
A Derivation of (5)

Because

νt =

{
1 if t = 1, N ,
2 otherwise

holds on path graphs, we have

F (n) =
M !

ZM
·

∏N−1
t=2

∏
i∈[R] nti!∏N−1

t=1

∏
i,j∈[R] ntij !

·
N−1∏
t=1

∏
i,j∈[R]

ϕ
ntij

tij

from (2). This gives

− logF (n)− log Pr(y|n)
= − logM ! +M logZ

−
N−1∑
t=2

∑
i∈[R]

log nti! +

N−1∑
t=1

∑
i,j∈[R]

log ntij !−
N−1∑
t=1

∑
i,j∈[R]

ntij log ϕtij −
N∑
t=1

∑
i∈[R]

log pti(y|n)

=

N−1∑
t=1

∑
i,j∈[R]

ftij(ntij) +

N−1∑
t=2

∑
i∈[R]

g(nti) +

N∑
t=1

∑
i∈[R]

hti(nti) + C,

where C is a constant. We can verify easily that the feasible region of problem (5) is LZ
M defined in

(3).

B Proofs

B.1 Proof of Proposition 1

Proof. The function log z! is a discrete convex function, since

log(z + 2)! + log z!− 2 log(z + 1)!

= log(z + 2)− log(z + 1) ≥ 0.

This yields that ftij(z) = log z!− z · log ϕtij is a discrete convex function and g(z) = − log z! is a
discrete concave function. Because a univariate continuous convex function is also a discrete convex
function, hti(z) = − log [pti(yti|z)] is a discrete convex function from Assumption 1.

B.2 Proof of Proposition 2

Proof. First, we show that

− log(w!) + α · (z − w) ≥ − log(z!), ∀z ∈ Z≥0 (6)

holds for arbitrary w ∈ Z≥0, when − log(w + 1) ≤ α ≤ − logw. When z ≥ w,

− log(w!) + α · (z − w) + log(z!) =

z∑
k=w+1

(α+ log k) ≥ 0

holds because α+ log(w + 1) ≥ 0. When z < w,

− log(w!) + α · (z − w) + log(z!)

w∑
k=z+1

(−α− log k) ≥ 0

holds because −α− logw ≥ 0. Thus, inequality (6) holds.

Substituting w = n
(s)
ti in (6), we get ḡ(s)ti (z) ≥ g(z) for all z ∈ Z≥0. This yields

R̄(s)(n) =

N−1∑
t=2

R∑
i=1

ḡ
(s)
ti (nti) ≥

N−1∑
t=2

R∑
i=1

g(nti) = R(n).

Furthermore, since ḡ(s)ti (n
(s)
ti ) = g(n

(s)
ti ) from simple calculation, we get R̄(s)(n(s)) = R(n(s)).
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Figure 5: The computation time of each algorithm when varying N . The values are averages of 10
synthetic instances when R is fixed to 50, M is fixed to 103 and the uniform potential is used.

B.3 Proof of Proposition 3

Proof. There is a one-to-one correspondence between a feasible solution to the problem (5), n, and
a feasible solution to the MCFP instance constructed, z, under the relationship nti = zut,iwt,i

and
ntij = zwt,iut+1,j

; the constraint
∑

i∈[R] nti = M is equivalent to the supply constraints at node
o and d, the constraint

∑
j∈[R] ntij = nti corresponds to the flow conservation rule at node wt,i

and the constraint
∑

i∈[R] ntij = ni+1,j corresponds to the flow conservation rule at node ut+1,j .
Moreover, corresponding n and z and have the same objective function value in problem (5) and the
MCFP instance, respectively. These facts yield that n∗ is the optimum solution of the problem (5).
Because all the cost functions are discrete convex (this can be easily verified by Proposition 1 and
definition of ḡ(s)ti (z) in Proposition 2), the constructed instance belongs to C-MCFP.

C Additional experimental results

C.1 Computation time

We run an experiment to investigate the relationship between N (i. e. the number of vertices of
the underlying graph) and the computation time. The results are shown in Figure 5. The values are
averages of 10 synthetic instances when R is fixed to 50, M is fixed to 103 and the uniform potential
is used.

C.2 Characteristics of the solutions

We run the same experiments as Figure 2 varying the value of M . The results are shown in Figures 6
and 7. The outputs of the proposed method and NLBP are totally different when M is small, and they
get closer as M increases. This is owing to the nature of Stirling’s approximation log x! ≈ x log x−x;
it is inaccurate especially when x is small.

