain independence of sample gradients when computed in a batch. We used a fixed group size of 32 .

Figure 4: Label Noise SGD with Momentum ($\beta=0.9$) The left column displays the training accuracy over time, the middle column displays the value of $\operatorname{tr} \nabla^{2} L(\theta)$ over time which we use to approximate the implicit regularizer $R(\theta)$, and the right column displays their correlation. The horizontal dashed line represents the minibatch SGD baseline with random initialization. We report the median results over 3 random seeds and shaded error bars denote the $\mathrm{min} / \mathrm{max}$ over the three runs. The correlation plot uses a running average of 100 epochs for visual clarity.

For the full batch initialization, we trained ResNet 18 on the CIFAR10 training set (50k images, 5 k per class) [17], with cross entropy loss. CIFAR10 images are provided under an MIT license. We trained using SGD with momentum with $\eta=1$ and $\beta=0.9$ for 2000 epochs. We used learning rate warmup starting at 0 which linearly increased until $\eta=1$ at epoch 600 and then it decayed using a cosine learning rate schedule to 0 between epochs 600 and 2000 . We also used a label smoothing value of 0.2 (non-randomized) so that the expected objective function is the same for when we switch to SGD with label flipping (see Appendix E). The final test accuracy was 76%.

For the adversarial initialization, we first created an augmented adversarial dataset as follows. We duplicate every image in CIFAR10 $10 \times$, for a total of 500k images. In each image, we randomly zero out 10% of the pixels in the image and we assign each of the 500 k images a random label. We trained ResNet 18 to interpolate this dataset without label smoothing with the following hyperparameters: $\eta=0.01,300$ epochs, batch size 256 . Starting from this initialization we ran SGD on the true dataset with $\eta=0.01$ and a label smoothing value of 0.2 with batch size 256 for 1000 epochs. The final test accuracy was 48%.

For the remaining experiments starting at these two initializations we ran both with and without momentum (see Figure 4 for the results with momentum) for 1000 epochs per run. We used a fixed batch size of 256 and varied the maximum learning rate η. We used learning rate warmup by linearly increasing the learning rate from 0 to the max learning rate over 300 epochs, and we kept the learning rate constant from epochs 300 to 1000 . The regularizer was estimated by computing the strength of the noise in each step and then averaging over an epoch. More specifically, we compute the average of $\left\|\nabla \hat{L}^{(k)}\left(\theta_{k}\right)-\nabla L^{(k)}\left(\theta_{k}\right)\right\|^{2}$ over an epoch and then renormalize by the batch size.
The experiments were run on a university cluster using NVIDIA P100 GPUs. Code was written in Python using PyTorch [24] and PyTorch Lightning [6], and experiments were logged using Wandb [2]. Code can be found at https://github.com/adamian98/LabelNoiseFlatMinimizers.

E Extension to Classification

We restrict $y_{i} \in\{-1,1\}$, let $l: \mathbb{R} \rightarrow \mathbb{R}^{+}$be an arbitrary loss function, and $p \in(0,1)$ be a smoothing factor. Examples of l include logistic loss, exponential loss, and square loss (see Table 1). We define \bar{l} to be the expected smoothed loss where we flip each label with probability p :

$$
\begin{equation*}
\bar{l}(x)=p l(-x)+(1-p) l(x) \tag{128}
\end{equation*}
$$

	$l(x)$	$c=\arg \min _{x} \bar{l}(x)$	$\sigma^{2}=E\left[\epsilon^{2}\right]$	$\alpha=\bar{l}^{\prime \prime}(c)$
Logistic Loss	$\log \left[1+e^{-x}\right]$	$\log \frac{1-p}{p}$	$p(1-p)$	$p(1-p)$
Exponential Loss	e^{-x}	$\frac{1}{2} \log \frac{1-p}{p}$	1	$2 \sqrt{p(1-p)}$
Square Loss	$\frac{1}{2}(x-1)^{2}$	$1-2 p$	$4 p(1-p)$	1

Table 1: Values of $l(x), c, \sigma^{2}, \alpha$ for different binary classification loss functions

We make the following mild assumption on the smoothed loss \bar{l} which is explicitly verified for the logistic loss, exponential loss, and square loss in Appendix E.2.
Assumption 4 (Quadratic Approximation). If $c \in \mathbb{R}$ is the unique global minimizer of \bar{l}, there exist constants $\epsilon_{Q}>0, \nu>0$ such that if $\bar{l}(x) \leq \epsilon_{Q}$ then,

$$
\begin{equation*}
(x-c)^{2} \leq \nu(\bar{l}(x)-\bar{l}(c)) \tag{129}
\end{equation*}
$$

In addition, we assume that $\overline{l^{\prime}}, \overline{l^{\prime \prime}}$ are ρ_{l}, κ_{l} Lipschitz respectively restricted to the set $\left\{x: \bar{l}(x) \leq \epsilon_{Q}\right\}$.
We verify Assumption 4 in Appendix E. 2 for logistic loss, exponential loss, and square loss. Then we define the per-sample loss and the sample loss as:

$$
\begin{equation*}
\ell_{i}(\theta)=\bar{l}\left(y_{i} f_{i}(\theta)\right)-\bar{l}(c) \quad \text { and } \quad L(\theta)=\frac{1}{n} \sum_{i=1}^{n} \ell_{i}(\theta) \tag{130}
\end{equation*}
$$

We will follow Algorithm 2

```
Algorithm 2: SGD with Label Smoothing
Input: \(\theta_{0}\), step size \(\eta\), smoothing constant \(p\), batch size \(B\), steps \(T\), loss function \(l\)
for \(k=0\) to \(T-1 \mathbf{d o}\)
    Sample batch \(\mathcal{B}^{(k)} \sim[n]^{B}\) uniformly and sample \(\sigma_{i}^{(k)}=1,-1\) with probability \(1-p, p\)
    respectively for \(i \in \mathcal{B}^{(k)}\).
    Let \(\hat{\ell}_{i}^{(k)}(\theta)=l\left[\sigma_{i}^{(k)} y_{i} f_{i}(\theta)\right]\) and \(\hat{L}^{(k)}=\frac{1}{B} \sum_{i \in \mathcal{B}^{(k)}} \hat{\ell}_{i}^{(k)}\).
    \(\theta_{k+1} \leftarrow \theta_{k}-\eta \nabla \hat{L}^{(k)}\left(\theta_{k}\right)\)
end
```

Now note that the noise per sample from label smoothing at a zero loss global minimizer θ^{*} can be written as

$$
\begin{equation*}
\nabla \hat{\ell}_{i}^{(k)}\left(\theta^{*}\right)-\nabla \ell_{i}\left(\theta^{*}\right)=\epsilon \nabla f_{i}\left(\theta^{*}\right) \tag{131}
\end{equation*}
$$

where

$$
\epsilon=\left\{\begin{array}{l}
p\left(l^{\prime}(c)+l^{\prime}(-c)\right) \text { with probability } 1-p \tag{132}\\
-(1-p)\left(l^{\prime}(c)+l^{\prime}(-c)\right) \text { with probability } p
\end{array}\right.
$$

so $E[\epsilon]=0$ and

$$
\begin{equation*}
\sigma^{2}=E\left[\epsilon^{2}\right]=p(1-p)\left(l^{\prime}(c)+l^{\prime}(-c)\right)^{2} \tag{133}
\end{equation*}
$$

which will determine the strength of the regularization in Theorem 2. Finally, in order to study the local behavior around c we define $\alpha=\bar{l}^{\prime \prime}(c)>0$ by Assumption 4 Corresponding values for c, σ^{2}, α for logistic loss, exponential loss, and square loss are given in Table 1 .
As before we define:

$$
\begin{equation*}
R(\theta)=-\frac{1}{2 \eta \alpha} \operatorname{tr} \log \left(1-\frac{\eta}{2} \nabla^{2} L(\theta)\right), \quad \lambda=\frac{\eta \sigma^{2}}{B}, \quad \tilde{L}(\theta)=L(\theta)+\lambda R(\theta) \tag{134}
\end{equation*}
$$

Our main result is a version of Theorem 1

Theorem 2. Assume that f satisfies Assumption 17 satisfies Assumption $2 . L$ satisfies Assumption 3 and l satisfies Assumption 4 Let η, B be chosen such that $\lambda:=\frac{\eta \sigma^{2}}{B}=\widetilde{\Theta}\left(\min \left(\epsilon^{2 / \delta}, \gamma^{2}\right)\right)$, and let $T=\tilde{\Theta}\left(\eta^{-1} \lambda^{-1-\delta}\right)=\operatorname{poly}\left(\eta^{-1}, \gamma^{-1}\right)$. Assume that θ is initialized within $O\left(\sqrt{\lambda^{1+\delta}}\right)$ of some θ^{*} satisfying $L\left(\theta^{*}\right)=O\left(\lambda^{1+\delta}\right)$. Then for any $\zeta \in(0,1)$, with probability at least $1-\zeta$, if $\left\{\theta_{k}\right\}$ follows Algorithm 2 with parameters η, σ, T, there exists $k<T$ such that θ_{k} is an (ϵ, γ)-stationary point of $\frac{1}{\lambda} \tilde{L}$.

