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Abstract

We propose a novel second-order optimization framework for training the emerg-
ing deep continuous-time models, specifically the Neural Ordinary Differential
Equations (Neural ODEs). Since their training already involves expensive gradient
computation by solving a backward ODE, deriving efficient second-order methods
becomes highly nontrivial. Nevertheless, inspired by the recent Optimal Control
(OC) interpretation of training deep networks, we show that a specific continuous-
time OC methodology, called Differential Programming, can be adopted to derive
backward ODEs for higher-order derivatives at the same O(1) memory cost. We
further explore a low-rank representation of the second-order derivatives and show
that it leads to efficient preconditioned updates with the aid of Kronecker-based
factorization. The resulting method – named SNOpt – converges much faster than
first-order baselines in wall-clock time, and the improvement remains consistent
across various applications, e.g. image classification, generative flow, and time-
series prediction. Our framework also enables direct architecture optimization,
such as the integration time of Neural ODEs, with second-order feedback policies,
strengthening the OC perspective as a principled tool of analyzing optimization in
deep learning. Our code is available at https://github.com/ghliu/snopt.

1 Introduction
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Figure 1: Our second-order method (SNOpt; green solid curves) achieves superior convergence
compared to first-order methods (SGD, Adam) on various Neural-ODE applications.

Neural ODEs (Chen et al., 2018) have received tremendous attention over recent years. Inspired by
taking the continuous limit of the “discrete” residual transformation, xk+1 = xk + εF (xk, θ), they
propose to directly parameterize the vector field of an ODE as a deep neural network (DNN), i.e.

dx(t)

dt
= F (t,x(t), θ), x(t0) = xt0 , (1)

where x(t) ∈ Rm and F (·, ·, θ) is a DNN parameterized by θ ∈ Rn. This provides a powerful
paradigm connecting modern machine learning to classical differential equations (Weinan, 2017) and
has since then achieved promising results on time series analysis (Rubanova et al., 2019; Kidger et al.,
2020b), reversible generative flow (Grathwohl et al., 2018; Nguyen et al., 2019), image classification
(Zhuang et al., 2020, 2021), and manifold learning (Lou et al., 2020; Mathieu & Nickel, 2020).

Due to the continuous-time representation, Neural ODEs feature a distinct optimization process (see
Fig. 2) compared to their discrete-time counterparts, which also poses new challenges. First, the
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Figure 2: Neural ODE features distinct training process: Both forward and backward passes parame-
terize vector fields so that any generic ODE solver (which can be non-differentiable) can query time
derivatives, e.g. dx(t)

dt , to solve the ODEs (1, 5). In this work, we extend it to second-order training.

forward pass of Neural ODEs involves solving (1) with a black-box ODE solver. Depending on
how its numerical integration is set up, the propagation may be refined to arbitrarily small step sizes
and become prohibitively expensive to solve without any regularization (Ghosh et al., 2020; Finlay
et al., 2020). On the other hand, to prevent Back-propagating through the entire ODE solver, the
gradients are typically obtained by solving a backward adjoint ODE using the Adjoint Sensitivity
Method (ASM; Pontryagin et al. (1962)). While this can be achieved at a favorable O(1) memory, it
further increases the runtime and can suffer from inaccurate integration (Gholami et al., 2019). For
these reasons, Neural ODEs often take notoriously longer time to train, limiting their applications to
relatively small or synthetic datasets (Massaroli et al., 2020) until very recently (Zhuang et al., 2021).

To improve the convergence rate of training, it is natural to consider higher-order optimization. While
efficient second-order methods have been proposed for discrete models (Ba et al., 2016; George
et al., 2018), it remains unclear how to extend these successes to Neural ODEs, given their distinct
computation processes. Indeed, limited discussions in this regard only note that one may repeat the
backward adjoint process recursively to obtain higher-order derivatives (Chen et al., 2018). This is,
unfortunately, impractical as the recursion will accumulate the aforementioned integration errors and
scale the per-iteration runtime linearly. As such, second-order methods for Neural ODEs are seldom
considered in practice, nor have they been rigorously explored from an optimization standpoint.

In this work, we show that efficient second-order optimization is in fact viable for Neural ODEs.
Our method is inspired by the emerging Optimal Control perspective (Weinan et al., 2018; Liu &
Theodorou, 2019), which treats the parameter θ as a control variable, so that the training process, i.e.
optimizing θ w.r.t. some objective, can be interpreted as an Optimal Control Programming (OCP).
Specifically, we show that a continuous-time OCP methodology, called Differential Programming,
provides analytic second-order derivatives by solving a set of coupled matrix ODEs. Interestingly,
these matrix ODEs can be augmented to the backward adjoint ODE and solved simultaneously. In
other words, a single backward pass is sufficient to compute all derivatives, including the original
ASM-based gradient, the newly-derived second-order matrices, or even higher-order tensors. Further,
these higher-order computations enjoy the sameO(1) memory and a comparable runtime to first-order
methods by adopting Kronecker factorization (Martens & Grosse, 2015). The resulting method –
called SNOpt – admits superior convergence in wall-clock time (Fig. 1), and the improvement remains
consistent across image classification, continuous normalizing flow, and time-series prediction.

