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Abstract

Most prior methods for learning navigation policies require access to simulation
environments, as they need online policy interaction and rely on ground-truth maps
for rewards. However, building simulators is expensive (requires manual effort for
each and every scene) and creates challenges in transferring learned policies to
robotic platforms in the real-world, due to the sim-to-real domain gap. In this paper,
we pose a simple question: Do we really need active interaction, ground-truth maps
or even reinforcement-learning (RL) in order to solve the image-goal navigation
task? We propose a self-supervised approach to learn to navigate from only passive
videos of roaming. Our approach, No RL, No Simulator (NRNS), is simple and
scalable, yet highly effective. NRNS outperforms RL-based formulations by a
significant margin. We present NRNS as a strong baseline for any future image-
based navigation tasks that use RL or Simulation.

1 Introduction

In recent years, we have seen significant advances in learning-based approaches for indoor naviga-
tion [1, 2]. Impressive performance gains have been obtained for a range of tasks, from non-semantic
point-goal navigation [3] to semantic tasks such as image-goal [4] and object-goal navigation [5, 6],
via methods that use reinforcement learning (RL). The effectiveness of RL for these tasks can be
attributed in part to the emergence of powerful new simulators such as Habitat [7], Matterport [8]
and AI2Thor [9]. These simulators have helped scale learning to billions of frames by providing
large-scale active interaction data and ground-truth maps for designing reward functions. But do we
actually need simulation and RL to learn to navigate? Is there an alternative way to formulate the
navigation problem, such that no ground-truth maps or active interaction are required? These are
valuable questions to explore because learning navigation in simulation constrains the approach to a
limited set of environments, since the creation of 3D assets remains costly and time-consuming.

In this paper, we propose a self-supervised approach to learning how to navigate from passive
egocentric videos. Our novel method is simple and scalable (no simulator required for training), and
at the same time highly effective, as it outperforms RL-based formulations by a significant margin.
To introduce our approach, let us first examine the role of RL and simulation in standard navigation
learning methods. In the standard RL formulation, an agent gets a reward upon reaching the goal,
followed by a credit assignment stage to determine the most useful state-action pairs. But do we
actually need the reinforce function for action credit assignment? Going a step further, do we even
need to learn a policy explicitly? In navigation, we argue that the state space itself is highly structured
via a distance function, and the structure itself could be leveraged for credit assignment. Simply put,
states that help reduce the distance to the goal are better – and therefore predicted distance can be

∗Correspondence: meerahahn@gatech.edu

35th Conference on Neural Information Processing Systems (NeurIPS 2021).



 

Figure 1: Left: Using passive videos we learn to predict distances for navigation. Our distance
function learns the priors of the layouts of indoor buildings to estimate distances to goal location.
Right: Image-Goal Navigation Task [10]. Our model uses distance function to predict distances of
unexplored nodes and uses greedy policy to choose the shortest-distance node.

used either as the value function or as a proxy for it. In fact, RL formulations frequently use ‘distance
reduced to goal’ in reward shaping. The key property of our approach is that we learn a generalizable
distance estimator directly from passive videos, and as a result we do not require any interaction.
We demonstrate that an effective distance estimator can be learned directly from visual trajectories,
without the need for an RL policy to map visual observations to the action space, thereby obviating
the need for extensive interaction in a simulator and hand-designed rewards. However passive videos
do not provide learning opportunities for obstacle avoidance since they rarely, if ever, consist of
cameras bumping into walls. We forgo the need for active interaction to reason about collisions as we
show that obstacle avoidance is only required locally and simple depth maps are sufficient to prune
invalid actions and locations for navigation. More broadly, our approach can be considered as closely
related to model-based control, which is an alternative paradigm to RL-based policy learning, with
the key insight that components of the model and cost functions can be learned from passive data.

No RL, No Simulator Approach (NRNS): Our NRNS algorithm can be described as follows.
During training we learn two functions from passive videos: (a) a geodesic distance estimator: given
the state features and goal image, this function predicts the geodesic distance of the unexplored
frontiers of the graph to the goal location. This enables a greedy policy in which we select the node
with the least distance; (b) a target prediction model: Given the goal image and the image from the
agent’s current location, this function predicts if the goal is within sight and can be reached without
collisions, along with the exact location of the goal. The key is that both the distance model and the
target prediction model can be learned from passive RGBD videos, with SLAM used to estimate
relative poses. We believe our simple NRNS approach should act as a strong baseline for any future
approaches that use RL and simulation. We show that NRNS outperforms end-to-end RL, even when
RL is trained using 5x more data and 10x more compute. Furthermore, unlike RL methods which
need to be trained in simulation because they require substantial numbers of interactions, NRNS can
be trained directly on real-world videos alone, and therefore does not suffer from the sim-to-real gap.