E. 1 Proof of Theorem 2

The proof of Theorem 2 is virtually identical to that of Theorem 1 . First we make a few simplifications without loss of generality:
First note that if we scale l by $\frac{1}{\alpha}$ and η by α then the update in Algorithm 2 i remain constant. In addition, $\frac{1}{\lambda} \tilde{L}=\frac{1}{\lambda} L+R$ remains constant. Therefore it suffices to prove Theorem 2 in the special case when $\alpha=1$.

Next note that without loss of generality we can replace each f_{i} with $y_{i} f_{i}$ and set all of the true labels y_{i} to 1 . Therefore from now on we will simply speak of f_{i}.
Let $\left\{\tau_{m}\right\}$ be a sequence of coupling times and $\left\{\theta_{m}^{*}\right\}$ a sequence of reference points. Let $T_{m}=$ $\sum_{j<m} \tau_{m}$. Then for $k \in\left[T_{m}, T_{m+1}\right)$, if $L^{(k)}$ denotes true value of the loss on batch $\mathcal{B}^{(k)}$, we can decompose the loss as

$$
\begin{equation*}
\theta_{k+1}=\theta_{k}-\underbrace{\eta \nabla L\left(\theta_{k}\right)}_{\text {gradient descent }}-\underbrace{\eta\left[\nabla L^{(k)}\left(\theta_{k}\right)-\nabla L\left(\theta_{k}\right)\right]}_{\text {minibatch noise }}+\underbrace{\frac{\eta}{B} \sum_{i \in \mathcal{B}^{(k)}} \epsilon_{i}^{(k)} \nabla f_{i}\left(\theta_{k}\right)}_{\text {label noise }} \tag{135}
\end{equation*}
$$

where

$$
\epsilon_{i}^{(k)}= \begin{cases}-p\left[l^{\prime}\left(f_{i}\left(\theta_{k}\right)\right)+l^{\prime}\left(-f_{i}\left(\theta_{k}\right)\right)\right] & \sigma_{i}^{(k)}=1 \tag{136}\\ (1-p)\left[l^{\prime}\left(f_{i}\left(\theta_{k}\right)\right)+l^{\prime}\left(-f_{i}\left(\theta_{k}\right)\right)\right] & \sigma_{i}^{(k)}=-1\end{cases}
$$

We define

$$
\epsilon_{k}=\frac{\eta}{B} \sum_{i \in \mathcal{B}^{(k)}} \epsilon_{i}^{(k)} \nabla f_{i}\left(\theta_{k}\right) \quad \text { and } \quad m_{k}=\nabla L^{(k)}\left(\theta_{k}\right)-\nabla L\left(\theta_{k}\right)
$$

We decompose $\epsilon_{k}=\epsilon_{k}^{*}+z_{k}$ where
$\epsilon_{k}^{*}=\frac{\eta}{B} \sum_{i \in \mathcal{B}^{(k)}} \epsilon_{i}^{(k) *} \nabla f_{i}\left(\theta_{m}^{*}\right) \quad$ where $\quad \epsilon_{i}^{(k) *}= \begin{cases}-p\left[l^{\prime}\left(f_{i}(c)\right)+l^{\prime}\left(-f_{i}(c)\right)\right] & \sigma_{i}^{(k)}=1 \\ (1-p)\left[l^{\prime}\left(f_{i}(c)\right)+l^{\prime}\left(-f_{i}(c)\right)\right] & \sigma_{i}^{(k)}=-1\end{cases}$
and $z_{k}=\epsilon_{k}-\epsilon_{k}^{*}$. Note that ϵ_{k}^{*} has covariance $\eta \lambda G\left(\theta_{m}^{*}\right)$. We define $\xi_{0}=0$ and for $k \in\left[T_{m}, T_{m+1}\right)$,

$$
\begin{equation*}
\xi_{k+1}=\left(I-\eta G\left(\theta_{m}^{*}\right)\right) \xi_{k}+\epsilon_{k}^{*} \tag{138}
\end{equation*}
$$

Then we have the following version of Proposition 6
Proposition 12. Let $\mathscr{X}=\sqrt{\max \left(\frac{p}{1-p}, \frac{1-p}{p}\right) \cdot \frac{2 \lambda d \iota}{\nu}}$. Then for any $t \geq 0$, with probability $1-2 d e^{-\iota}$, $\left\|\xi_{t}\right\| \leq \mathscr{X}$.

Proof. Let $P=\max \left(\frac{p}{1-p}, \frac{1-p}{p}\right)$. Define the martingale sequence $X_{j}^{(k)}$ as in Proposition 6 I claim that $\left[X^{(k)}, X^{(k)}\right]_{k} \preceq \frac{n \lambda P}{\nu} I$. We will prove this by induction on k. The base case is trivial as
$X_{0}^{(0)}=0$. Then,

$$
\begin{align*}
{\left[X^{(k+1)}, X^{(k+1)}\right]_{k+1} } & =\left[X^{(k+1)}, X^{(k+1)}\right]_{k}+\epsilon_{k}^{*}\left(\epsilon_{k}^{*}\right)^{T} \tag{139}\\
& =\left(I-\eta G_{k}\right)\left[X^{(k)}, X^{(k)}\right]_{k}\left(I-\eta G_{k}\right)+\epsilon_{k}^{*}\left(\epsilon_{k}^{*}\right)^{T} \tag{140}\\
& \preceq \frac{n \lambda P}{\nu}\left[\left(I-\eta G_{k}\right)^{2}+\eta \nu G_{k}\right] \tag{141}\\
& \preceq \frac{n \lambda P}{\nu}\left[I-G_{k}\left(2-\eta G_{k}-\nu I\right)\right] \tag{142}\\
& \preceq \frac{n \lambda P}{\nu} I . \tag{143}
\end{align*}
$$

Therefore by Corollary 1 we are done.
Define $\iota, \mathscr{D}, \mathscr{M}, \mathscr{T}, \mathscr{L}$ as in Lemma1. Then we have the following local coupling lemma:
Lemma 9. Assume f satisfies Assumption [1] η satisfies Assumption 2 and l satisfies Assumption 4 . Let $\Delta_{m}=\theta_{T_{m}}-\xi_{T_{m}}-\theta_{m}^{*}$ and assume that $\left\|\Delta_{m}\right\| \leq \mathscr{D}$ and $L\left(\theta_{m}^{*}\right) \leq \mathscr{L}$ for some $0<\delta \leq 1 / 2$. Then for any $\tau_{m} \leq \mathscr{T}$ satisfying $\max _{k \in\left[T_{m}, T_{m+1}\right)}\left\|\Phi_{k-T_{m}}\left(\theta_{m}^{*}+\Delta_{m}\right)-\theta_{m}^{*}\right\| \leq 8 \mathscr{M}$, with probability at least $1-10 d \tau_{m} e^{-\iota}$ we have simultaneously for all $k \in\left(T_{m}, T_{m+1}\right]$,

$$
\left\|\theta_{k}-\xi_{k}-\Phi_{k-T_{m}}\left(\theta_{m}^{*}+\Delta_{m}\right)\right\| \leq \mathscr{D}, \quad \mathbb{E}\left[\xi_{k}\right]=0, \quad \text { and } \quad\left\|\xi_{k}\right\| \leq \mathscr{X}
$$

The proof of Lemma 9 follows directly from the following decompositions:
Proposition 13. Let $\nabla^{2} L=\nabla^{2} L\left(\theta_{m}^{*}\right), \nabla^{3} L=\nabla^{3} L\left(\theta_{m}^{*}\right), G=G\left(\theta_{m}^{*}\right), f_{i}=f_{i}\left(\theta_{m}^{*}\right), g_{i}=$ $\nabla f_{i}\left(\theta_{m}^{*}\right), H_{i}=\nabla^{2} f_{i}\left(\theta_{m}^{*}\right)$. Then,

$$
\begin{equation*}
\nabla^{2} L=G+O(\sqrt{\mathscr{L}}) \quad \text { and } \quad \frac{1}{2} \nabla^{3} L(S)=\frac{1}{n} \sum_{i} H_{i} v v^{T} g_{i}+g_{i} O\left(\|v\|^{2}\right)+O\left(\|v\|^{2} \sqrt{\mathscr{L}}\right) \tag{144}
\end{equation*}
$$

