
A Panel Selection Datasets

We examine data from the following 11 real-world sortition panel selection instances, generously
provided to us by several groups that specialize in organizing citizens’ assemblies. Table 1 shows the
instance short-names we use throughout the paper, and which organization was responsible for each
panel. The final two columns compare the values of our theoretical upper bounds on the marginal
discrepancy, illustrating that in all instances except “obf”, the bound from Theorem 3.3 is tighter.
Finally, we give some metadata about each instance, which is required for calculating the values of
our theoretical upper bounds.

In particular, n = number of pool members, k = number panel members, C = set of distinct realized
feature-vectors in the pool. Precise constants used for computing exact the upper bounds are derived
in Appendix B: the Theorem 3.2 bound is exactly k/m, the Theorem 3.3 bound is exactly

√
1
2 (1 + ln 2

ln |C| ) ·
√
|C| ln(|C|) + 1

m
,

and the Theorem B.8 bound is exactly 2k/nmin+1
m . In all instances, nmin = 1.

Table 1: Instance parameters and resulting theoretical bounds

Instance Organization n k |C| Thm 3.2 Thm 3.3 Thm B.8

sf(a) Sortition Foundation 312 35 182 35/m 24.2/m 71/m
sf(b) Sortition Foundation 250 20 92 20/m 16.5/m 41/m
sf(c) Sortition Foundation 161 44 92 44/m 16.5/m 89/m
sf(d) Sortition Foundation 404 40 108 40/m 18.0/m 81/m
sf(e) Sortition Foundation 1727 110 762 110/m 53.8/m 221/m
cca Center for Climate Assemblies 825 75 554 75/m 45.1/m 151/m
hd Healthy Democracy 239 30 202 30/m 25.6/m 61/m
mass MASS LBP 70 24 25 24/m 8.0/m 49/m
nexus Nexus 342 170 242 170/m 28.4/m 341/m
obf Of By For 321 30 294 30/m 31.6/m 61/m
ndem New Democracy 398 40 173 40/m 23.5/m 81/m

B Omitted Proofs and Additional Beyond-Worst-Case Upper Bounds from
Section 3

B.1 General Rounding Procedure

Throughout this section, we repeatedly face the task of rounding the entries of some distribution p
to some vector p̄ that must also be a valid distribution (i.e., have entries in [0, 1] such that ‖p̄‖1 =
1), and have entries that are integer multiples of 1/m. However, many of the standard rounding
procedures we apply, such as randomized rounding and discrepancy-based dependent rounding, only
give guarantees for rounding probabilities to 0/1 vectors, rather than to multiples of 1/m. Thus, in
several proofs (Theorem 3.1, Theorem 3.2, Theorem 3.3, Theorem B.8), we apply these canonical
rounding methods to a modified version of our original vector p, called x′. After constructing x′, we
round it to a 0/1 vector x̄′, from which we finally compute p̄. We more precisely define this general
rounding procedure, and characterize some of its useful properties, below.

Definition B.1 (Procedure for using 0/1 rounding procedure to round p to p̄). Let p be a distribution,
represented as a vector. Let x be the vector p with entries scaled by m, so that xj := m · pj . Then,
define the vector bxc, which we can think of as the “integer components” of each entry of x, i.e.,
bxcj := bm · pjc. Finally, we define x′ as the “decimal components” of the entries of x, so that
x′ := x− bxc. We will round x′ to a 0/1 vector.

Then, construct p̄ from p as follows:
1. Construct the vector x′ as above.
2. Round x′ to some 0/1 vector x̄′ via a given rounding procedure such that ‖x̄‖1 = ‖x′‖1.
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3. Set p̄ such that

p̄ :=
bxc+ x̄′

m
.

At a high level, this rounding procedure can be thought of as scaling up the vector we want to round
by m, holding this scaled vector’s integer components aside and rounding its decimal components,
and then adding the integer components back in and scaling back down by m.

Now, we show that this rounding procedure produces a p̄ with the properties we want—(a) it has
entries that are multiples of 1/m and (b) it is a valid distribution—as well as an additional property
(c), which helps translate guarantees on existing roundinig schemes to guarantees in our setting.

Lemma B.2. Suppose we are given a 0/1 rounding scheme which, given x′ ∈ [0, 1]|K| and con-
straint matrix M , produces some x̄′ which satisfies

• x̄′ ∈ {0, 1}|K|,
• ‖x̄′‖1 = ‖x′‖1, and

• |(M(x′ − x̄′))i| ≤ g(i) for each row i.

Then given some distribution p ∈ R|K|+ and m ∈ N, the procedure in Definition B.1, using such a
0/1 rounding scheme, produces p̄ such that

(a) p̄ ∈ (Z+/m)|K|,

(b) p̄ is a distribution, and

(c) |(M(p− p̄))i| ≤ g(i)
m for each row i.

Proof. We prove each property separately:

(a) holds: p̄ contains multiples of 1/m, since in the general procedure (Definition B.1), its entries
are set to the sum of two integers divided by m.

(b) holds: p̄ is a valid distribution: all entries of p̄ must be non-negative, and we have that ‖p̄‖1 =
‖p‖1 = 1, as shown below.

‖p̄‖1 =
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(c) holds: Fix some i and the corresponding row of (M(p− p̄)), referred to as (M(p− p̄))i. Then,

|(M(p− p̄))i| =
∣∣∣∣
(
M

(bxc+ x′

m
− bxc+ x̄′

m

))

i

∣∣∣∣ =
|(M(x′ − x̄′))i|

m
≤ g(i)

m

B.2 Omitted Proofs

We will make repeated use of the following generalization of Hoeffding’s inequality (see e.g. Propo-
sition 5 of [9]):
Lemma B.3. If {ξj} are negatively associated random variables with ξj ∈ [aj , bj ] and ξ =

∑
j ξj ,

then

Pr [|E[ξ]− ξ| ≥ t] ≤ 2 exp

{
− 2t2∑

j(bj − aj)2

}
.

Here is our first use:
Theorem 3.1. For any realizable π, we may efficiently randomly generate p̄ such that its marginals
π̄ satisfy

‖π − π̄‖∞ = O

(√
n log n

m

)
.
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Proof of Theorem 3.1. Given a vector of marginals π, let p be a basic solution to Mp = π, where
M is the individual-feasible panel membership matrix, so that |supp(p)| ≤ n.

Then, we will construct p̄ from p by constructing x′, rounding it to x̄′ ∈ {0, 1}|K|, and then re-
constructing p̄ as described in Definition B.1. To do this 0/1 rounding, here we use any random-
ized rounding procedure that satisfies the following properties: preservation of adding up constraint
‖x̄′‖1 = ‖x′‖1, preservation of marginals E[x̄′j ] = x′j , and that x̄′j are negatively associated, as
defined in [5, 9]. These properties are satisfied via any number of randomized rounding algorithms
[5]. Note as in Definition B.1, ‖x̄′‖1 = ‖x′‖1 implies that p̄ ∈ D̄.

