
A Hyper-Parameter Tuning

If observations from the joint distribution of (A,Y,Z,W) are available in both stages, we can tune
the regularization parameters λ1, λ2 using the approach proposed in Singh et al. [30], Xu et al. [35].
Let the complete data of stage 1 and stage 2 be denoted as (ai, yi, zi,wi) and (ãi, ỹi, z̃i, w̃i). Then,
we can use the data not used in each stage to evaluate the out-of-sample performance of the other
stage. Specifically, let Algorithm 1 converges at t = T , and the regularizing parameters are given by

λ∗1 = arg minL1-oos, L1-oos =
1

n

n∑
j=1

∥∥∥∥ψθ(T)
W

(w̃j)− V̂ (T)

(
φ
θ
(T)

A(1)

(ãi)⊗φθ(T)
Z

(z̃i)

)∥∥∥∥2 ,
λ∗2 = arg minL2-oos,

L2-oos =
1

n

n∑
i=1

(
yi− (u(T))>

(
ψ
θ
(T)

A(2)

(ai)⊗
(
V̂ (T)

(
φ
θ
(T)

A(1)

(ai)⊗φθ(T)
Z

(zi)

))))2

where θ(T)
Z , θ

(T)
A(1), θ

(T)
W , θ

(T)
A(2), V̂

(T),u(T) are the learned parameters by Algorithm 1.

B Identifiability

In this appendix, we prove propositions given in the main text. In the following, we assume that the
spaces U , A, Z,W are separable and completely metrizable topological spaces and equipped with
Borel σ-algebras. In this section, we use the notation PA|Z=z to express the distribution of a random
variable A given another variable Z = z.

B.1 Existence of bridge function

First, we discuss conditions to guarantee the existence of the bridge function h. Let us consider the
following operators:

Ea : L2(PW |A=a)→ L2(PZ|A=a), Eaf := E [f(W)|A = a,Z = ·] ,
Fa : L2(PZ|A=a)→ L2(PW |A=a), Fag := E [g(Z)|A = a,W = ·] ,

where the conditional expectations are identified as equivalent classes with natural inclusion into their
corresponding L2 spaces. Our goal is to show that E [Y |A = a,Z = ·] is in the range of Ea, i.e., we
seek a solution of the inverse problem defined by

Eah = E [Y |A = a,Z = ·] . (8)
This suffices to prove the existence of the function h, for if there exists a function h∗a for each a ∈ A
such that

E [h∗a|A = a,Z = ·] = E [Y |A = a,Z = ·] ,
we can define h∗(a,w) := h∗a(w). The existence of the bridge function corresponds to the results of
Deaner [3, Lemma 1.1.b] and Miao et al. [20, Propisition 1]. For simplicity, in constrast to Deaner
[3], we assume that there is no shared quantity between the proxy variables W and Z. Following
the proofs of the previous works [3, Appendix C, p. 57] and [20, Appendix 6], we aim to solve the
integral equation in (8).

We will make use of the following theorem on the existence of a solution of a linear integral equation
[12, Theorem 15.18].
Proposition 5 ([12, Theorem 15.18]). Let X and Y be Hilbert spaces. Let E : X → Y be a compact
linear operator with singular system {(µn,ϕn, gn)}∞n=1. The equation of the first kind

Eϕ = f

is solvable if and only if f ∈ N(E∗)⊥ and
∞∑
n=1

1

µ2
n

|〈f, gn〉|2 <∞.

Here, N(E∗) denotes the null space of the operator E∗. Then a solution is given by

φ =

∞∑
n=1

1

µn
〈f, gn〉ϕn.

13

To apply Proposition 5, we make the following additional assumptions.

Assumption 4. For each a ∈ A, the operator Ea is compact with singular system
{(µa,n,ϕa,n, ga,n)}∞n=1.

Assumption 5. For each a ∈ A, the conditional expectation fY |a := E [Y |A = a,Z = ·] satisfies
∞∑
n=1

1

µ2
a,n

|〈fY |a, ga,n〉L2(PZ|A=a)|
2 <∞,

for a singular system {(µa,n, φa,n, ga,n)}∞n=1 given in Assumption 4.

Remark 1. Assumption 4 is a minimal requisite to apply Proposition 5. The existing works [3, 20]
assume stronger conditions; the operator Ea is assumed to be Hilbert-Schmidt, which implies the
compactness. Deaner [3, Assumption A.1] assumes that the joint distribution ofW and Z conditioned
on a is absolutely continuous with respect to the product measure of PW |A=a and PZ|A=a, and
its density is square integrable. The density function serves as the integral kernel of the operator
Ea whose L2(PW |A=a⊗PZ|A=a)-norm corresponds to the Hilbert-Schmidt norm of the operator,
where we use ⊗ to denote the product measure. On the other hand, in the setting of Miao et al. [20],
all probability distributions have densities with respect to the Lebesgue measure. The operator Ea
(denoted by Kx in [20]) is defined by the relevant densities accordingly (see the paragraph after
Lemma 2 of [20]). The compactness is, as in [3], established by the square-integrability of the
integral kernel, which implies that the operator Ea is Hilbert-Schmidt (see Condition A1 in [20]).

It is easy to see that Assumptions 4 and 5 are required for using Proposition 5. The remaining
condition to show is that E [Y |A = a,Z = ·] is in N(E∗a)⊥. We show that the structural assumption
(Assumption 1) and completeness assumption (Assumption 2) imply the required condition. The
result below closely follows [3] in that we share the same completeness condition.

Lemma 1. Under Assumptions 1 and 2, the conditional expectation E [Y |A = a,Z = ·] is in the
orthogonal complement of the null space N(E∗a).

Proof. We first show that the adjoint ofEa is given by Fa. For the operatorEa, any f ∈ L2(PW |A=a)
and g ∈ L2(PZ|A=a), we have

〈Eaf, g〉L2(PZ|A=a)
= EZ|A=a [E [f(W)|A = a,Z]g(Z)]

= EZ|A=a

[
EU |A=a,Z [E [f(W)|A = a,Z,U]]g(Z)

]
(a)
= EZ|A=a

[
EU |A=a,Z [E [f(W)|A = a,U]]g(Z)

]
= EU,Z|A=a [E [f(W)|A = a,U]g(Z)]

= EU |A=a [E [f(W)|A = a,U]E [g(Z)|A = a,U]]

where (a) follows from W ⊥⊥(A,Z)|U , which is from Assumption 1. Similarly,
〈f,Fag〉L2(PW |A=a)

= EW |A=a [f(W)E [g(Z)|A = a,W]]

= EW |A=a

[
f(W)EU |A=a,W [E [g(Z)|A = a,W,U]]

]
(b)
= EW |A=a

[
f(W)EU |A=a,W [E [g(Z)|A = a,U]]

]
= EW,U |A=a [f(W)E [g(Z)|A = a,U]]

= EU |A=a [E [f(W)|A = a,U]E [g(Z)|A = a,U]]

= 〈Eaf, g〉L2(PZ|A=a)
.

Again, (b) is given by W ⊥⊥A,Z|U from Assumption 1. For any f∗ ∈ N(E∗a) = N(Fa), by iterated
expectations, we have

0 = E [f∗(Z)|A = a,W = ·]
= EU [E [f∗(Z)|A,U,W] |A = a,W = ·]
= EU [E [f∗(Z)|A,U] |A = a,W = ·] . (9)

From Assumption 2,
E [l(U) | A = a,W = w] = 0 ∀(a,w) ∈ A×W ⇔ l(u) = 0 PU -a.e.