Proof. First, note that

$$
\begin{align*}
\nabla^{2} L & =\frac{1}{n} \sum_{i} l^{\prime \prime}\left(f_{i}\right) g_{i} g_{i}^{T}+l^{\prime}\left(f_{i}\right) H_{i} \tag{145}\\
& =G+\ell \sqrt{\frac{1}{n} \sum_{i}\left[l^{\prime \prime}\left(f_{i}\right)-l^{\prime \prime}(c)\right]^{2}}+\rho_{f} \sqrt{\frac{1}{n} \sum_{i}\left[l^{\prime}\left(f_{i}\right)\right]^{2}} \tag{146}\\
& =G+O(\sqrt{\mathscr{L}}) \tag{147}
\end{align*}
$$

by Assumption 4 Next,

$$
\begin{align*}
\frac{1}{2} \nabla^{3} L(v, v) & =\frac{1}{2 n} \sum_{i} 2 l^{\prime \prime}\left(f_{i}\right) H_{i} v v^{T} g_{i}+g_{i}\left[l^{\prime \prime \prime}\left(f_{i}\right)\left(g_{i}^{T} v\right)^{2}+l^{\prime \prime}\left(f_{i}\right) v^{T} H_{i} v\right]+O\left(l^{\prime}\left(f_{i}\right)\right) \tag{148}\\
& =\frac{1}{n} \sum_{i} H_{i} v v^{T} g_{i}+g_{i} O\left(\|v\|^{2}\right)+O\left(\|v\|^{2} \sqrt{\mathscr{L}}\right) \tag{149}
\end{align*}
$$

These are the exact same decompositions used Proposition 3 and Proposition 4 , so Lemma 9 immediately follows. In addition, as we never used the exact value of the constant in \mathscr{X} in the proof of Theorem 1, the analysis there applies directly as well showing that we converge to an (ϵ, γ)-stationary point and proving Theorem 2 .

E. 2 Verifying Assumption 4

We verify Assumption 4 for the logistic loss, the exponential loss, and the square loss and derive the corresponding values of c, σ^{2} found in Table 1 .

E.2.1 Logistic Loss

For logistic loss, we let $l(x)=\log \left(1+e^{-x}\right)$, and $\bar{l}(x)=p l(-x)+(1-p) l(x)$. Then

$$
\begin{equation*}
\bar{l}^{\prime}(x)=\frac{p e^{x}-(1-p)}{1+e^{x}} \tag{150}
\end{equation*}
$$

which is negative when $x<\log \frac{1-p}{p}$ and positive when $x>\log \frac{1-p}{p}$ so it is minimized at $c=\log \frac{1-p}{p}$. To show the quadratic approximation holds at c, it suffices to show that $\bar{l}^{\prime \prime \prime}(x)$ is bounded. We have $\bar{l}^{\prime \prime}(x)=\frac{e^{x}}{\left(1+e^{x}\right)^{2}}$ and

$$
\begin{equation*}
\bar{l}^{\prime \prime \prime}(x)=\frac{e^{x}\left(1-e^{x}\right)}{\left(1+e^{x}\right)^{3}}<\frac{1}{4} \tag{151}
\end{equation*}
$$

so we are done. Finally, to calculate the strength of the noise at c we have

$$
\begin{equation*}
\sigma^{2}=p(1-p)\left(l^{\prime}(c)+l^{\prime}(-c)\right)^{2}=p(1-p)(-p+p-1)^{2}=p(1-p) \tag{152}
\end{equation*}
$$

E.2.2 Exponential Loss

We have $l(x)=e^{-x}$ and $\bar{l}(x)=p l(-x)+(1-p) l(x)$. Then,

$$
\begin{equation*}
\bar{l}^{\prime}(x)=p e^{x}-(1-p) e^{-x} \tag{153}
\end{equation*}
$$

which is negative when $x<\frac{1}{2} \log \frac{1-p}{p}$ and positive when $x>\frac{1}{2} \log \frac{1-p}{p}$ so it is minimized at $c=\frac{1}{2} \log \frac{1-p}{p}$. Then we can compute

$$
\begin{equation*}
\bar{l}(c+x)=2 \sqrt{p(1-p)} \cosh (x) \geq 2 \sqrt{p(1-p)}+\sqrt{p(1-p)} x^{2}=L^{*}+\sqrt{p(1-p)} x^{2} \tag{154}
\end{equation*}
$$

because $\cosh x \geq 1+\frac{x^{2}}{2}$. Finally to compute the strength of the noise we have

$$
\begin{equation*}
\sigma^{2}=p(1-p)\left(l^{\prime}(c)+l^{\prime}(-c)\right)^{2}=p(1-p)\left(-\sqrt{\frac{p}{1-p}}-\sqrt{\frac{1-p}{p}}\right)^{2}=1 \tag{155}
\end{equation*}
$$

E.2.3 Square Loss

We have $l(x)=\frac{1}{2}(1-x)^{2}$ and $\bar{l}(x)=p l(-x)+(1-p) l(x)$. Then,

$$
\begin{equation*}
\bar{l}(x)=\frac{1}{2}\left[p(1+x)^{2}+(1-p)(1-x)^{2}\right]=\frac{1}{2}\left[x^{2}+x(4 p-2)+1\right] \tag{156}
\end{equation*}
$$

which is a quadratic minimized at $c=1-2 p$. The quadratic approximation trivially holds and the strength of the noise is:

$$
\begin{equation*}
\sigma^{2}=p(1-p)\left(l^{\prime}(c)+l^{\prime}(-c)\right)^{2}=p(1-p)(-2 p-2(1-p))^{2}=4 p(1-p) \tag{157}
\end{equation*}
$$

F Arbitrary Noise

F. 1 Proof of Proposition 5

We follow the proof of Lemma 2. First, let $\epsilon_{k}=\sqrt{\eta \lambda} \Sigma^{1 / 2}\left(\theta_{k}\right) x_{k}$ with $x_{k} \sim N(0, I)$ and define $\epsilon_{k}^{*}=\sqrt{\eta \lambda} \Sigma^{1 / 2}\left(\theta^{*}\right) x_{k}$ and $z_{k}=\epsilon_{k}-\epsilon_{k}^{*}$. Let $H=\nabla^{2} L\left(\theta^{*}\right), \Sigma=\Sigma\left(\theta^{*}\right)$, and $\nabla R_{S}=\nabla R_{S}\left(\theta^{*}\right)$. Let α be the smallest nonzero eigenvalue of H. Unlike in Lemma 1, we will omit the dependence on α.

First we need to show S exists. Consider the update

$$
S \leftarrow(I-\eta H) S(I-\eta H)+\eta \lambda \Sigma\left(\theta^{*}\right)
$$

Restricted to the span of H, this is a contraction so it must converge to a fixed point. In fact, we can write this fixed point in a basis of H explicitly. Let $\left\{\lambda_{i}\right\}$ be the eigenvalues of H. The following computation will be performed in an eigenbasis of H. Then the above update is equivalent to:

$$
S_{i j}=\left(1-\eta \lambda_{i}\right)\left(1-\eta \lambda_{j}\right) S_{i j}+\eta \lambda \Sigma_{i j}\left(\theta^{*}\right) .
$$

Therefore if $\lambda_{i}, \lambda_{j} \neq 0$ we can set

$$
\begin{equation*}
S_{i j}=\frac{\lambda \Sigma_{i j}\left(\theta^{*}\right)}{\lambda_{i}+\lambda_{j}-\eta \lambda_{i} \lambda_{j}} . \tag{158}
\end{equation*}
$$

Otherwise we set $S_{i j}=0$. Note that this is the unique solution restricted to $\operatorname{span}(H)$. Next, define the Ornstein-Uhlenbeck process ξ as follows:

$$
\xi_{k+1}=(I-\eta H) \xi_{k}+\epsilon_{k}^{*}
$$

Then note that

$$
\xi_{k}=\sum_{j<k}(I-\eta H)^{j} \epsilon_{k-j}
$$

so ξ is Gaussian with covariance

$$
\eta \lambda \sum_{j<k}(I-\eta H)^{j} \Sigma(I-\eta H)^{j}
$$

This is bounded by

$$
C \eta \lambda \sum_{j<k}(I-\eta H)^{j} H(I-\eta H)^{j} \preceq C \lambda(2-\eta H)^{-1} \preceq \frac{C \lambda}{\nu} I
$$

so by Corollary $1,\left\|\xi_{k}\right\| \leq \mathscr{X}$ with probability $1-2 d e^{-\iota}$. Define $v_{k}=\theta_{k}-\Phi_{k}\left(\theta_{0}\right)$ and $r_{k}=$ $\theta_{k}-\xi_{k}-\Phi_{k}\left(\theta_{0}\right)$. We will prove by induction that $\left\|r_{t}\right\| \leq \mathscr{D}$ with probability at least $1-8 d t e^{-\iota}$. First, with probability $1-2 d e^{-\iota},\left\|\xi_{t}\right\| \leq \mathscr{X}$. In addition, for $k \leq t$,

$$
\begin{equation*}
\left\|\theta_{k}-\theta^{*}\right\| \leq 9 \mathscr{D}+\mathscr{X}=O(\mathscr{X}) . \tag{159}
\end{equation*}
$$