Now it remains to analyze the marginal π̄i provided to any given individual i by p̄. Consider the
collection of x̄′j for which i is contained in panel j. Then, using the negative association of these
x̄′js, we have that for any t ≥ 0,

Pr[|Mx′ −Mx̄′| ≥ t] = Pr



∣∣∣∣∣∣
E
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j3i
x̄′j


−
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j3i
x̄′j

∣∣∣∣∣∣
≥ t


 , (B.1)

by the definition of x̄′j . Then by Hoeffding (Lemma B.3),

≤ 2 exp

( −2t2

|{j : i ∈ j}|

)
(B.2)

≤ 2 exp

(−2t2

n

)
, (B.3)

where here we use that |supp(p)| ≤ n. Then taking t =
√

1+ε
2 n log n,

≤ 2

n1+ε
. (B.4)

Taking a union bound over all n rows i then gives

Pr

[
‖Mx′ −Mx̄′‖∞ ≥

√
(1 + ε)

2
·
√
n log n

]
≤ 2

nε
< 1.

By Lemma B.2, we therefore have

Pr

[
‖π − π̄‖∞ ≤

√
1 + ε

2
·
√
n log n

m

]
≥ 1− 2

nε
> 0.

Note: if we are additionally guaranteed that all of the πi = Ω(k/n), then a multiplicative form of
Chernoff yields

‖π − π̄‖∞ = O

(√
k log n

mn

)

with constant probability.
Theorem 3.2. For any realizable π, we may efficiently construct p̄ such that its marginals π̄ satisfy

‖π − π̄‖∞ ≤ k/m.

Proof of Theorem 3.2. Here, we apply the rounding algorithm used by Flanigan et al. [13] (Lemma
9, Appendix B.4.1), which builds on a notable theorem by Beck and Fiala [1]. Since this rounding
algorithm does 0/1 rounding, we apply their algorithm to round x′, as in Definition B.1, to some
0/1 vector x̄′, from which we construct p̄. By Lemma 9 in Appendix B.4.1 in [13], this algorithm
ensures the preservation of the “adding up” constraint, that is, that ‖x̄′‖1 = ‖x′‖1. Thus, by results
(a) and (b) of Lemma B.2, p̄ ∈ D̄.

Now, it remains to show that ‖π − π̄‖∞ = ‖M(p − p̄)‖∞ ≤ k/m. Fortunately, as they prove, the
rounding procedure of Flanigan et al. [13] guarantees that when rounding x′ to x̄′, for a constraint
matrix M with column sparsity k, ‖M(x′− x̄′)‖∞ ≤ k. By Lemma B.2 result (c), this immediately
implies that ‖π − π̄‖∞ ≤ k/m.
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Theorem 3.3. If π is anonymous and realizable, then we may efficiently construct p̄ such that its
marginals π̄ satisfy

‖π − π̄‖∞ = O

(√
|C| log |C|
m

)
.

Proof of Theorem 3.3. We begin with anonymous marginals π witnessed by some distribution p over
K. The first order of business is to project p into “type space,” in order to derive a distribution over
panel types. Overloading F , we let F (P ) = P denote the panel type of a given panel P , defined as
the multiset F (P ) = {F (i) : i ∈ P}. Then we define the distribution over panel types induced by p
as p, where the probability of drawing panel type P from p is defined as pP :=

∑
P∈K:F (P )=P pP .

This p satisfies the PANEL TYPE LP in Eq. (3.3). As an aside, note that this p has support supp(p) =
{F (P ) : P ∈ supp(p)}. We will assume without loss of generality that p is a basic solution to (3.3),
so that it has at most |C| nonzero entries, where C is the set of all feature-vectors appearing in the
pool, i.e., supp(p) ≤ |C|. Since |supp(p)| ≤ n without loss of generality, |supp(p)| ≤ n also, and
so this basic p may be found efficiently.

Given this distribution p over panel types, we will round it to a uniform lottery p̄ of sizem over panel
types K. Finally, we will lift this distribution over panel types p̄ back to a distribution p̄ over panels
with the desired guarantee, and argue that this lift can be performed when the original marginals π
are anonymous.

We generate p̄, a distribution with all probabilities multiples of 1/m, from p via randomized round-
ing, as in Theorem 3.1. To produce p̄ via a 0/1 rounding algorithm, we follow the procedure given
in Definition B.1, where here, p, p̄ correspond to the p, p̄ given in the definition. Via this definition,
we construct x, bxc , x′, x̄′ analogously, so that x = mp, etc. By choosing a randomized rounding
procedure that preserves ‖x̄′‖1 = ‖x′‖1, by Lemma B.2 we have that p̄ is a valid distribution con-
taining multiples of 1/m. We again assume this rounding procedure samples x̄′j which are negatively
associated, and preserves that E[x̄′j ] = x′j for all panel types j.

Recall that type marginals τc, τ̄c represent the expected number of panel spots allocated to each
feature vector c by p, p̄, respectively, and are given by τ = Qp and τ̄ = Qp̄. (Recall that Q, as
described in Section 3, encodes the number of copies of each feature vector on each panel type.) We
will next analyze the proximity of the rounded type marginals τ̄c to the original type marginals τc.

Proceeding via an analysis similar to that of Theorem 3.1, we consider the collection of random
variables x̄′j for which feature vector c appears on panel type j (i.e., Qcj > 0). We note that these
x̄′j are again negatively associated, and thus all Qcj x̄′j are negatively associated, since for a fixed
instance all Qcj are constant.

Then for any t ≥ 0,

Pr[|(Qx′ −Qx̄′)c| ≥ t] = Pr



∣∣∣∣∣∣
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∑

j

Qcj x̄
′
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Qcj x̄
′
j
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 , (B.5)

by the definition of xj and x̃j . Then by Hoeffding (Lemma B.3) with ξj = Qcj x̃j ,

≤ 2 exp

(
−2t2∑
j Q

2
cj

)
(B.6)

≤ 2 exp

( −2t2

|C|m2
c

)
, (B.7)

where mc := maxj Qcj , and (B.7) uses that for all c,
∑
j Q

2
cj ≤

∑
jm

2
c ≤ |supp(p)|m2

c ≤ |C|m2
c .

Thus, taking tc = α ·mc ·
√
|C| log |C|,

≤ 2

|C|2α2 . (B.8)

Taking α >
√

1
2 (1 + log 2

log |C| ) and union bounding over all |C| feature vectors, we may therefore
guarantee that with positive probability,

|(Qx′ −Qx̄′)c| ≤ α ·mc

√
|C| log |C|
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for all c simultaneously. By Lemma B.2, the derived p̄ and τ̄ and therefore satisfy

|τc − τ̄c| ≤ α ·mc

√
|C| log |C|
m

(B.9)

for all c simultaneously.

