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Abstract

A recently proposed class of models attempts to learn latent dynamics from
high-dimensional observations, like images, using priors informed by Hamiltonian
mechanics. While these models have important potential applications in areas like
robotics or autonomous driving, there is currently no good way to evaluate their
performance: existing methods primarily rely on image reconstruction quality,
which does not always reflect the quality of the learnt latent dynamics. In this work,
we empirically highlight the problems with the existing measures and develop
a set of new measures, including a binary indicator of whether the underlying
Hamiltonian dynamics have been faithfully captured, which we call Symplecticity
Metric or SyMetric. Our measures take advantage of the known properties of
Hamiltonian dynamics and are more discriminative of the model’s ability to
capture the underlying dynamics than reconstruction error. Using SyMetric, we
identify a set of architectural choices that significantly improve the performance
of a previously proposed model for inferring latent dynamics from pixels, the
Hamiltonian Generative Network (HGN). Unlike the original HGN, the new HGN++
is able to discover an interpretable phase space with physically meaningful latents on
some datasets. Furthermore, it is stable for significantly longer rollouts on a diverse
range of 13 datasets, producing rollouts of essentially infinite length both forward
and backwards in time with no degradation in quality on a subset of the datasets.1

1 Introduction

If you want to understand how the world will change, a good place to start is with simple physical
principles, such as the laws of motion. One way to achieve good performance in predicting dynamics
forward and backward in time is by building a model using the Hamiltonian formalism from classical
mechanics. This formalism aims to model physical systems which conserve energy. Apart from real
physical problems, other important dynamical systems can also be modelled using this formulation,
including GAN optimisation [35, 38, 34, 36], multi-agent learning in non-transitive zero-sum games
[5, 6, 53], or the transformations induced by flows in generative models [41]. While many naturally
observed dynamics do not preserve energy – for example, energy is often added or dissipated – they can

1The code for reproducing all results is available on https://github.com/deepmind/
deepmind-research/tree/master/physics_inspired_models.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).
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still be modelled using the Hamiltonian formalism by augmenting it with additional terms capturing
the deviations from the energy-conserved state [37, 23, 43, 55, 56].

Recently, a body of work has emerged that brings these well-established principles of modelling
dynamics from physics – such as the conservation of energy, and numerical formulations from
the theory of differential equations – to neural network architectures [49, 20, 9, 3, 58, 8, 4, 31,
50, 43, 56, 12, 17, 24, 14, 32, 11, 45, 57, 54, 48, 21]. Most of these papers, however, learn
dynamics directly from an abstract state, such as the positions and momenta of the physical objects.
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Figure 1: Illustration of a canonical transformation
between the Cartesian phase space (q,p) and the
action-angle (Q,P ) representations for the mass-
spring Hamiltonian system. Both coordinate spaces
preserve the underlying dynamics.

This may be a suitable choice for some applica-
tions, for example in molecular simulations, but
in situations where inference at test time has to
be made from high-dimensional observations,
like images – a setup common to many robotics,
reinforcement learning or autonomous driving
challenges – it is important to be able to have
models that can both correctly infer the abstract
state space and faithfully capture the underlying
Hamiltonian dynamics without access to the
ground truth state space information at inference
time. Currently only a handful of methods exist
for learning dynamics with physical priors from
pixels [49, 9, 45, 3, 58]. These models learn in
a completely unsupervised manner using pixel
observations of the dynamics, however, currently
there is no good way to know whether these
models have indeed managed to recover the
underlying dynamics faithfully through learning.
In this paper we empirically demonstrate that reconstruction based measures typically used in the
field are poor indicators of how well the model has learnt the underlying dynamics and propose a better
method for evaluating such models. In summary, our contributions are as follows:

1. We introduce performance measures for identifying whether a model trained with the Hamil-
tonian prior has managed to capture the true dynamics of an energy-conserving system when
learning from high-dimensional observations.

2. We use these measures to identify a set of hyperparameters and architectural modifications that
significantly improves the performance of Hamiltonian Generative Networks (HGN) [49], an
existing state of the art model for recovering Hamiltonian dynamics from pixel observations,
both in terms of long time-scale predictions, and interpretability of the learnt latent space.