14

for all functions l ∈ L2(PU |A=a). Note that E [f∗(Z)|A,U] ∈ L2(PU |A=a) since

EU |A
[
E[f∗(Z)|A,U]2

]
≤ EU |A

[
E
[
f∗(Z)2|A,U

]]
(∵ Jensen’s Inequality)

= E
[
f∗(Z)2|A

]
<∞

Hence, (9) and Assumption 2 implies
E [f∗(Z)|A = a,U = ·] = 0 PU -a.s.

Then, the inner product between f∗ and E [Y |A = a,Z = ·] is given as follows:
〈f∗,E [Y |A = a,Z = ·]〉L2(PZ|A=a)

= EZ|A=a [f∗(Z)E [Y |A = a,Z]]

= EZ|A=a

[
f∗(Z)EU |A=a,Z [E [Y |A = a,Z,U]]

]
(c)
= EZ|A=a

[
f∗(Z)EU |A=a,Z [E [Y |A = a,U]]

]
= EU,Z|A=a [f∗(Z)E [Y |A = a,U]]

= EU |A=a

[
EZ|U,A=a [f∗(Z)]E [Y |A = a,U]

]
= 0.

Again (c) holds from Y ⊥⊥Z|A,U in Assumption 1. Hence, we have

E [Y |A = a,Z = ·] ∈ N(E∗a)⊥.

Remark 2. The difference between the first condition in Assumption 2 and Condition 3 in [20]
is in the approach to establishing that the conditional expectation E[Y |A = a,Z = ·] belongs to
N(Fa)⊥. More specifically, Condition 3 in [20] is equivalent to having N(Fa) = {0} and so any
nontrivial L2(PZ|A=a)-function is in the orthogonal complement. Assumption 2 does not require
N(Fa) = {0} but only implies

N(Fa) ⊂ {f ∈ L2(PZ|A=a) : E[f(Z)|A = a,U = ·] = 0}.
For our identifiability proof, we use the weaker condition, Assumption 2.

Now, we are able to apply Proposition 5, leading to the following lemma.

Lemma 2. Under Assumptions 1, 2, 4 and 5, for each a ∈ A, there exists a function h∗a ∈
L2(PW |A=a) such that

E [Y |A = a,Z = ·] = E [h∗a(W)|A = a,Z = ·] .

Proof. By Lemma 1, the regression function E [Y |A = a,Z = ·] is in N(E∗a)⊥. Therefore, by
Proposition 5, under the given assumptions, there exists a solution to (8). Letting the solution be h∗a
completes the proof.

B.2 Identifiability

Here, we show that the bridge function h can be used to compute the various causal quantities. In
addition to the assumptions required for the existence of bridge function listed in the previous section,
we assume the conditional expectation of outcome given treatment is square integrable.

Assumption 6. For each a ∈ A, under the observational distribution, we have
E
[
Y 2|A = a

]
<∞.

Given the assumption, we can prove the following theorem.

Theorem 1 (Identifiability). Assume that there exists a function h : A×W → R such that for each
a ∈ A, the function h(a, ·) is in L2(PW |A=a) and satisfies

E [Y |A = a,Z = ·] = E [h(a,W)|A = a,Z = ·] PZ|A=a-a.s.
Under Assumptions 1, 2 and 6, we have

EW |U [h(a,W)] = E [Y |A = a,U] . (10)

15

Proof. Note that we have
E [h(a,W)|A = a,Z] = EU |A=a,Z [E [h(a,W)|A = a,Z,U]]

= EU |A=a,Z [E [h(a,W)|U]] ,

E [Y |A = a,Z] = EU |A=a,Z [E [Y |A = a,Z,U]]

= EU |A=a,Z [E [Y |A = a,U]] ,

where the second line of each equation follows from Assumption 1. Moreover, by assumption, we
have

EU |A=a

[
E [h(a,W)|U]

2
]
≤ EW |A=a

[
h(a,W)2

]
<∞, and

EU |A=a

[
E [Y |A = a,U]

2
]
≤ E

[
Y 2|A = a

]
<∞.

Note from Assumption 2, we have
E [l(U) | A = a,Z = z] = 0 ∀(a, z) ∈ A×Z ⇔ l(u) = 0 PU -a.e.

Therefore, by setting l(u) = E [Y |A = a,U = u]−E [h(a,W)|U = u], for all a ∈ A, we have
E [h(a,W)|A = a,Z = ·] = E [Y |A = a,Z = ·] PZ|A=a-a.s.

⇔EU |A=a,Z=· [E [h(a,W)|U]−E [Y |A = a,U]] = 0 PZ|A=a-a.s.

⇔EW |U=· [h(a,W)] = E [Y |A = a,U = ·] PU -a.s.

Using Theorem 1, we can show following two corollaries, which are used in the main body.
Corollary 1. Let the assumptions in Theorem 1 hold. Given a bridge function h∗, we can estimate
structural function fstruct as

fstruct(a) := EU [E [Y |A = a,U]]

= EW [h∗(a,W)]

Proof. From Theorem 1, we have
EU [E [Y |A = a,U]] = EU

[
EW |U [h∗(a,W)]

]
= EW [h∗(a,W)]

Remark 3. The above corollary corresponds to the identifiablity results in obtained in the previous
works [3, 20]. We follow the proof of Theorem 1.1.a in [3, Appendix B] (See also, Theorem 1 and
Appendix 3 of [20]).
Corollary 2. Assume we are given a bridge function h∗(a,w) that is jointly measurable. Suppose
C⊥⊥W |U . With the assumptions in Theorem 1, we can write the value function of policy π(C) as

v(π) := EC,U [E [Y |A = π(C),U]]

= EC
[
EW |C [h(π(C),W)]

]
Proof. From Theorem 1, we have

EC,U [E [Y |A = π(C),U]] = EC,U
[
EW |U [h∗(π(C),W)]

]
= EC

[
EW |C [h(π(C),W)]

]
,

where the last equality holds by the conditional independence C⊥⊥W |U .

Note that in the existence claim, the bridge function h∗(a,w) is constructed by aggregating over
{h∗a}a∈A. This construction does not guarantee that the function is measurable with respect to a; the
lack of measurability renders its expectation undefined. Thus, we have additionally assumed the joint
measurability of the bridge function in Corollary 2. Validating this assumption is crucial theoretically,
and we leave it for future work.

C Consistency of DFPV algorithm

In this appendix, we prove consistency of the DFPV approach. Following Xu et al. [35], we establish
consistency of the end-to-end procedure incorporating Stages 1 and 2. We establish the result by first

16

showing a Stage 1 consistency result (Lemma 3), and then establishing the consistency of Stage 2 with
the empirical Stage 1 solution used as input (Lemma 4). The desired result then follows in Theorem 2.
Here, we assume the bridge function h∗(a,w) is jointly measurable so that the expectation of h∗ is
defined.

Consistency results will be expressed in terms of the complexity of the function classes used in Stages
1 and 2, as encoded in the Rademacher complexity of the function space of these functions (see Propo-
sition 6 below). Consistency for particular function classes can then be shown by establishing that
the respective Rademacher complexities vanish. We leave for future work the task of demonstrating
this property for individual function classes of interest.

C.1 Operator view of DFPV

The goal of DFPV is to learn a bridge function h∗, which satisfies
EY |A=a,Z=z [Y] = EW |A=a,Z=z [h∗(a,W)] . (11)

We use the model
h(a,w) = u>(ψθA(2)

(a)⊗ψθW (w))

and denote the hypothesis spaces for ψθW and h as HψθW :W → RdW and Hh : A×W → R,
respectively. To learn the parameters, we minimize the following stage 2 loss:

û, θ̂W , θ̂A(2) = arg min
u,θW ,θA(2)

L̂2(u, θX , θA(2)),

L̂2 =
1

n

n∑
i=1

(ỹi−u>(ψθA(2)
(ãi)⊗ ÊW |A,Z [ψθW (W)] (ãi, z̃i)))

2.

