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Abstract

We present a novel approach to unsupervised learning for video object segmenta-
tion (VOS). Unlike previous work, our formulation allows to learn dense feature
representations directly in a fully convolutional regime. We rely on uniform grid
sampling to extract a set of anchors and train our model to disambiguate between
them on both inter- and intra-video levels. However, a naive scheme to train
such a model results in a degenerate solution. We propose to prevent this with a
simple regularisation scheme, accommodating the equivariance property of the
segmentation task to similarity transformations. Our training objective admits
efficient implementation and exhibits fast training convergence. On established
VOS benchmarks, our approach exceeds the segmentation accuracy of previous
work despite using significantly less training data and compute power.

1 Introduction

Unsupervised learning of visual representations has recently made considerable and expeditious
advances, in part already outperforming even supervised feature learning methods [8, 11, 14]. Most of
these works, however, require substantial computational resources [8, 11], and only few accommodate
one of the most ubiquitous types of visual data: videos [13, 33]. In contrast to image sets, video data
embeds ample information about typical transformations occurring in nature. Exploiting such cues
may allow systems to learn more task-relevant invariances, instead of relying only on hand-engineered
data augmentation [30]. In this work, we propose to learn such invariances with a novel framework
for the task of video object segmentation (VOS). In contrast to previous works [17, 19], we learn
dense representations efficiently in a fully convolutional manner, previously considered prone to
degenerate solutions [17]. This is achieved by leveraging the assumption of feature equivariance to
similarity transformations (e. g., multi-scale cropping) applied to the input frame.

Fig. 1 presents an overview of our approach. For each video sequence, we designate one of the frames
as the reference frame. We sample a set of features, produced from the reference frame by a fully
convolutional network, on a spatially uniform grid, and refer to them as anchors. Using a contrastive
formulation [12], our approach learns to represent the temporally proximate frames to the reference
in terms of these anchors. Importantly, this representation is learned to be equivariant to similarity
transformations. Towards this goal, we devise a self-training objective [20] that generates pseudo
labels by leveraging the second, transformed view of the original video sequence. These pseudo
labels contain dominant assignments of the features from the second view to the anchors. Following
the self-training mechanism, we learn to assign the features in the original view consistently with the
transformed view. Our self-supervised loss further disambiguates the anchors themselves spatially
and between independent video sequences, while also ensuring their transformation equivariance.

Implementing this process in a novel framework, we attain a new state of the art in video segmentation
accuracy, with compelling computational and data efficiency. Our framework can be trained on
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Figure 1: Illustration of the main idea. We learn dense visual feature representations in an
unsupervised way by (i) discriminating the features both spatially and at the video level, and (ii)
embedding video representations in terms of a temporally persistent set of video-specific anchors.
We devise a simple and effective approach that sidesteps trivial solutions by exploiting feature
equivariance to similarity transformations of the input frame, which allows to efficiently learn dense
representations in a fully convolutional manner.

a single commodity GPU, yet achieves higher segmentation accuracy than previous work, while
requiring orders of magnitude less data. Improving the accuracy even further with more data, our
approach also exhibits favourable scalability in a more comprehensive testing scenario, which has not
yet been shown in prior work [17, 38].

2 Related work

The research domains most relevant to our work are video object segmentation (VOS) without
supervision and representation learning.

VOS. The inference setting of semi-supervised VOS, which is the task considered here, is to
densely track object masks provided in the first frame. It is typically approached by learning
dense feature representations to establish temporal correspondences for propagating the semantic
labels. While most previous methods are supervised by pixel-wise mask annotations [e. g., 27], an
emerging direction is to leverage unsupervised learning. Our work contributes to these research
efforts. The Contrastive Random Walk (CRW) of Jabri et al. [17] and its predecessor [39] exploit a
time-cycle consistency constraint, akin to the forward-backward consistency in unsupervised optical
flow estimation [24]. Other methods [18, 19] learn the label propagation process at training time by
substituting the target mask (which is unavailable at training time) with the image, an idea inspired
by video colourisation [37]. The algorithm for label propagation itself significantly affects the VOS
accuracy. Mask propagation with naive pixel-wise correspondences usually benefits greatly from
leveraging more sophisticated region-level propagation [19, 21], which is not the focus here.

