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Abstract

Binary neural networks (BNNs) represent original full-precision weights and acti-
vations into 1-bit with sign function. Since the gradient of the conventional sign
function is almost zero everywhere which cannot be used for back-propagation,
several attempts have been proposed to alleviate the optimization difficulty by
using approximate gradient. However, those approximations corrupt the main
direction of factual gradient. To this end, we propose to estimate the gradi-
ent of sign function in the Fourier frequency domain using the combination
of sine functions for training BNNs, namely frequency domain approximation
(FDA). The proposed approach does not affect the low-frequency information
of the original sign function which occupies most of the overall energy, and
high-frequency coefficients will be ignored to avoid the huge computational over-
head. In addition, we embed a noise adaptation module into the training phase
to compensate the approximation error. The experiments on several benchmark
datasets and neural architectures illustrate that the binary network learned us-
ing our method achieves the state-of-the-art accuracy. Code will be available at
https://gitee.com/mindspore/models/tree/master/research/cv/FDA-BNN.

1 Introduction

The success of deep convolutional neural networks (CNNs) has been well demonstrated in several
real-world applications, e.g., image classification [24, 35, 59, 16], object detection [42], semantic
segmentation [34], and low-level computer vision [46]. Massive parameters and huge computation-
al complexity are usually required for achieving the desired high performance, which limits the
application of these models to portable devices such as mobile phones and smart cameras.

In order to reduce the computational costs of deep neural networks, a number of works have
been proposed to compress and accelerate the original cumbersome model into a portable one.
For example, filter pruning methods [33, 60, 8, 58, 47, 48] aim to sort the filters based on their
importance scores in which unimportant filters will be treated as redundancy and removed to derive
lightweight architectures. Knowledge distillation methods [19, 36, 5, 52, 51] are explored to transfer
the knowledge inside a teacher model to a student model. Tensor decomposition method [40]
decomposes the original large weight tensor into several small ones to simplify the overall inference
process. Model quantization methods [13, 22, 54, 32, 31] quantize the widely used 32-bit floating
point weights and activations into low-bit ones to save the memory consumption and computational
cost.
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Figure 1: From top to bottom: original functions in spatial domain, corresponding functions in
frequency domain and the difference between the current function and sign function in frequency
domain. From left to right: sign function, combination of sine functions, tanh function in [10] and
SignSwish function in [6] (short as SS).

Among the aforementioned algorithms, binary neural network (BNN) is an extreme case of model
quantization method in which the weights and activations in the original neural network will be
quantized to 1-bit (-1 and +1) values. Obviously, the memory usage for weights and activations
in binary convolutional layers are 32× lower than that in the full-precision network with the same
model architecture. BNN was firstly proposed by Hubara et.al. [22] by utilizing straight-through
estimator (STE) [1] for handling gradient problem of sign function. Then, XNOR-Net [41] introduced
a channel-wise scaling factor for weights to reduce the quantization error. Dorefa-Net [57] used a
single scaling factor for all the channels and achieved competitive performance. In addition, there are
a number of methods for optimizing the original structure to improve the performance of learned
BNN. ABCNet [26] used multiple parallel binary convolutional layers. Bi-Real Net [30] inserted
skip-connections to enhance the feature representation ability of deep BNNs.

The optimization difficulty caused by the sign function in BNNs is a very important issue. In practice,
the original full-precision weights and activations will be quantized into binary ones with sign
function during the feed-forward procedure, but the gradient of sign function cannot be directly
used for back-propagation. Therefore, most of the approaches mentioned above adopt the straight-
through estimator (STE) [1] for gradient back-propagation to train BNNs. The inconsistency between
the forward and backward pass caused by the STE method prevents BNN from achieving better
performance. Additionally, several attempts were proposed to estimate the gradient of sign function
for replacing STE. For example, DSQ [10] introduced a tanh-alike differentiable asymptotic function
to estimate the forward and backward procedures of the conventional sign function. BNN+ [6] used
a SignSwish activation function to modify the back-propagation of the original sign function and
further introduced a regularization that encourages the weights around binary values. RBNN [25]
proposed a training-aware approximation function to replace the sign function when computing the
gradient. Although these methods have made tremendous effort for refining the optimization of binary
weights and activations, the approximation function they used may corrupt the main direction of
factual gradient for optimizing BNNs.