Therefore from the second order Taylor expansion:

$$
r_{k+1}=(I-\eta H) r_{k}-\eta\left[\frac{1}{2} \nabla^{3} L\left(\xi_{k}, \xi_{k}\right)-\lambda \nabla R_{S}\right]+z_{k}+O\left(\eta \mathscr{X}\left(\mathscr{D}+\mathscr{X}^{2}\right)\right) .
$$

Because z_{k} is Gaussian with covariance bounded by $O\left(\eta \lambda \mathscr{X}^{2}\right)$ by the assumption that $\Sigma^{1 / 2}$ is Lipschitz, we have by the standard Gaussian tail bound that its contribution after summing is bounded by $\sqrt{\eta \lambda \mathscr{X} k \iota}$ with probability at least $1-2 d e^{-\iota}$ so summing over k gives

$$
r_{t+1}=-\eta \sum_{k \leq t}(I-\eta H)^{t-k}\left[\frac{1}{2} \nabla^{3} L\left(\xi_{k}, \xi_{k}\right)-\lambda \nabla R_{S}\right]+O\left(\sqrt{\eta \lambda t} \mathscr{X}+\eta t \mathscr{X}\left(\mathscr{D}+\mathscr{X}^{2}\right)\right)
$$

Now denote $S_{k}=\xi_{k} \xi_{k}^{T}$. Then we need to bound

$$
\eta \sum_{k \leq t}(I-\eta H)^{t-k} \nabla^{3} L\left(S_{k}-S\right)
$$

Let $D_{k}=S_{k}-S$. Then plugging this into the recurrence for S_{k} gives

$$
D_{k+1}=(I-\eta H) D_{k}(I-\eta H)+W_{k}+Z_{k}
$$

where

$$
W_{k}=(I-\eta H) \xi_{k}\left(\epsilon_{k}^{*}\right)^{T}+\epsilon_{k}^{*}\left(\xi_{k}\right)^{T}(I-\eta H) \quad \text { and } \quad Z_{k}=\epsilon_{k}^{*}\left(\epsilon_{k}^{*}\right)^{T}-\eta \lambda \Sigma
$$

Then,

$$
D_{k}=(I-\eta H)^{k} S(I-\eta H)^{k}+\sum_{j<k}(I-\eta H)^{k-j-1}\left(W_{j}+Z_{j}\right)(I-\eta H)^{k-j-1}
$$

so we need to bound
$\eta \sum_{k \leq t}(I-\eta H)^{t-k} \nabla^{3} L\left[(I-\eta H)^{k} S(I-\eta H)^{k}+\sum_{j<k}(I-\eta H)^{k-j-1}\left(W_{j}+Z_{j}\right)(I-\eta H)^{k-j-1}\right]$.

Because S is in the span of H,

$$
\left\|\eta \sum_{k<t}(I-\eta H)^{t-k} \nabla^{3} L\left[(I-\eta H)^{k} S(I-\eta H)^{k}\right]\right\|=O(\eta \lambda)\left\|\sum_{k \leq t}(I-\eta H)^{k} \Pi_{H}\right\|=O(\lambda / \alpha)=O(\lambda)
$$

where Π_{H} is the projection onto H. We switch the order of summation for the next two terms to get

$$
\eta \sum_{j \leq t} \sum_{k=j+1}^{t}(I-\eta H)^{t-k} \nabla^{3} L\left[(I-\eta H)^{k-j-1}\left(W_{j}+Z_{j}\right)(I-\eta H)^{k-j-1}\right]
$$

Note that conditioned on $\epsilon_{l}^{*}, l<j$, the W_{j} part of the inner sum is Gaussian with variance bounded by $O\left(\eta \lambda \mathscr{X}^{2}\right)$ so by Lemma 16 , with probability at least $1-2 d e^{-\iota}$, the contribution of W is bounded by $O(\sqrt{\eta \lambda t \iota} \mathscr{X})$.
For the Z term, we will define a truncation parameter r to be chosen later. Then define $\bar{x}_{j}=$ $x_{j}\left[\left\|x_{j}\right\| \leq r\right]$ where $x_{j} \sim N(0, I)$ is defined above. Define $\bar{X}=\mathbb{E}\left[\bar{x}_{j} \bar{x}_{j}^{T}\right]$. Then we can decompose the Z term into:

$$
\begin{aligned}
& \eta^{2} \lambda \sum_{j \leq t} \sum_{k=j+1}^{t}(I-\eta H)^{t-k} \nabla^{3} L\left[(I-\eta H)^{k-j-1} \Sigma^{1 / 2}\left(x_{j} x_{j}^{T}-\bar{x}_{j} \bar{x}_{j}^{T}\right)\left(\Sigma^{1 / 2}\right)^{T}(I-\eta H)^{k-j-1}\right] \\
+ & \eta^{2} \lambda \sum_{j \leq t} \sum_{k=j+1}^{t}(I-\eta H)^{t-k} \nabla^{3} L\left[(I-\eta H)^{k-j-1} \Sigma^{1 / 2}\left(\bar{x}_{j} \bar{x}_{j}^{T}-\bar{X}_{j}\right)\left(\Sigma^{1 / 2}\right)^{T}(I-\eta H)^{k-j-1}\right] \\
+ & \eta^{2} \lambda \sum_{j \leq t} \sum_{k=j+1}^{t}(I-\eta H)^{t-k} \nabla^{3} L\left[(I-\eta H)^{k-j-1} \Sigma^{1 / 2}(\bar{X}-I)\left(\Sigma^{1 / 2}\right)^{T}(I-\eta H)^{k-j-1}\right] .
\end{aligned}
$$

With probability $1-2 d t e^{-r^{2} / 2}$ we can assume that $x_{j} x_{j}^{T}=\bar{x}_{j} \bar{x}_{j}^{T}$ for all $j \leq t$ so the first term is zero. For the second term the inner sum is bounded by $O\left(r^{2} \eta^{-1}\right)$ and has variance bounded by $O\left(\eta^{-2}\right)$ by the same arguments as above. Therefore by Bernstein's inequality, the whole term is bounded by $O\left(\eta \lambda \sqrt{t \iota}+r^{2} \eta \lambda \iota\right)$ with probability $1-2 d e^{-\iota}$. Finally, to bound the third term note that

$$
\|\bar{X}-I\|_{F}=\mathbb{E}\left[\left\|x_{j}\right\|^{2}\left[\left\|x_{j}\right\|>r\right]\right] \leq \sqrt{\mathbb{E}\left[\left\|x_{j}\right\|^{4}\right] \operatorname{Pr}\left[\left\|x_{j}\right\|>r\right]} \leq(d+1) \sqrt{2 d} e^{-r^{2} / 4}
$$

Therefore the whole term is bounded by $O\left(\eta \lambda t e^{-r^{2} / 4}\right)$. Finally, pick $r=\sqrt{4 \iota \log \mathscr{T}}$. Then the final bound is

$$
\begin{aligned}
r_{t+1} & \leq O\left(\sqrt{\eta \mathscr{T}} \mathscr{X}^{2}+\eta \mathscr{T} \mathscr{X}\left(\mathscr{D}+\mathscr{X}^{2}\right)\right) \\
& =O\left(\frac{\lambda^{3 / 4} \iota^{1 / 4}}{c}\right) \\
& \leq \mathscr{D}
\end{aligned}
$$

for sufficiently large c. This completes the induction.

F. 2 SGD Cycling

Let $\theta=\left(x, y, z_{1}, z_{2}, z_{3}, z_{4}\right)$. We will define a set of functions f_{i} as follows:

$$
\begin{array}{rrrr}
f_{1}(\theta)=(1-y) z_{1}-1, & f_{2}(\theta)=(1-y) z_{1}+1, & f_{3}(\theta)=(1+y) z_{2}-1, & f_{4}(\theta)=(1+y) z_{2}+1, \\
f_{5}(\theta)=(1-x) z_{3}-1, & f_{6}(\theta)=(1-x) z_{4}+1, & f_{7}(\theta)=(1+x) z_{4}-1, & f_{8}(\theta)=(1+x) z_{4}+1, \\
f_{9}(\theta)=(1-x) z_{1}, & f_{10}(\theta)=(1+x) z_{2}, & f_{11}(\theta)=(1+y) z_{3}, & f_{12}(\theta)=(1-y) z_{4}, \\
f_{13}(\theta)=x^{2}+y^{2}-1 & &
\end{array}
$$

and we set all labels $y_{i}=0$. Then we verify empirically that if we run minibatch SGD with the loss function $\ell_{i}(\theta)=\frac{1}{2}\left(f_{i}(\theta)-y_{i}\right)^{2}$ then (x, y) cycles counter clockwise over the set $x^{2}+y^{2}=1$:

Figure 5: Minibatch SGD can cycle. We initialize at the point $\theta=(1,0,0,0,0,0)$. The left column shows x over time which follows a cosine curve. The middle column shows y over time which follows a sine curve. Finally, the right column shows moving averages of z_{i}^{2} for $i=1,2,3,4$, which periodically grow and shrink depending on the current values of x, y.