Given such a p̄, τ̄ over panel types, it remains to construct some uniform lottery p̄, π̄ over the panels
in K which is consistent with τ̄ and satisfies the desired guarantees on π̄, which are:

1. each individual appears on each panel in p̄ at most once,8

2. 0 ≤ π̄i ≤ 1 for all i, and

3. |πi − π̄i| is small for all i.

We will describe a procedure for forming p̄ and supp(p̄) from p̄, and then argue that it satisfies
all three of these criteria, as well as implies a valid distribution p̄ for which all probabilities are
multiples of 1/m. At a high level, this algorithm starts with the panel types Pj which form the
support of p, and for each c in turn allocates spots in these panel types Pj with feature vector c to
individuals in Nc := {i ∈ [n] : F (i) = c}, the nc individuals with feature vector c. Given the
type marginals τ̄ = Qp̄ output by our rounding procedure, it first calculates the “ideal” number of
spots s̄i to allocate to each individual i ∈ Nc across all of p̄. It then performs the allocation in such
a way that the guarantees above are satisfied. Since p̄ ∈ (Z+/m)|K| and this algorithm populates
each Pj in the support to create some Pj ∈ K, it follows that the p̄ which it ultimately produces is
p̄ ∈ (Z+/m)|K| also.

Algorithm 1 PANELPACKER

Require: p̄ ∈ (Z+/m)|K| a distribution over feasible panel types, N
Ensure: p̄ ∈ (Z+/m)|K| a distribution over feasible panels

1: Initialize Pj ← ∅ for each Pj ∈ supp(p̄), with multiplicity (i.e. for j ∈ [m])
2: for c ∈ C do
3: Initialize spots s̄i ∈ {bm · τ̄c/ncc, dm · τ̄c/nce} for i ∈ Nc such that

∑
i∈Nc

s̄i = m · τ̄c
4: Initialize d1

i ← s̄i for i ∈ Nc
5: for j ∈ [m] do
6: Let Icj be the first Qcj many i ∈ Nc with largest dji
7: Update Pj ← Pj ∪ Ijc
8: Update dj+1

i ← dji − 1{i ∈ Icj} for all i ∈ Nc
9: end for

10: end for
11: return p̄ the uniform distribution over Pj

For each panel type Pj in the support of p̄, Algorithm 1 forms one panel in the support of p̄ by,
for each c ∈ C, allocating each of panel type Pj’s Qcj “spots” to individuals i ∈ Nc. It populates
each panel type Pj with individuals for each c independently. If Algorithm 1 succeeds at step (6)
for all c ∈ C, then it produces a panel Pj ∈ supp(p̄). We first argue that Algorithm 1 succeeds in
producing feasible panels.

Proof that Algorithm 1 succeeds. In particular, we will argue that Algorithm 1 succeeds for every
iteration of step (6). Since

∑
i∈Nc

s̄i =
∑

Pj∈p̄Qcj , this is equivalent to showing that it assigns all
individuals i ∈ Nc such that dm+1

i = 0 for all i and no individual appears on any panel more than
once.

8We note that this is a concern because we will not simply be choosing known panels from collection K,
as we don’t see the entire collection a priori; we will instead be constructing panels that must turn out to be
feasible.
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In each round we have
dji := m · π̄i −

∑

j′<j

1{i ∈ Pj′}

the number of spots in p̄ of type c on which i still needs to be placed at the beginning of round j in
order to reach their allocation of s̄i spots. (This dji can be viewed as the “unsatisfied demand” of
individual i at round j, according to the promised number of spots mπ̄i.)

Because the π̄i are all either bm·τ̄c/ncc
m or dm·τ̄c/nce

m , the initial values of d0
i for i ∈ Nc are all within

1 of one another. Note that step (6) preserves this property that dji remain within 1 of one another
for all rounds, since at each step j it decreases some collection of maximal dji by 1.

Suppose for the sake of contradiction that for some c, Algorithm 1 reaches some first step j for which
a c position on panel Pj cannot be allocated to any i ∈ Nc; then there are not enough individuals
with remaining “unmet demand”, so Qcj > |{i : dji > 0}|. Since Qcj ≤ mc ≤ nc, it must be the
case that some i ∈ Nc have already been fully assigned by this step j (meaning that for these i it
is the case that dji = 0), and so all dji ∈ {0, 1} because the dji are within 1 of one another. But∑
j Qcj =

∑
i d

0
i = m · τ̄c, while at this point

∑

j′≥j

Qcj′ ≥ Qcj > |{i : dji > 0}| =
∑

i

dji ,

meaning that the number of unallocated positions of type c remaining at step j exceeds the remaining
unmet demand of the i ∈ Nc. This implies that strictly more thanQcj′ individuals iwere given spots
on panel j′ at step (6) for some earlier j′ < j. But this is impossible by the definition of Algorithm 1.
Therefore Algorithm 1 must succeed in feasibly assigning individuals of each type c to panels.

Since Algorithm 1 succeeds on step (6), it successfully puts Qcj individuals in Nc onto panel Pj for
each j and each c. By the feasibility of Pj we therefore have that |Pj | = k and Pj is quota feasible,
since Pj is quota feasible and Pj has the exact same numbers of individuals with each feature vector
as Pj .

Therefore Algorithm 1 terminates with a collection of quota-feasible panels, with no individual
appearing on any panel more than once.

We conclude by arguing that the output of Algorithm 1 satisfies the desired guarantees.

First, it is clear that each individual i appears on each panel Pj ∈ supp(p) at most once. This is
because for each individual i ∈ Nc for some c, i is assigned a position on Pj if and only if i ∈ Icj
at step (6), and Icj contains each i at most once by definition. Therefore condition (1) is satisfied.

We next show that these output π̄i satisfy condition (2). For each i, its value of π̄i in the distribution
p̄ output by Algorithm 1 is precisely s̄i/m.

Therefore clearly π̄i ≥ 0, and since condition (1) holds we have
∑
j 1{i ∈ Pj} ≤ m, and so π̄i ≤ 1

also. For a more explicit proof that π̄i ≤ 1, observe that since p is a distribution,

τ̄c =
∑

j

p̄jQcj ≤ max
j
Qcj = mc ≤ nc,

where the last inequality follows because all P are feasible panel types, so they cannot contain more
individuals i ∈ Nc than exist in the pool. By Algorithm 1 we have s̄i ∈ {bm · τ̄c/ncc, dm · τ̄c/nce}.
Dividing by nc and multiplying by m yields s̄i ≤ m, and so π̄i = s̄i/m ≤ 1. Thus (2) is satisfied.