To better maintain the main direction of factual gradient in BNNs, we propose a frequency domain
approximation approach by utilizing the Fourier Series (FS) to estimate the original sign function
in the frequency domain. The FS estimation is a lossless representation of the sign function when
using infinite terms. In practice, the high-frequency coefficients with relatively lower energy will be
ignored to avoid the huge computational overhead, and the sign function will be represented as the
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combination of a fixed number of sine functions with different periods. Compared with the existing
approximation methods, the proposed frequency domain approximation approach does not affect
the low-frequency domain information of the original sign function, i.e., the part that occupies most
energy of sign function [50] as shown in Fig. 1. Thus, the main direction of the corresponding gradient
w.r.t.the original sign function can be more accurately maintained. In addition, to further compensate
the subtle approximation error, we explore a noise adaptation module in the training phase to refine
the gradient. To verify the effectiveness of the proposed method, we conduct extensive experiments
on several benchmark datasets and neural architectures. The results show that our method can surpass
other state-of-the-art methods for training binary neural networks with higher performance.

2 Approach

In this section, we first provide the preliminaries of BNNs and STE briefly. Then, we propose to
estimate sign function with the combination of sine functions and analyze the inaccurate estimation
problem. Finally, we introduce a noise adaptation module to solve the problem and derive our
FDA-BNN framework.

2.1 Preliminaries

The conventional BNNs quantize the weight matrix W ∈ Rci×co×k×k and activation matrix A ∈
Rb×ci×h×w to 1-bit, and obtain the binary matrices Wb ∈ Rci×co×k×k and Ab ∈ Rb×ci×h×w for the
intermediate convolution layers using sign function as follows:

wb =

{
1, wf > 0,

−1, wf ≤ 0,
ab =

{
1, af > 0,

−1, af ≤ 0,
(1)

where wf and af are the elements in the original 32-bit floating point weight matrix W and activation
matrix A, respectively, and wb and ab are the elements in the binarized weight matrix Wb and
activation matrix Ab, respectively. Given the 1-bit weights and activations, the original convolution
operation can be implemented with bitwise XNOR operation and the bit-count operation [30]. During
training, both the full-precision weight matrix W and the 1-bit weight matrix Wb are used, while
only Wb is kept for inference.

Note that it is impossible to apply back-propagation scheme on the sign function. The gradient of
sign function is an impulse function that is almost zero everywhere and is unable to be utilized in
training. Thus, the STE method [1] is introduced to compute its gradient as:

∂L
∂w

= Clip(
∂L
∂wb

,−1, 1), (2)

in which L is the corresponding loss function for the current task (i.e., cross-entropy loss for image
classification) and

Clip(x,−1, 1) =


−1, if x < −1,

x, if − 1 ≤ x < 1.

1, otherwise.
(3)

Since STE is an inaccurate approximation of the gradient of sign function, many works have focused
on replacing STE during back-propagation. BNN+ [6] introduced a SignSwish function, while
DSQ [10] proposed a tanh-alike function and minimized the gap between the sign function with a
learnable parameter. Such methods focus on approximating sign function in spatial domain, and
corrupt the main direction of the gradient. Thus, we propose a new way to estimate sign function to
maintain the information in frequency domain.

2.2 Decomposing Sign with Fourier Series

In the following sections, we use f(·) and f ′(·) to denote an original function and its corresponding
gradient function.

Recall that the gradient of sign function is an impulse function which is unable to be back-propagated.
Thus, zero-order (derivative-free) algorithms such as evolutionary algorithms need to be applied to
reach the optimal solution, which is quite inefficient. Thus, we propose to find a surrogate function
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that can be empirically solved by first-order optimization algorithms such as SGD, while theoretically
has the same optimal solution as sign function.

