
A Appendix

A.1 HGN++

The list of hyperparameters and architectural changes investigated to improve the performance of
HGN is listed below. All models were run on P100 GPUs, with one GPU per learner, and each type of
evaluator: for calculating test reconstruction losses, SyMetric with PR, SyMetric with MLP and VPT.
We used an internal cluster to run the models, and each model was trained for 500k steps.

Training scheme: The original HGN was using a sequence of 30 images (x1,...x30) to infer the latent
representation z1. The model would then produce a 30 step rollout and the reconstruction error used
for training would be calculated between the original data used for inference and the reconstructed
(x̂1,...x̂30). Instead we investigated whether the model would work better if the original sequence of
images (x1,...xT) was used to infer the state at time zT rather than z1, so that the rollouts used for
training are into the future, and the reconstructed frames are not the ones seen by the encoder model.
We found that this latter setup worked better for HGN++.

We further investigated how many steps was required for inference: [5-30]; and how many steps the
model should reconstruct: 30, 60, 90. We found that using 5 inference steps and 60 reconstruction steps
worked well for HGN++.

Furthermore, we investigated whether it is important to train the model to be able to explicitly produce
good rollouts backwards in time (rather than just forward) as per (author?) [24]. We found that the
forward/backward straining scheme improved the performance of HGN++.

Encoder type: The original HGN was using a single encoder network to predict the final state (q,p).
We also investigated the value of other kinds of encoders: 1) separate networks for encodingq(x1,...xT)
and p(x1,...xT); 2) stacked encoder, where the single images are used to infer the position q(xi), and
the inferred position vectors are stacked to infer the momenta p(q1,...qT). We found that the original
encoder worked the best for HGN++.

The original HGN used an additional MLP to map between the latent sample inferred by the encoder
network z ∼ qφ(·|x1, ...xT), and the state s = (q,p) that was unrolled through the Hamiltonian
equations of motion according to s=MLP(z). We found that removing this additional transformation
and using the encoder sample directly as state worked better for HGN++.

Decoder type: We investigated whether replacing a ResNet based decoder with an MLP or a Spatial
Broadcast Decoder [52] might be beneficial for HGN. We found that the original ResNet was the best
choice.

Matching inferred states with rolled out states: similarly to (author?) [3] to investigated whether
introducing an extra term to the objective function shown in Eq. 5 used to train HGN helps imrove its
performance. The extra term forces the state at time step i produced through integrating the equations of
motion ŝi to match the state inferred by the encoder si∼qφ(·|xi−T ,...xi). We tried different weighing
of this additional terms with respect to the original objective function: LHGN +λ||ŝi−si||22, with
λ∈{0.01, 0.1, 1, 10}. We also tried enforcing this extra constraint every N ∈{6, 10, U(T)} steps,
where U(T) stands for uniform sampling of N for each trajectory between 1 and T. We found that none
of the choices made a significant difference to HGN training.

Loss regulariser: In the original HGN implementation, the variational objective in Eq. 5 was optimised
using the GECO solution [42]. We ran a hyperparameter sweep for κ ∈ [1e− 6, 0.01]. We also
considered another option for optimising the variational objective –β-VAE [22], with a hyperaparameter
sweep over β∈ [0, 20]. We found that β-VAE objective significantly outperformed the GECO one, and
β around 0.1 or 1 tended to work best for HGN++.

Latent space: In the original HGN implementation, the inferred state was 3D: s∈R4×4×32. Here
we investigated whether a 1D vector based latent state would perform better, e.g. s∈R32. We tried
different options for aggregating the original 3D representation into a 1D one: using an MLP, through
spatial average or max operation, or through a linear projection. The latter worked the best for HGN++.
We also investigated the size of the latent representation and found that 32 dimensions worked as well
as the larger options.