Finally, we confirm condition (3), that the individual marginals are close. By the anonymity of π,
for all i with F (i) = c we have πi = τc/nc, and by its choice of s̄i and the fact that it succeeds,
Algorithm 1 guarantees that π̄i = s̄i/m ∈ (τ̄c/nc− 1/m, τ̄c/nc + 1/m). Since mc ≤ nc, therefore
(B.9) implies

|πi − π̄i| ≤
mc

nc
· α ·

√
|C| log |C|
m

+
1

m
= O

(√
|C| log |C|
m

)
,

for all i, satisfying condition (3) and showing the claim.
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Theorem 3.4. There exist p, π for which for all uniform lotteries p̄, π̄,

min
p̄∈D
‖π − π̄‖∞ = Ω

(√
k

m

)
.

We will make use of the following lemma:
Lemma B.4. Any k-uniform hypergraph on [n] is realizable via quotas as the set of feasible panels
for an instance of the panel selection problem with pool [n].

When individual membership in feasible panels is represented as M ∈ {0, 1}n×|K|, this lemma
claims that any M with uniform column norms is realizable by an instance of the panel selection
problem, meaning that there exists an instance of the panel selection problem (N, k, F, l, u) for
which M is precisely the individual-panel membership matrix for the set of feasible panels.

Proof. Given a set system S ⊆ ([n]
k ), we may construct a set of upper quotas such that the collection

of feasible panels is exactly S.

To do this, construct a binary feature fT for each T 6∈ S . For each i in [n], let fT (i) = 1 if and
only if i ∈ T ; otherwise let fT (i) = 0. Finally, enforce the upper quota that for all feasible panels
P ⊂ [n], ∑

i∈P
fT (i) ≤ k − 1,

for all T 6∈ S—that is, no feasible panel has more than k − 1 members belonging to any T . Clearly
no T 6∈ S is a feasible panel. For S ∈ S , observe that |S| = k, and so for all T 6∈ S , we have
|S ∩ T | ≤ k − 1. Therefore all S ∈ S are feasible.

Finally, it bears noting that this is also possible to execute using lower quotas: taking f ′T (i) =
1− fT (i), we could instead enforce for each T 6∈ S that

∑

i∈P
f ′T (i) ≥ 1.

Proof of Theorem 3.4. Using Lemma B.4, our aim is to identify and deploy some matrix M ∈
{0, 1}n×|K| for which

min
x̄∈∆̄
‖Mx̄‖∞ = Ω

(√
k
)
,

where ∆̄ := {x ∈ {. . . ,−3,−1, 1, 3, . . .}n :
∑
i xi = 0} and all columns of M sum to k. Translat-

ing and scaling appropriately and applying Lemma B.4, this will provide our desired Ω
(√

k
m

)
lower

bound.

The common instances which provide lower bounds of Ω(
√
k) for the Beck-Fiala problem are in-

sufficient for our purposes in two respects. First, while they are column-sparse, they are generally
not uniform in column norm. Second, they are incomparable in terms of the x̄ which they quantify
over: the Beck-Fiala problem considers minimizing ‖Mx̄‖∞ in the more restrictive rounding setting
where x̄ ∈ {−1, 1}n, while we are concerned with x̄ ∈ ∆̄.

We overcome these barriers by first modifying the Walsh matrices — a family of Hadamard matrices
— in order to guarantee uniform column norms, and then modifying the Beck-Fiala lower bound
proof of [25, Theorem 19] for arbitrary Hadamard matrices to apply to our matrices for all x̄ ∈
(2Z + 1)n.

To begin, let Ht be the 2t × 2t Walsh matrix, defined recursively by H0 = 1 and

Ht+1 =

[
Ht Ht

Ht −Ht

]
.

Let N := 2t denote its dimension.9 It is a fact that all rows (and columns) besides the first have an
equal number of 1 and −1 entries. Therefore we take H ′t to be the submatrix derived by dropping

9Note that this N is a variable used only in this proof, and it is unrelated to the pool N and its magnitude n
as used in the paper body.
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the first two columns of Ht. (We remove the first column so that all remaining columns have equal
sum; we remove the second so that ∆̄ is nonempty). Additionally, let hi denote the rows of H ′t, and
hj denote its columns. Then H ′t has the property that

∑
i h

j
i = 0, and in particular all columns hj

have N/2 1-entries.

We have the following lemma:

Lemma B.5.
min
x∈∆̄
‖H ′t x‖∞ ≥

N − 2√
N

,

where ∆̄ := {x ∈ {. . . ,−3,−1, 1, 3, . . .}N−2}.

Proof. This right-hand side is H ′t x = (h1x, . . . , hNx)T . We aim to show that there is some i for
which |hix| is large. Writing ‖H ′t x‖22 two ways, we have that

∑

i

(hix)2 = ‖x1h
1 + . . .+ xN−2h

N−2‖22

=
∑

j

x2
j‖hj‖22 +

∑

j 6=k

xjxk(hj · hk).

The entries of Ht are all ±1, and hj · hk = 0 for j 6= k (since the columns of Ht and therefore H ′t
are orthogonal), so this becomes

= (N − 2)
∑

j

x2
j

≥ (N − 2)2,

since x2
i ≥ 1 by assumption. Therefore by averaging there is some i for which (hix)2 ≥ (N−2)2

N ,
and so |hix| ≥ N−2√

N
), as desired.

Next we translate H ′t into an instance of the panel selection problem and argue it has the desired
properties. Take M := 1

2 (Ht + 1N×(N−2)) to be the {0, 1} matrix derived from H ′t.

The fact that M has uniform column norm k = N/2 directly follows from a property of Walsh
matrices. Therefore we may apply Lemma B.4 to argue that M is realizable as the individual-panel
membership matrix for some instance of the panel selection problem, with n = N , |K| = N − 2,
and k = N/2.

To conclude, consider the uniform p =
(

1
N−2 , . . . ,

1
N−2

)
, with m = a(N − 2) + (N − 2)/2 for

any a ∈ Z+. In this case, each coordinate of p falls evenly between multiples of 1/m and must
be rounded to multiples of 1/m. Letting x := p − bmpc/m = (1/2m, . . . , 1/2m) be this vector
of remainders, we must replace it with some x̄ ∈ (Z/m)N−2, while maintaining that

∑
j x̄j =∑

j xj = (N − 2)/2m, so that the resulting p̄ = bmpc/m + x̄ remains a distribution over panels.
(Note that here negative x̄j signify that the distribution mass on panel j decreases from p to p̄.)

Explicitly, we then have

‖π − π̄‖∞ = ‖Mp−Mp̄‖∞ (B.10)
= ‖M(x− x̄)‖∞ (B.11)

=
1

2m
‖My‖∞, (B.12)

where y := 2m(x̄− x).

=
1

2m
‖1

2
H ′ty +

1

2
1N×(N−2)y‖∞ (B.13)

=
1

4m
‖H ′ty‖∞, (B.14)
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where
∑
i yi = 0 because we require that p̄ remain a distribution. Then since y ∈ (2Z + 1)N−2, by

Lemma B.5 we have

≥ N − 2

4m
√
N

(B.15)

= Ω

(√
k

m

)
, (B.16)

since k = N/2.