It has been proved that any periodical signal with period T can be decomposed into the combination
of Fourier Series (FS) [45]:

f(t) =
a0
2

+

∞∑
i=1

[ai cos(iωt) + bi sin(iωt)], (4)

in which ω = 2π/T is the radian frequency, a0/2 is the direct component and {bi}∞i=1 ({ai}∞i=1) are
the coefficients of the sine (cosine) components. Specifically, when the periodical signal is the square
wave, we have

ai = 0 for all i; bi =


4

iπ
, if i is odd,

0, otherwise.
(5)

and derive the FS for the square wave s(t):

s(t) =
4

π

∞∑
i=0

sin ((2i+ 1)ωt)

2i+ 1
. (6)

Note that when the signal is restricted into a single period, the sign function is exactly the same as the
square wave:

sign(t) = s(t), |t| < T. (7)
Thus, the sign function can also be decomposed into the combination of sine (cosine) functions, and
its derivative is computed as:

s′(t) =
4ω

π

∞∑
i=0

cos ((2i+ 1)ωt) . (8)

In this way, we propose to replace the derivative used in STE (Eq. (2)) with Eq. (8) during back-
propagation for better approximating the sign function.

The FS decomposition is a lossless representation of the sign function when using infinite terms by
transforming the signal from spatial domain into frequency domain, as shown in Theorem 1. First,
we can rewrite Eq. (6) as

ŝn(t) =
4

π

n∑
i=0

sin ((2i+ 1)ωt)

2i+ 1
, (9)

where n is the number of FS terms. The corresponding derivative is

ŝ′n(t) =
4ω

π

n∑
i=0

cos ((2i+ 1)ωt) . (10)

In the following, we show that as n increases, the mean squared error between the estimator ŝn(t)
and the ground-truth s(t) decreases, and converges to 0 when n→∞.
Theorem 1. (Mean Square Convergence [43]) Given s(·) as the square wave function which is
integrable in a period, and ŝn(·) is the nth partial sum of the Fourier Series of s(·), then ŝn(·)
converges to s(·) in the mean square sense, i.e.,

1

T

∫
T

||s(t)− ŝn(t)||22dt→ 0 as n→∞. (11)

The above theorem shows that the estimator ŝn(t) converges to the ground-truth s(t) when using
an infinite number of FS terms, thus theoretically has the same optimal solution. In practice, we
use a fixed number of FS terms for two reasons: 1) We can avoid the huge computational overhead
by ignoring high-frequency coefficients. 2) We can still accurately maintain the main direction of
the corresponding gradient w.r.t.the original sign function. Compared to other estimation methods
that directly estimate sign function in the spatial domain, our method benefits to the approximation
process since the proposed approximation approach does not influence the low-frequency domain
information of the original sign function, which occupies most of the energy.

2.3 Solving the Inaccurate Estimation Problem
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Figure 2: (a) The forward pass of the combination
of sign function and noise adaptation module. (b)
Corresponding backward pass of (a). (c) The for-
ward pass of the combination of the sine module
and the noise adaptation module. (d) Correspond-
ing backward pass of (c). The actual forward and
backward pass are bolded in the figure.

Although using infinite FS terms makes the esti-
mator ŝn(t) converges to the ground-truth s(t),
an error

r(t) = s(t)− ŝn(t) (12)
occurs in reality when n is finite. The error
comes from the infinite high-order FS terms and
has little energy. Basically, a simple way to
solve the inaccurate estimation problem is to in-
crease the number of FS terms n to make ŝn(t)
approaches s(t). However, the gradient ŝ′n(t)
will approach the impulse function and desta-
bilize the back-propagation process. Besides,
increasing the number of FS terms n will in-
crease the training time. Thus, we propose to
use another way to solve the aforementioned
problem.

Specifically, we treat the error r(t) between the
sign function and the estimation function as
noise. In the previous works, there are several ways to deal with noise. The first is to change
the training framework to derive a robust network for noise [15, 14, 55, 9]. The second is to improve
the training loss function to a noise robust loss [56].

We propose to use a learnable neural network called noise adaptation module to deal with noise.
Compared with increasing the number of FS terms, neural network has learnable parameters which
make the training more flexible. Besides, the neural network has been proved to be Lipschitz
continuous [44, 61] which means the gradient is continuous and avoid the problem from impulse
function. We train the noise adaptation module through an end-to-end manner which is reasonable
when initialized the weight of the module in a correct way. It is easy to know that the distribution of
r(t) in Eq. (12) has zero mean and finite variance regardless of the number of FS terms n. Assuming
that the input of noise adaptation module is Gaussian distribution, then the initialization of the
weights of noise adaptation module need to have zero mean in order to make the distribution of
output fit that of r(t). As long as the initial output is unbiased, the proceeding learning process will
automatically approach the final goal through an end-to-end training manner with gradient descent
based optimization methods.