We denote the resulting estimated bridge function as

ĥ(a,w) = (û)>(ψθ̂A(2)
(a)⊗ψθ̂W (w)).

For simplicity, we set all regularization terms to zero. Here, ÊW |A,Z [ψθW (W)] is the empirical
conditional expectation operator, which maps an element ofHψθW to some function g(a, z) which is
defined as

ÊW |A,Z [ψθW (W)] = arg min
g∈G

L̂1(g;ψθW),

L̂1 =
1

n

m∑
i=1

‖ψθW (wi)− g(ai, zi)‖2,

where ‖ · ‖ is the `2-norm, and G is an arbitrary function space. In DFPV, we specify G as the set
consisting of functions g of the form

g = V (φθA(1)
(ai)⊗φθZ (zi)).

Note that this formulation is equivalent to the one introduced in Section 3. With a slight abuse of
notation, for h(a,w) = u>ψθA(2)

(a)⊗ψθW (w) ∈ Hh, we define ÊW |A,Z [h] to be

ÊW |A,Z [h(A,W)] (a, z) = u>
(
ψθA(2)

(a)⊗ ÊW |A,Z [ψθW] (a, z)
)

since this is the empirical estimate of EW |A,Z [h(A,W)].

C.2 Generalization errors for regression

Here, we bound the generalization errors of both stages using Rademacher complexity bounds [24].
Proposition 6. [Theorem 3.3 24, with slight modification] Let S be a measurable space andH be
a family of functions mapping from S to [0,M]. Given fixed dataset S = (s1, s2, . . . , sn) ∈ Sn, the
empirical Rademacher complexity is given by

R̂S(H) = Eσ

[
1

n
sup
h∈H

n∑
i=1

σih(si)

]
,

where σ = (σ1, . . . , σn), with σi independent random variables taking values in {−1,+1} with
equal probability. Then, for any δ > 0, with probability at least 1− δ over the draw of an i.i.d sample

17

S of size n, each of following holds for all h ∈ H:

E [h(s)] ≤ 1

n

n∑
i=1

h(si) + 2R̂S + 3M

√
log 2/δ

2n
,

1

n

n∑
i=1

h(si) ≤ E [h(s)] + 2R̂S + 3M

√
log 2/δ

2n
.

We list the assumptions below.

Assumption 7. The following hold:

1. Bounded outcome variable |Y | ≤M .

2. Bounded stage 1 hypothesis space: ∀a ∈ A, z ∈ Z,‖g(a, z)‖ ≤ 1.

3. Bounded stage 2 feature map ∀w ∈ W,‖ψθW (w)‖ ≤ 1.

4. Bounded stage 2 weight: ∀‖v‖ ≤ 1,∀a ∈ A, |u>(ψθA(2)
(a)⊗ v)| ≤M .

Note that unlike Xu et al. [35], we consider the case where the bridge function h∗ and the conditional
expectation EW |A,Z [ψθW] might not be included in the hypothesis spacesHh, G, respectively.

As in Xu et al. [35], we leave aside questions of optimization. Thus, we assume that the optimization
procedure over (θA(1), θZ ,V) is sufficient to recover ÊW |A,Z [ψθW (W)] , and that the optimization
procedure over (θA(2), θW ,u) is sufficient to recover ĥ (which requires, in turn, the correct ÊW |A,Z ,
for this ψθW). We emphasize that Algorithm 1 does not guarantee these properties. Based on these
assumptions, we derive the generalization error in terms of L2-norm with respect to P (A,W).

Following the discussion in Xu et al. [35, Lemma 1], we can show the following lemma that provides
a generalization error bound for Stage 1 regression.

Lemma 3. Under Assumption 7, and given stage 1 data S1 = {(ai, zi,wi)}mi=1, for any δ > 0, with
at least probability 1− 2δ, we have∥∥∥ÊW |A,Z [h(A,W)]−EW |A,Z [h(A,W)]

∥∥∥
P (A,Z)

≤M

√
κ1 + 4R̂S1

(H1) + 24

√
log 2/δ

2m

for any ψθW ∈ HψθW , where hypothesis spaceH1 is defined as

H1 = {(w,a, z) ∈ W ×A×Z 7→ ‖ψθW (w)− g(a, z)‖2 ∈ R | g ∈ G,ψθW ∈ HψθW }, (12)

and κ1 is the misspecificaiton error in the stage 1 regression defined as
κ1 = max

ψθW ∈HψθW
min
g∈G

EW,A,Z
[
‖ψθW (W)− g(A,Z)‖2

]
. (13)

Proof. From Assumption 7, we have∥∥∥ÊW |A,Z [h(A,W)]−EW |A,Z [h(A,W)]
∥∥∥
P (A,Z)

=
∥∥∥u> (ψθA(2)

(a)⊗
(
EW |A,Z [ψθW] (a, z)− ÊW |A,Z [ψθW] (a, z)

))∥∥∥
P (A,Z)

=

√
EA,Z

[∣∣∣u> (ψθA(2)
(a)⊗

(
EW |A,Z [ψθW] (a, z)− ÊW |A,Z [ψθW] (a, z)

))∣∣∣2]

≤

√
EA,Z

[
M2

∥∥∥EW |A,Z [ψθW] (a, z)− ÊW |A,Z [ψθW] (a, z)
∥∥∥2]

= M
∥∥∥EW |A,Z [ψθW] (a, z)− ÊW |A,Z [ψθW] (a, z)

∥∥∥
P (A,Z)

18

From Proposition 6, we have

EW,A,Z
[
‖ψθW (W)− ÊW |A,Z [ψθW (W)] (A,Z)‖2

]
≤ L̂1(ÊW |A,Z [ψθW (W)]) + 2R̂S1

(H1) + 12

√
log 2/δ

2m

with probability 1− δ, since all functions f ∈ H1 satisfy ‖f‖ ≤ 4 from ‖ψθW ‖ ≤ 1,‖g‖ ≤ 1. Now,
let g∗θW be

g∗θW = arg min
g∈G

EW,A,Z
[
‖ψθW (W)− g(A,Z)‖2

]
.

Then, again from Proposition 6, we have

L̂1(g∗θW) ≤ EW,A,Z
[
‖ψθW (W)− g∗θW (A,Z)‖2

]
+ 2R̂S1(H1) + 12

√
log 2/δ

2m

From the optimality of ÊW |A,Z [ψθW (W)], we have L̂1(g∗θW) ≥ L̂1(ÊW |A,Z [ψθW (W)]), thus

EW,A,Z
[
‖ψθW (W)− ÊW |A,Z [ψθW (W)] (A,Z)‖2

]
≤ EW,A,Z

[
‖ψθW (W)− g∗θW (A,Z)‖2

]
+ 4R̂S1(H1) + 24

√
log 2/δ

2m
. (14)

holds with probability 1− 2δ. Since we have
EW,A,Z

[
‖ψθW (W)− g(A,Z)‖2

]
= EW,A,Z

[
‖ψθW (W)−EW |A,Z [ψθW (W)]‖2

]
+EA,Z

[
‖g(A,Z)−EW |A,Z [ψθW (W)]‖2

]
for all g ∈ G, by subtracting EW,A,Z

[
‖ψθW (W)−EW |A,Z [ψθW (W)]‖2

]
from both sides of (14),

we have

EA,Z
[
‖EW |A,Z [ψθW (W)]− ÊW |A,Z [ψθW (W)] (A,Z)‖2

]
≤ EA,Z

[
‖EW |A,Z [ψθW (W)]− g∗θW (A,Z)‖2

]
+ 4R̂S1

(H1) + 24

√
log 2/δ

2m

≤ κ1 + 4R̂S1
(H1) + 24

√
log 2/δ

2m
By taking the square root of both sides, we have∥∥∥ÊW |A,Z [ψθW (W)]−EW |A,Z [ψθW (W)]

∥∥∥
P (A,Z)

≤M

√
κ1 + 4R̂S1

(H1) + 24

√
log 2/δ

2m

The generalization error for Stage 2 can be shown by similar reasoning as in Xu et al. [35, Lemma 2].