2 Preliminaries

Hamiltonian dynamics The Hamiltonian formalism is a mathematical formulation of Newton’s
equations of motion for describing energy-conservative dynamics (see [25, 29]). It describes the
continuous time evolution of a system in an abstract phase space with state s= (q,p)∈R2n, where
q∈Rn is a vector of positions, and p∈Rn is the corresponding vector of momenta. The time evolution
of the system in phase space is then given by the Hamiltonian equations of motion:

q̇=
∂H
∂p

, ṗ=−∂H
∂q

(1)

where the HamiltonianH :R2n→R maps the state s=(q,p) to a scalar representing the energy of the
system. Based on the above equations of motion, the energy conservation property is easy to see, since
dH
dt = ∂H

∂q q̇+ ∂H
∂p ṗ=0.

Hamiltonian dynamics as a symplectic map The time evolution of Hamiltonian systems is de-
scribed using a symplectic map. To define a symplectic map, we first need to define a symplectic matrix.

A matrixM is called symplectic ifMTAM =A, whereA=

[
0 I
−I 0

]
, and I∈Rn is the identity

matrix. Then, a differentiable mapF (s) :R2n→R2n is called symplectic if its Jacobian matrix J= ∂F
∂s
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is symplectic everywhere, i.e. JTAJ =A. Indeed, that Hamiltonian dynamics are governed by a
symplectic map ds

dt =A∂H
∂s (see Section 16.3 in [18] for the derivation).

Canonical transformations Physical systems can be equivalently described in any number of
arbitrary coordinate systems. For example, the dynamics of a simple mass-spring system can be
described equally well using either canonical Cartesian phase space coordinates or the action-angle
coordinates (see Fig. 1). A canonical transformation is a mapping that moves between equivalent state
spaces in a way that preserves the form of the Hamiltonian dynamics. For example, there is a canonical
transformation between the Cartesian phase space coordinates or the action-angle coordinates shown
in Fig. 1, since both preserve the correct underlying Hamiltonian dynamics.

More formally, let us consider a Hamiltonian system with a phase-space state (q,p), a Hamiltonian
H(q,p) and equations of motion given by Eq. 1. We can transform the state of this system according
to new variables2 Q = Q(q,p) and P = P (q,p). In general, such a transformation cannot be
expected to preserve the equations of motion in the new variables (Q,P ). However, if there exists
a new Hamiltonian Ĥ(Q,P ) that describes the same dynamics as the ones described by the original
HamiltonianH(q,p), where Q̇= ∂Ĥ

∂P and Ṗ =−∂Ĥ∂Q , then such a transformation is called canonical.
Canonical transformations are also symplectic maps [2]. We provide an illustration of a canonical
transformation in Fig. 1 and refer to Stewart [46] for more details.

3 Measuring the quality of learnt Hamiltonian dynamics

To measure whether a model has learnt the underlying Hamiltonian dynamics faithfully, we propose
measuring whether there exists a canonical transformation between the ground truth phase space
and a subspace or a submanifold within the latent space discovered by the model. Note that a direct
comparison between the inferred state space and the ground truth phase space (e.g. L2 distance)
is impossible because physical systems can be equivalently described in any number of arbitrary
coordinate systems and there is no reason why the models should converge to the phase space arbitrarily
chosen as the “ground truth” when learning from pixels.

As discussed in Sec. 2, symplectic maps (or canonical transformations) are typically defined over
two spaces of the same dimension. In our case, however, the latent space of the model is most often
overparametrised to have more dimensions than the ground truth state. Saying this, if the model
has learnt to capture the underlying Hamiltonian dynamics, the dynamics in its latent space should
“mimic” the dynamics in the ground truth state space, in the following sense: given a latent space
trajectory S(t) ∈ R2m and a ground state trajectory s(t) ∈ R2n where m ≥ n there should exist
a map F : R2m → R2n such that the energy landscape defined by the learnt Hamiltonian Hm(S)
is a scaled version of the energy landscape defined by the original Hamiltonian Hn(F (S)), i.e.
Em =Hm(S) = cHn(F (S)) = cEn (where c is a constant, and E is the energy of the system, see
Sec. A.5 in the Appendix for more motivation for the constant). One can think of the map F as the
pseudo-inverse of a symplectic map between the space R2n of the ground truth state and another
space R2n which is embedded in the higher dimensional space R2m of the model latent space. This
pseudo-inverse preserves the Hamiltonian dynamics of the ground truth state space in the model latent
space. If we expand the time derivative of the projection of the learnt state space back to the ground
truth state space ŝ(t)=F (S(t)), we see that

∂ŝ(t)

∂t
=
∂F

∂S

∂S(t)

∂t
=
∂F

∂S
Am

∂Hm
∂S

=c
∂F

∂S
Am

∂F

∂S

T ∂Hn
∂s

=c(JAmJ
T )
∂Hn
∂s

.