Our OCP framework also facilitates progressive training of the network architecture. Specifically,
we study an example of jointly optimizing the “integration time” of Neural ODEs, in analogy to
the “depth” of discrete DNNs. While analytic gradients w.r.t. this architectural parameter have
been derived under the ASM framework, they were often evaluated on limited synthetic datasets
(Massaroli et al., 2020). In the context of OCP, however, free-horizon optimization is a well-studied
problem for practical applications with a priori unknown terminal time (Sun et al., 2015; De Marchi
& Gerdts, 2019). In this work, we show that these principles can be applied to Neural ODEs, yielding
a novel second-order feedback policy that adapts the integration time throughout training. On training
CIFAR10, this further leads to a 20% runtime reduction, yet without hindering test-time accuracy.

In summary, we present the following contributions.

• We propose a novel computational framework for computing higher-order derivatives of deep
continuous-time models, with a rigorous analysis using continuous-time Optimal Control theory.

• We propose an efficient second-order method, SNOpt, that achieves superior convergence (in
wall-clock time) over first-order methods in training Neural ODEs, while retaining constant
memory complexity. These improvements remain consistent across various applications.

• To show that our framework also enables direct architecture optimization, we derive a second-
order feedback policy for adapting the integration horizon and show it further reduces the runtime.
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2 Preliminaries

Notation. We use roman and italic type to represent a variable x(t) and its realization x(t) given an
ODE. ODESolve denotes a function call that solves an initial value problem given an initial condition,
start and end integration time, and vector field, i.e. ODESolve(x(t0), t0, t1, F) where dx(t)

dt = F .

Forward and backward computations of Neural ODEs. Given an initial condition x(t0) and
integration interval [t0, t1], Neural ODEs concern the following optimization over an objective L,

min
θ
L(x(t1)), where x(t1) = x(t0) +

∫ t1

t0

F (t,x(t), θ) dt (2)

is the solution of the ODE (1) and can be solved by calling a black-box ODE solver, i.e. x(t1) =
ODESolve(x(t0), t0, t1, F). The use of ODESolve allows us to adopt higher-order numerical meth-
ods, e.g. adaptive Runge-Kutta (Press et al., 2007), which give more accurate integration compared
with e.g. vanilla Euler discretization in residual-based discrete models. To obtain the gradient ∂L∂θ of
Neural ODE, one may naively Back-propagate through ODESolve. This, even if it could be made
possible, leads to unsatisfactory memory complexity since the computation graph can grow arbitrarily
large for adaptive ODE solvers. Instead, Chen et al. (2018) proposed to apply the Adjoint Sensitivity
Method (ASM), which states that the gradient can be obtained through the following integration.

∂L
∂θ

= −
∫ t0

t1

a(t)T
∂F (t,x(t), θ)

∂θ
dt , (3)

where a(t) ∈ Rm is referred to the adjoint state whose dynamics obey a backward adjoint ODE,

−da(t)

dt
= a(t)T

∂F (t,x(t), θ)

∂x(t)
, a(t1) =

∂L
∂x(t1)

. (4)

Equations (3, 4) present two coupled ODEs that can be viewed as the continuous-time expression of
the Back-propagation (LeCun et al., 1988). Algorithmically, they can be solved through another call
of ODESolve (see Fig. 2) with an augmented dynamics G, i.e.x(t0)

a(t0)
∂L/∂θ

 = ODESolve(

x(t1)

a(t1)

0

 , t1, t0, G), where G

t,
x(t)

a(t)

·

 , θ
 :=

F (t,x(t), θ)

−a(t)T ∂F∂x
−a(t)T ∂F∂θ

 (5)

augments the original dynamics F in (1) with the adjoint ODEs (3, 4). Notice that this computation (5)
depends only on (x(t1),a(t1)). This differs from naive Back-propagation, which requires storing
intermediate states along the entire computation graph of forward ODESolve. While the latter requires
O(T̃ ) memory cost,1 the computation in (5) only consumes constant O(1) memory cost.

Chen et al. (2018) noted that if we
further encapsulate (5) by ∂

∂θL =
grad(L, θ), one may compute higher-
order derivatives by recursively calling
∂nL
∂θn = grad(∂

n−1L
∂θn−1 , θ), starting from

n=1. This can scale unfavorably due to
its recursive dependence and accumu-
lated integration errors. Indeed, Table 1

Table 1: Numerical errors between ground-truth and ad-
joint derivatives using different ODESolve on CIFAR10.

rk4 implicit adams dopri5
∂L
∂θ 7.63×10−5 2.11×10−3 3.44×10−4

∂2L
∂θ2 6.84×10−3 2.50×10−1 41.10

suggests that the errors of second-order derivatives, ∂
2L
∂θ2 , obtained from the recursive adjoint procedure

can be 2-6 orders of magnitude larger than the ones from the first-order adjoint, ∂L∂θ . In the next
section, we will present a novel optimization framework that computes these higher-order derivatives
without any recursion (Section 3.1) and discuss how it can be implemented efficiently (Section 3.2).