2 Related Work
Navigation in simulators. Navigation tasks largely fall into two main categories [1], ones in which
a goal location is known [11, 12, 13] and limited exploration is required, and ones in which the
goal location is not known and efficient exploration is necessary. In the second category, tasks
range from finding the location of specific objects [5], rooms [14], or images [15], to the task of
exploration itself [2]. The majority of current work [12, 15, 16, 3] leverages simulators [7] and
extensive interaction to learn end-to-end models for these tasks. In contrast, our work shows that
the semantic cues needed for exploration-based navigation tasks can be learned directly from video
trajectories.

Navigation using passive data. Several prior works have tackled the navigation task when there is
some passive experience available in the test environment [17, 18, 19, 20, 21, 22]. A more limited
number of works train navigation policies without simulation environments [19, 22, 23]. Unlike
these works, we tackle the task of image goal navigation in unseen environments where there is
no experience available to the agent in the test environments during training [19, 22] and no map
knowledge is given about the environments [23]. Two works adopting similar requirements are
Chaplot et al. [4] and Chang et al. [24]. Most closely related is Neural Topological SLAM (NTS) [4],
which builds a topological map and estimates distance to the target image using a learned function.
But NTS requires access to panoramic observations and ground-truth maps for training the distance
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function, making it much less scalable than our approach which can be trained with just video data
with arbitrary field of view. Chang et al. [24] adopt a similar approach to NTS for object goal
navigation, while also incorporating video data from YouTube for learning a Q function. A key
difference is that our method learns a episodic distance function, utilizing all past observations to
estimate distances to the target image. In comparison, Chaplot et al. [4] and Chang et al. [24] use a
memory-less distance function operating only on the agent’s current observation.

Prior work work on LfD [25, 26, 27] requires: (a) access to actions (e.g. teleoperated in simulator);
and (b) optimal human demonstrations. The goal in LfD is to learn policies that match given
demonstrations by either mimicking the actions or formulating rewards using the demonstrations. In
contrast, NRNS does neither, since our passive training data does always contain optimal navigation
trajectories and NRNS does not compute any rewards as it does not require RL or credit assignment.
We make the same distinction between our work and offline RL [28, 29, 30], which does not utilize
online data gathering but still learns a policy using rewards from observed trajectories. In contrast,
we do not use any rewards or learn a policy. Instead, our approach aims to learn a distance-to-goal
model and uses a greedy policy based on the distance predictions. From this perspective, NRNS is
performing model-based learning.

Map-Based Navigation. There are multiple spatial representations which can be leveraged in solving
navigation tasks. Metric maps, which maintain precise information on the occupied space in an
environment, are commonly used for visual navigation [2, 10, 6]. However, metric maps suffer from
issues of scalability and consistency under sensor noise. As a result, topological maps have recently
gained traction [4, 21, 18, 24, 31] as a means to combat these issues. A significant difference from
our approach is that in these prior works a topological map is given at the beginning of the navigation
task, and is not created or changed during navigation. Specifically, Savinov et al. [18] create the
map from a given 5 minute video of the test environment and Chen et al. [21] assume access to
a ground truth map. In our image-goal navigation set up, the agent is given no information about
the test environment. Chaplot et al. [4] do not require experience in the test environment and build
topological maps at test time, but still requires access to a simulator for computing shortest-path
distances between pairs of images. Additionally, topological maps for robotic navigation draw
inspiration from both animal and human psychology. The cognitive map hypothesis proposes that the
brain builds coarse internal spatial representations of environments [32, 33]. Multiple works argue
that this internal representation relies on landmarks [34, 35], making human cognitive maps more
similar to topological maps as opposed to metric maps.

Graph Neural Networks. Graph Neural Networks (GNN) are specifically used for modeling
relational data in a non-Euclidean space. We employ a GNN for estimating distance-to-goal over the
agent’s exploration frontier. Specifically we employ an augmented Graph Attention Network [36]
which allows for a weighted aggregation of neighboring node information. Graph Networks are
rarely-used for the task of topological map-based visual navigation. Savinov et al. [18] use a GNN
for the sub-task of localizing the agent in a ground truth topological map. We believe we are the first
to leverage graph neural networks in a visual navigation task.

3 Image Goal Navigation using Topological Graphs
We propose No RL, No Simulator “NRNS”, a hierarchical modular approach to image-goal navigation
that consists of: a) high-level modules for maintaining a topological map and using visual and
semantic reasoning to predict sub-goals, and b) heuristic low-level modules that use depth data to
select low level navigation actions to reach sub-goals and determine geometrically-explorable areas.
We first describe NRNS in detail and then show in Sec. 4 that the high-level modules can be trained
without using any simulation, interaction or even ground-truth scans – i.e. that passive video data
alone is sufficient to learn the semantic and visual reasoning models needed for navigation.