Hamiltonian network: We investigated whether replacing the Hamiltonian network from a convolu-
tional architecture to an MLP might be beneficial. We tried 1-4 layer MLPs with hidden layer of size

16

Figure 4: Visualisation of observations from a subset of datasets used in this paper.

250, and found that 4 layers gave us the best performance in HGN++. We also tried adding L1, L2 or a
weighted mix of both to the Hamiltonian weights, but found that it did not help. Exchanging Softplus
activations with Swish activations on the other hand made a difference.

Activation function: We investigated the role of ReLU, leaky ReLU, Softplus and Swish activations
in the encoder and decoder of HGN, and found the leaky ReLU worked the best.

Integrators: We found taht the original leap-frog integrator worked better than the others considered
(Euler, RK4). We found that the original ∆t=0.125 worked better than other choices (e.g. 0.25).

Training steps: The original HGN was trained over 15k steps, We found that increasing the number
of steps up to 1mln resulted in better performance. In all reported experiments we used 500k training
steps.

Learning rate: We found that the original learning rate of 1.5e-4 worked well for our experiments.

Batch size: We found that the models were training well with any batch size considered: 10, 32, or 128.
The reported experiments used batch size 128.

A.2 Datasets

All datasets have 32× 32× 3 observations. The ground truth phase space is 2D for mass-spring,
pendulum and 3D room datasets, 4D for the matching pennies, double pendulum and two-body datasets,
6D for the rock-paper-scissors dataset, 8D for the 4-particle MD dataset, and 32D for the 16-particle
MD dataset. Full description of the datasets can be found in Botev et al [?]. A visualisation of example
datasets from each type is shown in Fig. 4. All datasets are available under the Apache V2 license here:
https://github.com/deepmind/dm_hamiltonian_dynamics_suite.

Toy physics We re-use the mass-spring, pendulum and two-body datasets used in the original work
on building models with Hamiltonian priors [20, 49], as well as a new double-pendulum dataset. The
dynamics in these systems are governed by the Hamiltonians shown in Tbl. 2. The initial conditions for
each dataset are sampled in the following way:

• Mass Spring - we sample q and p together from the uniform distribution over the annulus with
lower radius bound 0.1 and upper radius bound 1.0 and the we multiply p by

√
km.

• Pendulum - we sample q and p together from the uniform distribution over the annulus with
lower radius bound 1.3 and upper radius bound 2.3.

• Double Pendulum - we sample the states of both pendulums analogously to Pendulum.

17

https://github.com/deepmind/dm_hamiltonian_dynamics_suite

• Two Body Problem - we follow the same protocol as in [49].

The sampling distribution for every dataset and parameter are shown in Table 3, where k,l,m and g
are the parameters corresponding to the spring force coefficient of the mass-spring system, pendulum
length, mass and gravitational force respectively. In the original datasets these values were fixed. We
also generated more challenging versions of these datasets, where these parameters are sampled. We
also randomly sample the horizontal positions and colours of the masses in both datasets. Although
the latter do not affect the resulting dynamics, we wanted to test whether the models are capable of
learning in this regime. We denote the more challenging versions of the datasets as “+c”. For these
datasets the radius of the rendered ball is proportional to its mass (see Fig. 4, top).

Dataset HamiltonianH(q,p) Hyperparameters

Mass Spring k q
2

2
+ p2

2m
k,m

Pendulum mlg(1−cos(q))+ p2

2lm
m,l,g

Double Pendulum
m2l

2
2p

2
1+(m1+m2)l21p

2
2−2m2l1l2p1p2cos(q1−q2)

2m2l
2
1l

2
2(m1+m2sin(q1−q2)2

−(m1+m2)gl1cos(q1)−m2gl2cos(q2) m1,m2,l1,l2,g

N-Body Problem −
∑
i<j

gmimj
||qi−qj ||

+
∑
i
||pi||

2
2

2mi
g,m1,...,mn

Table 2: The Hamiltonians used for simulating all of the classical mechanics systems.