The intuition for the definition of f above is as follows. When $x=1$ and $y=0$, due to the constraints from f_{9} to $f_{1} 2$, only z_{1} can grow to become nonzero. Then locally, $f_{1}=z_{1}-1$ and $f_{2}=z_{1}+1$ so this will cause oscillations in the z_{1} direction, so S will concentrate in the z_{1} direction which will bias minibatch SGD towards decreasing the corresponding entry in $\nabla^{2} L(\theta)$ which is proportional to $(1-x)^{2}+2(1-y)^{2}$, which means it will increase y. Similarly when $x=0, y=1$ there is a bias towards decreasing x, when $x=-1, y=0$ there is a bias towards decreasing y, and when $x=0, y=-1$ there is a bias towards increasing x. Each of these is handled by a different Ornstein Uhlenbeck process z_{i}. f_{13} ensures that θ remains on $x^{2}+y^{2}=1$ throughout this process. This cycling is a result of minimizing a rapidly changing potential and shows that the implicit bias of minibatch SGD cannot be recovered by coupling to a fixed potential.

G Weak Contraction Bounds and Additional Lemmas

Let $\left\{g_{i}\right\}_{i \in[n]}$ be a collection of n vectors such that $\left\|g_{i}\right\|_{2} \leq \ell_{f}$ for all i and let $G=\frac{1}{n} \sum_{i} g_{i} g_{i}^{T}$. Let the eigenvalues of G be $\lambda_{1}, \ldots, \lambda_{n}$, and assume that η satisfies Assumption 2, Then we have the following contraction bounds:

Lemma 10.

$$
\begin{equation*}
\left\|(I-\eta G)^{\tau} G\right\| \leq \frac{1}{\eta \nu \tau}=O\left(\frac{1}{\eta \tau}\right) \tag{160}
\end{equation*}
$$

Lemma 11.

$$
\begin{equation*}
\left\|(I-\eta G)^{\tau} g_{i}\right\|=O\left(\sqrt{\frac{1}{\eta \tau}}\right) \tag{161}
\end{equation*}
$$

Lemma 12.

$$
\begin{equation*}
\sum_{k<\tau}\left\|(I-\eta G)^{k} g_{i_{k}}\right\|=O\left(\sqrt{\frac{\tau}{\eta}}\right) \tag{162}
\end{equation*}
$$

Lemma 13.

$$
\begin{equation*}
\sum_{k<\tau}\left\|(I-\eta G)^{k} g_{i_{k}}\right\|^{2}=O\left(\frac{1}{\eta}\right) \tag{163}
\end{equation*}
$$

Lemma 14.

$$
\begin{equation*}
\sum_{k<\tau}\left\|(I-\eta G)^{k} g_{i_{k}}\right\|\left\|(I-\eta G)^{k} g_{j_{k}}\right\|=O\left(\frac{1}{\eta}\right) \tag{164}
\end{equation*}
$$

Lemma 15.

$$
\begin{equation*}
\sum_{k<\tau}\left\|(I-\eta G)^{k} G\right\|_{2}=O\left(\frac{1}{\eta}\right) \tag{165}
\end{equation*}
$$

Proof of Lemma 10

$$
\begin{align*}
\left\|(I-\eta G)^{\tau} G\right\| & =\max _{i}\left|1-\eta \lambda_{i}\right|^{\tau} \lambda_{i} \leq \max \left(\frac{\eta \lambda_{i} \tau}{\eta \tau} \exp \left(-\eta \lambda_{i} \tau\right), \ell(1-\nu)^{\tau}\right) \tag{166}\\
& \leq \max \left(\frac{1}{e \eta \tau}, \frac{1}{\eta \nu \tau}(\eta \ell)[\nu \tau] e^{-\nu \tau}\right) \tag{167}\\
& \leq \frac{1}{\eta \nu \tau} \tag{168}\\
& =O\left(\frac{1}{\eta \tau}\right) \tag{169}
\end{align*}
$$

where we used that the function $x e^{-x}<\frac{1}{e}$ is bounded.

Proof of Lemma 11 Note that

$$
\begin{align*}
\left\|(I-\eta G)^{\tau} g_{i}\right\|^{2} & =\operatorname{tr}\left[(I-\eta G)^{\tau} g_{i} g_{i}^{T}(I-\eta G)^{\tau}\right] \tag{170}\\
& \leq n \operatorname{tr}\left((I-\eta G)^{2 \tau} G\right) \tag{171}\\
& =n \sum_{i} \lambda_{i}\left(1-\eta \lambda_{i}\right)^{2 \tau} \tag{172}\\
& \leq n \sum_{i} \max \left(\lambda_{i} \exp \left(-2 \eta \lambda_{i} \tau\right), \ell(1-\nu)^{\tau}\right) \tag{173}\\
& =O\left(\frac{1}{\eta \tau}\right) \tag{174}
\end{align*}
$$

where we used the fact that the function $x e^{-x} \leq \frac{1}{e}$ is bounded.

Proof of Lemma 12 Following the proof of Lemma 11 ,

$$
\begin{align*}
\left(\sum_{k<\tau}\left\|(I-\eta G)^{k} g_{i_{k}}\right\|\right)^{2} & \leq \tau \sum_{k<\tau}\left\|(I-\eta G)^{k} g_{i_{k}}\right\|^{2} \tag{175}\\
& \leq n \tau \sum_{k<\tau} \sum_{i} \lambda_{i}\left(1-\eta \lambda_{i}\right)^{2 k} \tag{176}\\
& =O\left(\frac{\tau}{\eta}\right) \tag{177}
\end{align*}
$$

Proof of Lemma 13

$$
\begin{align*}
\sum_{k<\tau}\left\|(I-\eta G)^{k} g_{i_{k}}\right\|^{2} & \leq \sum_{k<\tau} \operatorname{tr}\left[(I-\eta G)^{k} g_{i_{k}} g_{i_{k}}^{T}(I-\eta G)^{k}\right] \tag{178}\\
& \leq n \sum_{k<\tau} \operatorname{tr}\left[(I-\eta G)^{2 k} G\right] \tag{179}\\
& \leq n \sum_{k<\tau} \sum_{i} \lambda_{i}\left(1-\eta \lambda_{i}\right)^{2 k} \tag{180}\\
& =O\left(\frac{1}{\eta}\right) \tag{181}
\end{align*}
$$

Proof of Lemma 14

$$
\begin{align*}
& \sum_{k<\tau}\left\|(I-\eta G)^{k} g_{i_{k}}\right\|\left\|(I-\eta G)^{k} g_{j_{k}}\right\| \tag{182}\\
& \leq\left[\sum_{k<\tau}\left\|(I-\eta G)^{k} g_{i_{k}}\right\|^{2}\right]^{1 / 2}\left[\sum_{k<\tau}\left\|(I-\eta G)^{k} g_{j_{k}}\right\|^{2}\right]^{1 / 2} \tag{183}\\
& =O(1 / \eta) \tag{184}
\end{align*}
$$

by Lemma 13 .
Proof of Lemma 15

$$
\begin{align*}
\sum_{k<\tau}\left\|(I-\eta G)^{k} G\right\| & \leq \sum_{k \leq \tau} \sum_{i}\left(I-\eta \lambda_{i}\right)^{k} \lambda_{i} \tag{185}\\
& =O\left(\frac{1}{\eta}\right) \tag{186}
\end{align*}
$$

The following concentration inequality is from Jin et al. [15]:
Lemma 16 (Hoeffding-type inequality for norm-subGaussian vectors). Given $X_{1}, \ldots, X_{n} \in \mathbb{R}^{d}$ and corresponding filtrations $\mathcal{F}_{i}=\sigma\left(X_{1}, \ldots, X_{n}\right)$ for $i \in[n]$ such that for some fixed $\sigma_{1}, \ldots, \sigma_{n}$:

$$
\mathbb{E}\left[X_{i} \mid F_{i-1}\right]=0, \mathbb{P}\left[\left\|X_{i}\right\| \geq t \mid \mathcal{F}_{i-1}\right] \leq 2 e^{-\frac{t^{2}}{2 \sigma_{i}^{2}}}
$$

we have that for any $\iota>0$ there exists an absolute constant c such that with probability at least $1-2 d e^{-\iota}$,

$$
\left\|\sum_{i=1}^{n} X_{i}\right\| \leq c \cdot \sqrt{\sum_{i=1}^{n} \sigma_{i}^{2} \cdot \iota}
$$

Lemma 17. Assume that L is analytic and θ is restricted to some compact set \mathcal{D}. Then there exist $\delta>0, \mu>0, \epsilon_{K L}>0$ such that Assumption 3 is satisfied.