(2)

Hence, if we can find a mapping F where cJAmJT =An holds, then it suggests the dynamics in the
latent space do in fact “mimic” the dynamics in the ground truth state space, and hence the model has
recovered the underlying Hamiltonian dynamics of the system.

2These can also depend on time but we are not considering time-dependent transformations here. Hence, we
will only consider restricted canonical transformations in this paper.
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To measure how well the model has learnt to mimic the original dynamics, we first learn the mapping
F : S 7→ s that explains as much variance in the original state space s as possible. We then check
whether this mapping is symplectic by measuring how much JAmJT deviates fromAn up to a constant

scaling factor, where J= ∂F
∂S is the Jacobian of the learnt mapping, andAk=

[
0 I
−I 0

]
is a 2k×2k

anti-symmetric matrix. We next discuss each of the two steps in more detail.

Learning to explain the ground truth dynamics We first learn the mapping F between the model
state space S and the ground truth phase space s. A naive implementation would use an MLP to
approximate F , however one has to be very careful not to overfit to the training data. In the low data
regimes we found that even small MLPs trained with L1 regularization often overfit by learning an
unnecessarily complicated map that ends up not being symplectic even if a symplectic map exists (see
Sec. A.3 in the Appendix). Hence, we make sure to use at least 1000x more datapoints for training the
MLP than the number of its parameters.

Given that learning the map F relies on the availability of ground truth phase space data, which may be
hard to obtain in certain domains, we also propose a more data efficient way of learning F that only
requires labeling 100 training trajectories. We do so by going back to the basics of machine learning and
avoiding overfitting by controlling the expressivity of the mapping F by training a Lasso regularised
linear regression over a polynomial expansion over the learnt state space features S, similarly to
DiPietro et al [14]. We start with the expansion order of 1 and progressively increase it up to an upper
bound determined by the hyperparameter κ, until enough variance in s is explained. In our experiments
we use κ=5 (see Alg. 1 in Appendix for more details). To limit the exponential computational cost of
computing higher order polynomial expansions of larger latent spaces, where possible we first filter out
“uninformative” state dimensions defined as those dimensions that have average KL from the prior less
than the thresholdKL[qφ(Si)|p(Si)]<0.01 as in Duan et al [16], however this step is not necessary,
and we have successfully applied our approach without this step in practice to a 1024-dimensional
latent space.

The MLP and polynomial regression (PR) instantiations of learning the mapping F have different
trade-offs. As discussed above, MLP requires orders of magnitude more ground truth state data (in our
experiments at least 640x) than PR, however because it is exposed to more data, it can be more accurate
than PR, especially in terms of estimating how much variance in the ground truth dynamics can be
explained well by the latent dynamics. The MLP can be arbitrarily expressive, while PR calculations
get exponentially more expensive as the expressivity of F is increased. PR, however, has the benefit of
interpretability.

Having learnt F using either the MLP or PR method, we calculate its goodness of fit, R2, which
measures how much information about the ground truth phase space dynamics can be recovered from
the learnt state space according to R2 = 1−

∑
(F (S)−s)2∑

(s−s)2 , where s is the mean of the ground truth
state variables, F (S) are the ground truth state variables predicted from the model state variables S,
and the summation is over the available data points [13]. R2 serves as a useful estimate of how much
information about the ground truth dynamics is preserved in the latent trajectories. We use it instead of
estimation error based alternatives (e.g. MSE, which worked equally well in practice), because it is not
sensitive to the magnitude of the data, and hence allows for a more direct comparison between scores
obtained from different models trained on different datasets.