Specifically, given the input vector t ∈ R1×d, the process of sign function can be replaced by the
combination of a sine module ŝn(·) and a noise adaptation module ê(·) which estimates the error r(·)
using two fully-connected layers with ReLU activation function and a shortcut:

ê(t) = σ(tW1)W2 + η(t), (13)

in which σ(t) = max(t, 0), W1 ∈ Rd× d
k and W2 ∈ R d

k×d are the parameters of the two FC layers
in which k is used to reduce the number of parameters and is set to 64 in the following experiments.
η(·) is the shortcut connection.

There are two benefits from adding the shortcut connection. The first is that it helps the flow
of gradient and alleviates the gradient vanishing problem [28, 38, 20]. The second is that given
η(t) = a · t as an example, we have η′(t) = a which equals to adding a bias to the gradient. This
benefit the training process since given limited training resources and time, only finite number of FS
terms n can be used to compute ŝn(t) in Eq. (9), and raise the problem that the tail of the estimated
gradient ŝ′n(t) oscillates around 0 at a very high frequency. This phenomenon does harm to the
optimization process, since a very little disturbance on the input will results in two different gradients
with opposite direction, and adding a bias term on the gradient helps to alleviate this problem.

Based on the analysis above, given Eq. (9) and Eq. (13), we are able to approximate sign function
with the combination of sine module and noise adaptation module:

z = ŝn(t) + αê(t), (14)

in which α is the hyper-parameter to control the influence of noise adaptation module. In order to
keep the weights and activations as 1-bit in inference, the sine module is used only in the backward
pass and replaced as sign function in the forward pass, as shown in Fig. 2. Besides, α is gradually
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decreased during training and reaches 0 at the end of training to avoid the inconsistency between
training phase and inference phase. The weights of both BNN and noise adaptation module are
updated in an end-to-end manner by minimizing the cross-entropy loss `ce.

Algorithm 1 Feed-Forward and Back-Propagation Pro-
cess of a convolutional layer in FDA-BNN.
Require: A convolutional layer with weights W and

input features (activations) A, the noise adapta-
tion module with parameters Wa1 (Ww1) and Wa2

(Ww2) for activations (weights), the loss function
`ce, the learning rate γ, and training iterations T .

1: for τ = 1 to T do
2: Feed-Forward:
3: Quantize the weights and activations: Wb =

Sign(W ), Ab = Sign(A);
4: Apply the convolutional operation on the bina-

rized weights and activations: Wb ⊗Ab;
5: Back-Propagation:
6: Compute the gradient of Wb and Ab using stan-

dard back-propagation, and get ∂`ce
∂Wb

and ∂`ce
∂Ab

;
7: Compute the gradient of A, and derive ∂`ce

∂A
using Eq. (15);

8: Compute the gradients on parameters of noise
adaptation module for activations: ∂`ce

∂Wa1
and ∂`ce

∂Wa2

using Eq. (16) and Eq. (17).
9: Compute the gradients of W and derive ∂`ce

∂W ,
and also ∂`ce

∂Ww1
and ∂`ce

∂Ww2
, with the same manner in

step 7∼8.
10: Parameter Update:
11: W ← UpdateParameters(W, ∂`ce∂W , γ);
12: Wa1 ← UpdateParameters(Wa1,

∂`ce
∂Wa1

, γ);
13: Wa2 ← UpdateParameters(Wa2,

∂`ce
∂Wa2

, γ);
14: Ww1 ← UpdateParameters(Ww1,

∂`ce
∂Ww1

, γ);
15: Ww2 ← UpdateParameters(Ww2,

∂`ce
∂Ww2

, γ).
16: end for

Specifically, given Eq. (14) and the loss
function `ce, the gradients in Fig. 2 (d) can
be computed as:
∂`ce
∂t

=
∂`ce
∂z

W>2 � ((tW1) ≥ 0)W>1

+
∂`ce
∂z

η′(t)

+
∂`ce
∂z

� 4ω

π

n∑
i=0

cos ((2i+ 1)ωt) , (15)

in which ∂`ce
∂z is the gradient back-

propagated from the upper layers, � rep-
resents element-wise multiplication, and
∂`ce
∂t is the partial gradient on t that back-

propagate to the former layer.
∂`ce
∂W1

= t>
∂`ce
∂z

W>2 � ((tW1) ≥ 0) ; (16)

∂`ce
∂W2

= σ(tW1)
> ∂`ce
∂z

, (17)

in which ∂`ce
∂W1

and ∂`ce
∂W2

are gradients used
to update the parameters in the noise adap-
tation module.