3.1 Formulation and Representation

Task Definition. We tackle the task of image-goal navigation, where an agent is placed in a novel
environment, and is tasked with navigating to an (unknown) goal position that is specified using an
image taken from that position, as shown in Fig. 2. More formally, an episode begins with an agent
receiving an RGB observation (IG) corresponding to the goal position. At each time step, t, of the
episode the agent receives a set of observations st, and must take a navigation action at. The agents
state observations, st, are defined as a narrow field of view RGBD image, It, and egocentric pose
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estimate, Pt. The agent must execute navigational actions to reach goal within a maximum number
of steps.

Goal Image IgCurrent Observation It

Path Taken

Explored Node

Unexplored Node

Current Node

Goal Location            
(not given)

Figure 2: Image-Goal navigation task
using a topological graph.

Topological Map Representation. The NRNS agent
maintains a topological map in the form of a graph
G(N,E), defined by nodes N and edges E, which pro-
vides a sparse representation of the environment. Con-
cretely, a node ni ∈ N is associated with a pose pi, de-
fined by location and orientation. Each node ni can either
be ‘explored’ i.e. the agent has previously visited the pose
and obtained a corresponding RGBD image Ii, or ‘unex-
plored’ e.g. unvisited positions at the exploration frontier
which may be visited in the future. Each edge e ∈ E
connects a pair of adjacent nodes ni and nj . Nodes are
deemed adjacent only if a short and ‘simple’ path exists be-
tween the two nodes, as further detailed in Sec. 3.3. Each
edge between adjacent nodes is then associated with the
attribute ∆P – the relative pose between the two nodes.

3.2 Global Policy via Distance Prediction
Given a representation of the environment as a topological
graph, our global policy is tasked with identifying the next ‘unexplored’ node that the agent should
visit, and the low-level policy (GLP ) is then responsible for executing the precise actions. Intuitively,
we want our agent to select as the next node the one that minimizes the total distance to goal. The
global policy’s inference task can thus be reduced to predicting distances from nodes in our graph
to the goal location. To this end, our approach leverages a distance prediction network (GD) which
operates on top of G(N,E) to predict distance-to-goal for each unexplored node nue ∈ G. Our
global policy then simply selects the node with least total distance to goal which is defined as:
distance to the unexplored node from the agent’s current position, plus the predicted distance from
the unexplored node to the goal.

The input to the distance prediction network GD is the current topological graph G(N,E)t and IG.
While the explored nodes have an image associated with them, the unexplored nodes naturally do not.
To allow prediction in this setup, we use a Graph Convolutional Network (GCN) architecture to first
induce visual features for nue ∈ G, and then predict the distance to goal using an MLP.

As illustrated in Fig. 3, the network first encodes the RGB images at each explored node (ni) using
a ResNet18 [37] to obtain feature vector hi ∈ R512. Each edge ei,j is further represented by a
feature vector ui,j, which is the flattened pose transformation matrix (iKj ∈ R4×4). The adjacency
matrix At, ui,j, and hi are passed through a GCN comprising of two graph attention (GAT) layers
[36] with intermediate nonlinearities. Note that we extend the graph attention layer architecture
to additionally use edge features ui,j when computing attention coefficients. The predicted visual
features for unexplored nodes are then finally used to compute predicted distance-to-goal di from
each node to IG using a simple MLP.

To select the most ‘promising’ nue to explore, the distance from the agent’s current location nt also
needs to be accounted for. For nue, nt ∈ G, the ‘travel cost’ is added to di, calculated using shortest
path on G from nue → nt. Our global policy then selects the unexplored node with the minimum
total distance score as the next sub-goal.

3.3 Local Navigation and Graph Expansion
The NRNS global policy selects the sub-goal that the agent should pursue, and the precise low-level
actions to reach the sub-goal are executed by a heuristic local policy. After the local policy finishes
execution, the NRNS agent updates the graph to include the new observations and expands the graph
with unexplored nodes at the exploration frontier.