Measuring symplecticity of the mapping We check the symplecticity of the learnt mapping F
by calculating Ân = JAmJ

T . As the next step we could measure directly whether this product
is equal to the anti-symmetric matrix An, however depending on the model it is possible that the
product will instead be equal toATn (we are going to drop the subscript for easier readability where
the dimensionality can be inferred from context), which may happen if the Hamiltonian learnt by the
model is related to the original Hamiltonian through a negative constant c in Eq. 2 (also see Sec. A.3 in
the Appendix). Hence, we instead calculate ÂÂT =JAJTJATJT and measure how far it deviates
from the identity matrix:

Sym=MSE(cÂÂT , I) (3)

where c is a normalisation factor as per Sec. 3 (see Sec. A.5 in the Appendix for more motivation),
and I ∈R2n. Note that c will be different between different models, since it depends on the learnt
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Dataset
HGN++ HGN

MSE VPT Sym R2 MSE VPT Sym R2
Rec Ext Rec Ext

Mass-spring 0.05 0.18 937.0 0.0*/0.0* 0.99*/1.0* 25.07 197.67 5.75 0.68/0.0 0.88/0.86
Mass-spring +c 1.63 2.77 567.5 0.03*/0.04* 0.96*/0.95* 25.49 126.34 8.5 0.78/0.0 0.52/0.5
Pendulum 1.95 10.5 85.25 1.76/0.61 0.54/0.96 25.99 294.22 1.75 0.43/0.0 0.79/0.81
Pendulum +c 26.94 80.89 23.0 0.5/0.48 -0.0/0.98 23.43 194.52 5.75 0.37/50.0 0.39/0.55
Matching pennies 2.25 11.71 640.5 0.35/0.25 0.99/0.98 32.46 562.98 5.75 0.55/0.18 0.88/0.95
Rock-paper-scissors 4.82 34.37 146.75 0.18/0.1 0.69/0.96 138.16 955.31 0.0 0.23/0.12 0.55/0.88
Double pendulum 32.24 154.83 5.5 0.28/0.24 0.4/0.96 26.33 196.52 2.0 0.3/0.13 0.2/0.64
Double pendulum +c 54.7 87.19 5.0 0.14/0.48 0.05/0.91 26.08 97.28 2.5 0.12/0.13 -0.0/0.6
Two-body 0.04 0.41 447.0 0.22/0.15 0.91/0.98 22.33 152.42 12.75 0.21/0.14 0.83/0.98
Two-body +c 1.95 24.68 36.25 0.22/0.19 0.4/0.95 25.1 69.88 15.75 0.5/0.11 0.32/0.78
3D room - circle 114.43 370.05 1.0 0.11/max 0.16/0.97 39.55 1044.6 1.25 0.11/max 0.16/0.35
MD - 4 particles 55.68 218.47 0.75 0.07/0.06 0.0/0.94 23.41 1711.71 4.0 0.91/0.06 0.0/0.82
MD - 16 particles 364.73 447.82 0.0 0.02/0.02 0.0/0.64 5.78 396.71 3.5 0.02/950.0 0.0/0.47

Table 1: The reconstruction (Rec) MSE refers to the MSE measured over the first T =60 timesteps, i.e.
the same trajectory length that was used for training, but on test data. The extrapolation (Ext) MSE
was computed across the subsequent T timesteps, immediately following those used for training. All
MSE values are reported as multiples of 107. VPT scores are calculated as the average over forward
and backward extrapolation. SyMetric, Sym andR2 results correspond to MLP/PR implementations.
* indicates models with SyMetric =1.

Hamiltonian. We estimate it by finding a constant that minimises Sym for each model separately.
Since for symplectic maps the right-hand side in Eq. 3 has to be zero everywhere, we need to evaluate it
across all avaliable data. In practice we sample t points across k trajectories to evaluate the Jacobian
and average Sym score over. The normalisation factor is calculated as c= 1/mean(max(|ÂÂT |)),
where the absolute maximum value of ÂÂT is taken at every evaluation point, and their average is
taken across all the points from a single trajectory. We calculate a different constant for each trajectory
to ensure that on datasets where different trajectories are sampled from different Hamiltonians (e.g.
mass-spring +c or pendulum +c), Sym is still meaningful. This does not affect Sym for datasets
generated from a single Hamiltonian, where in practice the constant is the same across all trajectories.