Proof. It is known that there exist $\mu_{\theta}, \delta_{\theta}$ satisfying the KL-inequality in the neighborhood of any critical point θ of L, i.e. for every critical point θ, there exists a neighborhood U_{θ} of θ such that for any $\theta^{\prime} \in U_{\theta}$,

$$
L\left(\theta^{\prime}\right)-L(\theta) \leq \mu_{\theta}\left\|\nabla L\left(\theta^{\prime}\right)\right\|^{1+\delta_{\theta}} .
$$

Let $S=\left\{\theta \in \mathcal{D}: L(\theta)=L\left(\theta^{*}\right)\right\}$ for any global minimizer θ^{*}. For every global $\min \theta \in S$, let U_{θ} be a neighborhood of θ such that the KL inequality holds with constants $\mu_{\theta}, \delta_{\theta}$. Because \mathcal{D} is compact and S is closed, S is compact and there must exist some $\theta_{1}, \ldots, \theta_{n}$ such that $S \subset \bigcup_{i \in[k]} U_{\theta_{i}}$. Let $\delta=\min _{i} \delta_{\theta_{i}}$. Then for all i, there must exist some μ_{i} such that μ_{i}, δ satisfies the KL inequality and let $\mu=\max _{i} \mu_{i}$. Finally, let $U=\bigcup_{i} U_{\theta_{i}}$ which is an open set containing S. Then $\mathcal{D} \backslash U$ is a compact set and therefore L must achieve a minimum $\epsilon_{K L}$ on this set. Note that $\epsilon_{K L}>0$ as $S \subset U$. Then if $L(\theta) \leq \epsilon_{K L}, \theta \in U$ so μ, δ satisfy the KL inequality at θ.

H Extension to SGD with Momentum

We now prove Lemma 4 We will copy all of the notation from Section 3.1. As before we define $v_{k}=\theta_{k}-\Phi_{k}\left(\theta^{*}\right)$. Define ξ by $\xi_{0}=0$ and

$$
\xi_{k+1}=(I-\eta G) \xi_{k}+\epsilon_{k}^{*}+\beta\left(\xi_{k}-\xi_{k-1}\right)
$$

We now define the following block matrices that will be crucial in our analysis:

$$
A=\left[\begin{array}{cc}
I-\eta G+\beta I & -\beta I \\
1 & 0
\end{array}\right] \quad \text { and } \quad J=\left[\begin{array}{l}
I \\
0
\end{array}\right] \quad \text { and } \quad B_{j}=J^{T} A^{j} J
$$

Then we are ready to prove the following proposition:

Proposition 14. With probability $1-2 d e^{-\iota},\left\|\xi_{k}\right\| \leq \mathscr{X}$.
Proof. Define $\bar{\xi}_{k}=\binom{\xi_{k}}{\xi_{k-1}}$. Then the above can be written as:

$$
\bar{\xi}_{k+1}=A \bar{\xi}_{k}+J \epsilon_{k}^{*}
$$

Therefore by induction,

$$
\bar{\xi}_{k}=\sum_{j<k} A^{k-j-1} J \epsilon_{j}^{*} \Longrightarrow \xi_{k}=\sum_{j<k} B_{k-j-1} \epsilon_{j}^{*} .
$$

The partial sums form a martingale and by Proposition 21, the quadratic covariation is bounded by

$$
(1-\beta) n \eta \lambda \sum_{j=0}^{\infty} B_{j} G B_{j}^{T} \preceq \frac{n \lambda}{\nu} \Pi_{G}
$$

so by Corollary 1 we are done.
We will prove Lemma 4 by induction on t. Assume that $\left\|r_{k}\right\| \leq \mathscr{D}$ for $k \leq t$. First, we have the following version of Proposition 3 ,
Proposition 15. Let $\bar{r}_{k}=\binom{r_{k}}{r_{k-1}}$. Then,

$$
\bar{r}_{k+1}=A \bar{r}_{k}+J\left(-\eta\left[\frac{1}{2} \nabla^{3} L\left(\xi_{k}, \xi_{k}\right)-\lambda \nabla R\right]+m_{k}+z_{k}+O\left(\eta \mathscr{X}\left(\sqrt{\mathscr{L}}+\mathscr{M}+\mathscr{X}^{2}\right)\right)\right)
$$

Proof. As before we have that

$$
\begin{aligned}
& v_{k+1}=(I-\eta G) v_{k}-\eta\left[\frac{1}{2} \nabla^{3} L\left(\xi_{k}, \xi_{k}\right)-\lambda \nabla R\right]+\epsilon_{k}^{*}+m_{k}+z_{k} \\
&+O\left(\eta \mathscr{X}\left(\sqrt{\mathscr{L}}+\mathscr{M}+\mathscr{X}^{2}\right)\right)+\beta\left(v_{k}-v_{k-1}\right)
\end{aligned}
$$

and subtracting the definition of ξ_{k} proves the top block of the proposition. The bottom block is equivalent to the identity $r_{k}=r_{k}$.

Proposition 16.

$r_{t+1}=-\eta \sum_{k \leq t} B_{t-k}\left[\frac{1}{2} \nabla^{3} L\left(\xi_{k}, \xi_{k}\right)-\lambda \nabla R\right]+O\left(\sqrt{\eta \lambda t}(\sqrt{\mathscr{L}}+\mathscr{X})+\eta t \mathscr{X}\left(\sqrt{\mathscr{L}}+\mathscr{M}+\mathscr{X}^{2}\right)\right)$.
Proof. We have from the previous proposition that

$$
\bar{r}_{t+1}=\sum_{k \leq t} A^{t-k} J\left(-\eta\left[\frac{1}{2} \nabla^{3} L\left(\xi_{k}, \xi_{k}\right)-\lambda \nabla R\right]+m_{k}+z_{k}+O\left(\eta \mathscr{X}\left(\sqrt{\mathscr{L}}+\mathscr{M}+\mathscr{X}^{2}\right)\right)\right)
$$

so

$$
r_{t+1}=\sum_{k \leq t} B_{t-k}\left(-\eta\left[\frac{1}{2} \nabla^{3} L\left(\xi_{k}, \xi_{k}\right)-\lambda \nabla R\right]+m_{k}+z_{k}+O\left(\eta \mathscr{X}\left(\sqrt{\mathscr{L}}+\mathscr{M}+\mathscr{X}^{2}\right)\right)\right)
$$

By Corollary 3. we know that B_{k} is bounded by $\frac{1}{1-\beta}$ so the remainder term is bounded by $O\left(\eta t \mathscr{X}\left(\sqrt{\mathscr{L}}+\mathscr{M}+\mathscr{X}^{2}\right)\right)$. Similarly, by the exact same concentration inequalities used in the proof of Proposition $\sqrt[4]{ }$, we have that the contribution of the m_{k}, z_{k} terms is at most $O(\sqrt{\eta \lambda t}(\sqrt{\mathscr{L}}+\mathscr{X}))$ which completes the proof.

Proposition 17.

$$
\eta \sum_{k \leq t} B_{t-k}\left[\frac{1}{2} \nabla^{3} L\left(\xi_{k}, \xi_{k}\right)-\lambda \nabla R\right]=O\left(\sqrt{\eta t} \mathscr{X}^{2}+\eta t \mathscr{X} \sqrt{\mathscr{L}}\right)
$$

Proof. As in the proof of Proposition 4, we define

$$
\begin{equation*}
S^{*}=\lambda\left(2-\frac{\eta}{1+\beta} \nabla^{2} L\right)^{-1}, \quad \bar{S}=\lambda\left(2-\frac{\eta}{1+\beta} G\right)^{-1}, \quad \text { and } \quad S_{k}=\xi_{k} \xi_{k}^{T} \tag{187}
\end{equation*}
$$

Then note that $\nabla R=\frac{1}{2} \nabla^{3} L\left(S^{*}\right)$ so it suffices to bound

$$
\eta \sum_{k \leq t} B_{t-k} \nabla^{3} L\left(S_{k}-S^{*}\right)
$$

As before we can decompose this as

$$
\eta \sum_{k \leq t} B_{t-k} \nabla^{3} L\left(S_{k}-\bar{S}\right)+\eta \sum_{k \leq t} B_{t-k} \nabla^{3} L\left(\bar{S}-S^{*}\right)
$$