Representation learning. Although previous work on unsupervised representation learning pursued
spatially view-invariant objectives [5, 8, 11, 14, 15, 25, 36], a concurrent study [10] finds that
equipping these methods with temporally-invariant, or temporally-persistent constraints, yields
sizeable gains in terms of accuracy on action recognition benchmarks. These findings align well with
previous and concurrent work tailored specifically to learning spatio-temporal representations [3,
9, 13, 32, 33] for video recognition and retrieval tasks. These works additionally distinguish the
representations of frames from different videos (or, at different timesteps). The limitation of these
works in the context of VOS is that they do not learn dense, but global feature representations at
the image or video level, and typically require considerable computational budgets. By contrast,
Pinheiro et al. [31] learn dense representations and exploit the equivariance constraint, as in our
work. However, their approach is limited to image sets of static scenes, whereas we address videos of
(potentially) dynamic scenes here.

Semi-supervised representation learning. Recent works [13, 41] leverage optical flow [34] to
ensure the representation similarity of temporally corresponding features. Such an objective can be
alternatively supervised by motion segments [28]. Spatial equivariance has been also explored in part
co-segmentation [16], a setup that requires semantically aligned image pairs, as well as in weakly
supervised semantic segmentation [40] and unsupervised domain adaptation [1]. In contrast to this
body of work, we learn to establish temporal correspondences via a suitable feature representations
learned in a completely unsupervised way.
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Clustering. Contrastive learning methods are inherently expensive due to the size of pairwise
feature comparisons they consider in training [8, 14]. Clustering provides a more computationally
efficient alternative [6], since pairwise distances need to be computed only w. r. t. a (moderately sized)
set of pre-defined clusters. Combining these ideas, Caron et al. [5] propose to cluster the embeddings
and then enforce consistency between the cluster assignments by contrastive learning. The main
challenge in this approach is to impose an expressive prior on the cluster assignments. For example, a
uniform prior prevents trivial solutions where feature assignments collapse to a single cluster.

Here, we neither explicitly define the clusters nor the prior. Instead, we sample attractor points, called
anchors, directly from the available feature representations using a spatial grid sampling strategy.

3 Method

Learning feature representations from unlabelled data is an inherently ill-posed problem and requires
specifying assumptions about what constitutes a useful feature embedding with a downstream task in
mind. We begin with outlining the assumptions guiding our unsupervised learning method for video
segmentation, before delving into the technical specifics of their implementation. We then look in
more detail into the mechanisms that our method implements to comply with those assumptions.

3.1 Assumptions

Assumption 1: Non-local feature diversity. We assume that the distinctness of visual artefacts
in a natural scene exhibits spatial correlation: the more distant two visual phenomena are on the
pixel grid, the more likely they are to belong to different semantic entities, and vice versa. Dense
representations of the images should mirror this property, i. e. be spatially distinguishable. Note that
this assumption is weaker than that of spatial smoothness, which is problematic at object boundaries,
where it would encourage the same representation of the object and the background. In contrast,
non-local feature diversity is agnostic to the spatial arrangement of the objects and the background in
the scene. On a feature grid, where every cell corresponds to its own receptive field in the image, we
can discriminate the representation on all levels of the semantic hierarchy (provided sufficient grid
resolution): between the objects and the background, as well as between object parts. Jabri et al. [17]
implicitly relied on this assumption to spatially distinguish the nodes of the space-time graph.

Assumption 2: Temporal coherence. We posit that the feature representation extracted from one
frame in a video should be closer in the embedding space (e. g., in terms of the cosine similarity) to a
feature vector from another temporally close frame of the same sequence, rather than to a feature
embedding derived from another video. The premise for this assumption is the temporal coherence in
videos: the changes in appearance within a video sequence are seldom as significant as between two
independent video shots. Also leveraged by Wang et al. [38], this is a desirable property for dense
tracking, which is our focus in this work.

Assumption 3: Temporal persistence of semantic content. We further assume that the semantic
content of video clips remains unchanged, at least for a short time span. Specifically, if we represent
a given reference frame with a set of distinct features (following Assumption 1), the semantic content
of temporally close frames can be faithfully represented with the same feature set. Note that the
contrastive random walk (CRW) [17] makes a somewhat stronger assumption that every frame in a
sequence must contain the same feature set as the reference frame. By contrast, under our assumption
every frame may comprise only a (proper) subset of the reference feature set. Although the edge
dropout technique improves model robustness to partial occlusions in [17], following our assumption
allows to handle full occlusions, provided the occluded object is visible in the reference frame.

Assumption 4: Equivariance to similarity transformations. Finally, we require the feature represen-
tation be equivariant to similarity transformations, i. e. scaling or flipping of an input video frame
should produce a correspondingly scaled or flipped feature embedding. This assumption has not been
yet explored in dense unsupervised learning from videos, and is in contrast to the common practice
of unsupervised learning from static image sets, where two views produced by a random similarity
transform need to yield the same global, hence invariant representation [8].

