
A Mathematical Details

A.1 Difference between the performance of two joint policies

In Section 3.1, the difference between the performance of two joint policies is expressed as follows:

J(π̃)− J(π) = Ea∼π̃,s∼ρπ̃ [Aπ(s,a)] , (11)

where ρπ̃ is the unnormalized discounted visitation frequencies, i.e.
∑∞
t=0 γ

t
∑
s Pr(st = s|π̃). The

proof is a multi-agent version of the proof in (Kakade and Langford, 2002). Now we provide the
mathematical detail formally.

Proof.

J(π̃)− J(π) = Eπ̃

[∞∑
t=0

γtRt+1 − V π(s0)

]
(12)

= Eπ̃ [R1 + γV π(s1)− V π(s0) + γ[R2 + γV π(s2)− V π(s1)] + · · ·] (13)

= Eπ̃

[∞∑
t=0

γtAπ(st,a)

]
(14)

=

∞∑
t=0

γt
∑
s

Pr(st = s|π̃)
∑
a

π̃(a|s) [Qπ(s,a)− V π(s)] (15)

= Ea∼π̃,s∼ρπ̃ [Aπ(s,a)] (16)

A.2 Approximation that matches the true value to first order

In Section 3.1, we claim that J̃π(π̃) matches J(π̃) to first order. Intuitively, this means that a
sufficiently small update of the joint policy which improves J̃π(π̃) will also improve J(π̃). Now we
prove it formally.

Proof. We represent the policy using its parameter, i.e. θ for π and θ̃ for π̃. Because J̃π(π) = J(π),
there are J̃θ(θ) = J(θ). Furthermore, we have:

∇θ̃J̃θ(θ̃)
∣∣
θ

= ∇θ̃ (J(θ) + Ea∼π̃,s∼ρπ [Aπ(s,a)]) (17)

=
∑
t

γt
∑
s

Pr(st = s|π)
∑
a

∇θ̃π̃(a|s)
∣∣
θ
Aπ(s,a) (18)

= ∇θ̃J(π̃)
∣∣
θ
, (19)

where the last step is indicated by Theorem 1 in (Sutton et al., 2000).

A.3 Upper bound for the error of joint policy approximation

Theorem. Let ε = maxs,a |Aπ(s,a)| , αi =
√

1
2D

max
TV [πi||π̃i], 1 ≤ i ≤ N , and N be the total

number of agents, then the error of the approximation in Eq. 4 can be explicitly bounded as follows:

∣∣∣J(π̃)− J̃π(π̃)
∣∣∣ ≤ 4ε

[
1− γ

∏N
i=1(1− αi)

1− γ
− 1

]
. (20)

Proof. We first prove that for a fixed s, the following inequality holds:

|Ea∼π̃ [Aπ(s,a)]| ≤ 2ε

[
1−

N∏
i=1

(1− αi)

]
. (21)

13

Note that

Ea∼π[Aπ(s,a)] = π(a|s) [Q(s,a)− V (s)] (22)
= V (s)− V (s) (23)
= 0. (24)

Therefore,

Eã∼π̃[Aπ(s, ã)] = E(a,ã)∼(π,π̃)[A
π(s, ã)−Aπ(s,a)] (25)

= Pr(a 6= ã) · E(a,ã)∼(π,π̃)[A
π(s, ã)−Aπ(s,a)] (26)

=

[
1−

N∏
i=1

(
1− Pr

(
ai 6= ã−i

))]
E(a,ã)∼(π,π̃)[A

π(s, ã)−Aπ(s,a)] (27)

≤

[
1−

N∏
i=1

(1− ηi)

]
E(a,ã)∼(π,π̃)[A

π(s, ã)−Aπ(s,a)] (28)

≤

[
1−

N∏
i=1

(1− ηi)

]
· 2 max

s,a
|Aπ(s,a)| (29)

= 2ε

[
1−

N∏
i=1

(1− ηi)