Local Policy. The NRNS local policy, denoted as GLP , receives a target position, defined by distance
and angle (ρi, φi) with respect to the agent’s current location. When GD outputs a sub-goal node,
ρi, φi are calculated from the current position and passed to GLP . Low level navigation actions
are selected and executed using a simplistic point navigation model based on the agent’s egocentric
RGBD observations and (noisy) pose estimation. To navigate towards its sub-goal, the agent builds

4



Graph Map G(N,E)

e0,1 = ΔP0,1

n1

n0

n4

n5

n6

n3

Graph 
Encoder

A
U
H 

G
AT Layer

G
AT Layer

M
LP + Sigm

oid

Resnet 18
Goal Image IG

ArgMin
(Distance)

.9

.6
n2

n3

n4

n5

n6

G(N,E)

subgoal

480 X 640

480 X 640

512 X |N|

512 X 1

512 X |N|

16 X E

2 X Ee0,1  e0,2   …          eE

h0    h1    …           hN

u0,1  u0,2   …          uE

.3

.2

.6

.4

.1

.2

.3

Travel Cost

.05

.05

.05

.15

.25

.35
n2

Figure 3: The Global Policy and GD architecture used to model distance-to-goal prediction. GD
employs a Resnet18 encoder, Graph Attention layers, and a multi-layer perceptron with a sigmoid.

and maintains a local metric map using the noisy pose estimator and depth input. This effectively
allows it to reach local goals and avoid obstacles. The local metric maps are discarded upon reaching
the sub-goal, as they are based on a noisy pose estimator. This policy is adapted from [10] and is also
used for Image-Goal Navigation in [4].

Explorable Area Prediction for Graph Expansion. We incorporate a ‘graph expansion’ step
after the agent reaches a sub-goal via GLP and before the agent selects a new sub-goal. First, the
agent updates G(N,E) to record the current location as an explored node and store the associated
RGBD observation. Second, the agent creates additional ‘unexplored’ nodes, nue, adjacent to the
current node, nt based on whether the corresponding directions are deemed ‘explorable’. We use a
explorable area prediction module, GEA, to determine which adjacent areas to the current location are
geometrically explorable. This is untrained, heuristic module takes the egocentric depth image Itdepth
and tests 9 angles in the direction θ from the current position and returns the angles θ that are not
blocked by obstacles within a depth of 3 meters. The NRNS agent tests θ at [0,±15,±30,±45,±60],
these angles are chosen based on the agent’s turn radius of 15° and 120° FOV. For all θ determined to
be explorable, the agent updates G(N,E) by adding an ‘unexplored’ node at position ρ = 1m and
φ = θ relative to the node the agent is at, with a corresponding edge linking the current node to the
new node. If a node already exists in one of the explorable areas at a nearby position, only an edge is
added to G(N,E) and not a new node.

3.4 Putting it Together

Stopping Criterion. The above described modules (GD, GLP , GEA) allow the NRNS agent to
incrementally explore its environment while making progress towards the location of the target image.
To allow the agent to terminate navigating when it is near the goal, we additionally learn a target
prediction network GT that provides a stopping criterion. Given IG and current image It, GT is
simple MLP that predicts: a) a probability βs ∈ [0, 1] indicating whether the goal is within sight, and
if so, b) the relative position (distance, direction) of the goal ρg , φg .

Algorithm. We outline our navigation algorithm in Fig. 4. An example result on the image-goal
navigation task is shown in Fig. 6. Among the modules used, the local policy module GLP and the
explorable area module GEA do not require any learning. As we show in Sec. 4, GD and GT can both
be learned using only passive data.

Algorithm 1: NRNS Image Navigation
// initialize graph
n0 = (Pt=0, It=0); e0 = (n0, n0);
N = (n0);E = (e0);
G = (N,E);
// loop until reached goal or max steps
while steps taken < max steps do

ni+1, ..., ni+k = GEA(It); // determine valid explorable areas
N += ni+1, ..., ni+k;E += et,i+1, ..., et,i+k; // add unexplored nodes & edges
nsg, (ρsg, φsg) = argmin(GD(G, IG) + TravelCost(G,nt)); // select sub-goal
It+1, Pt+1 = GLP (ρsg, φsg); // navigate to sub-goal
nsg = (Pt+1, It+1) // update graph with observations
βs, (ρg, φg) = GT (It+1, IG); // stopping criterion
if βs > .5 then
GLP (ρg, φg); // navigate to target
break;

end
end

5



Graph Map G(N,E)t

Goal RGB IG

Current RGBCurrent Depth

It
Graph Map G(N,E)t+1

Graph 
Update GEA

ΔP

ni

Local Nav 
Policy GLP

Nav 
Action ɑ

Subgoal 
ni, (𝜌, 𝜙)

Global 
Policy GD

Target 
Prediction GT

0         𝜂s 

9.5      𝜌g 

2.1      𝜙g  

Figure 4: The hierarchical modular NRNS approach to the Image-Goal Navigation task, for a single
time step in the episode. The global policy GD selects an unexplored node ni as a sub-goal. The
sub-goal position (ρi, φi) is passed to the local navigation policy GLP which takes in the current
RGBD observations and outputs low level actions until the agent reaches ni. The graph is then
updated with the current observations It+1 and new unexplored nodes and edges generated by GEA.