While Assumptions 1 and 2 have been studied independently in prior work [17, 38], we investigate
their combination here, and further complement them with our occlusion-aware variant of Assumption
3 and the yet unexplored Assumption 4 on equivariance.
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Figure 2: Overview. Our framework (a) consists of a single CNN-based feature extractor that
processes video sequences in the main branch. The second regularising branch takes a transformed
version (random cropping and flipping) of the videos as input and produces pseudo labels û w. r. t.
the anchors q extracted from the features of the main branch. The self-training loss LST learns
space-time embeddings implementing our Assumptions 1–3 and, implicitly, Assumption 4 on feature
equivariance. The cross-view consistency loss LCV further facilitates the latter explicitly. To sample
the anchors (b), we first randomly select one frame per video sequence in the current batch (Step 1),
and then sample the features at random on a uniform grid (here, with size 3× 3) in Step 2 to obtain q.

3.2 Overview

The core of our training procedure is a self-supervised loss imposing four assumed properties on the
feature representation. First, we learn to densely represent every video frame in terms of spatially
discriminative features (Assumption 1). Second, the set of discriminative features representing a
video is learned to be distinguishable from the set of another video sequence (Assumption 2). Third,
our method learns to represent every frame in a video sequence as a composite of discriminative
features extracted from a single reference frame of the same sequence (Assumption 3). Last, we learn
a feature representation satisfying these properties under the equivariance constraint (Assumption
4). Specifically, we minimise the distance between every pair of spatially corresponding features
extracted from two views and related by a similarity transform w. r. t. non-corresponding pairs.

3.3 Framework

The feature extractor in our framework, illustrated in Fig. 2a, is a fully convolutional network [22].
It processes two copies of the input image batch, comprising the same set of video sequences, in
the main and regularising branches. The purpose of the regularising branch is to prevent degenerate
solutions observed in previous attempts to learn feature representations in a fully convolutional
manner [17]. While the main branch receives the original video frames, we feed a transformed
version of these frames to the regularising branch. Specifically, we extract random multi-scale crops
and apply horizontal flipping at random. We denote this random similarity transform as T (·). Both
the main and the regularising branch produce dense L2-normalised K-dimensional feature tensors
k, k̂ ∈ RB,T,K,h,w, respectively, where ∥ki,j,:,l,m∥ = ∥k̂i,j,:,l,m∥ = 1, B is the batch size, T is
the number of selected frames from a video sequence, and h,w are the spatial dimensions of these
embeddings. Terms related to the regularising branch are denoted with the hat notation (ˆ) in the
following. In the next step, we compute pairwise feature distances to leverage contrastive learning
[12]. Recall from Sec. 3.2 that our goal is to discriminate features (i) spatially within individual
frames under the equivariance constraint, and (ii) temporally, to represent each frame in a video
sequence in terms of the same feature set while distinguishing between independent video sequences.

Anchor sampling. We take a bi-level sampling approach based on clustering for improved training
efficiency, illustrated in Fig. 2b. First, for each video sequence in the batch, we sample one frame
at random. We define it as the reference frame for the video sequence from which it originates.
Relying on Assumption 3 that the frames of the same sequence share semantic content, we leverage
the randomly chosen reference frame for extracting a set of video-level features, i. e. encouraged to
be shared between temporally close video frames. In more detail, instead of computing the pairwise
distances between every feature vector in the batch, we define a spatially uniform grid of size N×N
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on the feature tensor of the reference frame, and draw one sample per grid cell. This is to collect
features that are spatially distinct (Assumption 1) and cover the full image. As a result, we obtain
(B×N2) K-dimensional feature embeddings, which we will refer to as anchors and denote as q.
Defining this grid sampling operation as GN (·), we can write this step as q := GN (k). We then
compute pairwise distances between the features k and k̂ w. r. t. these anchors, rather than to the
features themselves. The outcome is a distance matrix of size (B · T · h ·w)×(B ·N2). Compared to
dense sampling, this reduces memory and the computational budget by a factor of O(T · h · w / N2).