]
, (30)

where ηi = maxτ i Pr(ai 6= ãi|τ i), and (π, π̃) represents {(π1, π̃1), . . . , (πN , π̃N)}, (πi, π̃i) is an
αi-coupled policy pair for i = 1, 2, . . . , N . The definition of αi-coupled policy pair in (Schulman
et al., 2015a) implies that (πi, π̃i) is a joint distribution p(ai, ãi|τ i) satisfying Pr(ai 6= ãi|τ i) ≤ αi.
From Proposition 4.7 in (Levin and Peres, 2017), if we have two distributions pX , pY that satisfy
DTV (pX‖pY) = α, then there exists a joint distribution P (X,Y) whose marginals are pX , pY , such
that:

Pr(X = Y) = 1− α (31)

Furthermore, note that there is a relationship between the total variation divergence and
the KL divergence (Pollard, 2000): DTV (p‖q)2 ≤ 1

2DKL(p‖q). Now let αi =

maxτ i

√
1
2DKL [πi(·|τ i)‖π̃i(·|τ i)], then there exists a joint distribution (πi, π̃i) whose marginals

are πi, π̃i, satisfying:
Pr(ai = ãi|τ i) ≥ 1− αi. (32)

Thus ηi ≤ αi. Since ηi, αi ≤ 1,
[
1−

∏N
i=1(1− ηi)

]
will increase as ηi increases. Then Eq. (21)

can be derived by replacing ηi with αi in Eq. (30).

For simplification, we denote Eã∼π̃[Aπ(s, ã)] as Āπ̃,π(s) and use nt to represent the times a 6= ã
before timestep t. Then there is:∣∣Est∼ρπ̃ [Āπ̃,π(st)]− Est∼ρπ [Āπ̃,π(st)]

∣∣ (33)

= Pr(nt > 0) ·
∣∣Est∼ρπ̃ [Āπ̃,π(st)]− Est∼ρπ [Āπ̃,π(st)]

∣∣ (34)

= (1− Pr(nt = 0)) ·
∣∣Est∼ρπ̃|nt>0[Āπ̃,π(st)]− Est∼ρπ|nt>0[Āπ̃,π(st)]

∣∣ (35)

=

(
1−

t∏
t′=0

N∏
i=1

Pr(ait = ãit|τ i)

)
· | · · · | (36)

≤

(
1−

N∏
i=1

(1− αi)t
)
· |· · · | (37)

≤

(
1−

N∏
i=1

(1− αi)t
)
· 2 max

s

∣∣Āπ̃,π(s)
∣∣ , (38)

14

where | · · · | denotes
∣∣Est∼ρπ̃|nt>0[Āπ̃,π(st)]− Est∼ρπ|nt>0[Āπ̃,π(st)]

∣∣ for brevity. Then, the fol-
lowing can be derived using Eq. (21):∣∣Est∼ρπ̃ [Āπ̃,π(st)]− Est∼ρπ [Āπ̃,π(st)]

∣∣ (39)

≤ 2

(
1−

N∏
i=1

(1− αi)t
)[

1−
N∏
i=1

(1− αi)

]
max
s,a
|Aπ(s,a)| (40)

≤ 4ε

[
1−

N∏
i=1

(1− αi)

][
1−

N∏
i=1

(1− αi)t
]
, (41)

Finally we reach our conclusion:

|J(π̃)− Lπ(π̃)| =
∣∣Ea∼π̃,s∼ρπ̃ [Aπ(s,a)]− Ea∼π̃,s∼ρπ [Aπ(s,a)]

∣∣ (42)

=

∣∣∣∣∣∑
s

∞∑
t=0

γtPr(st = s|π̃)
∑
a

π̃(a|s)Aπ(s,a)−

∑
s

∞∑
t=0

γtPr(st = s|π)
∑
a

π̃(a|s)Aπ(s,a)

∣∣∣∣∣ (43)

≤
∞∑
t=0

γt
∣∣Est∼ρπ̃ [Āπ̃,π(st)]− Est∼ρπ [Āπ̃,π(st)]

∣∣ (44)

≤
∞∑
t=0

γt · 4ε

[
1−

N∏
i=1

(1− αi)