The formulations from Eq. (9) to Eq. (17)
are applied on both weights and activa-
tions for replacing the back-propagation
of sign function. The feed-forward and
back-propagation process of a convolution-
al layer in FDA-BNN is summarized in
Alg. 1.

3 Experiments

In this section, we evaluate the proposed
method on several benchmark datasets such

as CIFAR-10 [23] and ImageNet [7] on NVIDIA-V100 GPUs to show the superiority of FDA-BNN.
All of the proposed FDA-BNN models follow the rule in previous methods that all the convolutional
layers except the first and last layers are binarized [57, 3, 6]. All the models are implemented with
PyTorch [37] and MindSpore [21].

3.1 Experiments on CIFAR-10

The CIFAR-10 [23] dataset contains 50,000 training images and 10,000 test images from 10 different
categories. Each image is of size 32 × 32 with RGB color channels. Data augmentation methods
such as random crop and random flip are used during training. During the experiments, we train the
models for 400 epochs with a batch size of 128 and set the initial learning rate as 0.1. The SGD
optimizer is used with momentum set of 0.9 and weight decay of 1e-4.

The widely-used ResNet-20 and VGG-Small architectures in BNN literature [30, 10] are used to
demonstrate the effectiveness of the proposed method. Dorefa-Net [57] is used as our baseline
quantization method, and the sine module and noise adaptation module are used during training.
Other competitors include: 1) methods using STE for back-propagation, e.g., BNN [22], Dorefa-
Net [57], XNOR-Net [41], TBN [49]; 2) methods using approximated gradient rather than STE during
back-propagation, e.g., DSQ [10], BNN+ [6], IR-Net [39]; 3) fine-tuning methods, e.g., LNS [17].
The experimental results are shown in Tab. 1.
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Table 1: Experimental results on CIFAR-10 using different 1-bit quantized models. Bit-width (W/A)
denotes the bit length of weights and activations, and BackProp denotes the way of computing
gradients and updating parameters.

Network Method Bit-width (W/A) BackProp Acc (%)

ResNet-20

FP32 32/32 - 92.10
Dorefa-Net [57] 1/1 STE 84.44
XNOR-Net [41] 1/1 STE 85.23

LNS [17] 1/1 STE 85.78
TBN [49] 1/2 STE 84.34
DSQ [10] 1/1 Tanh-alike 84.11

IR-Net [39] 1/1 Tanh-alike 85.40
FDA-BNN 1/1 Fourier Series 86.20

VGG-small

FP32 32/32 - 94.10
Dorefa-Net [57] 1/1 STE 90.20
BinaryNet [22] 1/1 STE 89.90
XNOR-Net [41] 1/1 STE 89.80

BNN+ [6] 1/1 SignSwish 91.31
DSQ [10] 1/1 Tanh-alike 91.72

IR-Net [39] 1/1 Tanh-alike 90.40
FDA-BNN 1/1 Fourier Series 92.54

The results show that the proposed FDA-BNN method outperforms all the competitors and achieves
state-of-the-art accuracy. For ResNet-20 architecture, the proposed FDA-BNN achieves an accuracy
of 86.20% which improves the baseline model by 1.76%, and is 0.42% higher than the previous
SOTA method LNS [17] which is a fine-tuning based method and costs 120 more epochs than our
method. When applying the proposed method to VGG-small model, the proposed method achieves an
accuracy of 92.54% which is also the highest and improves the baseline model by 2.34%. FDA-BNN
method outperforms other gradient estimation methods which approximate sign function in spatial
domain such as DSQ [10], BNN+ [6] and IR-Net [39].