Computing affinity to anchors. Following our cluster-based analogy, we compute affinities of the
features k and k̂ from the two branches w. r. t. the anchors q. Note that we extract the anchors only
from the main branch and share them with the regularising branch. Since the anchors q ∈ RBN2×K

are sampled from k, they also have unit L2-norm, i. e. ∥qi,:∥ = 1 for all i. Let v, v̂ ∈ RBThw×BN2

denote the affinities of k and k̂ w. r. t. q, respectively, which we compute using a softmax over cosine
similarities w. r. t. all anchors, i. e.

vi,j =
exp(ki·qj/τ)∑
l exp(ki·ql/τ) , v̂i,j =

exp(k̂i·qj/τ)∑
l exp(k̂i·ql/τ)

, (1)

where τ ∈ R+ is a scalar temperature hyperparameter. Put simply, vi,j ∈ [0, 1]BThw×BN2

represents
the similarity between feature ki and anchor qj (analogously for v̂i,j).

Space-time self-training. We first generate pseudo labels of anchor assignments for self-training
by acquiring the dominant anchor index for each feature from the regularising branch,

ûi = argmax
j∈N (i)

v̂i,j , (2)

where N (i) is the index set of the anchors that stem from the same video clip as the feature vector
with index i. Observe that v and û are in spatial correspondence via a similarity transformation T .
The former represents soft assignments of the feature vectors from the original view to the anchors,
while the latter contains hard assignments of the features from the regularising branch. Our primary
self-supervised loss minimises the distance of the features extracted from the other temporally close
frames to the anchors,

LST = −
∑

i ̸∈R
log T (vi,ûi) , (3)

where R is the index set of the features extracted from the reference frames; T (·) spatially aligns the
soft affinities v of the main branch with the pseudo labels obtained with the help of the regularising
branch. As we analyse in Sec. 3.4, this loss term relates to the spatial and temporal properties of
the learned representation within the same view (since we do not propagate the gradient in Eq. (2)
following our self-training approach), hence we refer to this objective as space-time self-training.
However, implementing Assumptions 1–3, this objective only implicitly fulfils Assumption 4 on
equivariance by means of seeking a consistent anchor assignment between the two views.

Cross-view consistency. To generate the pseudo labels in Eq. (2), we assume that the dominant
assignment of k̂ to the anchors q is meaningful, despite the two representations originating from
different synthetic views (related by T (·)). By following our space-time self-training in Eq. (3), we
already find this assumption largely to hold for datasets of modest size (cf. Sec. 4.3). However, we
observed additional accuracy benefits and improved training stability from explicitly facilitating the
equivariance, our Assumption 4, especially when training on larger datasets. We impose a cross-view
consistency term on the reference features only. Note that it complements the self-supervision with
the pseudo labels in Eq. (3), which omits the reference features. Re-using our grid sampling operator
GM (·) parametrised by a cross-view grid size M , we subsample the features from the main and the
regularising branches as r = GM (T (k)) and r̂ = GM (k̂) such that r, r̂ ∈ RBM2×K . Similarly to
Eq. (1), we compute pairwise affinities between these features:

hi =
exp(ri·r̂i/τ)∑
l̸=i exp(ri·r̂l/τ)

. (4)

This affinity contrasts the cosine similarity between the corresponding features (since r and r̂ are
spatially aligned) w. r. t. non-corresponding pairs. We define the cross-view loss term to uphold this
correspondence in the embedding space by minimising

LCV = −
∑

i∈R
log hi. (5)

A hyperparameter λ weights its contribution to the total loss used for training our framework:
L = LST + λLCV . (6)
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3.4 Analysis

We now take detailed look at how our framework implements the assumptions from Sec. 3.1.

Non-local feature diversity (Assumption 1). Our loss disambiguates feature representations by
clustering, with the anchors acting as attractors. Recall that our formulation of the feature distance
to the anchors in Eq. (1) is contrastive, i. e. it is measured relative to all other anchors. As a result,
minimising such distance would not only encourage an increased cosine similarity of the features
to the anchors, but also a decreased cosine similarity between the anchors themselves. Recall that
the anchors are a subset of features sampled spatially from a randomly selected video frame on a
uniform grid. Consequently, our loss learns to discriminate between spatially distinct features.

Temporal coherence (Assumption 2). In Eq. (1), we compute the affinity of the features to the
anchors extracted from multiple videos in the training batch. Note that we select the dominant anchors
in Eq. (2) for self-training only from the same video sequence as the feature itself. This implies
that (i) the features will be attracted only to the anchors originating from the same video, and (ii)
the distance between the anchors and the features from different video sequences will increase by
virtue of our contrastive formulation of the affinity. Note that the latter also implements inter-video
discrimination, analogous to instance-specific learning from image sets, which was shown to result in
class-specific representations [e. g., 8].