Lemma 4. Under Assumption 7, given stage 1 data S1 = {(ai, zi,wi)}mi=1, stage 2 data S2 =

{(ãi, z̃i, ỹi)}ni=1, and the estimated structural function ĥ(a, z) = (û)>(ψθ̂A(2)
(a)⊗ψθ̂W (w)), then

for any δ > 0, with at least probability 1− 4δ, we have∥∥∥EY |A,Z [Y]− ÊW |A,Z
[
ĥ(A,W)

]∥∥∥
P (A,Z)

≤ κ2 +M

√
κ1 + 4R̂S1

(H2) + 24

√
log 2/δ

2m
+

√
4R̂S2

(H2) + 24M2

√
log 2/δ

2n
,

whereH1 is defined in (12), andH2 is defined as
H2 = {(y,a, z) ∈ Y ×A×Z

7→ (y−u>(ψθA(2)
(a)⊗ g(a, z)))2 ∈ R | g ∈ G,u, θA(2)}, (15)

and κ2 is the misspecification error in Stage 2 defined as
κ2 = min

h∈Hh

∥∥EW |A,Z [h(A,W)] (A,Z)−EY |A,Z [Y] (A,Z)
∥∥
P (A,Z)

. (16)

19

Proof. From Proposition 6, we have

EY,A,Z
[∣∣∣Y − ÊW |A,Z

[
ĥ(A,W)

]
(A,Z)

∣∣∣2] ≤ L̂2(ĥ) + 2R̂S2
(H2) + 12M2

√
log 2/δ

2n

with probabiltiy 1− δ, since all functions f ∈ H2 satisfy ‖f‖ ≤ 4M2 from ‖Y ‖ ≤
M, |u>(ψθA(2)

(a)⊗ g)| ≤M . Let h̃ be

h̃ = arg min
h∈Hh

∥∥EW |A,Z [h(A,W)] (A,Z)−EY |A,Z [Y] (A,Z)
∥∥
P (A,Z)

.

Again from Proposition 6, we have

L̂2(h̃) ≤ EY,A,Z
[∣∣∣Y − ÊW |A,Z

[
h̃(A,W)

]
(A,Z)

∣∣∣2]+ 2R̂S2(H2) + 12M2

√
log 2/δ

2n
.

with probabiltiy 1− δ. From the optimality of ĥ, we have L̂2(h̃) ≥ L̂2(ĥ), hence

EY,A,Z
[∣∣∣Y − ÊW |A,Z

[
ĥ(A,W)

]
(A,Z)

∣∣∣2]
≤ EY,A,Z

[∣∣∣Y − ÊW |A,Z
[
h̃(A,W)

]
(A,Z)

∣∣∣2]+ 4R̂S2
(H2) + 24M2

√
log 2/δ

2n

By subtracting EY,A,Z
[
‖Y −EY |A,Z [Y]‖2

]
from both sides, we have

EA,Z
[∣∣∣EY |A,Z [Y]− ÊW |A,Z

[
ĥ(A,W)

]
(A,Z)

∣∣∣2]
≤ EA,Z

[∣∣∣EY |A,Z [Y]− ÊW |A,Z
[
h̃(A,W)

]
(A,Z)

∣∣∣2]+ 4R̂S2
(H2) + 24M2

√
log 2/δ

2n

with probability 1− 2δ. By taking the square root of both sides, with probability 1− 2δ, we have

‖EY |A,Z [Y]− ÊW |A,Z
[
h̃(A,W)

]
(A,Z)‖P (A,Z)

≤

√
EA,Z

[∣∣∣EY |A,Z [Y]− ÊW |A,Z
[
h̃(A,W)

]
(A,Z)

∣∣∣2]+ 4R̂S2
(H2) + 24M2

√
log 2/δ

2n

≤ ‖EY |A,Z [Y]− ÊW |A,Z
[
h̃(A,W)

]
(A,Z)‖P (A,Z) +

√
4R̂S2(H2) + 24M2

√
log 2/δ

2n

(a)

≤
∥∥∥EW |A,Z [h̃(A,W)

]
(A,Z)− ÊW |A,Z

[
h̃(A,W)

]
(A,Z)

∥∥∥
P (A,Z)

+
∥∥∥EW |A,Z [h̃(A,W)

]
(A,Z)−EY |A,Z [Y] (A,Z)

∥∥∥
P (A,Z)

+

√
4R̂S2

(H2) + 24M2

√
log 2/δ

2n

(b)

≤ κ2 +M

√
κ1 + 4R̂S1(H2) + 24

√
log 2/δ

2m
+

√
4R̂S2(H2) + 24M2

√
log 2/δ

2n

where (a) holds from the triangular inequality and (b) holds from Lemma 3.

Given the generalization errors in both stages, we can bound the error in (11) for the estimated bridge
function ĥ. We need Assumption 3 to connect the error in (11) and the error ‖ĥ− h∗‖P(A,W). Let us
restate Assumption 3.

Assumption 3 (Completeness Assumption on Outcome-Inducing Proxy [3, 18]). Let l :W → R be
any square integrable function ‖l‖P(W) <∞, We assume the following condition:

E [l(W) | A = a,Z = z] = 0 ∀(a, z) ∈ A×Z ⇔ l(w) = 0 P (W) -a.e.

Given this assumption, we can consider the following constant τa.

τa = max
h∈L2(P(W |A=a)),h6=h∗

‖h∗(a,W)− h(a,W)‖P(W |A=a)

‖EW |A=a,Z [h∗(a,W)]−EW |A=a,Z [h(a,W)]‖P(Z|A=a)

20

Note that Assumption 3 ensures τa <∞. We can bound the error using the supremum of this constant,
τ = supa τa.

Theorem 2. Let Assumptions 3 and 7 hold. Given stage 1 data S1 = {(wi, ai, zi)}mi=1 and stage 2
data S2 = {(ỹi, ãi, z̃i)}ni=1, for any δ > 0, with at least probability of 1− 6δ, we have

‖h∗(A,W)− ĥ(A,W)‖P (A,W)

≤ τ

κ2 + 2M

√
κ1 + 4R̂S1

(H1) + 24

√
log 2/δ

2m
+

√
4R̂S2

(H2) + 24M2

√
log 2/δ

2n

 ,
where τ = supa τa andH1, κ1,H2, κ2 are defined in (12), (13), (15), (16), respectively.

Proof.