We will begin by bounding the second term. Note that

$$
\eta \sum_{k \leq t} B_{t-k} \nabla^{3} L\left(\bar{S}-S^{*}\right)=O\left(\eta\left\|\bar{S}-S^{*}\right\|\right)
$$

We can rewrite this as

$$
\begin{equation*}
S^{*}-\bar{S}=\lambda\left[\left(2-\eta \nabla^{2} L\right)^{-1}\left((2-\eta G)-\left(2-\eta \nabla^{2} L\right)\right)(2-\eta G)^{-1}\right]=O(\eta \lambda \sqrt{\mathscr{L}}) \tag{188}
\end{equation*}
$$

so this difference contributes at most $O\left(\eta^{2} \lambda t \sqrt{\mathscr{L}}\right)=O(\eta t \mathscr{X} \sqrt{\mathscr{L}})$. For the first term, let $D_{k}=$ $S_{k}-\bar{S}$. We will decompose $\nabla^{3} L$ as before to get

$$
\begin{equation*}
\frac{1}{n} \sum_{i=1}^{n} \eta \sum_{k \leq t} B_{t-k}\left[H_{i} D_{k} g_{i}+\frac{1}{2} g_{i} \operatorname{tr}\left(D_{k} H_{i}\right)+O\left(\sqrt{\mathscr{L}} \mathscr{X}^{2}\right)\right] \tag{189}
\end{equation*}
$$

The third term can be bound by the triangle inequality by Corollary 3 to get $O\left(\eta t \sqrt{\mathscr{L}} \mathscr{X}^{2}\right)$. The second term can be bound by Proposition 22 to get $O\left(\sqrt{\eta t} \mathscr{X}^{2}\right)$.
The final remaining term is the first term. Define

$$
\bar{S}^{\prime}=\lambda\left[\begin{array}{cc}
\bar{S} & \left(I-\frac{\eta}{1+\beta} G\right) \bar{S} \\
\left(I-\frac{\eta}{1+\beta} G\right) \bar{S} &] . . . ~
\end{array}\right.
$$

From the proof of Proposition 21. we can see that \bar{S}^{\prime} satisfies

$$
\bar{S}^{\prime}=A \bar{S}^{\prime} A^{T}+(1-\beta) \eta \lambda J G J^{T} .
$$

We also have:

$$
\bar{\xi}_{k+1}=A \bar{\xi}_{k}+J \epsilon_{k}^{*}
$$

so

$$
\bar{\xi}_{k+1} \bar{\xi}_{k+1}^{T}=A \bar{\xi}_{k} \bar{\xi}_{k}^{T} A^{T}+J \epsilon_{k}^{*} \bar{\xi}_{k}^{T} A^{T}+A \bar{\xi}_{k}\left(\epsilon_{k}^{*}\right)^{T} J^{T}+J \epsilon_{k}^{*} \epsilon_{k}^{*} J^{T}
$$

Let $D_{k}^{\prime}=\bar{\xi}_{k} \bar{\xi}_{k}^{T}-\bar{S}^{\prime}$. Then,

$$
D_{k+1}^{\prime}=A D_{k}^{\prime} A^{T}+W_{k}+Z_{k}
$$

where $W_{k}=J \epsilon_{k}^{*} \bar{\xi}_{k}^{T} A^{T}+A \bar{\xi}_{k}\left(\epsilon_{k}^{*}\right)^{T} J^{T}$ and $Z_{k}=J\left[\epsilon_{k}^{*} \epsilon_{k}^{*}-(1-\beta) \eta \lambda G\right] J^{T}$. Then,

$$
D_{k}^{\prime}=A^{k} \bar{S}^{\prime} A^{k}+\sum_{j<k} A^{k-j-1}\left[W_{j}+Z_{j}\right]\left(A^{T}\right)^{k-j-1}
$$

so

$$
D_{k}=J^{T} A^{k} \bar{S}^{\prime} A^{k} J+\sum_{j<k} J^{T} A^{k-j-1}\left[W_{j}+Z_{j}\right]\left(A^{T}\right)^{k-j-1} J
$$

Plugging this into the first term, which we have not yet bounded, we get

$$
\frac{1}{n} \sum_{i=1}^{n} \eta \sum_{k \leq t} B_{t-k} H_{i}\left[J^{T} A^{k} \bar{S}^{\prime} A^{k} J+\sum_{j<k} J^{T} A^{k-j-1}\left[W_{j}+Z_{j}\right]\left(A^{T}\right)^{k-j-1} J\right] g_{i}
$$

For the first term in this expression we can use Proposition 22 to bound it by $O(\sqrt{\eta t} \lambda) \leq O\left(\sqrt{\eta t} \mathscr{X}^{2}\right)$. Therefore we are just left with the second term. Changing the order of summation gives

$$
\begin{equation*}
\eta \frac{1}{n} \sum_{i=1}^{n} \sum_{j \leq t} \sum_{k=j+1}^{t} B_{t-k} H_{i} J^{T} A^{k-j-1}\left(W_{j}+Z_{j}\right)\left(A^{T}\right)^{k-j-1} J g_{i} . \tag{190}
\end{equation*}
$$

Recall that $\epsilon_{j}^{*}=\frac{\eta}{B} \sum_{l \in \mathcal{B}^{(j)}} \epsilon_{l}^{(j)} g_{l}$. First, isolating the inner sum for the W term, we get

$$
\begin{align*}
& \sum_{k=j+1}^{t} B_{t-k} H_{i} J^{T} A^{k-j} \bar{\xi}_{j}\left(\epsilon_{j}^{*}\right)^{T} J^{T} A^{k-j-1} J g_{i} \tag{191}\\
& \quad+\sum_{k=j+1}^{t} B_{t-k} H_{i} J^{T} A^{k-j-1} J \epsilon_{j}^{*} \bar{\xi}_{j}^{T} A^{k-j} J g_{i} \\
& =\frac{\eta}{B} \sum_{l \in \mathcal{B}^{(j)}} \epsilon_{l}^{(j)}\left[\sum_{k=j+1}^{t} B_{t-k} H_{i} J^{T} A^{k-j} \bar{\xi}_{j} g_{l}^{T} B_{k-j-1} g_{i}\right. \tag{192}\\
& \left.\quad+\sum_{k=j+1}^{t} B_{t-k} H_{i} B_{k-j-1} g_{l} \bar{\xi}_{j}^{T} A^{k-j} J g_{i}\right]
\end{align*}
$$

The inner sums are bounded by $O\left(\mathscr{X} \eta^{-1}\right)$ by Proposition 24 Therefore by Lemma 5 , with probability at least $1-2 d e^{-\iota}$, the contribution of the W term in Equation 60 is at most $O(\sqrt{\eta \lambda k \iota} \mathscr{X})=$ $O\left(\sqrt{\eta k} \mathscr{X}^{2}\right)$. The final remaining term to bound is the Z term in 60 . We can write the inner sum as

$$
\begin{equation*}
\frac{\eta \lambda(1-\beta)}{B^{2}} \sum_{k=j+1}^{t} B_{t-k} H_{i} J^{T} A^{k-j-1} J\left(\frac{1}{\sigma^{2}} \sum_{l_{1}, l_{2} \in \mathcal{B}^{(k)}} \epsilon_{l_{1}}^{(j)} \epsilon_{l_{2}}^{(j)} g_{l_{1}} g_{l_{2}}^{T}-G\right) B_{k-j-1} g_{i} \tag{193}
\end{equation*}
$$

which by Proposition 24 is bounded by $O(\lambda)$. Therefore by Lemma 5, with probability at least $1-2 d e^{-\iota}$, the full contribution of Z is $O(\eta \lambda \sqrt{t \iota})=O\left(\sqrt{\eta t} \mathscr{X}^{2}\right)$.

Putting all of these bounds together we get with probability at least $1-10 d e^{-\iota}$,

$$
\begin{aligned}
\left\|r_{t+1}\right\| & =O\left[\sqrt{\eta \mathscr{T}} \mathscr{X}(\sqrt{\mathscr{L}}+\mathscr{X})+\eta \mathscr{T} \mathscr{X}\left(\sqrt{\mathscr{L}}+\mathscr{M}+\mathscr{X}^{2}\right)\right] \\
& =O\left(\frac{\lambda^{1 / 2+\delta / 2} \iota}{\sqrt{c}}\right) \leq \mathscr{D}
\end{aligned}
$$

for sufficiently large c which completes the induction.