Temporal persistence of semantic content (Assumption 3). Our anchor sampling strategy ensures
that all anchors stem from a single video frame, the reference frame. By design of the pseudo labels
(cf. Eq. (2)), our self-training loss in Eq. (3) aligns the representation of the other frames only with
the reference originating from the same video.

Equivariance (Assumption 4). We generate a random similarity transformation to synthesise
the input to the regularising branch. The task of video object segmentation (VOS), studied here,
is equivariant under this family of transformations: flipping or scaling the image should result in
a corresponding change in the segmentation output. Our cross-view consistency loss in Eq. (5)
explicitly facilitates this property.

3.5 Discussion

Preventing degenerate solutions. In our preliminary experiments without the regularising branch
and Assumption 4, we observed that the model would rapidly converge to a trivial solution, previously
also reported by Jabri et al. [17]. Our investigation suggested that the network was encoding
positional cues into a degenerate feature representation. We hypothesise that such solutions may be
a consequence of the limited spatial invariance in contemporary CNN implementations [2] and the
widely adopted padding. The padding type is, in fact, irrelevant, since any deterministic padding
strategy provides a stable and predictable pattern. We also found it necessary to spatially jitter the grid
for sampling the anchors, rather than to maintain a fixed offset, to prevent further shortcut solutions.

Computational scalability. Using a grid sampling strategy to extract anchors allows for considerable
computational savings. For example, if h×w = 32×32, and we use a grid of size N×N = 8×8, this
will have a computational and memory saving factor of 16. This saving becomes even more valuable
if we scale up the storage costs of the affinities v and v̂, which have the size of B · T · h ·w×B ·N2,
w. r. t. B and T . Improving the computational footprint with such subsampling is non-trivial in
MAST [19] due to the use of the dense reconstruction loss, and in CRW [17] as it extracts image
patches with 50% overlap, hence propagates the same pixels through the network up to three times.

Practical considerations. The order of the frames from a sequence in the batch is irrelevant and can
be randomly selected, since we do not require any assumptions about motion continuity. Further, we
do not use any momentum network or queue buffers, e. g. such as in [14]. Our training is surprisingly
stable without any of them. Further, we only use similarity transformations to augment the training
data, but no appearance-based augmentations such as photometric noise [8, 11, 14]. Instead, we rely
on learning natural changes in the appearance directly from video data.

Comparison to Caron et al. [5]. In contrast to [5], the representation of our clusters (anchors) is
non-parametric. Specifically, we do not learn a global set of cluster features shared by the complete
video dataset. The advantage is that we neither need to set the number of clusters a priori, nor to
specify a prior on the cluster assignment.
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Table 1: Video object segmentation quality on DAVIS-2017 validation in terms of the mask (J ) and
boundary (F ) accuracy (IoU). The subscript [·]r denotes the recall of the metric, while [·]m signifies
the mean. ×2 denotes an output stride of 4 instead of 8, i. e. the spatial feature resolution is twice as
large. # / t details dataset characteristics: the number of videos / the total dataset duration in hours.

Method ×2 Train Data # / t Jm Jr Fm Fr J&Fm

Baseline (random initialisation) — — — — — — — 43.1

CorrFlow [18] —
OxUvA 366 / 14

48.4 53.2 52.2 56.0 50.3
MAST [19] ✓ 61.2 73.2 66.3 78.3 63.7
Ours — 63.4 76.1 67.2 79.7 65.3

MAST [19] ✓ YT-VOS 4.5K / 5 63.3 73.2 67.6 77.7 65.5
Ours — 67.1 81.2 71.6 84.9 69.3

ContrastCorr [38] — TrackingNet 30K / 140 60.5 — 65.5 — 63.0
Ours — 67.1 80.9 71.7 84.8 69.4

CRW [17] — Kinetics-400 300K / 833 64.8 76.1 70.2 82.1 67.6
Ours — 66.7 81.4 70.7 84.1 68.7

Comparison to CRW [17]. The implementation of our approach is simpler, since the frame ordering
within the batch is irrelevant, and more computationally efficient, as we compute feature affinities
in parallel rather than sequentially (see Table 3 for detail). We also use a weaker assumption on
semantic persistence (Assumption 3), which can be advantageous in video sequences with occlusions.
Additionally, we learn to discriminate features between different videos, which is not part of CRW.

4 Experiments

To evaluate the learned feature representations, we conduct experiments in the setting of semi-
supervised VOS. The task provides a set of segmentation masks for the first frame in a video sequence
and requires the evaluated algorithm to densely track the demarcated objects in the remaining frames.
We largely follow the VOS setup of Jabri et al. [17] and evaluate our method on DAVIS-2017 [35].
Following Lai et al. [19], we additionally test our approach on the YouTube-VOS val by submitting
our results to an evaluation server [42].