3.2 Ablation Study

In this section, we conduct several ablation studies to further verify the effectiveness of each com-
ponent in the proposed method, the impact of shortcut in noise adaptation module and the effect of
hyper-parameters.

Firstly, we conduct experiments to understand the effect of sine module and noise adaptation module.
The models are verified on CIFAR-10 using ResNet-20 architecture. As shown in Tab. 2, the first
line represent the standard Dorefa-Net baseline. We can see that only use sine module can benefit
the training process and improve the accuracy from 84.44% to 85.83%. When combining the sine
module and noise adaptation module together, we reach the best performance, i.e., 86.20% accuracy,
which shows the priority of using both modules in FDA-BNN method during training.

Table 2: Ablation study on sine module and noise adaptation module.

Sine Module Noise Adaptation Module Acc (%)
× × 84.44
X × 85.83
X X 86.20

In order to further verify the usefulness of the noise adaptation module, we plug the module into other
gradient approximation methods such as DSQ [10] and BNN+ [6]. The experiments are conducted on
CIFAR-10 dataset with ResNet-20 model, and the results in Tab. 3 show that fitting the error between
the surrogate function and the original sign function benefits to different gradient approximation
methods.

Then we evaluate the influence of using different η(·) on the branch of shortcut in noise adaptation
module. As shown in Tab. 4, using shortcut results in a better performance than not using it, and the
shortcut function η(x) = a sin(x) performs the best during the experiment. Note that this is consistent
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Table 3: Plugging noise adaptation module into
different methods.

w/o w/
noise module noise module

DSQ 84.11 84.46
BNN+ 84.59 84.87

FDA-BNN 85.83 86.20

Table 4: Ablation study on η(·).

Functions of shortcut branch Acc (%)
η(x) =0 (w/o shortcut) 85.27

η(x) =ax 85.93
η(x) =a sin(x) 86.20

to the analysis in Sec.2.3. Given η(x) = a sin(x), the gradient flow can still be strengthened. Besides,
the gradient η′(x) = a cos(x) equals to adding a positive bias in the given range, and thus can still
alleviate the problem that the tail of the estimated gradient ŝ′n(x) oscillates around 0 with a very high
frequency. a is set to 0.1 during the experiment.

Using different number of FS terms during training will influence the final performance of BNN.
Intuitively, a larger n will reduce the difference between ŝn(·) and sign(·), but at the same time lead
to more time on training since a combination of n gradients will be computed (Eq. (10)). We show
the training time spent and the final accuracy achieved by using different n in Fig. 3. We can see that
as the number of FS terms n increases, the training time continues to increase while the accuracy
saturates at about n = 10, which means a moderate n is enough for training an accurate BNN.

As shown in Fig. 3, a small number of FS terms do harm to the performance of BNN while a
large n leads to a waste of resources and time. Hence, we explore three different settings of using
hyper-parameter n during training.

• Setting 1: the number of FS terms n is fixed to a pre-defined number np during training.
• Setting 2: the number of FS terms n is gradually increased from 1 to a pre-defined number
np.

• Setting 3: the number of FS terms n is gradually increased from 9 (best result in setting 1)
to a pre-defined number np.

Results of different settings are shown in Fig. 4. Setting 1 performs well at a wider range than
setting 2 and they reach a comparable performance when np is large enough. Setting 3 performs
the best, since it start from a moderate n and avoid the large gap between ŝn(·) and sign(·) at the
beginning of training, and is able to approach the sign function as the training proceed. Thus, in the
following experiments we start n from a moderate number ns (e.g., ns = 9) and gradually increase it
to np = 2ns.

Figure 3: Training time spent and the final accu-
racy achieved when using different number of FS
terms. The blue line denotes the accuracy and the
red bar denotes the training time.

Figure 4: Accuracies under different settings of
hyper-parameter n during training.

3.3 Experiments on ImageNet

In this section, we conduct experiments on the large-scale ImageNet ILSVRC 2012 [7] dataset.
ImageNet dataset contains over 1.2M training images with 224×224 resolutions from 1,000 different
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Table 5: Experimental results on ImageNet using different 1-bit quantization methods. ‘W/A’ denotes
the bit-width of weights and activations, and BackProp denotes the way of computing gradients and
updating parameters. ‘*’ indicates that ReActNet [29] is used as the baseline method and only the
way of computing gradient of sign function is replaced with the proposed method.