3.1 Aggregating into a single indicator: SyMetric

R2 and Sym measure two orthogonal properties of the learnt dynamics: 1) whether they capture
enough information about the ground truth dynamics; and 2) whether the captured dynamics mimic
those of the ground truth faithfully. Indeed, these scores can be at the opposite scales of the range in
one model. For example, a model may “cheat” and learn to produce perfect trajectories in pixel space
by learning q= [q,q̇,t], p= [0,0,0], andH= p2. In this case Hamiltonian dynamics would increase
t and, given a powerful enough decoder that can memorise observations indexed by t, such a model
would score perfectly on any reconstruction based metric, including VPT. Likewise, given a powerful
enough function approximator for F , this model can also have a perfectR2 score. However, in this
case F would not be symplectic, and hence Symwould be high and serve as the only indicator that
the model has not actually recovered the underlying Hamiltonian dynamics as hoped. Alternatively,
a degenerate F (e.g. the identity function) would be symplectic and result in the perfect Sym= 0
score, however in this case if the dynamics learnt by the model do not actually mimic the ground truth
dynamics, it will be captured by the lowR2. In other words, ifR2 is low, then the learnt latent space is
degenerate and does not preserve all the information about the ground truth dynamics. In this case, the
value of Sym is irrelevant and the model has failed to learn well. IfR2 is high but Sym is low, then the
learnt dynamics are expressive enough to mimic those of the ground truth, but they are likely to have
overfit to the training trajectories and will fail when it comes to extrapolation, since they do not capture
the true underlying dynamics. Hence, in order for a model to capture the underlying Hamiltonian
dynamics well, the mapping between the latent space and the ground truth phase space needs to be both
informative (highR2) and symplectic (low Sym).

While our general recommendation is for the practitioners to use theR2 andSym scores for comprehen-
sive model evaluation, we also propose a way to aggregate the two measures into a single “at-a-glance”
score for capturing the main insight: whether a model has discovered the true dynamics or not. We call
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this aggregate score the Symplecticity Metric3 or SyMetric. We define SyMetric to be binary according
to

SyMetric=

{
1, ifR2>α ∧ Sym<ε

0, otherwise.
(4)

We found that SyMetric parameters α=0.9 and ε=0.05 worked well for both MLP and PR implemen-
tations.

4 Models

HGN HGN [49] is a generative model that aims to learn Hamiltonian dynamics from pixel observa-
tions x. It consists of the encoder network that learns to embed a sequence of images (x0,...xT ) to a
lower-dimensional abstract phase space s∼qφ(·|x0,...xT ) which consists of abstract positions and
corresponding momenta s=(q,p); the Hamiltonian network that maps the inferred phase space to a
scalar corresponding to the energy of the systemHγ(st)∈R; an integrator that takes in the current
state st, its time derivative calculated using the Hamiltonian network, and the timestep ∆t to produce
the state st+∆t; and the decoder network that maps the position coordinates of the phase space back to
the image space pθ(xt)=dθ(qt). HGN is trained using the variational objective

1

T+1

T∑
t=0

Ep(x)

[
Eqφ(st|X)[logpθ(xt|st)]−DKL(qφ(st|X)|p(s))

]
, (5)

whereX={x0,...xT } and p(s) is the isotropic unit Gaussian prior.

HGN++ In order to improve the performance of HGN, we ran a sweep over hyperparameters,
investigated architectural changes (see Sec. A.1 in Appendix for more details) and used our proposed
new measures described in the Sec. 3 for model selection. We evaluated a range of learning rates,
activation functions, kernel sizes for the convolutional layers, hyperparameter settings for the GECO
solution for optimising the variational objective [42] and the inference and reconstruction protocols
used for training the model. We also considered larger architectural changes, like whether to use
the spatial broadcast decoder [52]; whether to use separate networks for inferring the position and
momenta coordinates in the encoder; whether to explicitly encourage the rolled out state at time t+N
to be similar to the inferred state at time t+N as in [3]; whether to infer the phase space directly or
project it through another neural network as in the original HGN work; whether to train the model to
predict rollouts forward in time, or both forward and backward in time as in [24]; and finally whether
to use a 2D (convolutional) or a 1D (vector) phase-space and corresponding Hamiltonian. We found
that a combination of 3×3 kernel sizes and leaky ReLU [33] activations in the encoder and decoder,
Swish activations [39] in the Hamiltonian network, as well as a 1D phase-space inferred directly from
images used in combination with a Hamiltonian parametrised by an MLP network significantly helped
to improve the performance of the model. Furthermore, changing the GECO-based training objective
to a β-VAE-based [22] one, training the network for prediction rather than reconstruction and training
it explicitly to produce rollouts both forward and backward in time further improved its performance.