Implementation details. Similarly to Jabri et al. [17], we use ResNet-18 as the backbone network
for our feature extractor. We evaluate the correspondences using the output of the fourth (the last)
residual block. To obtain the output stride of 8 in our feature extractor, we remove the strides of
the last two residual blocks, as in previous work [17, 38]. At training time, we first scale the video
frames such that the lowest side is between 256 and 320 pixels, and extract random crops of size
256×256. We train our network with Adam and the learning rate 10−4 on the smaller YouTube-VOS
and OxUvA [35], whereas we found SGD with the learning rate 10−3 to work better on the larger
Kinetics-400 and TrackingNet datasets. We set the temperature τ = 0.05 throughout our experiments;
we observed its influence on the accuracy to not be significant. The hyperparameter λ, trading off the
influence of the cross-view consistency, equals 0.1 by default, and we empirically study its role in
Sec. 4.3. We train our models on one A100 GPU, although training our most accurate configuration
of the framework requires only 12GB of memory, hence a single Titan X GPU is actually sufficient.

Label propagation. To propagate the semantic labels from the initial ground-truth annotation, we
rely on the label propagation algorithm implemented by Jabri et al. [17], detailed in Appendix C.
In particular, for every feature embedding in the current frame, we compute its cosine similarity
w. r. t. the features in the previous NT = 20 context frames and the first reference frame. We select
NK = 10 feature embeddings with the highest similarity, divide the similarity by τ and compute a
softmax to obtain normalised affinity values. The mask prediction for this feature embedding is a
convex combination of the mask predictions of its neighbours, weighted by this affinity.

4.1 Evaluation on DAVIS-2017

To evaluate on DAVIS-2017 [29] val, we independently train our feature extractor on 4 datasets.
The OxUvA dataset [35] spans 366 video sequences with a total duration of 14 hours. The second
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dataset is YouTube-VOS [42], which by comparison to OxUvA contains more videos (around 4.5K
sequences), but has a shorter overall duration of 5.6 hours. In addition, we train on larger datasets,
TrackingNet [26] and Kinetics-400 [7]. These datasets contain significantly more video sequences,
albeit of lower resolution and quality (e. g., due to compression artefacts). While running the inference
on DAVIS-2017 [29], we process the frames at a resolution of 480p for fair comparison.

Table 1 reports the segmentation accuracy in terms of two types of metrics: The Jaccard’s index
measures the intersection-over-union (IoU) of the object mask respectively the contour; we report the
mean of mask and contour IoU, Jm and Fm, as well as the recall Jr and Fr (with an IoU threshold
of 0.5) [29]; J&Fm is the average of Jm and Fm. In a comparable setting where all methods use
the same dataset for training, our approach clearly improves over the state-of-the-art accuracy. When
trained on OxUvA, our approach outperforms MAST [19] by 1.6% J&Fm. This improvement is
even more pronounced when trained on YouTube-VOS, where we outperform MAST [19] by 3.8%
in J&Fm score. This improvement is especially notable, since MAST [19] produces its feature
embeddings at twice the resolution of our method, hence has a larger memory footprint. These
results are consistent when training our approach on larger but less carefully curated datasets. Using
TrackingNet, we improve over the previous result of Wang et al. [38] by 6.4% J&Fm. Compared to
CRW [17], our approach reaches a higher J&Fm score by 1.1%. Remarkably, using the smaller
YouTube-VOS dataset for training, our method already achieves comparable or higher VOS accuracy
compared to previous work [17, 38] that required significantly larger datasets for training. We also
observe that the diversity and the quality of the dataset, i. e. the number of the videos and their
resolution, tends to improve the quality of our learned features in terms of the segmentation accuracy.

4.2 Evaluation on YouTube-VOS

Following Lai et al. [19], we additionally evaluate our features on the YouTube-VOS 2018 valid split.
With 474 video sequences containing 91 unique object classes, its diversity represents a significantly
more challenging and comprehensive test bed for VOS than DAVIS-2017. We train our model on three
datasets as before: YouTube-VOS, TrackingNet, and Kinetics-400. The train set of YouTube-VOS
contains only some of the object classes present in valid and the benchmark distinguishes between
these as “seen” and “unseen” categories. We submit our results to the official evaluation server to
obtain the quantitative metrics Jm and Fm. YouTube-VOS valid has additional specifics compared to
the DAVIS benchmark and previous work tends to use a different label propagation strategy to address
them (e. g., the initial object masks may appear in different intermediate frames, rather than only in
the first frame at once). Since we use the label propagation from CRW [17], we also evaluate this
model trained on Kinetics-400 for a fair comparison. Note that the label propagation of MAST [19]
benefits from a larger feature resolution and a more advanced two-stage inference process: first
detecting a ROI and then computing feature correlations bounded by the ROI.

