
Supplementary Material
All code and data are available at

https://www.dropbox.com/sh/8e2enu3mwl7oxwk/AAAT8_xqkyLzLMqxqFH6tTjWa?dl=0

A Example Comparing dMDD and di-MDD in Conjunction withR

We now compare dMDD(P,Q) and di-MDD(P,Q) in the context ofR. To be self-contained, we copy
their definitions from (6) and (11) to here:

dMDD(P,Q) := min
h∈H

{D(h) + λR(h)} , (21)

where D(h) := max
h′∈H

D(h, h′, P,Q), R(h) := E
(z,y)∈P

`(h(z), y) + reg(h). (22)

And

di-MDD(P,Q) := D(h∗), where h∗ := arg min
h∈H
R(h). (23)

Here for simplicity, we abused the symbol D in (22) by maximizing out h′ in the original D. No
confusion will arise because the input argument clearly distinguishes the meaning. We also kept the
dependency on P and Q implicit in all terms. The tradeoff weight λ is not the one in (10).

Case 1: λ is small. In this case, dMDD places a low weight on fitting the source-domain data, which
differs substantially from the motivation of di-MDD. This is obviously not a good choice, and in
general, MDD does not operate in this regime.

Case 2: λ is large. This appears to make dMDD close to di-MDD because the large value of λ will
push h to focus on minimizingR, which is consistent with the definition of h∗ in di-MDD. However,
with large λ, the value of λR(h) under the optimal h for D(h) + λR(h) can get very large which
significantly overshadows D, making dMDD overlook the discrepancy measure D.

1

1

-1

-1 1

1

-1

-1 1

1

-1

-1
P

P

Q

Q

h P

P

Q

Q

Q

Q
P

P
a

-a

b

-b

case i case ii
(a) (b)

+
—

Figure 6: Examples for comparing dMDD and di-MDD. (a): for large λ. (b): for medium λ.

To see an example, consider a variant of Figure 1 where the data uniformly fills [−1, 1] × [−1, 1]
as plotted in Figure 6 (a). P and Q are the source and target domains, respectively. In the top-left
area P , suppose only one example (marked by x with vertical coordinate 1) is confidently labeled
as positive, and the rest examples are highly inconfidently labeled, hence not to contribute to the
risk R. Similarly, there is only one confidently labeled example (◦) in the bottom-right area of P ,
and it is negative with vertical coordinate −1. Since h (as a hypothesis) shifts vertically, we will
also use h to denote its coordinate on the vertical axis. As was explained in the caption of Figure 1,
D(h) = 1− h. Since the distance between h and the positive x is 1− h, the probability of x being
positive, according to h, is sigmoid(1− h). Similarly, the probability of ◦ being negative, according
to h, is 1− sigmoid(−1− h). Putting them together, we get the followingR with cross-entropy loss
and no regularization

min
h∈[0,1]

λ (log(1 + eh−1) + log(1 + e−1−h))︸ ︷︷ ︸
R(h)

+ 1− h︸ ︷︷ ︸
D(h)

. (24)

16

https://www.dropbox.com/sh/8e2enu3mwl7oxwk/AAAT8_xqkyLzLMqxqFH6tTjWa?dl=0

2 4 6 8 10
2

3

4

5

6

Figure 7: λR(hλ) as a function of λ

Whenever λ > 2, the optimal hλ is in (0, 1) and can be solved by a quadratic equation. Figure 7
shows that λR(hλ) diverges linearly in λ. Flipping h to [−1, 0] produces the same issue.

In contrast, di-MDD is immune to this problem because R is used only to determine h∗, while the
di-MDD value itself is solely contributed by D. Although the i-MDD objective in (11) also has a
coefficient α onR, the optimization there is on the feature φ, not on h any more.

Case 3: λ is medium. Here we will study two distributions as shown in Figure 6 (b), and analyze how
i-MDD produces reasonable preferences of “better aligned distribution", and how MDD produces
less justifiable preferences.

Same as the scenario of large λ, we do not change the feature distribution of source and target
domains, hence keeping D(h) = 1 − |h|. Instead, we vary the confidence of labels in the source
domain in order to generate new riskR. In case i (left of Figure 6 (b)), we activate (make the label
confident) the positive examples in the top-left P if, and only if, its vertical coordinate is in [0, a]
(a ∈ [0, 1]). Similarly, we activate the negative examples in the bottom-right P if, and only if, its
vertical coordinate is in [−a, 0]. The activated areas are shaded.