‖h∗(A,W)− ĥ(A,W)‖P (A,W)

≤
√
EA
[
‖h∗(a,W)− ĥ(a,W)‖2P(W |A=a)

]
≤

√
EA
[
τ2a

∥∥∥EW |A=a,Z

[
h∗(a,W)− ĥ(a,W)

]∥∥∥2
P(Z|A=a)

]

≤ τ

√
EA
[∥∥∥EW |A=a,Z

[
h∗(a,W)− ĥ(a,W)

]∥∥∥2
P(Z|A=a)

]
≤ τ

∥∥∥EY |A,Z [Y]−EW |A,Z
[
ĥ(A,W)

]∥∥∥
P(A,Z)

≤ τ
∥∥∥EY |A,Z [Y]− ÊW |A,Z

[
ĥ(A,W)

]∥∥∥
P(A,Z)

+ τ
∥∥∥EW |A,Z [ĥ(A,W)

]
− ÊW |A,Z

[
ĥ(A,W)

]∥∥∥
P(A,Z)

Using Lemmas 3 and 4, the result thus follows.

From this result, we obtain the following corollary.

Corollary 3. Let Assumption 7 hold and κ1, κ2 = 0. If R̂S1
(H1)→ 0 and R̂S2

(H2)→ 0 in proba-
bility as the dataset size increases, ĥ converges to h∗ in probability with respect to ‖ · ‖P(A,W).

C.3 Consistency Result for Causal Parameters

In this section, we develop a consistency result for causal parameters discussed in the main body. First,
we consider the structural function. Given estimated bridge function ĥ(a,w) = û>(ψθ̂A(2)

(a)⊗
ψθ̂W (w)), we estimate the structural function by taking the empirical mean over W . To make the
discussion simple, we assume the access to an additional data sample SW = {wextra

i }nWi=1, such that
the estimated structural function is given as

f̂struct(a) = û>(ψθ̂A(2)
(a)⊗µθ̂W), (17)

where

µθ̂W =

nW∑
i=1

ψθ̂W (wextra
i).

Note that empirically, we can use outcome-proxy data in S1 instead of SW .

To bound the deviation from the true structural function, we need the following assumption.

Assumption 8. Let ρW (w), ρW |A(w|a) be the respective density functions of probability distribu-
tions P (W) ,P (W |A). The densities satisfy

ηa :=

∥∥∥∥ ρW (W)

ρW |A(W |a)

∥∥∥∥
P(W |A=a)

<∞.

21

Given Assumption 8, we can bound the error in structural function estimation. Before stating the
theorem, let us introduce a useful concentration inequality for multi-dimensional random variables. 2

Lemma 5. Let x1, . . . ,xn ∈ [−1,1]d be independent random variables. Then, with probability at
least 1− δ, we have ∥∥∥∥∥ 1

n

n∑
i=1

xi−µ

∥∥∥∥∥ ≤
√

2d log 2d/δ

n

where µ = E
[
1
n

∑n
i=1xi

]
.

Proof. Let j-th coordinate of xi be denoted as (xi)j . Then,

P

(∥∥∥∥∥ 1

n

n∑
i=1

xi−µ

∥∥∥∥∥ ≤ ε
)

= P

 d∑
j=1

(
1

n

n∑
i=1

(xi)j − (µ)j

)2

≤ ε2

≤ P

 d⋂
j=1

∣∣∣∣∣ 1n
n∑
i=1

(xi)j − (µ)j

∣∣∣∣∣ ≤ ε√
d

≤ 1− 2d exp

(
−nε

2

2d

)
,

Where the last inequality holds from Hoeffding’s inequality. The claim follows by solving δ =

d exp
(
−nε

2

2d

)
.

Given this lemma, we can prove the following result.

Theorem 3. Let Assumptions 3, 7 and 8 hold. Let η = supa∈A ηa. Given stage 1 data S1 =
{(wi, ai, zi)}mi=1, stage 2 data S2 = {(ỹi, ãi, z̃i)}ni=1, additional outcome-proxy variable data SW =
{wextra

i }nWi=1 , then with probability at least 1− 7δ, we have

‖f∗struct− f̂struct‖P(A)

≤

√
2dW log 2dW /δ

nW
+ ητ

κ2 + 2M

√
κ1 + 4R̂S1(H1) + 24

√
log 2/δ

2m
+

√
4R̂S2(H2) + 24M2

√
log 2/δ

2n

 ,
where f̂struct is given in (17) and dW is the dimension of ψθW .

Proof. From the relationship between structural function and bridge function, we have

‖f∗struct− f̂struct‖P(A)

= ‖EW [h∗(A,W)]− f̂struct‖P(A)

≤
∥∥∥EW [h∗(A,W)]−EW

[
ĥ(A,W)

]∥∥∥
P(A)

+
∥∥∥EW [ĥ(A,W)

]
− f̂struct

∥∥∥
P(A)

.

2Lemma 5 is discussed in MathOverflow (https://mathoverflow.net/questions/186097/
hoeffdings-inequality-for-vector-valued-random-variables, accessed on June 2nd 2021)

22

https://mathoverflow.net/questions/186097/hoeffdings-inequality-for-vector-valued-random-variables
https://mathoverflow.net/questions/186097/hoeffdings-inequality-for-vector-valued-random-variables

We can bound each term as follows. For the first term, we have∥∥∥EW [h∗(·,W)]−EW
[
ĥ(·,W)

]∥∥∥
P(A)

=

√∫ (
EW

[
h∗(a,W)− ĥ(a,W)

])2
ρA(a)da

=

√∫ (
EW |A=a

[
(h∗(a,W)− ĥ(a,W))

ρW (W)

ρW |A(W |a)

])2

ρA(a)da

≤

√√√√∫ ∥∥∥h∗(a,W)− ĥ(a,W)
∥∥∥2
P(W |A=a)

∥∥∥∥ ρW (W)

ρW |A(W |a)

∥∥∥∥2
P(W |A=a)

ρA(a)da ∵ Cauchy–Schwarz inequality

≤

√∫
η2aEW |A=a

[
(h∗(a,W)− ĥ(a,W))2

]
ρA(a)da ∵ Assumption 8

≤ η
√
EW,A

[
(h∗(A,W)− ĥ(A,W))2

]
= η‖h∗− ĥ‖P(A,W).

From Theorem 2, with probability at least 1− 6δ, we have∥∥∥EW [h∗(·,W)]−EW
[
ĥ(·,W)

]∥∥∥
P(A)

≤ ητ

κ2 + 2M

√
κ1 + 4R̂S1

(H1) + 24

√
log 2/δ

2m
+

√
4R̂S2

(H2) + 24M2

√
log 2/δ

2n

 .
For the second term, from Assumption 7, we have with probability at least 1− δ,∥∥∥EW [ĥ(A,W)

]
− f̂struct

∥∥∥
P(A)
≤M

∥∥∥µθ̂W −EW
[
ψθ̂W

]∥∥∥
≤

√
2dW log 2dW /δ

nW

The last inequality holds from Lemma 5. Using the uniform inequality, we have shown the claim.

We can evaluate the error in estimating a value function as well. Given S3 = {w̌i, či}n
′

i=1, we estimate
the value function as

v̂(π) =
1

n′

n∑
i=1

û>(ψθ̂A(2)
(π(či))⊗ψθ̂W (w̌i)),

Furthermore, we assume the following relationship between distributions of A and C
Assumption 9. There exists a constant σ such that

‖l(π(C),W)‖P(C,W) ≤ σ‖l(A,W)‖P(A,W)

for all square integrable functions l : A×W → R,‖l‖ <∞.

Given these assumptions, we have the following theorem.
Theorem 4. Let Assumptions 3, 7, 8, 9 hold. Given stage 1 data S1 = {(wi, ai, zi)}mi=1, stage 2 data
S2 = {(ỹi, ãi, z̃i)}ni=1, stage 3 data S3 = {w̌i, či}n

′

i=1, with at least probability 1− 7δ, we have
|v(π)− v̂(π)|

≤ στ

κ2 + 2M

√
κ1 + 4R̂S1

(H1) + 24

√
log 2/δ

2m
+

√
4R̂S2

(H2) + 24M2

√
log 2/δ

2n

+

√
M2 log 2/δ

n′
.