4 Learning from Passive Data

The learned high-level policies of NRNS are the Distance Network GD and Target Prediction Network
GT . A key contribution of our work is showing that these functions can be learned from passive data
alone. This eliminates the need for online interaction and ground-truth maps, allowing us to train the
NRNS algorithm without using RL or simulation.

Learning Distance Prediction. First, we describe how to learn the function GD. Given a topological
graph (consisting of both explored and unexplored nodes) and a goal image as input, GD predicts
the geodesic distance from all unexplored nodes to the location of the goal image. Our training data
therefore consists of triplets of the form (G, IG, DU ), where G is a topological graph, IG is a goal
image, and DU is the ground-truth distances from a set of unexplored nodes to the goal location (we
use L2-Loss to train the distance function).

We generate training graphs using passive videos in a two-step process. In the first step, we create a
topological graph, GVi , for every video Vi in the passive dataset. Each graph contains both explored
and unexplored nodes. We approximate distance to unexplored nodes using the geodesic distance
along the trajectory. In the second step, we uniformly sample sub-graphs and goal locations over
each video’s topological graph.

Step 1: Video to Topological Graph. First, we generate a step-wise trajectory graph in which each
frame is a node with odometry information. We then process this step-wise graph into a topological
graph using affinity clustering [38]. We use the visual features from each frame concatenated with
odometry information as the feature vector for clustering. Visual features for each frame are extracted
via a Places365 [39] pretrained Resnet18. Each cluster represents a single node in the topological
graphGVi and the stepwise visual features of frames in the cluster are average pooled. The topological
graphs are then expanded to have unexplored nodes, used in training the distance function. These are
created by applying GEA to the RGBD of each node centroid in GVi . Fig. 5 illustrates the process by
which an example video is converted into a topological graph for training data.

Step 2: Sampling training datapoints. Individual data instances are selected via uniform sampling
without replacement. This means selecting a random node in GV as the goal location and a random
sub-graph of GV as the observed trajectory and current location. Distance along the trajectory is
used as the ground truth distance between nodes in the sub-graph and the goal image: these distance
labels are used to train the network GD. Due to non-optimal long term paths of the video trajectories,
distances may overestimate distance to the goal. In other words while each node along the generated
trajectory graphs are legitimate paths to the goal, shorter paths may exist that are not covered in
the training trajectory graph, making this a challenging problem. In total, GD is trained using ∼1k
training instances per scan for both Gibson and MP3D.

Learning Target Direction Prediction The GT prediction network receives a goal image and the
current node image as input, and predicts whether the goal is within sight of the current image. To
gather training instances for GT , we use the RGB frame at a randomly selected node as the goal image.
We make a simplifying assumption that any adjacent pair of nodes (similar features and odometry) in
the topological graph are positive examples and any other pair of nodes are negative examples.
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Figure 5: Example from the passive video dataset. Frames of a video trajectory Vi are shown on the
left. The stepwise trajectory is then turned into a trajectory graph GVi via affinity clustering [38]
of node image and pose features. GVi is adapted to train the Global Policy GD and target direction
prediction GEA. An example of an adapted GVi for training is shown on the left.

5 Experiments
Image-Goal Navigation Task Setup. At the beginning of each episode, the agent is placed in an
unseen environment. The agent receives observations from the current state, a 3 x 1 odometry pose
reading and RGBD image, and the RGB goal image. Observation and goal images are 120°FOV and
of size 480 x 640. An episode is considered a success if the agent is able to reach within 1m of the
goal location and do so within a maximum episode length of 500 steps. Each episode is also evaluated
by the efficiency of the navigational path from start to goal, which is quantitatively measured by
Success weighted by inverse Path Length (SPL) [1]. Note, the narrow field of the agent in this task
definition differs from past works which use panoramic views [4]. The decision to use a narrow field
is based on our method of training only on passive data. Current passive video datasets of indoor
trajectories such as YouTube Tours [24], RealEstate10k [40] and our NRNS passive video dataset, do
not contain panoramas.

Action Space. The agent’s action space contains four actions: forward by .25m, rotate left
by 15°, rotate right by 15°, and stop. In our experiments, we consider two cases for pose
estimation and action transition. In the first condition the agent has access to ground truth pose and the
navigation actions are deterministic. In the second condition, noise is added to the pose estimation and
the actuation of the agent. We utilize the realistic pose and actuation noise models from [10], which
are similarly used in [4]. The actuation noise adds stochastic rotational and translations transitions to
the agent’s navigational actions.