In case ii, (right of Figure 6 (b)), we activate the positive examples in the top-left P if, and only
if, its vertical coordinate is in [b, 1] (b ∈ [0, 1]). Similarly, we activate the negative examples in the
bottom-right P if, and only if, its vertical coordinate is in [−1,−b]. The activated areas are shaded.

Adopting a tiny regularizer ε|h| with very small ε > 0, it is clear that in both cases, and regardless of
the value of a and b, the optimal h∗ is 0. Therefore, the di-MDD value is 1, which properly quantifies
the discrepancy between P and Q regardless of the disclosure of source-domain labels.

However, the computation for dMDD is a little more involved. We first plotR(h) as a function of h
here:

1-1 a-a h

ℛ(h)

1-1 b-b h

ℛ(h)

(a) case i (b) case ii

1
2 + aϵ

1
2 + ϵ

bϵ

1
2 + ϵ

Figure 8: Plot ofR(h) for case i and ii in Figure 6 (b)

Then the plot of D(h) + λR(h) is

17

1-1 a-a h

!(h) + λℛ(h)

1-1 b-b h

!(h) + λℛ(h)

(a) case i (b) case ii

1 − a + λ
2 + λϵa

λ
2 + λϵ

1 − b + ϵλb

1 1

λ
2 + λϵ

Figure 9: Plot of D(h) + λR(h) for case i and ii in Figure 6 (b)

So we have

dMDD =

{
min{1, λ2 + λε, 1− a+ λ

2 + λaε} case i
min{1, λ2 + λε, 1− b+ λbε} case ii

. (25)

If λ > 2, then dMDD = 1 for case i, while that for case ii is strictly less than 1 unless b = 0 (ε is
infinitesimally small). So case ii is always preferred.

If λ ≤ 2, then dMDD = λ
2 + λε for case i. So there are only two situations left depending on b for

case ii.

• b ∈ [0, 1 − λ
2]: both cases have dMDD = λ

2 + λε, i.e., equally preferred. This is the desirable
outcome.

• b ∈ [1− λ
2 , 1]: then dMDD = 1− b+ λbε for case ii, and it is therefore preferred to case i.

To summarize, dMDD always prefers case ii to case i, except when λ < 2 and b ∈ [0, 1− λ
2], in which

case it is a tie. This is clearly not desirable because, by symmetry, there is no reason to prefer case
ii. It is also particularly concerning that the value of a in case i does not make any difference to the
preference. As such, dMDD is not as good as a di-MDD in this example.

B Detailed Formula for Bi-level Optimization

Let φ be the feature extractor which produces latent states zs := φ(xs) and zt := φ(xt). Let m be
the number of latent features, i.e., the dimensionality of zs and zt. Recall C is the number of classes.
Denote

M(h, φ) := max
h′
D(h′, h, φ). (26)

For convenience, we will denote the optimal h′ as h′(h, φ).

Given φ, the h can be determined by minimizing the risk on P̃ as in (12):

hφ := arg min
h
R(h, φ). (27)

Our overall optimization objective is

min
φ
M(hφ, φ) + αR(hφ, φ)⇐⇒ min

φ

{
M(hφ, φ) + αmin

h
R(h, φ)

}
. (28)

To optimize φ, we just need to compute the gradient in φ. Since both M and R depend on φ only
through zs and zt, we can consider the following equivalent objective

J(z) := M(hz, z) + αmin
h
R(h, z), where hz := arg min

h
R(h, z). (29)

Once the derivative ∂J
∂z is computed, the original derivative in φ can be easily computed through

backpropagation. We will use mini-batches with size b.

18

Step 1. The second term in (29), minhR(h, z), admits a straightforward calculation of the derivative
in z thanks to the Danskin’s theorem: ∇>z R(hz, z) = ∂

∂z |hz,zR(h, z). Here ∇>z stands for the
transpose of the gradient in z — hence a row vector — ofR(hz, z) (regarded as a function of z only).

Step 2. The first term in (29), M(hz, z), poses the most challenge due to the bi-level optimization,
and we can address it by using the techniques in [45]. Firstly, Eq 3 therein allows us to write

∇>z M(hz, z) = ∂
∂z

∣∣
hz,z

M(h, z)︸ ︷︷ ︸
:=(a)

− v> × ∂2

∂h∂z>

∣∣∣
hz,z
R(h, z)︸ ︷︷ ︸

:=(b)

(30)

where v> = ∂
∂h

∣∣
hz,z

M(h, z) ×
[

∂2

∂h∂h>

∣∣∣
hz,z
R(h, z)

]−1

. (31)

We will next show how to compute them in analytic forms, i.e., with no autodiff.