Dataset Hyperparameters

Mass Spring k=2.0
m∼U(0.2,1.0)

Pendulum
m∼U(0.5,1.5)
g∼U(3.0,4.0)
l∼U(0.5,1.0)

Double Pendulum
m∼U(0.4,0.6)
g∼U(2.5,4.0)
l∼U(0.75,1.0)

Two Body m∼U(0.5,1.5)
h∼U(0.5,1.5)

Table 3: Sampling protocol for the hyperparameters of the coloured Toy physics datasets.

Cyclic games The Multi-agent cyclic games dataset are generating by using the continuous-time two
population replicator dynamics are defined as:

ẋi=xi
[
(Ay)i−x

TAy
]

ẏj=yj

[(
xTB

)
j
−xTBy

] (6)

where,A=−B are the payoff matrices of a zero-sum game for the row and column player respectively,
and (x, y) the joint strategy profile. We generate ground-truth trajectories by integrating the coupled
set of ODEs equation 6 using an improved Euler scheme or RK45. In both cases the ground-truth state,
i.e., joint strategy profile (joint policy), and its first order time derivative, is recorded at regular time
intervals ∆t. Trajectories start from uniformly sampled points on the product of the policy simplexes.
No noise is added to the trajectories.

Molecular Dynamics The goal of this set of datasets is to benchmark the performance of models
on problems involving complex many-body interactions. In particular, the generated datasets employ
a Lennard-Jones (LJ) potential [27], which is a popular benchmark problem and an integral part of
more complex force fields used, for example, to model water [1] or proteins [10].The two generated LJ
datasets have increasing complexity: one comprising only 4 particles at a very low density and another
one for a 16-particle liquid at a higher density. These MD datasets are rendered using the same scheme
as the toy physics datasets. All masses are set to unity and particles are represented by circles of equal
size with a radius value adjusted to fit the canvas well. In addition, different colours are assigned to the
particles to facilitate tracking their trajectories.

18

3D Room To evaluate the ability of models to deal with complex 3D visuals, we use a dataset of
MuJoCo [47] scenes consisting of a camera moving around a room with 5 randomly placed objects.
The objects are sampled from four shape types: a sphere, a capsule, a cylinder and a box. Each room
was different due to the randomly sampled colours of the wall, floor and objects similar to [28]. The
dynamics are created by rotating the camera around a single randomly sampled parallel of the unit
hemisphere centered around the center of the room. The rendered scenes are used as observations, and
the Cartesian coordinates of the camera and its velocities estimated through finite differences are used
as the state.

A.3 SyMetric

A.3.1 Jacobian calculations

We have a Jacobian

J=

[
∂q
∂Q

∂q
∂P

∂p
∂Q

∂p
∂P

]
and an anti-symmetric matrix

A=

[
0 1
−1 0

]
According to Eq. 2 we also have that cJAJT =A if J is the Jacobian of a symplectic map.

Writing out the calculation

JAJT =

[
∂q
∂Q

∂q
∂P

∂p
∂Q

∂p
∂P

][
0 1
−1 0

][∂q
∂Q

∂p
∂Q

∂q
∂P

∂p
∂P

]
=

=

[
− ∂q
∂P

∂q
∂Q

− ∂p
∂P

∂p
∂Q

][
∂q
∂Q

∂p
∂Q

∂q
∂P

∂p
∂P

]
=

=

[
− ∂q
∂Q

∂q
∂P + ∂q

∂Q
∂q
∂P − ∂q

∂P
∂p
∂Q+ ∂q

∂Q
∂p
∂P

− ∂p
∂P

∂q
∂Q+ ∂p

∂Q
∂q
∂P − ∂p

∂P
∂p
∂Q+ ∂p

∂P
∂p
∂Q

]
=

=

[
0 − ∂q

∂P
∂p
∂Q+ ∂q

∂Q
∂p
∂P

− ∂q
∂Q

∂p
∂P + ∂q

∂P
∂p
∂Q 0

]
=

=

[
0 −(∂q∂P

∂p
∂Q−

∂q
∂Q

∂p
∂P)