H. 1 Momentum Contraction Bounds

Let u_{i}, λ_{i} be the eigenvectors and eigenvalues of G. Consider the basis \bar{U} of $\mathbb{R}^{2 d}$: $\left[u_{1}, 0\right],\left[0, u_{1}\right], \ldots,\left[u_{d}, 0\right],\left[0, u_{d}\right]$. Then in this basis, A, J are block diagonal matrix with 2×2 and 2×1 diagonal blocks:

$$
A_{i}=\left[\begin{array}{cc}
1-\eta \lambda_{i}+\beta & -\beta \\
1 & 0
\end{array}\right] \quad \text { and } \quad J_{i}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

Let the eigenvalues of A_{i} be a_{i}, b_{i} so
$a_{i}=\frac{1}{2}\left(1-\eta \lambda_{i}+\beta+\sqrt{\left(1-\eta \lambda_{i}+\beta\right)^{2}-4 \beta}\right) \quad b_{i}=\frac{1}{2}\left(1-\eta \lambda_{i}+\beta-\sqrt{\left(1-\eta \lambda_{i}+\beta\right)^{2}-4 \beta}\right)$.
Note that these satisfy $a_{i}+b_{i}=1-\eta \lambda_{i}+\beta$ and $a_{i} b_{i}=\beta$.
Proposition 18. If $\eta \in\left(0, \frac{2(1+\beta)}{\ell}\right)$, then $\rho\left(A_{i}\right) \leq 1$. If $\lambda_{i} \neq 0$ then $\rho\left(A_{i}\right)<1$.

Proof. First, if $\left(1-\eta \lambda_{i}+\beta\right)^{2}-4 B \leq 0$ then $\left|a_{i}\right|=\left|b_{i}\right|=\sqrt{\beta}<1$ so we are done. Otherwise, we can assume WLOG that $\eta \lambda_{i}<1+\beta$ because $\rho\left(A_{i}\right)$ remains fixed by the transformation $\eta \lambda_{i} \rightarrow 2(1+\beta)-\eta \lambda_{i}$. Then $a_{i}>b_{i}>0$ so it suffices to show $a_{i}<1$. Let $x=1-\eta \lambda_{i}+\beta$. Then,

$$
\frac{x+\sqrt{x^{2}-4 \beta}}{2}<1 \Longleftrightarrow \sqrt{x^{2}-4 \beta}<2-x \Longleftrightarrow x<1+\beta
$$

and similarly for \leq in place of $<$ so we are done.
Proposition 19. Let $s_{k}=\sum_{j<k} a_{i}^{k-j-1} b_{i}^{j}$. Then,

$$
A_{i}^{k}=\left[\begin{array}{cc}
s_{k+1} & -\beta s_{k} \\
s_{k} & -\beta s_{k-1}
\end{array}\right]
$$

Proof. We proceed by induction on k. The base case is clear as $s_{2}=a_{i}+b_{i}=1-\eta \lambda_{i}+\beta, s_{1}=1$, and $s_{0}=0$. Now assume the result for some $k \geq 0$. Then,

$$
A_{i}^{k+1}=\left[\begin{array}{cc}
s_{k+1} & -\beta s_{k} \\
s_{k} & -\beta s_{k-1}
\end{array}\right]\left[\begin{array}{cc}
a_{i}+b_{i} & -\beta \\
1 & 0
\end{array}\right]=\left[\begin{array}{cc}
s_{k+1} & -\beta s_{k} \\
s_{k} & -\beta s_{k-1}
\end{array}\right]
$$

because $\left(a_{i}+b_{i}\right) s_{k}-\beta s_{k-1}=\left(a_{i}+b_{i}\right) s_{k}-a_{i} b_{i} s_{k-1}=s_{k+1}$.
Proposition 20.

$$
\left|J_{i}^{T} A_{i}^{k} J_{i}\right| \leq \frac{1}{1-\beta}
$$

Proof. From the above proposition,

$$
\left|J_{i}^{T} A_{i}^{k} J_{i}\right| \leq \sup _{k}\left|s_{k+1}\right| .
$$

Then for any k,

$$
\left|s_{k+1}\right|=\left|\sum_{j \leq k} a_{i}^{k-j} b_{i}^{j}\right| \leq \sum_{j \leq k}\left|a_{i}\right|^{k-j}\left|b_{i}\right|^{j} \leq \sum_{j \leq k}\left|a_{i}\right|^{j}\left|b_{i}\right|^{j}=\sum_{j \leq k} \beta^{j} \leq \frac{1}{1-\beta}
$$

where the second inequality follows from the rearrangement inequality as $\left\{\left|a_{i}\right|^{k-j}\right\}_{j}$ is an increasing sequence and $\left\{\left|b_{i}\right|^{j}\right\}_{j}$ is a decreasing sequence.

Corollary 3.

$$
\left\|B_{k}\right\|_{2} \leq \frac{1}{1-\beta}
$$

Proposition 21.

$$
\sum_{j=0}^{\infty} B_{j} G B_{j}^{T}=\frac{1}{\eta(1-\beta)} \Pi_{G}\left(2-\frac{\eta}{(1+\beta)} G\right)^{-1}
$$

Proof. Consider $\sum_{j=0}^{\infty} A^{j} J G J^{T}\left(A^{T}\right)^{j}$. We will rewrite this expression in the basis \bar{U}. Then the i th diagonal block will be equal to

$$
\lambda_{i} \sum_{j=0}^{\infty} A_{i}^{j} J_{i} \lambda_{i} J_{i}^{T}\left(A_{i}^{T}\right)^{j}=\lambda_{i} \sum_{j=0}^{\infty}\left[\begin{array}{cc}
s_{j+1}^{2} & s_{j} s_{j+1} \\
s_{j} s_{j+1} & s_{j}^{2}
\end{array}\right] .
$$

If $\lambda_{i}=0$ then this term is 0 . Otherwise, we know that $\left|a_{i}\right|,\left|b_{i}\right|<1$ so this infinite sum converges to some matrix $S=\left[\begin{array}{ll}s_{11} & s_{12} \\ s_{21} & s_{22}\end{array}\right]$. Then plugging this into the fixed point equation gives

$$
S_{i}=A_{i} S_{i} A_{i}^{T}+J_{i} \lambda_{i} J_{i}^{T}
$$

and solving this system entry wise for $s_{11}, s_{12}, s_{21}, s_{22}$ gives

$$
S_{i}=\frac{1}{\eta(1-\beta)}\left[\begin{array}{cc}
\frac{1}{2-\frac{\eta}{1+\beta} \lambda_{i}} & \frac{1+\beta-\eta \lambda_{i}}{2(1+\beta)-\eta \lambda_{i}} \\
\frac{1+\beta-\eta \lambda_{i}}{2(1+\beta)-\eta \lambda_{i}} & \frac{1}{2-\frac{\eta}{1+\beta} \lambda_{i}} .
\end{array}\right]
$$

Converting back to the original basis gives the desired result.

Proposition 22.

$$
\begin{equation*}
\sum_{k<\tau}\left\|A^{k} J g_{i}\right\|=O\left(\sqrt{\frac{\tau}{\eta}}\right) \tag{194}
\end{equation*}
$$

Proof. By Cauchy we have that

$$
\begin{align*}
\left(\sum_{k<\tau}\left\|A^{k} J g_{i}\right\|\right)^{2} & \leq \tau \sum_{k<\tau}\left\|A^{k} J g_{i}\right\|^{2} \tag{195}\\
& \leq \tau \sum_{k<\tau} \operatorname{tr}\left[A^{k} J G J^{T}\left(A^{k}\right)^{T}\right] \tag{196}\\
& \leq O\left(\frac{\tau}{\eta}\right) \tag{197}
\end{align*}
$$

by Proposition 21 .
Proposition 23.

$$
\sum_{k<\tau}\left\|A^{k} J g_{i_{k}}\right\|^{2}=O\left(\frac{1}{\eta}\right)
$$

Proof.

$$
\sum_{k<\tau}\left\|A^{k} J g_{i}\right\|^{2} \leq \tau \sum_{k<\tau} \operatorname{tr}\left[A^{k} J G J^{T}\left(A^{k}\right)^{T}\right] \leq O\left(\sqrt{\frac{1}{\eta}}\right)
$$

Proposition 24.

$$
\sum_{k<\tau}\left\|A^{k} J g_{i_{k}}\right\|\left\|A^{k} J g_{j_{k}}\right\|=O\left(\frac{1}{\eta}\right)
$$

Proof.

$$
\left(\sum_{k<\tau}\left\|A^{k} J g_{i_{k}}\right\|\left\|A^{k} J g_{j_{k}}\right\|\right)^{2} \leq\left(\sum_{k \leq \tau}\left\|A^{k} J g_{i_{k}}\right\|^{2}\right)\left(\sum_{k \leq \tau}\left\|A^{k} J g_{j_{k}}\right\|^{2}\right)=O\left(1 / \eta^{2}\right)
$$

by Proposition 23 .

[^0]: ${ }^{4}$ This identity directly follows from multiplying both sides by $2-\eta G$ and the fact that all of these matrices commute.