Step 2a. Here (a) is easy to compute: first find h′(hz, z) and then (a) = ∂
∂zD(h′, h, z) evaluated at

(h′(hz, z), hz, z).

Step 2b. v can be computed by using Algorithm 2-3 in [45]. Note in our work, h is a linear classifier
with a weight matrix W ∈ Rm×C . Accordingly, the v is indeed a matrix V ∈ Rm×C .

Akin to Step 2a, ∂
∂W

∣∣
Wz,z

M(W, z) = ∂
∂hD(h′,W, z) evaluated at (h′(Wz, z),Wz, z). The matrix

inversion in (31) is a major obstacle, and we instantiate Algorithm 2-3 in [45] as follows:

1. Initialize by V = D = ∂
∂W

∣∣
Wz,z

M(W, z) ∈ Rm×C .

2. for j = 1, . . . , #max-iter do

3. D = D − α · ∂2

∂W∂W>

∣∣∣
Wz,z

R(W, z) ·D

4. V = V −D
So the computational bottleneck is step 3. However, there is a closed form to the directional Hessian
if we use the cross-entropy loss, i.e.,

R(W, z) = Ezs∼P̃ [−W>:,yszs +G(W>zs)]. (32)

Indeed, let

ps :=
1

exp(G(W>zs))

 exp(W>:1 z
s)

...
exp(W>:Cz

s))

 , where G(u) := log
∑C

c=1
exp(uc). (33)

and Appendix D of [49] shows that with 1C = (1, . . . , 1)> ∈ RC , P̃ (xs) = 1
b , P = (p1, . . . , pb),

Z = (z1, . . . , zb),

∂2

∂W∂W>

∣∣∣∣
Wz,z

R(W, z) ·D =
1

b
Z
[
Q> − P> ◦ (1>C ⊗ (Q>1C))

]
, (34)

where Q = P ◦ (D>Z). (35)

Here ⊗ is the Kronecker product, and ◦ is the Hadamard product (elementwise). Since only S
changes over the iterations on j while Z does not, we can pre-compute P and Z>Z. Furthermore,
we only need to compute the Q> − P> ◦ (1> ⊗ (Q>1)) as a surrogate for D, and then use the
pre-computed Z>Z in Q.

Step 2c. Given v, we will compute (b) as follows. Since W is a matrix, the derivative can be
complicated. So we resort to the vectorization operator w := vec(W), and accordingly, we can
consider v as the vectorization of a matrix V ∈ Rm×C . Then the derivative in w can be written as

∂

∂w
R(w, z) = Ezs∼P̃ [(ps − eys)⊗ zs], (36)

where eys is the ys-th canonical vector in RC . We next compute v> ∂2

∂w∂z>
R(w, z).

19

Obviously its derivative in zt is 0, and its derivative in zs is

P̃ (xs)v> ∂
∂zs [(ps − eys)⊗ zs] = P̃ (xs)v>(∂

∂zs [ps ⊗ zs]− eys ⊗ Im) (37)

= P̃ (xs)v> ∂
∂zs [ps ⊗ zs]− P̃ (xs)V >:,ys , (38)

where Im ∈ Rm×m is the identity matrix and v = vec(V). To compute the first term in (38), we
drop the superscript s for simplicity. Notice that for any class c from 1 to C, we have

∂pc
∂z = pcW

>
:c − pc

C∑
i=1

piW
>
:i = pc(ec − p)>W>. (39)

Therefore
∂
∂z (pcz) = pcIm − z ∂

∂zpc = pc(Im − z(ec − p)>W>), (40)
which implies that

v> ∂
∂z [p⊗ z] =

∑
c

pcV
>
:c (Im − z(ec − p)>W>) (41)

= (V p)> + (z>V p)(Wp)> − [p> ◦ (z>V)]W>. (42)
This can be computed efficiently because it only involves matrix-vector multiplication. In practice,
we would like to do it in a batch for all s (recall we have dropped this superscript). Letting A = V P ,
B = WP , F = Z>V , it is not hard to derive thatv

> ∂
∂z1 [p1 ⊗ z1]

v> ∂
∂z2 [p2 ⊗ z2]

...