5 Datasets

We compare the performance of models on 13 datasets instantiating different types of Hamiltonian
dynamics introduced in Botev et al [7], including those of mass-spring, pendulum, double-pendulum
and two-body toy physics systems, molecular dynamics, dynamics of camera movements in a 3D
environment and learning dynamics in two-player non-transitive zero-sum games known to exhibit
Hamiltonian-like cyclic behaviour [5, 6, 53]. All of these (apart from 3D room) were instantiated in
two different versions of increasing difficulty. See Sec. A.2 in Appendix for more details.

3While we abuse the notation by calling our proposed performance measure a “metric”, we could not resist the
pun.
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6 Baseline measures

A common way to evaluate performance of models of this class is by comparing the mean squared
error (MSE) (or equivalent) between the reconstructed and the original pixel observations on a test
subset of the data. This has two problems. First, it is well known that pixel reconstruction errors can
often be misleading [44, 30, 51, 15] – e.g. low reconstruction errors may be obtained from a perfect
reconstruction of the static background while failing to reconstruct the dynamics of interest, if these
belong to a relatively small object. Furthermore, each absolute value of the reconstruction error may
mean different things across datasets depending on the visual complexity and other particularities of the
data, which makes model comparison across datasets hard. Furthermore, good predictive performance
on short sequences used for training does not necessarily mean that the model has faithfully captured
the underlying dynamics or imply good performance on long time horizon predictions.

Reconstruction and extrapolation errors To demonstrate the problems that arise when using
observation-level reconstruction quality for evaluating the model’s ability to learn dynamics, we
calculate the “reconstruction” pixel MSE – the most commonly used measure of model performance
(e.g. employed by [49, 9, 45, 3, 58]), where the model is evaluated on how well it can reproduce
the same trajectory length T as was used for training, albeit using test data. We also calculate MSE
over extrapolated trajectories, where we continue to roll out the model for a total of 2T steps and
measure MSE over the last T timesteps, to check whether measuring extrapolation even over short time
periods might predict the model’s ability to extrapolate further in time better than the “reconstruction”
MSE. In all our experiments T =60, and for more fair comparison across datasets in all cases MSE is
normalised by the average intensity of the ground truth observation as proposed in Zhong et al [57]:
MSE= ||x−x̂||22/||x||22, where xt is the ground truth and x̂t is the reconstructed observation.

Valid Prediction Time We validate our proposed measures by comparing their predictions to another
estimate of the model’s performance, namely the Valid Prediction Time (VPT) (as in Jin et al [26]).
VPT is motivated by the intuition that those models that have truly captured the underlying dynamics of
energy conserving non-chaotic systems should in principle be able to produce forward and backward
rollouts over significantly longer time intervals than those used for training without significant detriment
to the reconstruction quality. Note, however, that VPT may also produce false positive or false negative
results as will be discussed in Secs. 3 and 7, and hence is not perfect. It is, however, the best alternative
measure we could come up with for validating our proposed measures. To calculate VPT we generate
a small number of very long trajectories of between 256 and 1000 steps for our datasets (we use
60 step trajectories for training) and measure how long the model’s trajectory remains close to the
ground truth trajectory in the observation space. It corresponds to the first time step at which the model
reconstruction significantly diverges from the ground truth:

VPT=argmin
t

[MSE(xt,x̂t)>λ]

wherext is the ground truth, x̂t is the reconstructed observation at time t, andλ is a threshold parameter.
For our datasets we found a threshold of λ=0.025 a reasonable choice based on visual inspection of
the rollouts. VPT scores are averaged across 10 trajectories.

7 Results

We first trained different variations of the HGN model as described in Sec. 4 on the mass-spring dataset
and found that a particular set of hyperparameters and architectural choices consistently resulted
in models that were identified by SyMetric as having learnt the underlying Hamiltonian dynamics
faithfully. We refer to this improved version of HGN as HGN++. We then trained this model, as well
as the original version of HGN, on all 13 datasets. Table 1 demonstrates that HGN++ is indeed a
significant improvement on HGN. While HGN is practically unable to produce good rollout trajectories
beyond the 60 timesteps that it was trained on, HGN++ can extrapolate well for at least 267 steps
forward and 178 steps backward on average across all datasets (vs 11 and 0 steps by HGN) as evidenced
by the VPT scores. Backward extrapolation is achieved by feeding−∆t to the integrator at test time.
Furthermore, on both the easy and hard (+c) versions of the mass-spring dataset, HGN++ is able to
faithfully recover the underlying Hamiltonian dynamics, as identified by the SyMetric score of 1.
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Figure 2: A: 119 HGN models trained with different hyperparameters on 13 datasets ordered by
average forward and backward VPT score. Arrows point at the models that achieved SyMetric =1. B:
Example trajectories of a single phase space coordinate in the ground truth phase space (orange) and
the projection of the model latent space into the ground truth phase space using F (blue). The models
highlighted by SyMetric to have discovered the true Hamiltonian dynamics (trained on mass-spring
and mass-spring +c datasets) appear to mimic the ground truth dynamics well, while the other models
have qualitatively different dynamics despite sometimes scoring similarly by VPT. Red vertical lines
indicate the time step where VPT indicates divergence in pixel space.