This holds for all y ∈ (2Z + 1)N−2. Recall that D := {p̄ ∈ (Z+/m)|K| : ‖p̄‖1 = 1}, and so

D ⊆ {p+ ∆̄/2m}.
Therefore (B.16) implies that

min
p̄∈D
‖π − π̄‖∞ = Ω

(√
k

m

)
,

as desired.

B.3 Additional Beyond-Worst-Case Upper Bounds

Since some of our beyond-worst-case upper bounds apply to anonymous realizable π, it is reasonable
to ask how prevalent anonymous realizable π are, for arbitrary instances of sortition. Fortunately,
we have the following claim:
Claim B.6. For any instance of the panel selection problem and any realizable π, let π′ be the
“anonymized” marginals obtained by setting π′i to the average πi′ across all i′ with the same feature
vector as i. Then π′ is realizable also.

Proof of Claim B.6. Let π∗ denote the “anonymization” of π, and take

Π :=



π
′ : realizable, and for all c,

∑

i:F (i)=c

π′i =
∑

i:F (i)=c

πi



 .

We will show that π∗ ∈ Π.

We argue by way of contradiction. Let π̂ denote the “most anonymized” π′ ∈ Π, in the sense that

π̂ = arg min
π′∈Π

max
c

(
max

i:F (i)=c
π′i − min

i:F (i)=c
π′i

)
.

Let i and i′ be some pair of individuals with F (i) = F (i′) witnessing this maximum diameter, and
let p be a distribution with marginals π̂. For each such pair, we will argue that p may be modified so
that π̂i = π̂i′ while leaving all other marginals unchanged. By iteratively applying this to all such
pairs, we will contradict the minimality of π̂.

To start, observe that by assumption π̂i > π̂i′ . Let p′ be the distribution over feasible panels which
is the same as p, except that i and i′ switch places in any panel on which either of them appear. All
such panel replacements yield feasible panels, since they have the same feature vector c. Finally
take pnew = (p + p′)/2. As promised, this distribution has the property that πi = πi′ and all other
marginals are unchanged.

As a belated warm-up to the beyond-worst-case guarantees, we address the case when there is only
one feature of interest, so that F = {f}. It turns out that we can obtain strong guarantees for
this special case without using the machinery deployed in the proof of Theorem 3.3. We place no
constraints on the size of the set of feature values Ω, nor do we require that π is anonymous.
Theorem B.7. If π is realizable and |F | = 1, then we may efficiently identify p̄ such that its
marginals π̄ satisfy

‖π − π̄‖∞ <
2

m
.
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Proof of Theorem B.7. Given marginals π, let p be a distribution over feasible panels K which wit-
nesses π. The first step of this rounding is to consider the marginals τv of each feature value v:
τv =

∑
i:f(i)=v πi. Note that

∑
v τv =

∑
i πi = k. Since there is only one feature, all feasible

panels P satisfy

lv ≤ |{i ∈ P : f(i) = v}| ≤ uv, (B.17)

and taking the expectation of this over p gives

lv ≤ Ep[|{i ∈ P : f(i) = v}|] ≤ uv (B.18)
lv ≤ τv ≤ uv. (B.19)

Therefore lv ≤ bτvc and uv ≥ dτve. We will construct a new distribution p̄ over panels P which
satisfy bτvc ≤ |{i ∈ P : f(i) = v}| ≤ dτve for all features v, and are therefore guaranteed to be
feasible.

We will construct feasible panels via the following scheme. Consider the interval [0, km] ⊂ R as
representing the km spots to be allocated across the m panels which will comprise our lottery, and
let st := [t − 1, t) denote spot t. Next observe that m

∑
i πi = km, and so mπi may be viewed as

the expected number of spots which p would give to i.

First group the πi by feature value to form τv =
∑
i:f(i)=v πi, and then pack them into [0, km], so

that individuals with common feature values have contiguous sections; let Si denote the portion of
[0, km] allocated to i, so that |Si| = πi. We will choose an individual I(t) for each spot st, and then
assemble the m panels that comprise p̄ by taking

Pr := {I(t) : t = wm+ r for w ∈ {0, . . . , k − 1}}, (B.20)

for r ∈ {1, . . . ,m}.
How to choose which individual will get the spot t for each t? If Si ⊇ st then I(t) = i. Otherwise,
st is split between two or more individuals, possibly with different feature values, in which case we
call it contested. Observe that no matter how these contested st are allocated (no matter the choice
of I(t) for split t), it will be the case that |πi − π̄i| < 2/m, since there is at most one contested st at
each endpoint of the interval Si.

It remains to argue that the panels chosen in (B.20) are feasible; in particular that bτvc ≤ τ̄v ≤ dτve
for all v. By construction, each panel Pr has some number of spots which will necessarily be
allocated to an individual with feature value v, and some number of spots which are contested and
may or may not be allocated to an individual with feature vector v. For each value v, there are at
most two spots in all of [0, km] which are type contested in this way. If some panel Pr contains at
most one type-contested spot for type v, then no matter which way it is allocated, |{i ∈ P : f(i) =
v}| − τv| < 1, and so Pr is feasible with respect to v. In the worst case, for some given v both
of the spots which are type-contested by v appear on the same panel Pr. In order to ensure that
|{i ∈ P : f(i) = v}| − τv| < 1, it must be the case that exactly one of these two spots is allocated
to some i for which f(i) = v. Fortunately this constraint is easily satisfiable, even in the case when
a given panel Pr contains both of the type-contested spots for multiple features v.

Therefore the p̄ as constructed by (B.20) is supported by panels which are not only feasible but
respect quotas which are maximally tight, given that the input p, π was realizable. Finally since
each i contests at most two spots, we have that

‖π − π̄‖∞ <
2

m
.

Theorem B.8. Given realizable anonymous π, we may efficiently identify p̄, π̄ such that

‖π − π̄‖∞ = O

(
1

m
max

{
k

nmin
, 1

})
,

where nmin := minc nc is the minimum number of individuals in the pool which share any one
feature vector.

Proof. We proceed as in the proof of Theorem 3.3, but apply a different rounding to the panel type
LP to obtain p̄. To begin, p, π projects to some p, τ . Without loss of generality assume that it is a
basic solution to the TYPE LP (3.4).
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We will construct p̄ from p by applying 0/1 rounding as in Definition B.1.

Note that the constraint matrix Q in (3.3) has the property that for all columns qj , ‖qj‖1 = k. As
a special case of [8, Theorem 6], applied to x′ and the panel type LP, there exists an x̄′ ∈ {0, 1}|K|
such that

‖Q(x′ − x̄′)‖∞ < 2k.

and for which ‖x̄′‖1 = ‖x‖1. (This follows from a generalization of the Beck-Fiala algorithm which
both respects hard constraints and applies to arbitary matrices Q with bounded column norms, and
is therefore also algorithmic.)