 = A> + [(A> ◦ Z>)1m1>m] ◦B> − (P> ◦ F)W>. (43)

To construct (V:,y1 , . . . , V:,yb)
>, we can utilize the infrastructure in the programming language. For

example, in MATLAB, it can be easily computed by V (:, [y1, . . . , yb])′.

B.1 Analysis of computational cost

The calculation of the derivatives of the second term in (29) and the part (a) in (30) is straightforward.
The computational cost is O(bm). Recall that the inverse Hessian vector production in (31) is
the main computational bottleneck. The approximation algorithm in Step 2b can be solved with
O(imaxbmC), where imax is the number of maximal iterations. The matrix vector multiplication in
Step 2c costs O(bmC). Therefore, the total computational cost is upper bounded by O(imaxbmC).

In practice, we used conjugate gradient (CG), where the imax stands for the maximum number of
iterations for CG. We set m = 1024, b = 150, and C can be at most 65 in our datasets. Instead of
limiting the maximum number of iterations, we set the tolerance of convergence to 10−5. The final
time cost for completing CG over the entire mini-batch was less than a second, and the remaining
operations in implicit differentiation (30) are much less expensive.

C Bounding the gap in gradient from cache augmentation

The key advantage of i-CDD is the principled optimization. While the cache augmentation in Section
4.2 may appear ad hoc, we point out here that it only introduces a bias in the gradient optimization
that can be bounded linearly by the queue length, i.e., staleness.

Suppose our mini-batch size is b and the input samples drawn at iteration τ are {xτi }bi=1. Note we do
not distinguish source or target domain and simply treat them as xτi . Suppose at the beginning of
iteration τ , the feature extractor is φτ . Then the latent features are zτi = φτ (xτi). Suppose we store
the latent feature of the past s steps, i.e., {zτ−1

i } ∪ . . .∪ {zτ−si }. That is, s is our staleness factor. To
simplify notation, we denote zτ−1 := {zτ−1

i } and zτ1:τ2 := zτ1 ∪ . . . ∪ zτ2 . Suppose the ultimate
objective value of i-CDD is J , then our algorithm with cache augmentation computes the gradient in
φ at iteration τ as

g :=
1

b

b∑
i=1

∂zτi
∂φ

∂

∂zτi
J(zτ−s:τ). (44)

20

Here the average is only on the zτi of the current iteration τ , although J is computed using stale z
features in τ − 1, . . . , τ − s.
Our goal is to bound the distance between g and the “correctly” computed gradient. It is important to
note that zτ−1

i is computed by the past features φτ−1, not the current φτ . Hypothetically, if we could
compute them by using the latest φτ , then let us denote such fictitious z as ẑτ−1

i := φτ (xτ−1
i) and

define a syntactic sugar ẑτi = zτi . Then the “correct” gradient from a principled stochastic gradient
can be computed by

g∗ :=
1

b(s+ 1)

τ∑
π=τ−s

b∑
i=1

∂ẑπi
∂φ

∂

∂ẑπi
J(ẑτ−s:τ). (45)

So we can bound the bias by

‖g − g∗‖ ≤ ‖g − ĝ‖+ ‖ĝ − g∗‖ , where ĝ :=
1

b

b∑
i=1

∂zτi
∂φ

∂

∂zτi
J(ẑτ−s:τ). (46)

Firstly, g∗ and ĝ both evaluate J based on the augmented sample ẑτ−s:τ that is computed hypothet-
ically through the latest φt. The former then averages the partial derivative over all the b(s + 1)
samples while the latter only averages over the latest b samples. This deviation does not involve any
staleness, and can be bounded by standard concentration bounds such as Hoeffding’s inequality.

Secondly, g and ĝ differ only in how J is computed. The former uses the stale samples zτ−s:τ , while
the latter uses the fictitious samples ẑτ−s:τ . Since J is a smooth function,

∂

∂zτi
J(zτ−s:τ)− ∂

∂zτi
J(ẑτ−s:τ) (47)

can be bounded by the difference in the input arguments of J . Since the gradient in φ is bounded, so
‖φτ − φτ−s‖ ≤ O(s). Therefore,

∥∥zτ−si − ẑτ−si

∥∥ ≤ O(s), and the mean averaging inside J implies∥∥∥∥ ∂

∂zτi
J(zτ−s:τ)− ∂

∂zτi
J(ẑτ−s:τ)

∥∥∥∥ ≤ O(s) and hence ‖g − ĝ‖ ≤ O(s). (48)

To summarize, the error in the gradient consists of the standard stochastic gradient noise, along with
a term that is bounded linearly by the staleness s, which is in turn linear in the cache/queue size. So
as long as we do not keep many past features, the optimization will work well. An empirical study
has been shown in Section 6.2, and the values of b and cache size have been provided there.