23

A Y

Z W

U

X

Figure 5: Causal graph with observable confounder

Proof. We have
|v(π)− v̂(π)| =

∣∣EW |C [h∗(π(C),W)]− v̂(π)
∣∣

≤
∣∣∣EW,C [h(π(C),W)]−EW,C

[
ĥ(π(C),W)

]∣∣∣
+
∣∣∣EW,C [ĥ(π(C),W)

]
− v̂(π)

∣∣∣ .
We bound each term as follows. For the first term, we have∣∣∣EW,C [h∗(π(C),W)]−EW,C

[
ĥ(π(C),W)

]∣∣∣
≤ ‖h∗(π(C),W)− ĥ(π(C),W)‖P(C,W) ∵ Jensen’s inequality

≤ σ‖h∗(A,W)− ĥ(A,W)‖P(A,W) ∵ Assumption 9
Hence, from Theorem 2, we have∣∣∣EW,C [h∗(π(C),W)]−EW,C

[
ĥ(π(C),W)

]∣∣∣
≤ στ

κ2 + 2M

√
κ1 + 4R̂S1

(H1) + 24

√
log 2/δ

2m
+

√
4R̂S2

(H2) + 24M2

√
log 2/δ

2n

with probability at least 1− 6δ.

For the second term, we have∣∣∣EW,C [û> (ψθ̂A(2)
(π(C))⊗ψθ̂W (W)

)]
− v̂(π)

∣∣∣ ≤√M2 log 2/δ

n′

with probability at least 1− δ, from Hoeffding’s inequality. The result is obtained by taking the union
bound.

D DFPV algorithm with observable confounders

In this appendix, we formulate the DFPCL method when observable confounders are present, building
on Tchetgen et al. [31] and Mastouri and Zhu et al. [18]. Here, we consider the causal graph given
in Figure 5. In addition to variables (A,Y,Z,W), we have an observable confounder X ∈ X . The
structural function fstruct we aim to learn is

fstruct(a) = EX,U [E [Y | A = a,X,U]] .

The structural assumption and completeness assumption including observable confounders are given
as follows.

Assumption 10 (Structural Assumption [18]). We assume Y ⊥⊥Z|A,U,X , and W ⊥⊥(A,Z)|U,X .

Assumption 11 (Completeness Assumption [18]). Let l : U → R be any square integrable function
‖l‖P(U). We assume the following:

E [l(U) | A = a,Z = z,X = x] = 0 ∀(a, z,x) ∈ A×Z ×X ⇔ l(u) = 0 a.s.

E [l(U) | A = a,Z = z,X = x] = 0 ∀(a, z,x) ∈ A×Z ×X ⇔ l(u) = 0 a.s.

24

Following similar reasoning as in Section 2, we can estimate the bridge function ĥ : A×X ×W → R
by minimizing the following loss:

ĥ = arg min
h∈Hh

L̃(h), L̃(h) = EY,A,Z,X
[
(Y −EW |Z,A,X [h(A,X,W)])2

]
+ Ω(h).

Given bridge function, we can estimate the structural function by
fstruct(a) = EX,W [h∗(a,X,W)] .

Similar to Mastouri and Zhu et al. [18], we model
EW |a,z [ψθW (w)] = V (φθA(1)

(A)⊗φθZ (Z))⊗φθX(1)
(X))

h(a,x,w) = u>(ψθA(2)
(a)⊗ψθX(2)

(x)⊗ψθW (w)),

where φθX(1)
(X),ψθX(2)

(X) are the feature maps of X parameterized by θX(1), θX(2), respectively.
Then, in stage 1, we learn (V , θA(1), θZ , θX(1)) by minimizing

L̂1(V , θA(1), θZ , θX(1)) =
1

m

m∑
i=1

∥∥ψθW (wi)−V
(
φθA(1)

(ai)⊗φθZ (zi)⊗φθX (xi)
)∥∥2 + λ1‖V ‖2,

(18)

which estimates the conditional expectation EW [ψW (W)|A = a,Z = z,X = x]. Let
(V̂ , θ̂A(1), θ̂Z , θ̂X(1)) be the minimizer of L̂1. Then, in stage 2, we can learn (u, θA(2), θZ , θX(2))
using

L̂2(u, θA(2), θW , θX(2)) =
1

n

n∑
i=1

(
ỹi−u>

(
ψθA(2)

(ãi)⊗ψθX(2)
(x̃i)⊗ V̂ v1(ãi, x̃i, z̃i)

))2
+ λ2‖u‖2,

(19)

where we denote v1(a,x, z) =
(
φθ̂A(1)

(ãi)⊗φθ̂X (x̃i)⊗φθ̂Z (z̃i)
)

.

In DFPV, we first fix parameters θ = (θA(1), θZ , θX(1), θA(2), θZ , θX(2)) and obtain weights. This is
given as

V̂ (θ) = Ψ>1 Φ1(Φ>1 Φ1 +mλ1I)−1, û(θ) =
(
Φ>2 Φ2 +nλ2I

)−1
Φ>2 y2, (20)

where we denote θ = (θA(1), θZ , θA(2), θW) and define matrices as follows:

Ψ1 = [ψθW (w1), . . . ,ψθW (wm)]
>
, Φ1 = [v1(a1, z1), . . . ,v1(am, zm)]>,

y2 = [ỹ1, . . . , ỹn]>, Φ2 = [v2(ã1, z̃1), . . . ,v2(ãn, z̃n)]>,

v1(a,x, z) = φθA(1)
(a)⊗φθX(1)

(x)⊗φθZ (z), v2(a, z) = ψθA(2)
(a)⊗ψθX(2)

(x)⊗
(
V̂ (θ)v1(a,x, z)

)
.

We learn the parameters by minimizing the following:

L̂DFPV
1 (θ) =

1

m

m∑
i=1

∥∥∥ψθW (wi)− V̂ (θ)v1(ai, xi, zi)
∥∥∥2 + λ1‖V̂ (θ)‖2,

L̂DFPV
2 (θ) =

1

n

n∑
i=1

(
ỹi− û(θ)>v2(ãi, x̃i, z̃i)

)2
+λ2‖û(θ)‖2.

The algorithm is given in Algorithn 2.

E Additional Experiments

In this appendix, we report the results of two additional experiments. One is a synthetic setting
introduced in Mastouri et al. [18], which has a simpler data generating process. The other is based on
the real-world setting introduced by Deaner [3]. In both setting, DFPV performs similarly to or better
than existing methods.

25

Algorithm 2 Deep Feature Instrumental Variable with Observable Confounder
Input: Stage 1 data (ai, zi,wi, xi), Stage 2 data (ãiz̃i, ỹi, x̃i), Regularization parameters (λ1, λ2).