Applying Lemma B.2, we then have

‖τ − τ̄‖∞ <
2k

m
.

Given that such a p̄, τ̄ exists, it remains to generate p̄ and π̄ in such a way as to give the desired
bound on the discrepany in individual marginals. We proceed in a manner identical to the proof of
Theorem 3.3.

Again we have that τ̄ ≥ 0 and τ̄ =
∑
j Qcj p̄j ≤ mc ≤ nc, where mc = maxj Qcj and nc is the

number of individuals i for which F (i) = c, since p̄ is a distribution over feasible panel types j.
Therefore dividing τ̄ amongst the π̄i as equally as possible for each c gives π̄i ∈ [0, 1].

By the anonymity of π, for all i with F (i) = c, πi = τc/nc, and dividing the spots in p̄ for feature
vector c as equally as possible amongst the nc individuals gives π̄i ∈ {τ̄c/nc ± 1

m}. This equal
division of spots in order to form p̄ from p̄ is feasible by the same Algorithm 1 as in the proof of
Theorem 3.3. Therefore the resulting p̄, π̄ satisfies

‖π − π̄‖∞ = max
c
|τc/nc − π̄|

<
1

nc
‖τ − τ̄‖∞ +

1

m

<
2k

nmin ·m
+

1

m
.

C Omitted Proofs from Section 4

Theorem 4.1. There exists a Maximin-optimal p∗ such that, for all uniform lotteries p̄,

Maximin(p∗)−Maximin(p̄) = Ω

(√
k

m

)
.

Proof of Theorem 4.1. We will follow the proof of Theorem 3.4: first we use the Walsh matrices to
construct a matrix with the desired properties, prove a modified version of Lemma B.5 for it, and
then appeal to Lemma B.4 to argue that it corresponds to a realizable instance of the panel selection
problem.

In contrast to the construction in Theorem 3.4, where we need only demonstrate that some π̄i de-
viates from πi, we must construct an instance for which (essentially) the minimum πi necessarily
decreases. We accomplish this by first modifying the Walsh matrices to have uniform row norm, so
that π is uniform and all πi are minimal. We then introduce a second set of “twin” individuals, each
i′ of which is a member of the panels which their twin i is not. This ensures that any discrepancy in
π̄ − π is witnessed in the downward direction.

To begin, again let Ht be the 2t × 2t Walsh matrix, with N := 2t its dimension. This time we take
H∗t to be the submatrix derived by dropping the first row of Ht. By properties of Walsh matrices,
all remaining rows in H∗t have an equal number of 1 and −1 entries, (though this is no longer true
of the columns).

Again letting hi denote the rows of H∗t , and hj denote its columns, we have the following new
version of Lemma B.5, which requires the additional assumption that

∑
j xj = 0:
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Lemma C.1.
min
x∈∆∗

‖H∗t x‖∞ ≥
√
N,

where ∆∗ := {x ∈ {. . . ,−3,−1, 1, 3, . . .}N :
∑
j xj = 0}.

Proof. This right-hand side is H ′t x = (h1x, . . . , hN−1x)T . We aim to show that there is some i for
which |hix| is large. Writing ‖H ′t x‖22 two ways, we have that

∑

i

(hix)2 = ‖x1h
1 + . . .+ xNh

N‖22

=
∑

j

x2
j‖hj‖22 +

∑

j 6=k

xjxk(hj · hk)

the entries of H∗t are all±1, and hj ·hk = −1 for j 6= k (since the columns of Ht were orthogonal),
so this becomes

= (N − 1)
∑

j

x2
j −

∑

j 6=k

xjxk

= N
∑

j

x2
j −

∑

j

∑

k

xjxk

= N
∑

j

x2
j

≥ N2,

since x2
i ≥ 1 by assumption. Therefore by averaging, there is some i for which (hix)2 ≥ N2

N−1 , and
so |hix| ≥

√
N , as desired.

As constructed, all rows of H∗t have the same number of 1s, so when we transform it into some M
for some instance of the panel selection problem, it will yield that the marginals π of uniform p are
uniform. However we cannot yet apply Lemma B.4, since the columns of the resulting M do not
have constant norm; in particular, the first column will be all 1s.

In order to simultaneously correct for this and translate from `∞ to Maximin lower bounds, we
introduce “twins” for each i. Letting M∗ = 1

2 (H∗t + 1(N−1)×N ) be this {0, 1} matrix, define
M̄∗ := 1(N−1)×N −M∗ to be its complement, so that M∗ij = 1− M̄∗ij for all i, j. Finally take

M =

[
M∗

M̄∗

]

and observe that this M ∈ {0, 1}(2N−2)×N has uniform column norm N − 1 because of M̄∗. We
may therefore apply Lemma B.4 to claim that it is the individual-panel membership matrix of some
instance of the panel selection problem.

The remainder of the argument proceeds similarly to that of Lemma B.5, with additional step of
showing that the lower bound holds for the maximin objective. We include the full argument for
completeness.

Similarly take p =
(

1
N , . . . ,

1
N

)T
, with m = aN +N/2 for any a ∈ Z+, n = 2N − 2 (the number

of individuals), and k = N − 1. This p gives equal marginals: here πi = (Mp)i = N−1
2N−2 = k

n

for all i. Again each coordinate of p falls evenly between multiples of 1/m and must be rounded to
multiples of 1/m. Letting x := p− bmpc/m = (1/2m, . . . , 1/2m)T be this vector of remainders,
we must replace it with some x̄ ∈ (Z/m)N , while maintaining that

∑
j x̄j =

∑
j xj = N/2m, so

that the resulting p̄ = bmpc/m+ x̄ remains a distribution over panels.

Explicitly, we then have
‖π − π̄‖∞ = ‖Mp−Mp̄‖∞ (C.1)

= ‖M(x− x̄)‖∞ (C.2)

=
1

2m
‖
[
M∗

M̄∗

]
y‖∞, (C.3)
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where y := 2m(x̄− x). Because `∞ is a maximum, this is

≥ 1

2m
‖M∗y‖∞ (C.4)

=
1

2m
‖1

2
H∗t y +

1

2
1(N−1)×Ny‖∞ (C.5)

=
1

4m
‖H∗t y‖∞, (C.6)

where
∑
i yi = 0 because we require that p̄ remain a distribution. Then since y ∈ (2Z + 1)N−2, by

Lemma B.5 we have

≥
√
N

4m
(C.7)

= Ω

(√
k

m

)
, (C.8)

since k = N − 1. Again since D ⊆ {p+ ∆̄/2m}, we then have

min
p̄∈D
‖π − π̄‖∞ = Ω

(√
k

m

)
.