][
1−

N∏
i=1

(1− αi)t
]

(45)

= 4ε

[
1−

N∏
i=1

(1− αi)

][
1

1− γ
− 1

1− γ
∏N
i=1(1− αi)

]
(46)

≤ 4ε

[
1− γ

∏N
i=1(1− αi)

1− γ
− 1

]
. (47)

A.4 Transformation from the joint objective into the local objectives

In Section 3.2, the joint objective is derived as:

maximize
θ1,...,θN

Ea∼πold

min

 N∏
j=1

rj

Aπ, clip

 N∏
j=1

rj

 , 1− ε, 1 + ε

Aπ

 , (48)

where θj is the parameter of agent j’s policy, and rj =
πj(aj |τj ;θj)

πj
old(aj |τj ;θjold)

. After a linear decomposition

on Aπ with non-negative weights (i.e. Aπ =
∑
j c
jAj), the objective above then can be transformed

into:

maximize
θ1,...,θN

Ea∼πold

min

∏
j 6=i

rj

 riAi, clip

∏
j 6=i

rj

 ri, 1− ε, 1 + ε

Ai

 , (49)

where i = 1, . . . , N . Now we provide a detailed proof.

Proof. If

min

 N∏
j=1

rj

Aπ, clip

 N∏
j=1

rj

 , 1− ε, 1 + ε

Aπ

 = clip

 N∏
j=1

rj

 , 1− ε, 1 + ε

Aπ,

(50)

15

then the objective is actually (1 − ε)Aπ or (1 + ε)Aπ, and no gradient will be backpropagated as
none of θ1, . . . , θN is in the objective. Furthermore, there is

min

 N∏
j=1

rj

Aπ, clip

 N∏
j=1

rj

 , 1− ε, 1 + ε

Aπ

 (51)

= min

∑
i

ci

 N∏
j=1

rj

Ai,
∑
i

ciclip

 N∏
j=1

rj

 , 1− ε, 1 + ε

Ai

 . (52)

Thus, the discussion can be simplified to the case where

min

 N∏
j=1

rj

Aπ, clip

 N∏
j=1

rj

 , 1− ε, 1 + ε

Aπ

 =

 N∏
j=1

rj

Aπ. (53)

While
∂(

∏N
j=1 r

j)Aπ

∂(
∏N

j=1 r
j)Ai

= ci and ci ≥ 0, there is

max
θ1,...,θN

 N∏
j=1

rj

Aπ = max
θ1,...,θN

∑
i

ci

 N∏
j=1

rj

Ai (54)

=
∑
i

ci max
θ1,...,θN

 N∏
j=1

rj

Ai (55)

Therefore, the transformation from Eq. (48) to Eq. (49) is proved.

A.5 The potential high variance of probability ratio product

Section 3.2 mentions that there exists a risk of high variance in estimating the policy gradient when
optimizing Eq. (7), due to the following proposition:

Proposition. Assuming that the agents are fully independent during execution, then the following
inequality holds:

Vara−i∼π−i
old

∏
j 6=i

rj

 ≥∏
j 6=i

Varaj∼πj
old

[
rj
]
, (56)

where rj = πj(aj |τj ;θj)

πj
old(a

j |τj ;θjold)
.

Because the agents execute the actions based only on locally observable information, it is reasonable
to assume that πi and πj is independent when i 6= j. Now we present a detailed proof for this
proposition.

Proof. Because the agents are fully independent during execution, there is a decomposition that
π−i(a−i|τ−i) =

∏
j 6=i π

j(aj |τ j).