Given the radically different learning ability of HGN and HGN++, SyMetric is not the only performance
measure that differentiates between them. Indeed, MSE results are also indicative of the superior
performance of HGN++. However, not all seeds of HGN++ always converge to the same level of
performance, and indeed slight modifications in hyperparameters often affect the model’s learning
ability in ways that have a negligible effect on MSE, yet can drastically affect whether the models are
able to uncover the true Hamiltonian dynamics or not. When we look at the top 20% of model seeds in
terms of their VPT performance across all datasets, and compare the different measures in terms of
how well they differentiate between the better and worse performing seeds based on how well they
correlate with VPT (averaged forward and backward), reconstruction MSE has 0.07 absolute Spearman
correlation, extrapolation MSE is better at 0.33, howeverR2 has stronger correlation of 0.59(0.41) and
Sym has correlation of 0.37(0.45) MLP(PR). Hence, when it comes to doing more precise model or
hyperparameter selection and differentiating between models that are not obviously failing, it appears
that the currently widely used reconstruction MSE measure is very poor, and using eitherR2 or Sym is
more informative.

Fig. 2A orders the 119 models in terms of their average VPT scores. We see that the mass-spring dataset
is clearly solved, with a number of HGN++ seeds with slightly different hyperparameters achieving
close to perfect 1000-step extrapolations both forward and backward in time after being trained on
just 60 steps. The figure also demonstrates that all of these models are picked out by SyMetric as
having discovered the true Hamiltonian of the system. However, at the next step change down in VPT
measures, we see inconsistent predictions from VPT and SyMetric. A number of model seeds trained
on the matching pennies and two-body datasets are scored highly by VPT, but are not highlighted by
SyMetric to have discovered the true Hamiltonian, while a HGN++ seed trained on the mass-spring +c
data with similar VPT is highlighted as having done so. Which measure is correct: VPT or SyMetric?
When we visualise an example trajectory from these models, mapping the learnt latent space to the
ground truth through F and visualising both (see Fig. 2B), we see that SyMetric is in fact correct.
The latent dynamics of models trained on matching pennies and two-body datasets are qualitatively
different from those exhibited by the ground truth system, while the dynamics from the model trained
on mass-spring +c appear to be mimicking those of the ground truth.

In order to further verify the validity of SyMetric, Fig. 3A-B visualises four trajectories in the ground
truth phase space and in the latent space learnt by the HGN++ seed highlighted as have learnt the
underlying Hamiltonian dynamics on the mass-spring +c dataset. It is clear that latent Q3 and its
correspondingP3 were able to capture the ground truth state dynamics well. Indeed, when we visualise
the extrapolated rollouts of the four sampled trajectories Fig. 3C, we see that they still look good
even after 1000 steps, thus verifying that the model is indeed able to produce good rollouts and has
appeared to have recovered the underlying ground truth system well. So what causes the relatively low
VPT scores recorded for this model? It appears that this discrepancy arises due to a slight error in the
estimation of the initial conditions by the model. When we visualise the 1000-step rollout in the ground
truth state against the projection of the model’s latent state into the ground truth phase space, it is clear