3 Approach

3.1 Dynamics of Higher-order Derivatives using Continuous-time Optimal Control Theory

OCP perspective is a recently emerging methodology for analyzing optimization of discrete DNNs.
Central to its interpretation is to treat the layer propagation of a DNN as discrete-time dynamics, so

1 T̃ is the number of the adaptive steps used to solve (1), as an analogy of the “depth” of Neural ODEs.
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that the training process, i.e. finding an optimal parameter of a DNN, can be understood like an OCP,
which searches for an optimal control subjected to a dynamical constraint. This perspective has
provided useful insights on characterizing the optimization process (Hu et al., 2019) and enhancing
principled algorithmic design (Liu et al., 2021a). We leave a complete discussion in Appendix A.1.

Lifting this OCP perspective from discrete DNNs to Neural ODEs requires special treatments from
continuous-time OCP theory (Todorov, 2016). Nevertheless, we highlight that training Neural ODEs
and solving continuous-time OCP are fundamentally intertwined since these models, by construction,
represent continuous-time dynamical systems. Indeed, the ASM used for deriving (3, 4) originates
from the celebrated Pontryagin’s principle (Pontryagin et al., 1962), which is an optimality condition
to OCP. Hence, OCP analysis is not only motivated but principled from an optimization standpoint.

We begin by first transforming (2) to a form that is easier to adopt the continuous-time OCP analysis.

min
θ

[
Φ(xt1) +

∫ t1

t0

`(t,xt,ut)dt

]
subjected to

{ dxt
dt = F (t,xt,ut), xt0 = xt0

dut
dt = 0, ut0 = θ

, (6)

where x(t) ≡ xt, and etc. It should be clear that (6) describes (2) without loss of generality by having
(Φ, `) := (L, 0). These functions are known as the terminal and intermediate costs in standard OCP.
In training Neural ODEs, ` can be used to describe either the weight decay, i.e. ` ∝ ‖ut‖, or more
complex regularization (Finlay et al., 2020). The time-invariant ODE imposed for ut makes the ODE
of xt equivalent to (1). Problem (6) shall be understood as a particular type of OCP that searches for
an optimal initial condition θ of a time-invariant control ut. Despite seemly superfluous, this is a
necessary transformation that enables rigorous OCP analysis for the original training process (2), and
it has also appeared in other control-related analyses (Zhong et al., 2020; Chalvidal et al., 2021).

Next, define the accumulated loss from any time t ∈ [t0, t1] to the integration end time t1 as

Q(t,xt,ut) := Φ(xt1) +

∫ t1

t

`(τ,xτ ,uτ ) dτ , (7)

which is also known in OCP as the cost-to-go function. Recall that our goal is to compute higher-
order derivatives w.r.t. the parameter θ of Neural ODEs. Under the new OCP representation (6), the
first-order derivative ∂L

∂θ is identical to ∂Q(t0,xt0 ,ut0 )

∂ut0
. This is because Q(t0,xt0 ,ut0) accumulates

all sources of losses between [t0, t1] (hence it sufficiently describes L) and ut0 = θ by construction.

Likewise, the second-order derivatives can be captured by the Hessian ∂2Q(t0,xt0 ,ut0 )

∂ut0∂ut0
= ∂2L

∂θ∂θ ≡ Lθθ.
In other words, we are only interested in obtaining the derivatives of Q at the integration start time t0.

To obtain these derivatives, notice that we can rewrite (7) as

0 = `(t,xt,ut) +
dQ(t,xt,ut)

dt
, Q(t1,xt1) = Φ(xt1), (8)

since the definition of Q implies that Q(t,xt,ut) = `(t,xt,ut)dt+Q(t+ dt,xt+dt,ut+dt). We
now state our main result, which provides a local characterization of (8) with a set of coupled ODEs
expanded along a solution path. These ODEs can be used to obtain all second-order derivatives at t0.

Theorem 1 (Second-order Differential Programming). Consider a solution path (x̄t, ūt) that solves
the ODEs in (6). Then the first and second-order derivatives of Q(t,xt,ut), expanded locally around
this solution path, obey the following backward ODEs:

−dQx̄

dt
= `x̄ + FT

x̄Qx̄, − dQū

dt
= `ū + FT

ūQx̄, (9a)

−dQx̄x̄

dt
= `x̄x̄ + FT

x̄Qx̄x̄ +Qx̄x̄Fx̄, − dQx̄ū

dt
= `x̄ū +Qx̄x̄Fū + FT

x̄Qx̄ū, (9b)

−dQūū

dt
= `ūū + FT

ūQx̄ū +Qūx̄Fū, − dQūx̄

dt
= `ūx̄ + FT

ūQx̄x̄ +Qūx̄Fx̄, (9c)

where Fx̄(t)≡ ∂F
∂xt
|(x̄t,ūt), Qx̄x̄(t)≡ ∂2Q

∂xt∂xt
|(x̄t,ūt), and etc. All terms in (9) are time-varying vector-

valued or matrix-valued functions expanded at (x̄t, ūt). The terminal condition is given by