Initial values θ(0) = (θ
(0)
A(1), θ

(0)
Z , θ

(0)
A(2), θ

(0)
W , θ

(0)
X(1), θ

(0)
X(2)). Learning rate α, additional data

(xextrai ,wextra
i)

Output: Estimated structural function f̂struct(a)
1: t← 0
2: repeat
3: Compute V̂ (θ), û(θ) in (20)
4: Update parameters in features θ(t+1) ← (θ

(t+1)
A(1) , θ

(t+1)
Z , θ

(t+1)
A(2) , θ

(t+1)
W , θ

(t+1)
X(1) , θ

(t+1)
X(2)) by

θ
(t+1)
A(1) ← θ

(t)
A(1)−α∇θA(1)

L̂DFPV
1 (θ)|θ=θ(t) , θ

(t+1)
Z ← θ

(t)
Z −α∇θZ L̂

DFPV
1 (θ)|θ=θ(t)

θ
(t+1)
X(1) ← θ

(t)
X(1)−α∇θX(1)

L̂DFPV
1 (θ)|θ=θ(t) , θ

(t+1)
X(2) ← θ

(t)
X(2)−α∇θX(2)

L̂DFPV
2 (θ)|θ=θ(t)

θ
(t+1)
A(2) ← θ

(t)
A(2)−α∇θA(2)

L̂DFPV
2 (θ)|θ=θ(t) , θ

(t+1)
W ← θ

(t)
W −α∇θW L̂

DFPV
2 (θ)|θ=θ(t)

5: Increment counter t← t+ 1;
6: until convergence
7: Compute û(θ(t)) from (20)
8: Compute mean feature for W using stage 1 dataset

µθX(2)⊗θW ←
1

n

∑
ψ
θ
(t)

X(2)

(xextrai)⊗ψ
θ
(t)
W

(wextra
i)

9: return f̂struct(a) = (û(t))>
(
ψ
θ̂
(t)

A(2)

(a)⊗µθX(2)⊗θW

)

E.1 Experiments with Simpler Data Generating Process

Here, we show the result for the synthetic setting proposed in Mastouri et al. [18]. The data generating
process for each variable is given as follows:

U := [U1,U2], U2 ∼ Unif[−1,2] U1,∼ Unif[0,1]−1[0 ≤ U2 ≤ 1]

Z := [U1 + Unif[−1,1], U2 +N (0,3)]

W := [U1 +N (0,3), U2 + Unif[−1,1]]

A := U2 +N (0,0.05)

Y := U2 cos(2(A+ 0.3U1 + 0.2))

From observations of (Y,W,Z,A), we estimate f̂struct by PCL. For each estimated f̂struct, we
measure out-of-sample error as the mean square error of f̂ versus true fstruct obtained from Monte-
Carlo simulation. Specifically, we consider 20 evenly spaced values of A ∈ [0.0,1.0] as the test data.
The results with data size n = m = {500,1000} are shown in Figure 6.

From Figure 6, we can see that DFPV and CEVAE methods perform worse and have larger variances
than KPV and PMMR methods. This is not surprising, since DFPV tends to require more data than
KPV and PMMR, as needed to learn the neural net feature maps (rather than using fixed pre-defined
kernel features). Hence, we can say that we should favor KPV and PMMR over DFPV when the
data is low-dimensional and the relations between the variables are smooth. We would like to note,
however, DFPV outperforms CEVAE, which shows that the proxy setting is still required.

E.2 Experiments using Grade Retention dataset

To test the performance of DFPV in a more realistic setting, we conducted the experiment on the
Grade Retention dataset introduced by Deaner [3]. This aims to estimate the effect of grade retention
based on the score of math and reading on the long-term cognitive outcomes, in which we use scores
in elementary school as a treatment-inducing proxy (Z) and cognitive test scores from Kindergarten

26

500 1000
Data Size

0.3

0.5

0.7

Ou
t-o

f-S
am

pl
e

M
SE

Algorithm
KPV
PMMR
CEVAE
DFPV

Figure 6: Result of structural function experiment in the setting in Mastouri et al. [18]

DFPV CEVAE KPV PMMR
Math 0.023(0.001) 0.054(0.007) 0.043(0.000) 0.032(0.001)

Reading 0.027(0.002) 0.082(0.007) 0.028(0.000) 0.022(0.000)
Table 1: Results of grade retension dataset

as the an outcome-inducing proxy (W). Following Mastouri et al. [18], we generate a synthetic
"ground truth" by fitting a generalized additive model to learn a structured causal model (SCM), and
a Gaussian mixture model to learn unmeasured confounder based on the learned SCM. Note, this is
needed since for real-world data there is no measured ground truth.

Table 1 shows the result for this dataset. In this setting, the performance of DFPV matches KPV
and PMMR. As in the experiment described in the revious section, the setting is low-dimensional
(one-dim treatment variable, three-dim treatment-inducing proxy, four-dim outcome-inducing proxy)
and the generative model is smooth (the "ground truth" being a generalized additive model and a
Gaussian mixture model). For these reasons, we might again expect this data to favor kernel methods,
such as KPV and PMMR; nonetheless, our method matches them. DFPV again outperforms CEVAE
in this setting.

F Experiment Details

In this section, we present the data generation process of experiments and the detailed settings of
hyper-parameters.

F.1 Demand Design Experiment

Here, we introduce the details of demand design experiments. The observations are generated from
the following causal model,

Y = P

(
exp

(
V −P

10

)
∧ 5

)
− 5g(D) + ε, ε ∼ N (0,1),

where Y represents sales, P is the treatment variable (price), and these are confounded by potential
demand D. Here we denote a∧ b = min(a, b), and the function g as

g(d) = 2

(
(d− 5)4

600
+ exp(−4(d− 5)2) +

d

10
− 2

)
.

27

To correct this confounding bias, we introduce cost-shifter C1,C2 as a treatment-inducing proxy, and
views V of the reservation page as the outcome-inducing proxy. Data is sampled as

D ∼ Unif[0,10]

C1 ∼ 2sin(2Dπ/10) + ε1
C2 ∼ 2sin(2Dπ/10) + ε2
V ∼ 7g(D) + 45 + ε3
P = 35 + (C1 + 3)h(D) +C2 + ε4

where ε1, ε2, ε3, ε4 ∼ N (0,1). From observations of (Y,P,C1,C2, V), we estimate f̂struct by PCL.
For each estimated f̂struct, we measure out-of-sample error as the mean square error of f̂ versus true
fstruct obtained from Monte-Carlo simulation. Specifically, we consider 10 evenly spaced values of
p ∈ [10,30] as the test data.

F.2 dSprite Experiment

Here, we describe the data generation process for the dSprites dataset experiment. This is an
image dataset parametrized via five latent variables (shape, scale, rotation, posX and posY).
The images are 64× 64 = 4096-dimensional. In this experiment, we fixed the shape parameter
to heart, i.e. we only used the heart-shaped images. The other latent parameters take values of
scale ∈ [0.5,1], rotation ∈ [0,2π], posX ∈ [0,1], posY ∈ [0,1].

From this dataset, we generate the treatment variable A and outcome Y as follows:

1. Uniformly samples latent parameters (scale,rotation,posX,posY).

2. Generate treatment variable A as
A = Fig(scale,rotation,posX,posY) +ηA.

3. Generate outcome variable Y as

Y =
1

12
(posY− 0.5)

‖BA‖22− 5000

1000
+ ε, ε ∼ N (0,0.5).

Here, function Fig returns the corresponding image for the latent parameters, and η, ε are noise
variables generated from ηA ∼ N (0.0,0.1I) and ε ∼ N (0.0,0.5). Each element of the matrix
B ∈ R10×4096 is generated from Unif(0.0,1.0) and fixed throughout the experiment. From the data
generation process, we can see that A and Y are confounded by posY. Treatment variable A is given
as a figure corrupted with Gaussian random noise. The variable posY is not revealed to the model,
and there is no observable confounder. The structural function for this setting is

fstruct(A) =
‖BA‖22− 5000

1000
.