8



Figure 3: A: Visualisation of four trajectories of the mass-spring +c dataset in the ground truth phase
space. B: Same trajectories visualised in the informative latents of a trained HGN++ with the perfect
SyMetric score. If both theQi and its corresponding Pi are informative, the trajectories are plotted
as a scatter plot. Otherwise they are plotted as points in the corresponding latent dimension. C:
1000 step rollouts produced by the model in B of the four trajectories in A-B. The reconstructions
are of good quality even after 1000 steps. D: Same 1000 step rollouts as in C but shown in the
ground truth phase space and the projection of HGN++ from B into the ground truth phase space as
produced by the regression step of SyMetric. Due to slight errors in the inference of the initial state, the
trajectories diverge after about 300 steps, resulting in a suboptimal VPT score. E: Latent traversals of
the informative dimensions of HGN++ shown in B. Each plot shows a 200 step rollout trajectory ofQ3

when setting the value of the traversed latent dimension to -2, 0 or 2. The inset images demonstrate
the corresponding effect on the reconstruction of the first frame of the trajectory (from left to right).
LatentsQ3,Q5,Q10 andQ13 appear to have an interpretable meaning, which is indicated in the left
top corner of the corresponding subplot.

that the two trajectories are slightly out of phase with each other, which results in a divergence around
the time step captured by the VPT score (indicated by the red vertical line in Fig. 3D). Hence, although
the model was able to capture the underlying Hamiltonian faithfully as captured by SyMetric score, it
appears that its VPT scores were handicapped by the slight errors in the inferred initial conditions.

Furthermore, the HGN++ shown in Fig. 3 had seven informative dimensions at the end of training.
Two of them –Q3 and P3 – ended up learning the dynamics that mimic the ground truth phase space.
The other 5 latents did not have an informative momentum component, indicating that the model used
these latents as constants. When we investigated what these latents learnt to represent by traversing
their values and visualising the resulting effect on the dynamics inQ3, we notice that many of these
dimensions are physically meaningful –Q5 andQ10 learnt to represent variations in colour, whileQ13

learnt to represent the mass parameter of the Hamiltonian (see relevant equation in Appendix Tbl. 2).
Hence, it appears that HGN++ was able to address another criticism of the original HGN [9], i.e. lack
of interpretability of its learnt latent space.

8 Conclusions

In this paper we have introduced a set of novel performance measures – R2, Sym and their binary
combination, SyMetric, which serve as better proxies than the existing measures of whether a model
with a Hamiltonian prior has captured the underlying dynamics of a Hamiltonian system from high-
dimensional observations, such as pixel images. We have validated our measures both quantitatively
– by comparing them to the VPT score, another proxy of the models performance which measures
the ability of the model to produce faithful trajectories in extreme extrapolation regimes in the high-
dimensional observation space; and qualitatively – by visualising the latent space of the model. We
have shown that we were able to use SyMetric to identify a set of hyperparameters and architectural
modifications that improved the previously published HGN model in terms of extrapolation perfor-
mance and interpretability of its latent space, in effect “solving” 2/13 datasets considered here. We
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hope that SyMetric can be used by the community to make further progress towards building models
with Hamiltonian priors that can learn dynamics from pixels.

While SyMetric requires ground truth phase space information in addition to pixel observations, this
information is only required for a relatively small number of trajectories (we used 100 in the PR case),
and for relatively short trajectory lengths (60 steps, as was used for training) – the amount of data that
would not be sufficient to train the models. This is in contrast to the significantly longer trajectories
(256-1000 steps) that were necessary to compute VPT scores – the only observation-space measure to
achieve comparable results. By avoiding the need to generate long trajectories, we hope that SyMetric
can be a good option for evaluating models that learn from observation where collecting such long
trajectories is expensive, e.g. due to the computational costs of running a simulation or other costs
corresponding to collecting experimental data.

SyMetric has the drawback of relying on multiple measures: R2 and Sym. As part of future work we
hope to replace this with a single step by using function approximators for F that are symplectic by
design (e.g. 26, 40), thus producing a single measure equivalent toR2, which will only be high if there
exists a symplectic mapping between a subspace of the latent space of the model and the ground truth
phase space. Furthermore, we hope to extend SyMetric to models that incorporate the Lagrangian prior
in their dynamics (e.g. [45, 3, 58]), which should be possible due to the equivalence of the Hamiltonian
and the Lagrangian formalisms, and the ability to map between them through the Legendre transform.

Finally, it would be interesting to investigate in detail how SyMetric compares to VPT on systems that
are known to exhibit chaotic dynamics (e.g. the MD datasets). This type of problem poses a significant
challenge to our models because tiny perturbations to the initial conditions grow exponentially causing
trajectories to diverge within a few hundred training steps (e.g. see [19]). While this poses a fundamental
challenge to our training procedure and all evaluations metrics, we believe that the significantly shorter
trajectories required for SyMetric may be advantageous.
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