Training Data. Our key contribution is the ability to learn navigation agents from passive data. In
theory, our approach can be trained from any passive data source, and we test this in Sec. 5.2 using
RealEstate10K [40]. However, since RL-based baselines are trained in the Habitat Simulator [7], we
generate our NRNS dataset, of egocentric trajectory videos, using the same Habitat training scenes
to provide direct comparison and isolate domain gap issues. Specifically, the trajectory videos are
created as follows. A set of 2 - 4 points are randomly selected from the environment using uniform
sampling. A video is then generated of the concatenated RGBD frames of the shortest path between
consecutive points. Note that the complete video trajectory (from first source to final target) is not
step-wise optimal. Frames in the videos are of size 480 X 640 and have a FOV 120°and each frame is
associated with a 3 x 1 odometry pose reading. In the noisy setting discussed in Sec. 5, sensor and
actuation noise is injected into training trajectories. We create 19K, 43K video trajectories, containing
1, 2.5 million frames respectively, on the Gibson and MP3D datasets. We then use this data to train
the NRNS modules, as described in Sec. 4.

Test Environments. We evaluate our approach on the task of image-goal navigation. For testing, we
use the Habitat Simulator [7]. We evaluate on the standard test-split for both the Gibson [41] and
Matterport3D (MP3D) [42] datasets. For MP3D, we evaluate on 18 environments and for Gibson, we
evaluate on 14 environments.

Baselines. We consider a number of baselines to contextualize our Image-Goal Navigation results:

– BC w/ ResNet + GRU. Behavioral Cloning (BC) policy where It and IG are encoded using a
pretrained ResNet-18. Both image encodings and the previous action at−1 are passed through a
two layer Gated Recurrent Unit (GRU) with softmax, which outputs the next action at.

– BC w/ ResNet + Metric Map. BC policy: It and IG are encoded with a ResNet, same as the
above policy. This policy keeps a metric map built from the depth images. The metric map is
encoded with a linear layer. The metric map encoding and encodings of It and IG are concatenated
and passed into an MLP with softmax, which outputs the next navigational action at.
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Figure 6: Example of an Image-Goal Navigation episode on MP3D. Shows the agent’s observations
and internal topological graph at different time steps.

– End to End RL with DDPPO. An agent is trained end to end with proximal policy optimiza-
tion [13] in the Habitat Simulator [7] for the image-goal navigation task.

We use and adapt code for baseline algorithms from Chaplot et al. [4]. However, as our setup uses
narrow-view cameras instead of panoramas, these adapted baselines perform worse compared to
their previously reported performance. This difference in setup also makes direct comparison with
[4] infeasible, as they critically rely on panoramic views for localization. The baseline behavioral
cloning policies are also trained only using the passive dataset described in Sec. 4. This makes the
BC baseline policies directly comparable to the NRNS model.

The end-to-end RL policy is trained using a Habitat implementation of DDPPO [13]. For training we
use 8 GPUs and 16 processes per GPU. We first train with 1k episodes per house, which is identical
to how NRNS is trained, and we train for 10M steps. To test the scalability of the RL method, we
additionally train a model using 5k training episodes per environment (providing the RL agent 5x
more data than our NRNS agent) and report the performance of the agent trained on these episodes at
50M steps (5x more compute than NRNS) and 100M steps (10x more compute than NRNS). Training
the GD model takes ∼20 epochs, requiring ∼8 hours on a single GPU. Training the GT model takes
∼10 epochs, requiring ∼4 hours on a single GPU.

Episode Settings. To provide an in-depth understanding of the successes and limitations of our
approach, we sub-divide test episodes into two categories: ‘straight’ and ‘curved’. In ‘straight’
episodes, the ratio of shortest path geodesic-distance to euclidean-distance between the start and
goal locations is < 1.2 and rotational difference between the orientation of the start position and
goal image is < 45°. All other start-goal location pairs are labeled as ‘curved’ episodes. We make
this distinction due to the nature of the narrow field of view of our agent, which strongly affects
performance on curved episodes, since the agent must learn to turn both as part of navigating and part
of seeking new information about the target location. Also, while a greedy policy being successful
on ’straight’ episodes might be expected, a competitive performance on even ’curved’ episodes
will highlight how effective our simple model and policy is. We further subdivide each of these 2
categories into 3 sub-categories of difficulty: ‘easy’, ‘medium’ and ‘hard’. Difficulty is determined
by the length of the shortest path between the start and goal locations. Following [4], the ‘easy’,
‘medium’ and ‘hard’ settings are (1.5 − 3m), (3 − 5m), and (5 − 10m) respectively. To generate
test episodes we uniformly sample the test scene for start-goal location pairs, to create approximately
1000 episodes per setting.