To correct this confounding bias, we set up the following PCL setting. We define the treatment-
inducing variable Z = (scale,rotation,posX) ∈ R3, and the outcome-inducing variable by an-
other figure that shares the same posY, with the remaining latent parameters fixed as follows:

W = Fig(0.8,0,0.5,posY) +ηW ,

where ηW ∼ N (0.0,0.1I).

We use 588 test points for measuring out-of-sample error, which are generated from the grid points of
latent variables. The grids consist of 7 evenly spaced values for posX,posY, 3 evenly spaced values
for scale, and 4 evenly spaced values for orientation.

F.3 Policy Evaluation Experiments

We use the same data (Y,P,C1,C2, V) in demand design for policy evaluation experiments. We
consider two policies. One is a policy depends on costs C1,C2 which is

πC1,C2
(C1,C2) = 23 +C1C2.

To conduct offline-policy evaluation, we use data (C1,C2, V) to compute the empirical average of
h(πC1,C2

(C1,C2), V). In our second experiment, the policy depends on current price P , which is

28

Table 2: Network structures of DFPV for demand design experiments. For the input layer, we provide
the input variable. For the fully-connected layers (FC), we provide the input and output dimensions.

Stage 1 Treatment Feature φθA(1)

Layer Configuration
1 Input(P)
2 FC(1, 32), ReLU
3 FC(32, 16), ReLU
4 FC(16, 8), ReLU

Treatment-inducing Proxy Feature φθZ
Layer Configuration

1 Input(C1, C2)
2 FC(2, 32), ReLU
3 FC(32, 16), ReLU
4 FC(16, 8), ReLU

Stage 2 Treatment Feature ψθA(2)

Layer Configuration
1 Input(P)
2 FC(1, 32), ReLU
3 FC(32, 16), ReLU
4 FC(16, 8), ReLU

Outcome-inducing Proxy Feature ψθW
Layer Configuration

1 Input(V)
2 FC(1, 32), ReLU
3 FC(32, 16), ReLU
4 FC(16, 8), ReLU

given as
πP (P) = max(0.7P,10).

Again, we use data (P,V) to compute the empirical average of h(πP (P), V).

F.4 Hyper-parameters and network architectures

Here, we describe the network architecture and hyper-parameters of all experiments.

For KPV and PMMR method, we used the Gaussian kernel where the bandwidth is determined by
the median trick. We follow the procedure for hyper-parameter tuning proposed in Mastouri et al.
[18] in selecting the regularizers λ1, λ2.

For DFPV, we optimize the model using Adam [10] with learning rate = 0.001, β1 = 0.9, β2 = 0.999
and ε = 10−8. Regularizers λ1, λ2 are both set to 0.1 as a result of the tuning procedure described in
Appendix A. Network structure is given in Tables 2, 3.

In CEVAE, we attempt to reconstruct the latent variable L from (A,Z,W,Y) using a VAE. Here, we
use a 20-dim latent variable L, whose the conditional distribution is specified as follows:

q(L|A,Z,W,Y) = N (V1ψq(A,Z,W,Y),diag(V2ψq(A,Z,W,Y)∨ 0.1))

where ψq is a neural net and V1,V2 are matrices to be learned, and we denote a∨ 0.1 =
(max(ai,0.1))i. Furthermore, we specify the likelihood distribution as follows:

p(W,Z|L) = N (V3ψp(W,Z|L)(L),diag(V4ψp(W,Z|L)(L)∨ 0.1))

p(A|L) = N (V5ψp(A|L)(L),diag(V6ψp(A|L))(L)∨ 0.1))

p(Y |A,L) = N (µp(Y |A,L)(A,L),0.5)

Here, ψp(W,Z|L),ψp(A|L),µp(Y |A,L) are neural networks. We provide the structure of neural nets
in Table 4 and 5. Following the orignal work [17], we train all neural nets by Adamax [10] with a
learning rate of 0.01, which was annealed with an exponential decay schedule. We also performed
early stopping according to the lower bound on a validation set. To predict structural function,
we obtain q(L) by marginalizing q(L|A,Z,W,Y) by observed data A,Z,W,Y . We then output
f̂struct(a) = EL∼q(L)

[
EY∼p(Y |A=a,L) [Y]

]
.

29

Table 3: Network structures of DFPV for dSprite experiments. For the input layer, we provide the
input variable. For the fully-connected layers (FC), we provide the input and output dimensions. SN
denotes Spectral Normalization [23]. BN denotes Batch Normalization.

Stage 1 Treatment Feature φθA(1)

Layer Configuration
1 Input(A)
2 FC(4096, 1024), SN, ReLU
3 FC(1024, 512), SN, ReLU, BN
4 FC(512, 128), SN, ReLU
5 FC(128, 32), SN, ReLU

Treatment-inducing Proxy Feature φθZ
Layer Configuration

1 Input(Z)
2 FC(3, 128), ReLU
3 FC(128, 64), ReLU
4 FC(64, 32), ReLU

Stage 2 Treatment Feature ψθA(2)

Layer Configuration
1 Input(A)
2 FC(4096, 1024), SN, ReLU
3 FC(1024, 512), SN, ReLU, BN
4 FC(512, 128), SN, ReLU
5 FC(128, 32), SN, ReLU

Outcome-inducing Proxy Feature ψθW
Layer Configuration

1 Input(W)
2 FC(4096, 1024), SN, ReLU
3 FC(1024, 512), SN, ReLU, BN
4 FC(512, 128), SN, ReLU
5 FC(128, 32), SN, ReLU

Table 4: Network structures of CEVAE for demand design experiment. For the input layer, we
provide the input variable. For the fully-connected layers (FC), we provide the input and output
dimensions.

Structure of ψq
Layer Configuration

1 Input(P,Y,C1,C2, V)
2 FC(5, 128), ReLU
3 FC(128, 64), ReLU
4 FC(64, 32), ReLU

Structure of ψp(W,Z|L)
Layer Configuration

1 Input(L)
2 FC(20, 64), ReLU
3 FC(64, 32), ReLU
4 FC(32, 16), ReLU

Structure of ψp(A|L)
Layer Configuration

1 Input(L)
2 FC(20, 64), ReLU
3 FC(64, 32), ReLU
4 FC(32, 16), ReLU

Structure of µp(Y |A,L)
Layer Configuration

1 Input(L,P)
2 FC(21, 64), ReLU
3 FC(64, 32), ReLU
4 FC(32, 16), ReLU
5 FC(16, 1)

30

Table 5: Network structures of CEVAE for dSprite experiment. For the input layer, we provide the
input variable. For the fully-connected layers (FC), we provide the input and output dimensions. SN
denotes Spectral Normalization [23]. BN denotes Batch Normalization.

Structure of ψq
Layer Configuration

1 Input(W,A,Z,Y)
2 FC(8196, 1024), SN, ReLU
3 FC(1024, 512), SN, ReLU, BN
4 FC(512, 128), SN, ReLU
5 FC(128, 32), SN, ReLU

Structure of ψp(W,Z|L)
Layer Configuration

1 Input(L)
2 FC(20, 64), ReLU
3 FC(64, 128), ReLU
4 FC(128, 256), ReLU

Structure of ψp(A|L)
Layer Configuration

1 Input(L)
2 FC(20, 64), ReLU
3 FC(64, 128), ReLU
4 FC(128, 256), ReLU

Structure of µp(Y |A,L)
Layer Configuration

1 Input(L,A)
2 FC(4116, 1024), SN, ReLU, BN
3 FC(1024, 512), SN, ReLU, BN
4 FC(512, 128), SN, ReLU
5 FC(128, 32), SN, ReLU
6 FC(32, 1)

31