Now we use mathematical induction to prove the fact. First, we assume that there are 3 agents, and
let i = 3 without loss in generality. Then there is:

Vara1,a2 [r1r2] = Ea1,a2
[
(r1r2)

2
]
−
(
Ea1,a2 [r1r2]

)2
(57)

= Ea1
[
r21
]
Ea2

[
r22
]
− (Ea1 [r1]Ea2 [r2])

2
. (58)

16

Hence, there is:

Vara1,a2 [r1r2]−Vara1 [r1] Vara2 [r2] (59)

=Ea1
[
r21
]
Ea2

[
r22
]
− (Ea1 [r1]Ea2 [r2])

2−[
Ea1

[
r21
]
− (Ea1 [r1])

2
] [

Ea2
[
r22
]
− (Ea2 [r2])

2
]

(60)

= (Ea1 [r1])
2 Ea2

[
r22
]

+ (Ea2 [r2])
2 Ea1

[
r21
]
− 2 (Ea1 [r1]Ea2 [r2])

2 (61)

= (Ea1 [r1])
2 Vara2 [r2] + (Ea2 [r2])

2 Vara1 [r1] ≥ 0. (62)

By now we have proven Vara1,a2 [r1r2] ≥ Vara1 [r1] Vara2 [r2]. Then if Eq. (56) holds for the case
of N agents, then obviously there is:

N+1∏
j 6=i

Var
[
rj
]

=

 N∏
j 6=i

Var
[
rj
]VaraN+1

[
rN+1

]
(63)

≤ Var

 N∏
j 6=i

rj

VaraN+1

[
rN+1

]
(64)

≤ Var

N+1∏
j 6=i

rj

 , (65)

thus proving the proposition.

A.6 The simplification in the analysis of CoPPO and MAPPO

In Section 3.3, the difference between CoPPO and MAPPO is simplified to the difference between
Eπold

[
rikA

i
]

and Eπold

[
rikÃ

i
k

]
. Now we detail the rationality of this simplification.

In each update, the value of both the two objectives start from the respective lower bounds and
are updated conservatively during the optimization epochs. The objectives monotonically increase
or decrease until they reach the clipping threshold. No update will be made when the objective is
clipped, because θi is not in the clipped value (i.e. (1− ε1)Ai or (1 + ε1)Ai) and no gradient will be
backpropagated then, just as discussed in Appendix A.4.

A.7
∏
j 6=i r

j
k implies the variation of the probability to take a−i

Section 3.3 mentions that
∏
j 6=i r

j
k > 1 will cause an increase in π−i(a−i|τ−i) and vice versa. Now

we provide the details.

Similar to Appendix A.5, the decentralized policies can be viewed independently, thus

π−i(a−i|τ−i) =
∏
j 6=i π

j(aj |τ j). By definition,
∏
j 6=i r

j
k =

∏
j 6=i

πj
k(a

j |τj)

πj
old(a

j |τj)
. Synthesizing the

two equations, we have
∏
j 6=i r

j
k =

π−i
k (a−i|τ−i)

π−i
old(a

−i|τ−i)
which suggests that if

∏
j 6=i r

j
k > 1, a−i will be

more likely to be jointly performed by the other agents given similar observations, and vice versa.

B Pseudo Code

The details of our CoPPO algorithm are given in Algorithm 1.

C Implementation Details

Experiments are conducted on NVIDIA Quadro RTX 5000 GPUs. The network architectures,
optimizers, hyperparameters and environment settings in the cooperative matrix game and SMAC are
described respectively in the following subsections.

17

Algorithm 1 The CoPPO Algorithm

1: Initialize policies π1
old, . . . , π

N
old for N agents respectively;

2: for iteration = 1, 2, . . . do
3: for rollout thread = 1, 2, . . . , R do
4: Run policies π1:N

old in environment for T time steps;

5: Compute advantage estimates Âπ
j
old

1:T , . . . , Â
πj
old

1:T , j = 1, 2, . . . , N ;
6: end for
7: for k = 0, 1, . . . ,K − 1 do
8: for i = 1, 2, . . . , N do
9: Optimize the objective

10: L(θi) = Ea∼πold

{
min

[
g(r−i)riAi, clip

(
g(r−i)ri, 1− ε1, 1 + ε1

)
Ai
]}

11: to update the policy πi w.r.t. θi;
12: end for
13: end for
14: θjold ← θjK , j = 1, 2, . . . N ;
15: end for