The results in Table 2 show that our approach sets a new state of the art, improving over CRW [17]
by 0.8% mean score. In a comparable setting when our method and CRW use the same training data,
Kinetics-400, we improve by 0.7%. With larger training datasets, Kinetics and TrackingNet, we reach
higher VOS accuracy compared to training on the smaller YouTube-VOS. Such scalability has not
been shown in previous work [17, 38], where the training dataset was limited to a single instance, or
two instances of comparable (small) scale [19]. Notably, the accuracy from training on YouTube-VOS
already matches that of CRW when trained on much more data. Finally, we also outperform fully
supervised methods, OSVOS [4] and PreMVOS [23], especially on unseen categories.

4.3 Further analysis

We study (i) the interplay between the number of video sequences B per batch and the number of
frames T per video; (ii) the influence of the cross-view loss term via the trade-off hyperparameter λ;
(iii) the framework’s sensitivity to the size of the sampling grid of the anchors N and (iv) cross-view
features M ; (v) increasing the temporal window of the video clips in training. We conduct all
experiments by training the corresponding model on YouTube-VOS. Fig. 3 visualises the results in
terms of the J&Fm score on DAVIS-2017 (val). Our baseline configuration, depicted as the centre
node, corresponds to the default setting of B = 16, T = 5, λ = 0.1, N = 8,M = 4. Every edge of
the same style and colour represents a change of selected hyperparameters, while keeping the default
values for the rest. To put the significance of the differences into perspective, we also compute the
standard deviation of the J&Fm score on DAVIS-2017 across 5 training runs, amounting to ±0.42.
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Table 2: Results on YouTube-VOS 2018 (val).
We compare our models pre-trained on YouTube-
VOS, TrackingNet, and Kinetics to previous work.
CRW [17] and Colorize [37] were trained on
Kinetics-400; CorrFlow [18] and MAST [19]
used OxUvA and YouTube-VOS, respectively.
CRW [17] uses the same label propagation as ours.

Method Seen Unseen

M
ea

n

Jm Fm Jm Fm

Unsupervised

Colorize [37] 43.1 38.6 36.6 37.4 38.9
CorrFlow [18] 50.6 46.6 43.8 45.6 46.6
MAST [19] 63.9 64.9 60.3 67.7 64.2
CRW [17] 68.7 70.2 65.4 75.2 69.9
Ours-YouTubeVOS 69.6 71.3 65.0 73.5 69.9
Ours-Kinetics 69.9 71.3 66.5 74.8 70.6
Ours-TrackingNet 70.2 71.9 66.3 74.5 70.7

Supervised

OSVOS [4] 59.8 60.5 54.2 60.7 58.8
PreMVOS [23] 71.4 75.9 56.5 63.7 66.9
STM [27] 79.7 84.2 72.8 80.9 79.4

69.3

68.7 T =10

69.3 T =1561.1

4×4

69.0 16×16

68.0

2×2

67.8

8×8

66.2
T = 10
B = 8

67.1

T = 2
B = 40

60.0 B = 80
T = 1

67.0

λ = 0

68.5

λ = 1

Varying T

T×B = 80

Varying λ

M×M
N×N

Figure 3: Ablation study. We report J&Fm

on DAVIS-2017 (val) by varying the hyperpa-
rameters of our baseline configuration (centre):
B = 16 (no. of videos in a batch), T = 5
(no. frames per video), λ = 0.1 (cross-view trade-
off), N = 8 (anchor grid size), M = 4 (cross-
view grid size). See Sec. 4.3 for details.

Balance between the number of videos and their size. The effective batch size of our method is
B×T , hence depends on the number of videos and their duration. Here, we investigate the balance
between the size of the video set T and the number of distinct video sequences B used in a single
training batch. We fix B × T to 80 as the invariant, and evaluate three additional configurations
of B and T . Our main observation in Fig. 3 is that using multiple frames, i. e. ensuring T > 1, is
crucial: training with only a single frame per video (T =1) reduces the quality of learned feature
representations significantly, by 9.3% J&Fm. In light of Assumption 3, this is expected, as only in
a multi-frame setting our model can learn a shared representation of the video set.