D Experiment Details

D.1 Implementation details

We used the official code of CDD, MDD, and MDD+IA to produce the results for Office-Home and
Image-CLEF datasets. For other baselines, since the experimental configurations are the same, we
quoted the highest results in the corresponding literature. Our PyTorch implementaion is available at
https://www.dropbox.com/sh/8e2enu3mwl7oxwk/AAAT8_xqkyLzLMqxqFH6tTjWa?dl=0.

We first implemented a variant of CDD, named vCDD, where µsc − µtc′ was replaced by µsc − µsc′
in source domain only, and the class-aware sampling in [24] was replaced by cache augmentation.
This allowed us to compare i-CDD with the exact counterpart that does not use bi-level optimization.
We used ResNet-50 pre-trained on ImageNet as the feature extractor of vCDD model. The last FC
layer of ResNet-50 was replaced by a 2-layer bottleneck neural network, where each layer has 1024
hidden units and batch normalization and sigmoid activation were applied to the hidden outputs. The
bottleneck was immediately followed by a 1-layer classifier with multiple softmax units, each of
which corresponds to an output class. i-CDD model used the same network architecture.

For i-MDD, to make a fair comparison, we followed MDD [23] to implement the network. ResNet-50
was adopted as the feature extractor with parameters pre-trained on ImageNet. The last FC layer
of ResNet-50 was replaced by a 1-layer bottleneck network, where batch normalization, ReLU
activation, and Dropout were applied to the outputs of the 1024 hidden units. Since we expected that
a simple linear classifier could achieve high accuracy on the latent representations, instead of using
2-layer neural network, the main classifier h and auxiliary classifier h′ were 1-layer neural network
with width 1024.

21

https://www.dropbox.com/sh/8e2enu3mwl7oxwk/AAAT8_xqkyLzLMqxqFH6tTjWa?dl=0

D.2 Hyper-parameter selection

Each method has hyper-parameters that are selected using the validation set which is comprised
of labeled source examples and unlabeled target examples. The dimensionality of latent repre-
sentations that are used for computing disparity discrepancy objectives, e.g. di-MDD, di-CDD, was
selected from {128, 256, 512, 1024, 2048}. The size of the circular queue (cache) for each class
was selected from {10, 30, 50, 100, 200}. For i-MDD method, the trade-off parameter α in (11)
was selected from {0.01, 0.1, 1, 10, 100}; the trade-off parameter γ in (13) was selected from
{2, 3, 4, 5, 10}. For CDD and i-CDD methods, the trade-off parameter β in (14) and (20) was
selected from {0.001, 0.01, 0.1, 1}.
The hyper-parameters that were used for producing the results are summarized here:

Table 4: Hyper-parameters for all algorithms

Dataset Algorithm latent dimension cache size α β γ

Office-31
CDD 1024 30 - 0.001 -
i-CDD 1024 30 - 0.001 -
i-MDD 1024 - 10 - 4

Office-Home
CDD 1024 50 - 0.01 -
i-CDD 1024 50 - 0.01 -
i-MDD 1024 - 10 - 4

Image-CLEF
CDD 2048 30 - 0.001 -
i-CDD 2048 30 - 0.001 -
i-MDD 2048 - 10 - 4

D.3 Additional comparison with methods not based on feature adaptation

We also compared with three state-of-the-art methods for unsupervised domain adaptation that are not
based on feature adaptation. These include [72], [73], and [74]. The performance on all the datasets
is summarized in Table 5, in comparison with i-CDD:

Table 5: Accuracy on target domain

Method Office-31 Office-Home ImageCLEF

[72] 88.6 71.8 88.5
[73] 89.6 71.0 90.3
[74] 88.8 69.2 90.2
i-CDD 90.9 70.8 89.4

In Table 5, we conducted the experiment for [72] on ImageCLEF, and the results for each domain are
as follows:

I -> P P -> I I -> C C -> I C -> P P -> C

77.4± 0.5 92.2± 0.6 96.1± 0.2 91.7± 0.4 77.6± 0.6 95.8± 0.4

The rest of the results in the table are quoted from the original paper, after checking manually on the
data and their code.