C.1 Cooperative matrix game

We utilize the same actor-critic network architecture for all the algorithms. The actor consists of
two 18-dimensional fully-connected layers with tanh activation. For the critic, two 72-dimensional
fully-connected layers are adopted with tanh activation. For the hyper network in DOP which is used
to derive the weights and biases for local value mixing, we use two 36-dimensional fully-connected
layers with tanh activation for both the weights and biases deriving. The optimization of both the
actors and critics is conducted using RMSprop with the learning rate of 5 × 10−4 and α of 0.99.
No momentum or weight decay is used in the optimizers. The discounted factor is set to 0.99; the
number of the optimization epochs (i.e. K) for CoPPO and MAPPO is set to 8; the outer clipping
threshold (i.e. ε for MAPPO and ε1 for CoPPO) is set to 0.20. For the inner clipping threshold in
CoPPO, we consider ε2 ∈ {0.05, 0.10, 0.15} and adopt 0.10 in the comparison with baselines. For
exploration, we use ε-greedy with ε annealed linearly from 0.9 to 0.02 over 6k timesteps.

C.2 SMAC

The same actor-critic network architecture are utilized for all maps we have evaluated on. Both
the actor and critic networks consist of two fully-connected layers, one GRU layer and one fully-
connected layer sequentially with ReLU activation. For the mixing network mentioned in Section 3.2,
we adopt the hyper network in (Rashid et al., 2018) to derive the weights and bias for local advantages,
and enforce the weights to be non-negative. Similar to QMIX, the input of the hyper network is the
global state. The dimensions of these layers are all set to 64, except for the 32-dimensional hidden
layers of the mixing network.

For the evaluation on different maps, all the hyperparameters are fixed except for the number of
optimization epochs which is set to 15 for 2s3z, 3s_vs_3z, and 1c3s5z, 10 for 3s5z and 10m_vs_11m,
and 8 for MMM2. The number of epochs overall decreases as the difficulty of the map increases,
ranging from 5 to 15. The optimization of both the actors and critics is conducted using Adam
with the learning rate of 5× 10−4 and optimizer epsilon of 1× 10−5. No weight decay is used in
the optimizers. The discounted factor γ is set to 0.99. For advantage estimation, the generalized
advantage estimation (Schulman et al., 2015b) is adopted and the corresponding hyperparameter λ
is set to 0.90. Note that state value functions instead of state-action value functions are estimated
in SMAC. The inner clipping threshold (i.e. ε2 for CoPPO) is set to 0.10, while the outer clipping
threshold (i.e. ε for MAPPO and ε1 for CoPPO) is set to 0.20. 8 parallel environments are run for
data collecting.

Overall, our implementation builds upon the one of (Yu et al., 2021). Note that MAPPO uses hand-
coded states (i.e. Feature-Pruned Agent-Specific Global State) as the input of value functions, while
in our implementation these states are modified into the concatenation of the Environment-Provided
Global State and the Local Observation, in order to make the comparison with baselines fair. For the

18

other baselines, we adopt the official implementations and their default hyperparameter settings that
have been fine-tuned on this benchmark.

D Additional Results

D.1 Cooperative matrix games

Section 4.1 shows the results on a modification of the two-player penalty game. Now we present the
results on other matrix games across different types and different difficulties in Fig. 5, and CoPPO
outperforms the other methods in almost all the games, thus showing the general effectiveness. For
evaluation, the results are also averaged over 100 runs.

0 2 4 6 8 10
T(k)

40

20

0

20

40

Av
er

ag
e

R
ew

ar
ds

No Penalty

0 2 4 6 8 10
T(k)

40

20

0

20

40
Av

er
ag

e
R

ew
ar

ds
Penalty 100

CoPPO(ours) COMA MAPPO DOP

0 2 4 6 8 10
T(k)

50

40

30

20

Av
er

ag
e

R
ew

ar
ds

One Optimal

0 2 4 6 8 10
T(k)

40

20

0

20

40

Av
er

ag
e

R
ew

ar
ds

Climbing with no Miscoordination Penalty

0 2 4 6 8 10
T(k)

40

30

20

10

Av
er

ag
e

R
ew

ar
ds

Climbing with Miscoordination Penalty

0 2 4 6 8 10
T(k)

40

30

20

10

0

10

Av
er

ag
e

R
ew

ar
ds

Climbing with Increasing Miscoordination Penalty

Figure 5: Performance comparisons in six matrix games.