∂q
∂P

∂p
∂Q−

∂q
∂Q

∂Pp
∂P 0

]
=Â

If the constant c in Eq. 2 is negative, the above turns into

JATJT =

[
∂q
∂Q

∂q
∂P

∂p
∂Q

∂p
∂P

][
0 −1
1 0

][∂q
∂Q

∂p
∂Q

∂q
∂P

∂p
∂P

]
=

=

[
∂q
∂P − ∂q

∂Q
∂p
∂P − ∂p

∂Q

][
∂q
∂Q

∂p
∂Q

∂q
∂P

∂p
∂P

]
=

=

[
∂q
∂Q

∂q
∂P −

∂q
∂Q

∂q
∂P

∂q
∂P

∂p
∂Q−

∂q
∂Q

∂p
∂P

∂p
∂P

∂q
∂Q−

∂p
∂Q

∂q
∂P

∂p
∂P

∂p
∂Q−

∂p
∂P

∂p
∂q

]
=

=

[
0 ∂q

∂P
∂p
∂Q−

∂q
∂Q

∂p
∂P

∂q
∂Q

∂p
∂P −

∂q
∂P

∂p
∂Q 0

]
=

=

[
0 ∂q

∂P
∂p
∂Q−

∂q
∂Q

∂p
∂P

−(∂q∂P
∂p
∂Q−

∂q
∂Q

∂p
∂P) 0

]
=ÂT

19

Setting

a=
∂q

∂P

∂p

∂Q
− ∂q

∂Q

∂p

∂P

we get

ÂÂT =

[
(−a)2 0

0 a2

]
=

[
a2 0
0 a2

]
If the original Jacobian J was that of a symplectic map then there should exist a constant c for which
ca2 =1 everywhere.

A.4 Sym score calculation details

Polynomial regression To make the calculation of SyMetric computationally tractable we limit
the maximal polynomial expansion threshold κ= 5. Furthermore, when evaluating the Jacobian in
Eq. 3, we ignore the Jacobian terms with weight below ε= 1e−3 to save computation. We also set
the threshold for the goodness of fit parameterR2 to α=0.9 to stop polynomial expansion and Lasso
regression computation as soon as more than 90% of the variance in the ground truth trajectories is
explained. We use the sklearn implementation of Lasso regression with maximum iteration number set
to 1000, cross-validation set to 2, and Lasso α∈{1e−8,1e−7,1e−6,1e−5,1e−4,1e−3,1e−2}. All
trajectories are standardized before running the regression.

We find that in general the longer the trajectory on which the metric is calculated, the more accurate
the results, however the accuracy on shorter trajectories (e.g. of 60 steps used in this paper) can be
increased by calculating the metric on a number of samples and reporting the maximum or rounded
average of the obtained score. In all our experiments we calculated the metric over 20 samples of 5
trajectories each. We found no improvements when we increased the number of trajectories within a
sample.

When we use MLP instead of Lasso regression to measure SyMetric using the same amount of data, we
find that the model overfits and the resulting symplecticity scores are very noisy Sym=0.38±0.18,
when the same model evaluated using the polynomial method gets Sym=0.0001±0.00005, the latter
score also being more indicative of the model’s ability to extrapolate.

MLP To implement F as an MLP, we use 4 hidden layers with 4 units each, tanh nonlinearity, and
Adam optimizer with 1.5e−3 learning rate. To ensure that we do not overfit, we calculate the number of
parameters in the MLP, and collect 1000x the parameter number of trajectories of 60 steps each. We then
standardize the resulting data and split the resulting training set into randomly sampled mini-batches of
size 64 for training the MLP, and train it for 10,000 steps. We also use L1 regularization on the weights
with λ=0.01. For calculating Sym, we use 50 training trajectories sampled at 10 random points each.
To calculate SyMetric, we use α=0.9 and ε=0.05. See Alg. 2 for more details.