Network Method W/A BackProp Top-1 Top-5

ResNet-18

FP32 32/32 - 69.6 89.2
TBN [49] 1/2 STE 55.6 79.0

Dorefa-Net [57] 1/1 STE 52.5 67.7
Binary-Net [22] 1/1 STE 42.2 67.1
XNOR-Net [41] 1/1 STE 51.2 73.2

ABCNet [26] 1/1 STE 42.7 67.6
Bireal-Net [30] 1/1 STE 56.4 79.5

Bireal-Net [30]+PReLU 1/1 STE 59.0 81.3
BOP [18] 1/1 STE 54.2 77.2
LNS [17] 1/1 STE 59.4 81.7

ReActNet∗ [29] 1/1 STE 65.5 86.1
HWGQ [4] 1/2 Piece-wise function 59.6 82.2

PCNN (J = 1) [11] 1/1 DBPP 57.3 80.0
Quantization Networks [53] 1/1 Sigmoid 53.6 75.3

ResNetE [2] 1/1 ApproxSign 58.1 80.6
BONN [12] 1/1 Bayesian learning 59.3 81.6
IR-Net [39] 1/1 Tanh-alike 58.1 80.0
RBCN [27] 1/1 Project-based 59.5 81.6
RBNN [25] 1/1 training-aware 59.9 81.9
FDA-BNN 1/1 Fourier Series 60.2 82.3
FDA-BNN∗ 1/1 Fourier Series 66.0 86.4

AlexNet

FP32 32/32 - 56.6 80.2
Dorefa-Net [57] 1/1 STE 43.6 -
BinaryNet [22] 1/1 STE 41.2 65.6
XNOR-Net [41] 1/1 STE 44.2 69.2

LNS [17] 1/1 STE 44.4 -
FDA-BNN 1/1 Fourier Series 46.2 69.7

categories, and 50k validation images. The commonly used data augmentation method is applied
during training. The training images are resized, random cropped, random flipped and normalized
before training, while the test images are resized, center cropped and normalized.

In the following, we conduct experiments on widely-used ResNet-18 and AlexNet. We use the Adam
optimizer with momentum of 0.9 and set the weight decay to 0. The learning rate starts from 1e-3.
The experimental results are shown in Tab. 5. Following the acknowledged setting [22, 57], the first
and last layers of the network are not binarized for classification, and all methods shown in the table
except for ABCNet [26] and Binary-Net [20] do not quantize the down-sample layers in the ResNet
shortcut branch.

We can see that on ResNet-18, the proposed FDA-BNN achieves a top-1 accuracy of 60.2% and top-5
accuracy of 82.3%, which improves the baseline method (Bireal-Net + PReLU activation function) by
1.2% and 1.0%, and surpass all other competitors including TBN [49] and HWGQ [4] which use 2-bit
activations for quantization. When using ReActNet [29] as the baseline method and replace the way
of computing gradient of sign function with our method, the proposed FDA-BNN achieves a top-1
accuracy of 66.0% and top-5 accuracy of 86.4%, which outperforms the baseline method by 0.5%
and 0.3%. For AlexNet, we use the quantization method in Dorefa-Net [57] as the baseline method,
and achieve a top-1 accuracy of 46.2% and top-5 accuracy of 69.7%, which also outperforms other
state-of-the-art methods such as LNS [17] by 1.8% on top-1 accuracy, which shows the superiority of
the proposed FDA-BNN method.
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4 Conclusion

In this paper, we propose a new frequency domain algorithm (i.e., FDA-BNN) to approximate the
gradient of the original sign function in the Fourier frequency domain using the combination of a
series of sine functions, which does not affect the low-frequency part of the original sign function
that occupies most of the energy. Besides, since only finite FS terms are used in reality, a noise
adaptation module is applied to fit the error from the infinite high-order FS terms. In order to
gradually approach the sign function, we increase the number of FS terms n during the training.
The experimental results on CIFAR-10 and ImageNet datasets using various network architectures
demonstrate the effectiveness of the proposed method. Binary networks trained using our method
achieve the state-of-the-art performance.
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