These games are all 4-agent, 9-action cooperative games. The respective reward settings are as
follows. The "miscoordination" mentioned below all refers to the case where any three agents act the
same while the other does not. Fig. 5-upper left and middle are both simplifications of the penalty
game presented in Section 4.1. In Fig. 5-upper left, there is no penalty for miscoordination; in
Fig. 5-upper middle, the team reward becomes larger (100) when the agents play the same action.
The other rewards are set the same with the one in Section 4.1. In Fig. 5-upper right, there is only one
optimal joint action and the difficulty lies mainly in exploration. The agents will receive the reward
of 50 if agent i plays action i and -50 otherwise. Fig. 5-lower left is the result on a modification
of the climbing game that has been used as another challenging test bed for CoMARL algorithms
(Claus and Boutilier, 1998), where the reward is i · 10 if the agents all play action i and -40 otherwise.
Fig. 5-lower middle and right gradually increase the difficulty of the climbing game by setting
obstacles in the way of climbing. In Fig. 5-lower middle, the agents will be punished by -50 for
miscoordination. As for Fig. 5-lower right, the miscoordination penalty increases as the matching
reward increases, i.e. −i · 10 for miscoordination on action i, hence the risk will become higher and
higher when the agents are "climbing" to the optimal joint action.

0 0.25 0.5 0.75 1.0
T(Mil)

0

25

50

75

100

Te
st

 W
in

 %

3s_vs_3z

0 0.5 1.0 1.5 2.0
T(Mil)

0

25

50

75

100

Te
st

 W
in

 %

3s5z

clipping jointly clipping separately

Figure 6: Ablation study on the methods of clipping.

19

D.2 SMAC

D.2.1 Comparison of clipping jointly and separately

We empirically evaluate two clipping approaches mentioned in Section 3.2, i.e. clipping jointly
(clip(

∏N
j=1 r

j , ·, ·)) and clipping separately (
∏N
j=1 clip(rj , ·, ·)). The results shown in Fig. 6 demon-

strate that clipping separately performs worse than clipping jointly. To find the cause resulting in this
performance discrepancy, an empirical analysis is conducted on the value of policy gradients and ratio
products w.r.t. the two clipping methods, and the results are presented in Fig. 7. Obviously clipping
jointly yields more stable ratio product and policy gradients than clipping separately, implying that
the performance discrepancy might be owing to the stability in the policy update.

0 0.25 0.5 0.75 1.0
T(Mil)

0.985

0.990

0.995

1.000

1.005

1.010

1.015

1.020

1.025

ra
tio

ratio

0 0.25 0.5 0.75 1.0
T(Mil)

4

2

0

2

4

gr
ad

ie
nt

1e 9 gradient

clipping jointly clipping separately

Figure 7: Comparison of two clipping methods on ratio product and mean policy gradients, evaluated on
3s_vs_3z.

D.2.2 Results on three more maps of SMAC

Some additional results for further verification of the effectiveness of CoPPO in SMAC are given in
Fig. 8. Note that CoPPO outperforms all the baselines in the maps we have evaluated on, except for
the MMM map where CoPPO achieves competitive performance against MAPPO.

0 0.5 1.0 1.5 2
T(Mil)

0

25

50

75

100

Te
st

 W
in

 %

MMM

0 2 4 6 8
T(Mil)

0

25

50

75

100

Te
st

 W
in

 %

5m_vs_6m
CoPPO(ours) COMA MAPPO DOP QMIX QTRAN

0 1 2 3 4
T(Mil)

0

25

50

75

100

Te
st

 W
in

 %

8m_vs_9m

Figure 8: Additional results on SMAC.

20