A.5 Understanding the constant

There are several ways to understand the need for the constant c in Eq. 3. First, since the learnt latent
space is not grounded to the "ground truth", it can in effect learn to represent the state using different
"units". Then the model will be representing exactly the same system in its latent space, but the
energy values for all the trajectories will be orders of magnitude different from those of the ground
truth trajectories, resulting in Em = cEn. Saying this, if all trajectories were related to each other
with the same constant, then the mapping F could learn what the constant is, and one would expect
Hm(S)==Hn(F (S)) to hold. This would be true if we were optimising for MSE when learning F ,
but since we optimise for variance explained (R2), the magnitudes of F (S) and smay be different, as
long as they correlate. Second, some of the datasets used in the paper re-sample the constants of the
Hamiltonian for each trajectory (e.g. mass in mass-spring +c). What this means is that the model is in
effect learning multiple Hamiltonians from the same family. While in theory the model should be able
to learn to infer the right constants from the pixel observations, as it does with the energy, so that c=1,
we choose not to penalise it for not doing so, and instead learning multiple Hamiltonians with different
"units".

20

Algorithm 1: SyMetric algorithm using polynomial regression (PR).

Data: K ground truth state trajectories of T time steps s=(q,p)∈RK×T×2n,K learnt latent state
trajectories of T time steps S=(Q,P)∈RK×T×2m, maximum polynomial expansion order
κ, minimal acceptable goodness of fit α, maximum acceptable deviation for symplecticity ε

Result: SyMetric, Sym, R2

begin
pexp←−1, ;
R2←−0, ;
Sym←−∅;

A∈R2n×2n←−
[

0 I
−I 0

]
;

S←− RemoveUninformativeDims(S);
while pexp<κ andR2<α do

S∗←− PolynomialExp(S, pexp);
F←− Lasso(S∗, s);
R2←− VarianceExplained(F (S∗), s);
pexp←−pexp+1 ;

end
J←− ∂F

∂S
for k∈K do

Î←−∅;
for t∈T do

Jkt←− Evaluate(J , S∗kt);
Add JAJT (JATJT)T to Î;

end
c←− CalculateNormalisingConst(Î);
Add MSE(cÎ, I) to Sym;

end
Sym←− Mean(Sym);
ifR2>α and Sym<ε then

SyMetric←−1
else

SyMetric←−0
end

end

21

Algorithm 2: SyMetric algorithm using MLP with ridge regularization.

Data: K ground truth state trajectories of T time steps s=(q,p)∈RK×T×2n,K learnt latent state
trajectories of T time steps S=(Q,P)∈RK×T×2m, maximum polynomial expansion order
κ, minimal acceptable goodness of fit α, maximum acceptable deviation for symplecticity ε

Result: SyMetric, Sym, R2

begin
pexp←−1, ;
R2←−0, ;
Sym←−∅;

A∈R2n×2n←−
[

0 I
−I 0

]
;

S←− RemoveUninformativeDims(S);
F←− MLP(S∗, s);
J←− ∂F

∂S
for k∈K do

Î←−∅;
for t∈T do

Jkt←− Evaluate(J , S∗kt);
Add JAJT (JATJT)T to Î;

end
c←− CalculateNormalisingConst(Î);
Add MSE(cÎ, I) to Sym;

end
Sym←− Mean(Sym);
ifR2>α and Sym<ε then

SyMetric←−1
else

SyMetric←−0
end

end

22

	Introduction
	Preliminaries
	Measuring the quality of learnt Hamiltonian dynamics
	Aggregating into a single indicator: SyMetric

	Models
	Datasets
	Baseline measures
	Results
	Conclusions
	Appendix
	HGN++
	Datasets
	SyMetric
	Jacobian calculations

	Sym score calculation details
	Understanding the constant