Since π is uniform by construction (and so these p and π are optimal with respect ot Maximin),
this is a lower bound on the discrepancy of each marginal which was minimal before deviation. It
finally remains to show that this deviation happens in the downward direction, so that the minimum
marginal decreases by at least this amount. Observe that by the construction of M̄∗, for all p̄ we
have (M∗p̄)i = −(M̄∗p̄)i. Therefore for any given p̄, whichever coordinate i satisfies |(π − π̄)i| =
Ω(
√
k/m), there is a coordinate i′ for which (π − π̄)i′ = Ω(

√
k/m). Therefore in this instance

Maximin(p∗)−max
p̄∈D

Maximin(p̄) = Ω

(√
k

m

)
,

as desired.

Lemma 4.1. For NW-optimal p∗ over a support of panels supp(p∗), there exists a constant λ ∈ R+

such that, for all P ∈ supp(p∗),
∑
i∈P 1/π∗i = λ.

Proof of Lemma 4.1. We can write the problem of finding the NW optimizing distribution over a
fixed panel support P ⊆ K as below on the left, where NWn(p) is equal to the product of the πi,
the marginals implied by the panel distribution p (in contrast, in Section 2, we let NW (p) be the
geometric mean—here we we take the nth power). On the right, we’ve rewritten the program in
standard form, where we set f(p) = −NWn(p), h(p) = p1 +p2 + · · ·+p|P|−1, and gj(p) = −pj .
Observe that, ∀j ∈ [|P|], ∇h(p) = 1 and ∇gj(p) = −ej , where ej is the vector of 0s with a 1 at
index j.

max
p

NWn(p) min
p
f(p)

‖p‖1 = 1 h(p) = 0

pj ≥ 0 ∀j ∈ [|P|] gj(p) ≤ 0 ∀j ∈ [|P|]

Now, let p∗ be an optimal solution to this program, and supp(p∗) be its support, i.e., the set of
panels to which p∗ assigns nonzero probability. Then, since the objective and constraints of the
above program are continuously differentiable over their entire support (and thus at p∗), by the KKT
condition Stationarity, there exist some constants λ and µj for all j ∈ [|supp(p∗)|] (where 0 is the
zero vector) such that

∇f(p∗) + λ∇h(p∗) +
∑

j∈[|supp(p∗)|]

µj∇g(p∗) = 0 =⇒ (∇f(p∗))j = µj − λ

By dual feasibility and primal feasibility respectively, we have that µj , pj ≥ 0 for all j ∈
[|supp(p∗)|]; by complementary slackness, we have that

∑
j∈[|supp(p∗)|] µjp

∗
j = 0. Thus, for all
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j, either p∗j = 0, or p∗j > 0 and µj = 0. We have restricted supp(p∗) to panels j in which p∗j > 0,
so we conclude that µj = 0. It follows that

∂NWn(p∗)

∂p∗j
= − (∇f(p∗))j = −(µj − λ) = λ ∀j ∈ supp(p∗)

Finally, we can conclude the proof by expressing this partial derivative for fixed pj (which as shown,
has a constant value across all j in the support) in terms of the marginals π. We obtain that for all j
in supp(p∗),

λ =
∂NWn(p∗)

∂p∗j
=
∑

i∈N

NWn(p∗)

π∗i

∂π∗i
∂p∗j

=
∑

i∈Pj

NWn(p∗)

π∗i
= NWn(p∗)


∑

i∈Pj

1

π∗i




where Pj is the jth panel in supp(p∗). The second equality is by the product rule for derivatives,
where each term of the resulting sum is equal to the derivative of π∗i with respect to p∗j multiplied
by NW/π∗i , the NW holding out the marginal of individual i. The third equality is by the fact that
if i ∈ Pj , then ∂π∗i /∂p

∗
j = 1; otherwise ∂π∗i /∂p

∗
j = 0.

Lemma 4.2. For NW-optimal p∗, π∗, we have that π∗i ≥ 1/n for all i ∈ N .

Proof of Lemma 4.2. Let X[P 3 i] be the indicator that a panel P contains individual i. Then,

EP∼p∗
[∑

i∈P

1

π∗i

]
= EP∼p∗

[∑

i∈N

X[P 3 i]
π∗i

]
=
∑

i∈N

EP∼p∗ [X[P 3 i]]
π∗i

=
∑

i∈N

π∗i
π∗i

= n

By Lemma 4.1, we also have that E
[∑

i∈P
1
π∗i

]
= λ/NWn(p∗), and thus λ/NWn(p∗) = n. It

follows that for all panels P ,
∑
i∈P

1
π∗i

= λ/NWn(p∗) = n and therefore π∗i ≥ 1/n ∀i ∈ N ;

otherwise, we would have some panel P for which
∑
i∈P

1
πi
> n, a contradiction.

Lemma 4.3. For NW-optimal p∗, π∗, there exists a uniform lottery p̄, π̄ that satisfies NW(p∗) −
NW(p̄) ≤ k ‖π∗ − π̄‖∞.

Proof of Lemma 4.3. Let π∗min be the smallest marginal of any individual implied by the Nash-
optimal distribution over panels p∗, i.e., π∗min = mini∈N π

∗
i . Then, to upper-bound the loss in

NW, we assume an unattainable worst case that between p∗, π∗ and a given uniform lottery p̄, π̄,
all individuals probabilities suffer the largest loss of any marginal, ‖π∗ − π̄‖∞, and that this loss
manifests multiplicatively as badly as if all agents had original marginal probability π∗min. This first
gives the multiplicative bound:

NW (p∗) ≥ NW (p∗)

(
π∗min − ‖π∗ − π̄‖∞

π∗min

)
= NW (p∗)

(
1− ‖π

∗ − π̄‖∞
π∗min

)
.

Rearranging the above conclusion and then applying the facts that NW (p∗) ≤ k/n (trivially) and
π∗min ≥ 1/n (Lemma 4.2), we get the desired additive bound:

NW (p∗)−NW (p) ≤ NW (p∗) · ‖π
∗ − π̄‖∞
π∗min

≤ k

n
· ‖π

∗ − π̄‖∞
1/n

≤ k ‖π∗ − π̄‖∞

D Omitted Materials from Section 5

D.1 Algorithm Descriptions

Algorithms for calculating optimal panel distributions.
In this paper, we calculate optimal panel distributions across instances with respect to Maximin,
NW, and Leximin objectives. To do this, we build on publicly-available code [18], which imple-
ments the column generation techniques from [12].

Rounding algorithms.
At a high level, the task solved by the PIPAGE and BECK-FIALA rounding algorithms in Section 5
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can be thought of as rounding an input panel distribution p to some uniform lottery p̄ by rounding
the STANDARD LP described in Section 3. However, neither of these rounding methods are used to
directly round p; rather, they are used to round a modified version p′, which transforms the task from
rounding entries of p to multiples of 1/m to the task of rounding entries of p′ to 0/1. The details of
this transformation are described in the proof of Theorem 3.2 in Appendix B.