5.1 Results
Tables 1, 2 show the performance of our NRNS model and relevant baselines on the test splits of the
Gibson and Matterport datasets. In 6, we visualize an episode of the NRNS agent as it navigates to
the goal-image.
NRNS outperforms baselines. Our NRNS algorithm outperforms the BC and end to end RL policies
in terms of Success and SPL @ 1m on both datasets. NRNS improves upon the best offline baseline,
a Behavioral Cloning (BC) policy with a ResNet and GRU, across splits of Gibson by an absolute
20+% on Straight episodes and 10+% on Curved episodes. We find that a BC policy using a GRU
for memory outperforms using only a metric map. We attribute this to a spatial memory (metric
map) being less informative for agent exploration than a memory of the visual features and previous
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steps (GRU). We observe that an end-to-end RL policy trained for 10M steps with 10k epsiodes per
house, in simulation performs much weaker than all baselines. With increased data and steps RL
baselines unsurprisingly increase in performance, however we find with 5X more data and 10x more
compute RL baselines still are outperformed by NRNS. The low performance of behavioral cloning
and RL methods for image-goal navigation is unsurprising [4, 15]. This demonstrates the difficulty
of learning rewards on low level actions instead of value learning on possible exploration directions,
exacerbating the difficulty of exploration in image-goal navigation. Adding to the challenges of
the task, all policies must learn the stop action. Previous works [4] have found that adding oracle
stopping, to a target-driven RL agent, leads to large gains in performance on image-goal navigation.
The limitations of all approaches are seen on the ‘hard’ and ‘curved’ episode settings, showing the
overall difficulty of the exploration problem and the challenge of using a narrow field of view.

NRNS is robust to noise. Even with the injection of sensor and actuation noise [10], in both the
passive training data and test episodes, NRNS maintains superior or near comparable performance
to all baselines. In fact, we find that the addition of noise leads to only an absolute drop in success
between .8-8% on Gibson [41] and 1-5% on MP3D [42]. An interesting observation is small increase
in performance (w/noise) for the hard-case. We believe this is because gt-distance for hard cases are
more error prone and noise during training provides regularization.

Table 1: Comparison of our model (NRNS) with baselines on Image-Goal Navigation on Gibson[41].
We report average Success and Success weighted by inverse Path Length (SPL) @ 1m. Noise refers
to injection of sensor & actuation noise into the train videos and test episodes. * denotes using simulator.

Easy Medium Hard
Path Type Model Succ ↑ SPL ↑ Succ ↑ SPL ↑ Succ ↑ SPL ↑

Straight

RL (10M steps) * [13] 10.50 6.70 18.10 16.17 11.79 10.85
RL (extra data + 50M steps)* [13] 36.30 34.93 35.70 33.98 5.94 6.33
RL (extra data + 100M steps)* [13] 43.20 38.54 36.40 34.89 7.44 7.20
BC w/ ResNet + Metric Map 24.80 23.94 11.50 11.28 1.36 1.26
BC w/ ResNet + GRU 34.90 33.43 17.60 17.05 6.08 5.93
NRNS w/ noise 64.10 55.43 47.90 39.54 25.19 18.09
NRNS w/out noise 68.00 61.62 49.10 44.56 23.82 18.28

Curved

RL (10M steps)* [13] 7.90 3.27 9.50 7.11 5.50 4.72
RL (extra data + 50M steps)* [13] 18.10 15.42 16.30 14.46 2.60 2.23
RL (extra data + 100M steps)* [13] 22.20 16.51 20.70 18.52 4.20 3.71
BC w/ ResNet + Metric Map 3.10 2.53 0.80 0.71 0.20 0.16
BC w/ ResNet + GRU 3.60 2.86 1.10 0.91 0.50 0.36
NRNS w/ noise 27.30 10.55 23.10 10.35 10.50 5.61
NRNS w/out noise 35.50 18.38 23.90 12.08 12.50 6.84

Table 2: Comparison of our model (NRNS) with baselines on Image-Goal Navigation on MP3D[42].

Easy Medium Hard
Path Type Model Succ ↑ SPL ↑ Succ ↑ SPL ↑ Succ ↑ SPL ↑

Straight

RL (10M steps)* [13] 7.50 4.00 3.50 1.73 1.00 0.55
RL (extra data + 50M steps)* [13] 34.50 30.08 35.70 33.80 10.40 10.07
RL (extra data + 100M steps)* [13] 36.40 30.84 33.80 31.42 12.00 11.56
BC w/ ResNet + Metric Map 25.80 24.82 11.30 10.65 3.00 2.93
BC w/ ResNet + GRU 30.20 29.57 12.70 12.48 4.40 4.34
NRNS w/ noise 63.80 53.12 36.20 26.92 24.10 16.93
NRNS w/out noise 64.70 58.23 39.70 32.74 22.30 17.33