Qx̄(t1) = Φx̄, Qx̄x̄(t1) = Φx̄x̄, and Qū(t1) = Qūū(t1) = Qūx̄(t1) = Qx̄ū(t1) = 0.
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The proof (see Appendix A.2) relies on rewriting (8) with differential states, δxt := xt − x̄t, which
view the deviation from x̄t as an optimizing variable (hence the name “Differential Programming”).
It can be shown that δxt follows a linear ODE expanded along the solution path. Theorem 1 has
several important implications. First, the ODEs in (9a) recover the original ASM computation (3,4),
as one can readily verify that Qx̄(t) ≡ a(t) follows the same backward ODE in (4) and the solution
of the second ODE in (9a), Qū(t0) = −

∫ t0
t1
Fū

TQx̄dt, gives the exact gradient in (3). Meanwhile,
solving the coupled matrix ODEs presented in (9b, 9c) yields the desired second-order matrix,
Qūū(t0) ≡ Lθθ, for preconditioning the update. Finally, one can derive the dynamics of other
higher-order tensors using the same Differential Programming methodology by simply expanding (8)
beyond the second order. We leave some discussions in this regard in Appendix A.2.

3.2 Efficient Second-order Preconditioned Update

Theorem 1 provides an attractive computational framework that does not require recursive computa-
tion (as mentioned in Section 2) to obtain higher-order derivatives. It suggests that we can obtain first
and second-order derivatives all at once with a single function call of ODESolve:

[xt0 , Qx̄(t0), Qū(t0), Qx̄x̄(t0), Qūx̄(t0), Qx̄ū(t0), Qūū(t0)]

= ODESolve([xt1 ,Φx̄,0,Φx̄x̄,0,0,0], t1, t0, G̃),
(10)

where G̃ augments the original dynamics F in (1) with all 6 ODEs presented in (9). Despite that
this OCP-theoretic backward pass (10) retains the same O(1) memory complexity as in (5), the
dimension of the new augmented state, which now carries second-order matrices, can grow to an
unfavorable size that dramatically slows down the numerical integration. Hence, we must consider
other representations of (9), if any, in order to proceed. In the following proposition, we present one
of which that transforms (9) into a set of vector ODEs, so that we can compute them much efficiently.

Proposition 2 (Low-rank representation of (9)). Suppose `:=0 in (6) and letQx̄x̄(t1)=
∑R
i=1 yi⊗yi

be a symmetric matrix of rank R ≤ n, where yi ∈ Rm and ⊗ is the Kronecker product. Then, for all
t ∈ [t0, t1], the second-order matrices appeared in (9b, 9c) can be decomposed into

Qx̄x̄(t) =

R∑
i=1

qi(t)⊗ qi(t), Qx̄ū(t) =

R∑
i=1

qi(t)⊗ pi(t), Qūū(t) =

R∑
i=1

pi(t)⊗ pi(t),

where the vectors qi(t) ∈ Rm and pi(t) ∈ Rn obey the following backward ODEs:

−dqi(t)
dt

= Fx̄(t)Tqi(t), −dpi(t)
dt

= Fū(t)Tqi(t), (11)

with the terminal condition given by (qi(t1),pi(t1)) := (yi,0).

The proof is left in Appendix A.2. Proposition 2 gives a nontrivial conversion. It indicates that the
coupled matrix ODEs presented in (9b, 9c) can be disentangled into a set of independent vector
ODEs where each of them follows its own dynamics (11). As the rank R determines the number of
these vector ODEs, this conversion will be particularly useful if the second-order matrices exhibit
low-rank structures. Fortunately, this is indeed the case for many Neural-ODE applications which
often propagate xt in a latent space of higher dimension (Chen et al., 2018; Grathwohl et al., 2018;
Kidger et al., 2020b).

Based on Proposition 2, the second-order precondition matrix Lθθ is given by2

Lθθ ≡ Qūū(t0) =

R∑
i=1

(∫ t0

t1

Fū
Tqi dt

)
⊗
(∫ t0

t1

Fū
Tqi dt

)
, (12)

where qi ≡ qi(t) follows (11). Our final step is to facilitate efficient computation of (12) with
Kronecker-based factorization, which underlines many popular second-order methods for discrete
DNNs (Grosse & Martens, 2016; Martens et al., 2018). Recall that the vector field F is represented

2 We drop the dependence on t for brevity, yet all terms inside the integrations of (12, 13) are time-varying.
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Algorithm 1 SNOpt: Second-order Neural ODE Optimizer
1: Input: dataset D, parametrized vector field F (·, ·, θ), integration time [t0, t1], black-box ODE

solver ODESolve, learning rate η, rank R, interval of the time grid ∆t
2: repeat
3: Solve x(t1) = ODESolve(x(t0), t0, t1, F), where x(t0) ∼ D. B Forward pass
4: Initialize (Ān, B̄n) := (0,0) for each layer n and set qi(t1) := yi.
5: for t′ in {t1, t1 −∆t, · · · , t0 + ∆t, t0} do
6: Set t := t′ −∆t as the small integration step, then call

[x(t), Qx̄(t), Qū(t), {qi(t)}Ri=1]

= ODESolve([x(t′), Qx̄(t′), Qū(t′), {qi(t′)}Ri=1], t′, t, Ĝ), B Backward pass
where Ĝ augments the ODEs of state (1), first and second-order derivatives (9a, 11).