Our i-CDD outperforms all these methods on Office-31. In addition, [72] is inferior to i-CDD on
ImageCLEF, and [74] is inferior on Office-Home. [73] is almost the same as i-CDD on Office-Home.
In addition, [73] requires solving a large generalized eigenvalue systems in their Eq 7. According to
their Section “Computational Complexity”, the cost is O(d1(d2

1 +n2)) for n images in the source and
target domains combined, and d1 can be as large as 1024. So it is highly intensive in computation for
large n. Although stochastic PCA could be applied, its impact on the performance remains unclear.

22

To conclude, our i-CDD performs very competitively overall, and it could be overly demanding to
require a method outperform state of the art on all datasets.

D.4 Additional ablation studies

Impact of Batch Size

In our methods, random sampling was used to produce mini-batch data. Obviously, the mini-batch
size determines the sampling distribution of the label space. For instance, when the mini-batch size is
small, it may happen that within a given batch of samples, all source samples were drawn from 10
classes among 65 classes and all target samples were drawn from another 10 classes. The class-wise
alignment objectives would suffer from this between-domain class distribution shift in the form of
misalignment. Therefore, we investigated the impact of batch size.

Table 6: Impact of mini-batch size on target domain accuracy (Ar→ Cl, Office-Home)

batch size vCDD i-CDD

16 28.4 29.5
32 39.3 38.8
64 55.9 57.3

128 56.9 59.4
256 56.7 59.2

As shown in Table 6, both vCDD and i-CDD enjoyed performance improvement with increased
mini-batch size. Both methods worked better with a larger mini-batch size. This is because large mini-
batch increases the empirical class diversity in each batch. This result suggests that class-conditioned
domain adaptation approaches work well when the class diversity is high, e.g., when each mini-batch
covers the whole label space.

Standard deviations of Office-Home

To complement Table 2, we next present the mean and standard deviation of target domain accuracy
for vCDD, i-CDD, and i-MDD on the Office-Home dataset. Most existing literature does not report
standard deviation on this dataset, so it was not reported in Table 2.

Table 7: Accuracy (%) on Office-Home for unsupervised domain adaptation

Method vCDD i-CDD i-MDD

Ar→ Cl 56.2 ± 0.6 60.8 ± 0.7 56.5 ± 0.5

Ar→ Pr 74.2 ± 0.4 77.5 ± 0.7 74.7 ± 0.6

Ar→ Rw 77.0 ± 0.6 78.8 ± 0.5 78.3 ± 0.3

Cl→ Ar 62.4 ± 0.4 64.3 ± 0.5 61.9 ± 0.4

Cl→ Pr 72.3 ± 0.5 74.3 ± 0.6 72.4 ± 0.4

Cl→ Rw 71.4 ± 0.4 73.4 ± 0.5 72.3 ± 0.6

Pr→ Ar 61.7 ± 0.7 65.3 ± 0.8 63.2 ± 0.7

Pr→ Cl 61.4 ± 0.6 61.9 ± 0.6 55.6 ± 0.5

Pr→ Rw 78.7 ± 0.6 78.7 ± 0.5 78.4 ± 0.3

Rw→ Ar 71.3 ± 0.4 72.1 ± 0.5 71.4 ± 0.4

Rw→ Pr 60.6 ± 0.5 61.8 ± 0.4 59.7 ± 0.2

Rw→ Cl 81.7 ± 0.4 81.8 ± 0.6 81.7 ± 0.5

Avg 69.3 70.8 68.8

23

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [Yes]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

24

	Introduction
	Preliminaries
	Implicit Task-Driven Margin Disparity Discrepancy
	Conflict between MDD and HH-divergence
	A new implicit task-driven MDD
	Practical discussions: differentiable surrogates
	Bi-level optimization

	Task-driven Contrastive Domain Discrepancy
	Implicit task-driven CDD
	Cache-augmented training

	Related Works in Unsupervised Domain Adaptation via Feature Adaptation
	Experimental Results
	Comparison of target-domain accuracy
	Ablation study

	Conclusion
	Example Comparing dMDD and di-MDD in Conjunction with R
	Detailed Formula for Bi-level Optimization
	Analysis of computational cost

	Bounding the gap in gradient from cache augmentation
	Experiment Details
	Implementation details
	Hyper-parameter selection
	Additional comparison with methods not based on feature adaptation
	Additional ablation studies