Curved

RL (10M steps)* [13] 4.90 1.78 3.20 1.37 1.10 0.46
RL (extra data + 50M steps)* [13] 15.70 11.34 10.70 9.03 3.90 3.57
RL (extra data + 100M steps)* [13] 17.90 13.24 15.00 12.17 5.90 4.87
BC w/ ResNet + Metric Map 4.90 4.23 1.40 1.29 0.40 0.34
BC w/ ResNet + GRU 3.10 2.61 0.80 0.77 0.10 0.02
NRNS w/ noise 21.40 8.19 15.40 6.83 10.0 4.86
NRNS w/out noise 23.70 12.68 16.20 8.34 9.10 5.14
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NRNS Module Ablations. Tab. 3 reports detailed ablations of NRNS on the Gibson dataset (see
appendix for ablation results on MP3D). We ablate the NRNS approach by testing each module
individually. In the ablation experiments, we replace the module output with the ground truth labels
or numbers in order to evaluate the affect of each module on the performance of the overall approach.
For simplicity, all ablations are trained and tested without sensor or actuation noise. Unsurprisingly,
we find that the Global Policy, GD, has a large affect on performance (Row 4 and 8). We find that the
largest affects are seen in the ‘hard’ and ‘curved’ test episodes. This is unsurprising because as the
distance to the goal increases, the path increases in complexity and the search space of GD increases.

Table 3: Ablations of NRNS with baselines on Image-Goal Navigation on Gibson [41]. We report
average Success and Success weighted by inverse Path Length (SPL) @ 1m. 7 denotes a module
being replaced by the ground truth labels and a 3 denotes the NRNS module being used.

NRNS Ablation Easy Medium Hard
Path Type GEA GT GD Succ ↑ SPL ↑ Succ ↑ SPL ↑ Succ ↑ SPL ↑

Straight

7 7 7 100.00 99.75 100.00 99.62 100.00 99.57
3 7 7 99.90 99.05 98.20 95.06 95.91 90.53
3 3 7 79.40 73.48 71.30 67.48 62.16 58.06
3 3 3 68.00 61.62 49.10 44.56 23.45 18.84

Curved

7 7 7 100.00 97.62 100.00 97.47 100.00 98.18
3 7 7 99.70 95.93 97.50 90.14 89.30 79.95
3 3 7 65.00 56.70 58.10 52.51 47.70 42.28
3 3 3 35.50 18.38 23.90 12.08 12.50 6.84

5.2 Training on Passive Videos in the Wild
Finally, we demonstrate that our model can be learned from passive videos in the wild. Towards this
end, we train our NRNS model using the RealEstate10K dataset [40] which contains YouTube videos
of real estate tours. This dataset has 80K clips with poses estimated via SLAM. Note that the average
trajectory length is smaller than test time trajectories in Gibson or MP3D, and we therefore only
evaluate on ‘easy’ and ‘medium’ settings. Tab. 4 shows the performance. Note there is a drop in
performance compared to training using Gibson videos, which we attribute to domain shift. Even
after this drop, our approach, trained on real-world passive videos, outperforms BC baselines and
performs competitively against RL baselines. RL baselines have an advantage as they are both trained
in the simulator and trained on the Gibson dataset. We believe that the delta between RL and the
performance of NRNS trained on RealEstate would close if both were tested on real-world data. We
find these results to be a strong indication of the effectiveness of training on passive data.

Table 4: Comparison of our model (NRNS) trained with different sets of passive video data and tested
on Image-Goal Navigation on Gibson [41]. We report average Success and Success weighted by
inverse Path Length (SPL) @ 1m. Results shown are tested without sensor & actuation noise.

Easy Medium
Path Type Training Data Model Succ ↑ SPL ↑ Succ ↑ SPL ↑

Straight
RealEstate10k [40] NRNS 56.42 48.01 30.30 25.67
MP3D NRNS 59.80 52.35 37.00 31.89
Gibson NRNS 68.00 61.62 49.10 44.56
Gibson BC w/ ResNet + GRU 30.20 29.57 12.70 12.48

Curved
RealEstate10k [40] NRNS 21.10 15.76 12.90 5.57
MP3D NRNS 28.26 13.59 11.00 5.10
Gibson NRNS 35.50 18.38 23.90 12.08
Gibson BC w/ ResNet + GRU 3.10 2.61 0.80 0.77

6 Conclusion
We have presented a simple yet effective approach for learning navigation policies from passive
videos. While simulators have become fast, the diversity and scalability of environments still remains
a challenge. Our presented approach, NRNS, neither requires access to ground-truth maps nor
online policy interaction and hence forgoes the need for a simulator to learn policy functions. We
demonstrate that NRNS can outperform RL and behavioral cloning policies by significant margins.
We show that NRNS can be trained on passive videos in the wild and still outperform all baselines.
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