7: Evaluate zn(t), hn(t), F (t,xt, θ), then compute An(t),Bn(t) in (13).
8: Update Ān ← Ān + An(t) ·∆t and B̄n ← B̄n + Bn(t) ·∆t.
9: end for

10: ∀n, apply θn ← θn − η · vec(B̄−1
n Qūn(t0)Ā−Tn ). B Second-order parameter update

11: until converges

ODESolve

defined with (1,9a,11)

Query time derivatives

Sampled time grid
Collect sampled matrices

ODE solver function call
Backward vector field
w/ 2nd-order derivatives

ODE solution path

ODESolve


x(t0)

Qx̄(t0)

Qū(t0)
·




x(t1)
Qx̄(t1)

Qū(t1)

{yi}Ri=1

tj+1
tj

{tj}{
Ān=

∑
j
An(tj)·∆t

B̄n=
∑
jBn(tj)·∆t Ĝ Ĝ

Figure 4: Our second-order method, SNOpt, solves a new backward ODE, i.e. the Ĝ appeared in line
6 of Alg. 1, which augments second-order derivatives, while simultaneously collecting the matrices
An(tj) and Bn(tj) on a sampled time grid {tj} for computing the preconditioned update in (14).

F (·, ·, θ) ≡ F (·, ·,ut)
zn(t) zn+1(t)(t,x(t))

dx(t)
dt

{
hn(t) = f(zn(t),un(t))

zn+1(t) = σ(hn(t))

Figure 3: The layer propagation inside
the vector field F , where f and σ denote
affine and nonlinear activation functions.

by a DNN. Let zn(t), hn(t), and un(t) denote the acti-
vation vector, pre-activation vector, and the parameter of
layer n when evaluating dx

dt at time t (see Fig. 3), then the
integration in (12) can be broken down into each layer n,∫ t0

t1

(
Fū

Tqi

)
dt =[· · · ,

∫ t0
t1

(
FT
ūnqi

)
dt, · · · ]

=[· · · ,
∫ t0
t1

(
zn ⊗ ( ∂F∂hn

T
qi)
)

dt, · · · ],

where the second equality holds by FT
ūnqi = ( ∂F∂hn

∂hn

∂un )Tqi = zn ⊗ ( ∂F∂hn
T
qi). This is an essential

step towards the Kronecker approximation of the layer-wise precondition matrix:

Lθnθn ≡ Qūnūn(t0) =

R∑
i=1

(∫ t0

t1

(
zn ⊗ ( ∂F∂hn

T
qi)
)

dt

)
⊗
(∫ t0

t1

(
zn ⊗ ( ∂F∂hn

T
qi)
)

dt

)

≈
∫ t0

t1

(zn ⊗ zn)︸ ︷︷ ︸
An(t)

dt⊗
∫ t0

t1

R∑
i=1

(
( ∂F∂hn

T
qi)⊗ ( ∂F∂hn

T
qi)
)

︸ ︷︷ ︸
Bn(t)

dt. (13)

We discuss the approximation behind (13), and also the one for (14), in Appendix A.2. Note that
An(t) and Bn(t) are much smaller matrices in Rm×m compared to the ones in (9), and they can be
efficiently computed with automatic differentiation packages (Paszke et al., 2017). Now, let {tj} be
a time grid uniformly distributed over [t0, t1] so that Ān=

∑
jAn(tj)∆t and B̄n=

∑
jBn(tj)∆t

approximate the integrations in (13), then our final preconditioned update law is given by

∀n, L−1
θnθnLθn ≈ vec

(
B̄−1
n Qūn(t0)Ā−Tn

)
, (14)

where vec denotes vectorization. Our second-order method – named SNOpt – is summarized in
Alg. 1, with the backward computation (i.e. line 4-9 in Alg. 1) illustrated in Fig. 4. In practice, we
also adopt eigen-based amortization with Tikhonov regularization (George et al. (2018); see Alg. 2 in
Appendix A.4), which stabilizes the updates over stochastic training.
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Remark. The fact that Proposition 2 holds only for degenerate ` can be easily circumvented in
practice. As ` typically represents weight decay, ` := 1

t1−t0 ‖θ‖2, which is time-independent, it can
be separated from the backward ODEs (9) and added after solving the backward integration, i.e.

Qū(t0)← γθ +Qū(t0), Qūū(t0)← γI +Qūū(t0),

where γ is the regularization factor. Finally, we find that using the scaled Gaussian-Newton matrix,
i.e. Qx̄x̄(t1) ≈ 1

t1−t0 Φx̄ ⊗ Φx̄, generally provides a good trade-off between the performance and
runtime complexity. As such, we adopt this approximation to Proposition 2 for all experiments.