The influence of the cross-view consistency γ. By setting γ = 0, we train our approach without
the cross-view consistency (cf. Eq. (5)). We find that this results in an accuracy drop of 2.3% J&Fm,
confirming its accuracy benefits. On the other extreme, we increase its values from 0.1 to 1.0 and
find it dominating over the space-time self-training term, hence inhibiting learning of temporal
coherence: J&Fm decreases by 0.8%. Overall, we confirm that the benefits of data augmentation
used via cross-view consistency is only complementary to our self-training. This is in contrast to the
pivotal role of data augmentation in prior work [e. g., 5, 8, 11]. Our main hypothesis, elaborated in
Appendix B.2, is that artificial image transformations do not reflect the transformations occurring in
time in video sequences, which is important to establish accurate temporal correspondences.

Grid resolution. We vary the size of the sampling grid for the anchors N and the cross-view
consistency M (Eq. (5)). Since a high grid density (i. e. large N and M ) implies an increased
computational footprint (cf. Sec. 3.5), we seek to reduce it without compromising VOS accuracy. A
low grid resolution may be too coarse in terms of discriminating a sufficient level of detail. Conversely,
a high grid resolution may focus the learning more on discriminating between object parts, which may
be detrimental to object-level disambiguation. We find that both of these extremes lead to a tangibly
lower VOS accuracy, e. g. using N = 4 leads to a drop in J&Fm score by 8.2%. Varying M leads
to a more moderate decrease in J&Fm, by at most 1.5% for M = 8. Regarding the discrepancy
between the optimal N = 8 and M = 4, we hypothesise that while a grid size of N = 4 may be
sufficient to satisfy our Assumption 1, it may undermine Assumption 3, since a sparser grid may miss
feature vectors representing the object of interest, visible in the temporally close frames.

Sampling more frames T per video. We now fix B = 16 and increase the number of frames per
video T . Higher T have the appeal of providing larger degrees of natural transformations. However,
larger videos also contain more occlusion, which our method can handle, but also disocclusions,
which violate our Assumption 3 on temporal persistence, hence currently problematic. The results
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Figure 4: Qualitative examples on DAVIS-2017 and YouTube-VOS. The representation learned by
our method is robust to occlusions, naturally occurring non-rigid transformations and deals well with
object-background disambiguation.

confirm this expectation: using more frames does not further improve the VOS accuracy. For example,
increasing T to 15, we match J&Fm of the baseline, yet at additional computational costs.

Table 3: Computational efficiency.

Method # ∆t Mem

ContrastCorr [38] 0.4M 1d 44GB
Ours-TrackingNet 0.2M 1d 12GB

CRW [17] 2M 7d 22GB
Ours-Kinetics-400 0.3M 2d 12GB

MAST [19] 2M — 22GB
Ours-YouTube-VOS 0.1M 6h 12GB

Qualitative examples. Fig. 4 shows examples of mask
propagation, leveraging our learned feature representa-
tion. We observe temporal correspondences to remain
stable and accurate despite complex self-occlusions (e. g.,
torso of dancer), non-rigid deformations, and appearance
changes due to shadows (e. g., giraffes). Our method
does not exhibit “bleeding” artefacts of MAST [19] and
produces more complete segmentation masks than [17]
despite using less data for training (YouTube-VOS for
the DAVIS-2017 example, TrackingNet for the YouTube-
VOS result). See supplemental for more visual results.

Computational efficiency. Table 3 summarises the computational benefits of our approach w. r. t.
previous work. Regardless of the training data, our approach requires less time for convergence, both
in terms of the number of training iterations (#) and wall clock duration ∆t. This improvement
comes with modest memory requirements: to train our framework we require only 12GB of GPU
memory, a twofold decrease compared to prior work.

5 Conclusion

We presented a simple and computationally efficient unsupervised method for learning dense space-
time representations from unlabelled videos. Our approach exhibits fast training convergence and
compelling data efficiency. We achieve VOS accuracy surpassing previous results despite using only
a fractional amount of the training data required in prior work. We recognise the possibility of our
research results to be used with malicious intents, such as for unauthorised surveillance. However,
as a product of fundamental research with low technology readiness levels of 1 to 3, this is highly
unlikely. Our method is yet unable to handle disocclusions. We are excited to explore such capability
to improve learning a wider spectrum of invariances by leveraging larger temporal windows in videos
containing complex (ego-)motion, where disocclusions are more likely to occur.
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