C.3 Histogram interpolation

As an application of MAP inference of CGMs on path graphs, we can interpolate the time series
of histograms between given two histograms. In this section, we show experimental results on this
application and discuss the differences between the output of the proposed method and that of the
existing method.

C.3.1 Settings

First, we briefly explain how to realize interpolation between two histograms by MAP inference
of CGMs on path graphs. Suppose we are given histogram η1 := [η11, . . . , η1R] at time 1 and the
histogram ηN := [ηN1, . . . , ηNR] at time N . The interpolated histogram ηt at time t (= 2, . . . , N−1)
is calculated by the following procedure.

1. Consider a CGM on a path graph with N vertices.
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Proposed (L), Sparsity: 77% NLBP, Sparsity: 0% NLBP (rounded), Sparsity: 99%

M = 100, uniform

Proposed (L), Sparsity: 58% NLBP, Sparsity: 0% NLBP (rounded), Sparsity: 54%

M = 200, uniform

Proposed (L), Sparsity: 44% NLBP, Sparsity: 0% NLBP (rounded), Sparsity: 33%

M = 300, uniform

Proposed (L), Sparsity: 27% NLBP, Sparsity: 0% NLBP (rounded), Sparsity: 17%

M = 500, uniform

Figure 6: Comparison of solutions yielded by the proposed method (L), NLBP, and NLBP (rounded)
when R = 20 and the uniform potential is used.

15



Proposed (L), Sparsity: 82% NLBP, Sparsity: 0% NLBP (rounded), Sparsity: 88%

M = 100, distance

Proposed (L), Sparsity: 71% NLBP, Sparsity: 0% NLBP (rounded), Sparsity: 69%

M = 200, distance

Proposed (L), Sparsity: 61% NLBP, Sparsity: 0% NLBP (rounded), Sparsity: 52%

M = 300, distance

Proposed (L), Sparsity: 45% NLBP, Sparsity: 0% NLBP (rounded), Sparsity: 26%

M = 500, distance

Figure 7: Comparison of solutions yielded by the proposed method (L), NLBP and NLBP (rounded)
when R = 20 and the distance potential is used.
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2. Let y1 = η1 and yN = ηN .
3. yt (t = 2, . . . , N − 1) is treated as a missing value. This can be achieved by setting

hti(z) = 0 (t = 2, . . . , N − 1, i ∈ [R]) in the objective function of the problem (5).
4. Find a solution n∗ to the MAP inference problem under an appropriate potential ϕ.
5. Obtain an interpolation result by ηti = n∗

ti (t = 2, . . . , N − 1, i ∈ [R]).

In our experiment, we consider a grid space of size 5 × 5 = 25 (= R) and a histogram η :=
[η1, . . . , ηR] with a value ηi for each cell i (= 1, . . . , R). To get interpolation results which consider
the geometric structure defined by Euclidean distance in the grid space, we set the potential ϕtij =
exp(−(ri− rj)

2− (ci− cj)
2)), where (ri, ci) is the two-dimensional coordinate of the center of cell

i in the grid space. We set N = 6 and use Gaussian distribution pti(yti|nti) ∝ exp(−5(yti − nti)
2)

for the noise distributions at t = 1, N .

C.3.2 Results

The results are shown in Figure 8. Note that Figure 8 illustrates different objects from what is shown
in Figures 2, 6 and 7; Figure 8 illustrates the interpolated node contingency table values nti as
two-dimensional grid spaces, while Figures 6 and 7 illustrate edge contingency table values ntij as
matrices. As shown in the figure, NLBP tends to assign non-zero values to many cells, while proposed
(L) assigns non-zero values to a small number of cells, resulting in sparse solutions. Moreover, the
outputs of the proposed (L) are integer-valued while those of NLBP are not. This characteristic of
the proposed method is beneficial for interpretability when the histogram values are the numbers of
countable objects (e.g., the number of people in the area).
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Figure 8: Three examples of interpolation results yielded by each method. In each example, three
sequences of histograms in the two-dimensional grid space are presented; the first row shows the
input histograms η1 and ηN , the second row shows the interpolation results obtained by proposed
(L), and the third row shows the interpolation results obtained by NLBP.
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