3.3 Memory Complexity Analysis

Table 2: Memory complexity at different stages of our derivation in terms of xt ∈ Rm, θ ∈ Rn,
and the rank R. Note that all methods have O(1) in terms of depth.

Theorem 1 Proposition 2 SNOpt (Alg. 1) first-order adjoint
Eqs. (9,10) Eqs. (11,12) Eqs. (13,14) Eqs. (3,4)

backward storage O((m+ n)2) O(Rm+Rn) O(Rm+ 2n) O(m+ n)

parameter update O(n2) O(n2) O(2n) O(n)

Table 2 summarizes the memory complexity of different computational methods that appeared along
our derivation in Section 3.1 and 3.2. Despite that all methods retain O(1) memory as with the
first-order adjoint method, their complexity differs in terms of the state and parameter dimension.
Starting from our encouraging result in Theorem 1, which allows one to compute all derivatives with
a single backward pass, we first exploit their low-rank representation in Proposition 2. This reduces
the storage toO(Rm+Rn) and paves a way toward adopting Kronecker factorization, which further
facilitates efficient preconditioning. With all these, our SNOpt is capable of performing efficient
second-order updates while enjoying similar memory complexity (up to some constant) compared
to first-order adjoint methods. Lastly, for image applications where Neural ODEs often consist of
convolution layers, we adopt convolution-based Kronecker factorization (Grosse & Martens, 2016;
Gao et al., 2020), which effectively makes the complexity to scale w.r.t. the number of feature maps
(i.e. number of channels) rather than the full size of feature maps.

3.4 Extension to Architecture Optimization

0.0 1.0
t1

50

100

Relative train time (%)

0.0 1.0
t1

40

80
Accuracy (%)

Figure 5: Training performance
of CIFAR10 with Adam when
using different t1, which moti-
vates joint optimization of t1.
Experiment setup is left in Ap-
pendix A.4.

Let us discuss an intriguing extension of our OCP framework
to optimizing the architecture of Neural ODEs, specifically the
integration bound t1. In practice, when problems contain no prior
information on the integration, [t0, t1] is typically set to some
trivial values (usually [0, 1]) without further justification. However,
these values can greatly affect both the performance and runtime.
Take CIFAR10 for instance (see Fig. 5), the required training time
decreases linearly as we drop t1 from 1, yet the accuracy retains
mostly the same unless t1 becomes too small. Similar results also
appear on MNIST (see Fig. 12 in Appendix A.5). In other words,
we may interpret the integration bound t1 as an architectural
parameter that needs to be jointly optimized during training.

The aforementioned interpretation fits naturally into our OCP framework. Specifically, we can
consider the following extension of Q, which introduces the terminal time T as a new variable:

Q̃(t,xt,ut,T) := Φ̃(T,x(T)) +

∫ T

t

`(τ,xτ ,uτ ) dτ , (15)

where Φ̃(T,x(T)) explicitly imposes the penalty for longer integration time, e.g. Φ̃ := Φ(x(T)) +
c
2T2. Following a similar procedure presented in Section 3.1, we can transform (15) into its ODE
form (as in (8)) then characterize its local behavior (as in (9)) along a solution path (x̄t, ūt, T̄ ). After
some tedious derivations, which are left in Appendix A.3, we will arrive at the update rule below,

T← T̄ − η · δT(δθ), where δT(δθ) = [Q̃T̄ T̄ (t0)]−1
(
Q̃T̄ (t0) + Q̃T̄ ū(t0)δθ

)
. (16)
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Similar to what we have discussed in Section 3.1, one shall view Q̃T̄ (t0) ≡ ∂L
∂T as the first-order

derivative w.r.t. the terminal time T. Likewise, Q̃T̄ T̄ (t0) ≡ ∂2L
∂T∂T , and etc. Equation (16) is a second-

order feedback policy that adjusts its updates based on the change of the parameter θ. Intuitively, it
moves in the descending direction of the preconditioned gradient (i.e. Q̃−1

T̄ T̄
Q̃T̄ ), while accounting for

the fact that θ is also progressing during training (via the feedback Q̃T̄ ūδθ). The latter is a distinct
feature arising from the OCP principle. As we will show later, this update (16) leads to distinct
behavior with superior convergence compared to first-order baselines (Massaroli et al., 2020).

4 Experiments
time-series observation

prediction

Neural ODE
GRU cell
Linear mapping

Figure 6: Hybrid model for time-series prediction.

Table 3: Sample size of time-series datasets
(input dimension, class label, series length)

SpoAD ArtWR CharT

(27, 10, 93) (19, 25, 144) (7, 20, 187)

Dataset. We select 9 datasets from 3 distinct applications where N-ODEs have been applied, including
image classification (•), time-series prediction (•), and continuous normalizing flow (•; CNF):

• MNIST, SVHN, CIFAR10: MNIST consists of 28×28 gray-scale images, while SVHN and
CIFAR10 consist of 3×32×32 colour images. All 3 image datasets have 10 label classes.