PIPAGE
We round p′ exactly according to the Pipage Rounding algorithm specified in Gandhi et al [16]. We
note that their algorithm is specified for the task of rounding bipartite graphs; we apply their methods
by formulating our rounding problem as a star graph, where each of the |K| vertices surrounding the
central vertex corresponds to a feasible panel P . Each edge from the central vertex i to a surrounding
vertex P has a weight (which will ultimately be rounded to 0/1) equal to xi,P = p′P , the probability
of drawing panel P from the modified version of the initial distribution p′. Gandhi et al’s degree
preservation property guarantees the satisfaction of our adding up constraint ‖p′‖ = ‖p̄′‖.
BECK-FIALA
Our Beck-Fiala implementation is identical to the deterministic implementation specified in the
proof of Lemma 9, Appendix B.4.1 of [13]. For details on the mapping of their setting to ours, see
the proof of Theorem 3.2 in Appendix B.

Integer Programs.

IP-MAXIMIN
The below integer program computes a lottery p̄ ∈ (Z+/m)|K|, where the variables are y, the lower
bound on any marginal probability; p̄, the uniform lottery; and π̄, the implied vector of marginals.
The first constraint, along with the objective, result in the maximization of the minimum marginal.
The second constraint imposes the relationship between the panel distribution p̄ and the marginals
π̄. The third constraint imposes that the resulting panel distribution x will be a uniform lottery. The
fourth and fifth constraints impose that p̄ is a valid distribution.

Maximize y
s.t. π̄i ≥ y ∀i ∈ N

∑

P∈K,
P3i

p̄P = π̄i ∀i ∈ N

m p̄P ∈ Z+ ∀P ∈ K
∑

P∈K
p̄P = 1

p̄P ≥ 0 ∀P ∈ K

IP-NW
This integer program is essentially the same as IP-MAXIMIN, except that instead of maximizing the
lower bound on the marginals, it maximizes the geometric mean of the marginals by equivalently
maximizing the sum of their logarithms.

Maximize
∑

i∈N
log(π̄i)

s.t.
∑

P∈K,
P3i

p̄P = π̄i ∀i ∈ N

m p̄P ∈ Z+ ∀P ∈ K
∑

P∈K
p̄P = 1

p̄P ≥ 0 ∀P ∈ K

IP-MARGINALS
This IP takes as input some panel distribution p, π to be rounded, and minimizes the largest discrep-
ancy of any resulting π̄i from the corresponding πi. Again, several of the constraints and variables
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are common with IP-MAXIMIN.

Minimize z
s.t. |πi − π̄i| ≤ z ∀i ∈ N

∑

P∈K,
P3i

p̄P = π̄i ∀i ∈ N

m p̄P ∈ Z+ ∀P ∈ K
∑

P∈K
p̄P = 1

p̄P ≥ 0 ∀P ∈ K

D.2 Implementation Notes and Algorithm Runtimes

Our experiments were implemented in Python and run on a 13-inch MacBook Air (2018) with a 1.6
GHz Intel Core i5 processor.

Runtimes of PIPAGE, BECK-FIALA, and IP-NW on rounding an unconstrained distribution are
given in the table below. We optimized IP-NW with Gurobi using its built-in piecewise linear
approximation of logarithms (given that IP-NW is nonlinear) with the parameter controlling the
error in the piecewise approximation set to FuncPieceError=0.0001. This worked quite well in most
instances, getting within 1/m of optimal fairness on 10 out of 11 instances.

IP-MAXIMIN and IP-MARGINALS were run in Gurobi and struggled to converge completely (even
after many hours), but showed good performance after a short time. The results in the paper show
their solutions after 30 minutes of run-time.

Table 2: Run-times for PIPAGE, BECK-FIALA, and IP-NW

Instance PIPAGE BECK-FIALA IP-NW

sf(a) 1.5 1.6 17.1
sf(b) 1.3 1.3 27.8
sf(c) 1.0 1.1 33.1
sf(d) 2.1 2.3 40.6
sf(e) 17.0 28.3 7245∗
cca 4.4 6.4 7207∗
hd 1.5 1.7 120.1
mass 0.4 0.4 3.4
nexus 2.8 3.2 21.1
obf 2.3 2.4 22.3
ndem 2.2 2.6 34.8

∗ indicates capped at 7200s (2 hours). Time is measured in seconds. All times given (except those
that timed out) represent the average over 3 runs.

D.3 Analysis of Nash Welfare Fairness Preservation (Figure corresponding to Figure 2)

Here we give the corresponding analysis from Figure 2 for NW. We see, first that there is some al-
gorithm in every instance that achieves within 0.1/m of NW (p∗), where p∗ is the NW optimizing
unconstrained distribution. This indicates that the cost of transparency to NW in practice is essen-
tially 0. We note that in a few instances, IP-NW, which should theoretically dominate all other
algorithms, is outperformed by either PIPAGE or BECK-FIALA. As we discuss in Appendix D.2,
this is due to small errors in the integer optimization errors.

We find that our theoretical upper bounds on NW loss are less useful than those on the Maximin
loss, because they are multiplied by an additional factor of k, while the value of the NW objective
falls within a similar range to the Maximin objective. We note, however, that these bounds would
be useful for larger m: currently, the maximum possible losses implied by the bounds fall between
191/m = 0.191 and 5922/m = 5.922. If we increased m by a factor of 100 to m = 100, 000 (this
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Figure 4: m = 1000. Shaded regions extend from NW(p∗), the fairness of the optimal unconstrained
distribution, down to the minimum fairness implied by the tightest theoretical upper bound in that
instance (in all instances but “obf” Theorem 3.3 is tightest). Each algorithm or bound’s loss relative
to NW(p∗) is written above in the corresponding color. We show a representative run of PIPAGE, a
randomized algorithm.

would mean drawing 5 lottery balls instead of 3), then our bounds would be nearly tight to optimal
in multiple instances (e.g., in “sf(a)”, this would yield a loss of 0.008), and would be meaningful in
all instances.

D.4 Analysis of Leximin Preservation (Figures corresponding to Figure 3)

Here we give the corresponding analysis from Figure 3 for all other instances. In all instances,
the conclusions we draw are essentially the same as those drawn from Figure 3: in all instances,
all algorithms almost exactly preserve the Leximin-optimal marginals. Our theoretical bounds are
meaningful, but we consistently outperform them in practice.
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Figure 5: sf(b)
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Figure 6: sf(c)
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Figure 7: sf(d)
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Figure 8: sf(e)
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Figure 9: cca
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Figure 10: hd
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Figure 11: mass
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Figure 12: nexus
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Figure 13: obf
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Figure 14: ndem
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