• SpoAD, ArtWR, CharT: We consider UEA time series archive (Bagnall et al., 2018). Spoke-
nArabicDigits (SpoAD) is a speech dataset, whereas ArticularyWordRecognition (ArtWR) and
CharacterTrajectories (CharT) are motion-related datasets. Table 3 details their sample sizes.

• Circle, Gas, Miniboone: Circle is a 2-dim synthetic dataset adopted from Chen et al. (2018). Gas
and Miniboone are 8 and 43-dim tabular datasets commonly used in CNF (Grathwohl et al., 2018;
Onken et al., 2020). All 3 datasets transform a multivariate Gaussian to the target distributions.

Models. The models for image datasets and CNF resemble standard feedforward networks, except
now consisting of Neural ODEs as continuous transformation layers. Specifically, the models for
image classification consist of convolution-based feature extraction, followed by a Neural ODE and
linear mapping. Meanwhile, the CNF models are identical to the ones in Grathwohl et al. (2018),
which consist of 1-5 Neural ODEs, depending on the size of the dataset. As for the time-series
models, we adopt the hybrid models from Rubanova et al. (2019), which consist of a Neural ODE
for hidden state propagation, standard recurrent cell (e.g. GRU (Cho et al., 2014)) to incorporate
incoming time-series observation, and a linear prediction layer. Figure 6 illustrates this process. We
detail other configurations in Appendix A.4.

ODE solver. We use standard Runge-Kutta 4(5) adaptive solver (dopri5; Dormand & Prince (1980))
implemented by the torchdiffeq package. The numerical tolerance is set to 1e-6 for CNF and 1e-3
for the rest. We fix the integration time to [0, 1] whenever it appears as a hyper-parameter (e.g. for
image and CNF datasets3); otherwise we adopt the problem-specific setup (e.g. for time series).

Training setup. We consider Adam and SGD (with momentum) as the first-order baselines since
they are default training methods for most Neural-ODE applications. As for our second-order SNOpt,
we set up the time grid {tj} such that it collects roughly 100 samples along the backward integration
to estimate the precondition matrices (see Fig. 4). The hyper-parameters (e.g. learning rate) are tuned
for each method on each dataset, and we detail the tuning process in Appendix A.4. We also employ
practical acceleration techniques, including the semi-norm (Kidger et al., 2020a) for speeding up
ODESolve, and the Jacobian-free estimator (FFJORD; Grathwohl et al. (2018)) for accelerating CNF
models. The batch size is set to 256, 512, and 1000 respectively for ArtWord, CharTraj, and Gas.
The rest of the datasets use 128 as the batch size. All experiments are conducted on a TITAN RTX.

4.1 Results

Convergence and computation efficiency. Figures 1 and 7 report the training curves of each
method measured by wall-clock time. It is obvious that our SNOpt admits a superior convergence

3 except for Circle where we set [t0, t1]:=[0, 10] in order to match the original setup in Chen et al. (2018).
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Figure 7: Training performance in wall-clock runtime, averaged over 3 trials. Our SNOpt achieves
faster convergence against first-order baselines. See Fig. 14 in Appendix A.5 for MNIST and Circle.

Table 4: Test-time performance: accuracies for image and time-series datasets; NLL for CNF datasets

MNIST SVHN CIFAR10 SpoAD ArtWR CharT Circle Gas Miniboone

Adam 98.83 91.92 77.41 94.64 84.14 93.29 0.90 -6.42 13.10
SGD 98.68 93.34 76.42 97.70 85.82 95.93 0.94 -4.58 13.75

SNOpt 98.99 95.77 79.11 97.41 90.23 96.63 0.86 -7.55 12.50
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Figure 8: Relative runtime and mem-
ory of our SNOpt compared to Adam
(denoted by the dashed black lines)
on all 9 datasets, where ‘Mn’ is the
shorthand for MNIST, and etc.
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Figure 9: Sensitivity analysis where each sample repre-
sents a training result using different optimizer and learn-
ing rate (annotated by different symbol and color). Our
SNOpt achieves higher accuracies and is insensitive to hyper-
parameter changes. Note that x-axes are in log scale.

rate compared to the first-order baselines, and in many cases exceeds their performances by a large
margin. In Fig. 8, we report the computation efficiency of our SNOpt compared to Adam on each
dataset, and leave their numerical values in Appendix A.4 (Table 9 and 10). For image and time-series
datasets (i.e. Mn~CT), our SNOpt runs nearly as fast as first-order methods. This is made possible
through a rigorous OCP analysis in Section 3, where we showed that second-order matrices can be
constructed along with the same backward integration when we compute the gradient. Hence, only a
minimal overhead is introduced. As for CNF, which propagates the probability density additional to
the vanilla state dynamics, our SNOpt is roughly 1.5 to 2.5 times slower, yet it still converges faster in
the overall wall-clock time (see Fig. 7). On the other hand, the use of second-order matrices increases
the memory consumption of SNOpt by 10-40%, depending on the model and dataset. However,
the actual increase in memory (less than 1GB for all datasets; see Table 10) remains affordable on
standard GPU machines. More importantly, our SNOpt retains the O(1) memory throughout training.

Test-time performance and hyper-parameter sensitivity. Table 4 reports the test-time perfor-
mance, including the accuracies (%) for image and time-series classification, and the negative
log-likelihood (NLL) for CNF. On most datasets, our method achieves competitive results against
standard baselines. In practice, we also find that using the preconditioned updates greatly reduce the
sensitivity to hyper-parameters (e.g. learning rate). This is demonstrated in Fig. 9, where we sample
distinct learning rates from a proper interval for each method (shown with different color bars) and
record their training results after convergence. It is clear that our method not only converges to higher
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Table 5: Performance of jointly optimizing
the integration bound t1 on CIFAR10

Method Train time (%)
w.r.t. t1=1.0

Accuracy
(%)

ASM baseline 96 76.61
SNOpt (ours) 81 77.82

0 5k
0.5

1.0

t 1

t1 Optimization

ASM baseline
SNOpt (ours)

t1=1.0

Train Iteration
Figure 10: Dynamics of t1 over CIFAR10
training using different methods.

Table 6: Measure of implicit regularization on SVHN

# of function Regularization
evaluation (NFE) (

∫
‖∇xF‖2 +

∫
‖F‖2)

Adam 42.1 323.88
SNOpt 32.6 199.1

Mn Sv Cf SA AW CT
1
3
5

Relative Runtime 
( )

Mn Sv Cf SA AW CT
0
5

10
15

Accuracy Improvement (%) 
( )SNOpt RecursiveAdjointRecursiveAdjoint / SNOpt

Figure 11: Comparison between SNOpt and second-
order recursive adjoint. SNOpt is at least 2 times faster
and improves the accuracies of baselines by 5-15%.

accuracies with lower losses, these values are also more concentrated on the plots. In other words, our
method achieves better convergence in a more consistent manner across different hyper-parameters.

Joint optimization of the integration bound t1. Table 5 and Fig. 10 report the performance of
optimizing t1 along with its convergence dynamics. Specifically, we compare our second-order
feedback policy (16) derived in Section 3.4 to the first-order ASM baseline proposed in Massaroli
et al. (2020). It is clear that our OCP-theoretic method leads to substantially faster convergence, and
the optimized t1 stably hovers around 0.5 without deviation (as appeared for the baseline). This drops
the training time by nearly 20% compared to the vanilla training, where we fix t1 to 1.0, yet without
sacrificing the test-time accuracy. A similar experiment for MNIST (see Fig. 13 in Appendix A.5)
shows a consistent result. We highlight these improvements as the benefit gained from introducing
the well-established OCP principle to these emerging deep continuous-time models.

Comparison with recursive adjoint. Finally, Fig. 11 reports the comparison between our SNOpt
and the recursive adjoint baseline (see Section 2 and Table 1). It is clear that our method outperforms
this second-order baseline by a large margin in both runtime efficiency and test-time performance.
Note that we omit the comparison on CNF datasets since the recursive adjoint simply fails to converge.

Remark (Implicit regularization). In some cases (e.g. SVHN in Fig. 8), our method may run slightly
faster than first-order methods. This is a distinct phenomenon arising exclusively from training these
continuous-time models. Since their forward and backward passes involve solving parameterized
ODEs (see Fig. 2), the computation graphs are parameter-dependent; hence adaptive throughout
training. In this vein, we conjecture that the preconditioned updates in these cases may have guided
the parameter to regions that are numerically stabler (hence faster) for integration.4 With this in
mind, we report in Table 6 the value of Jacobian,

∫
‖∇xF‖2, and Kinetic,

∫
‖F‖2, regularization

(Finlay et al., 2020) in SVHN training. Interestingly, the parameter found by our SNOpt indeed has
a substantially lower value (hence stronger regularization and better-conditioned ODE dynamics)
compared to the one found by Adam. This provides a plausible explanation of the reduction in the
NFE when using our method, yet without hindering the test-time performance (see Table 4).

5 Conclusion

We present an efficient higher-order optimization framework for training Neural ODEs. Our method –
named SNOpt – differs from existing second-order methods in various aspects. While it leverages
similar factorization inherited in Kronecker-based methods (Martens & Grosse, 2015), the two
methodologies differ fundamentally in that we construct analytic ODE expressions for higher-order
derivatives (Theorem 1) and compute them through ODESolve. This retains the favorable O(1)
memory as opposed to their O(T ). It also enables a flexible rank-based factorization in Proposition 2.
Meanwhile, our method extends the recent trend of OCP-inspired methods (Li et al., 2017; Liu
et al., 2021b) to deep continuous-time models, yet using a rather straightforward framework without
imposing additional assumptions, such as Markovian or game transformation. To summarize, our
work advances several methodologies to the emerging deep continuous-time models, achieving strong
empirical results and opening up new opportunities for analyzing models such as Neural SDEs/PDEs.

4 In Appendix A.4, we provide some theoretical discussions (see Corollary 9) in this regard.
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