
NovelD: A Simple yet Effective Exploration Criterion

Tianjun Zhang1 Huazhe Xu1 Xiaolong Wang2 Yi Wu3,5 Kurt Keutzer1

Joseph E. Gonzalez1 Yuandong Tian4

1University of California, Berkeley 2Unveristy of California, San Diego

3Tsinghua University 4Facebook AI Research 5Shanghai Qi Zhi Institue

Abstract

Efficient exploration under sparse rewards remains a key challenge in deep re-
inforcement learning. Previous exploration methods (e.g., RND) have achieved
strong results in multiple hard tasks. However, if there are multiple novel areas to
explore, these methods often focus quickly on one without sufficiently trying others
(like a depth-wise first search manner). In some scenarios (e.g., four corridor envi-
ronment in Sec. 4.2), we observe they explore in one corridor for long and fail to
cover all the states. On the other hand, in theoretical RL, with optimistic initializa-
tion and the inverse square root of visitation count as a bonus, it won’t suffer from
this and explores different novel regions alternatively (like a breadth-first search
manner). In this paper, inspired by this, we propose a simple but effective criterion
called NovelD by weighting every novel area approximately equally. Our algorithm
is very simple but yet shows comparable performance or even outperforms multiple
SOTA exploration methods in many hard exploration tasks. Specifically, NovelD
solves all the static procedurally-generated tasks in Mini-Grid with just 120M
environment steps, without any curriculum learning. In comparison, the previous
SOTA only solves 50% of them. NovelD also achieves SOTA on multiple tasks in
NetHack, a rogue-like game that contains more challenging procedurally-generated
environments. In multiple Atari games (e.g., MonteZuma’s Revenge, Venture,
Gravitar), NovelD outperforms RND. We analyze NovelD thoroughly in Mini-
Grid and found that empirically it helps the agent explore the environment more
uniformly with a focus on exploring beyond the boundary. 1

1 Introduction
Deep reinforcement learning (RL) has experienced significant progress over the last several years,
with an impressive performance in games like Atari [41, 4], StarCraft [61], Go and Chess [57–59].
However, its success often requires massive computational resources or manually designed dense
rewards. The dense rewards are often impractical for real-world settings as they require a significant
amount of task-specific domain knowledge.

An alternative approach is to allow the agent to explore the environment freely until it reaches the goal.
While basic RL exploration criteria (e.g., ✏-greedy) are quite simple, it fails to explore sufficiently
in hard tasks. Modern works adopt various Intrinsic Reward (IR) designs to guide exploration in
hard-exploration settings. However, we observe (Sec. 4.2) in our experiments if there are multiple

1Correspondence to: Tianjun Zhang <tianjunz@berkeley.edu>. Our code is available at https://github.
com/tianjunz/NovelD.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

https://github.com/tianjunz/NovelD
https://github.com/tianjunz/NovelD

Start

EndRND

BeBold

1. BeBold assigns high IR
near the start and low IR
for the rest

2. BeBold pushes every
direction to the frontier of
exploration uniformly

3. BeBold continuously
pushes the exploration
frontier

4. BeBold reaches the end
of exploration

1. RND assigns high IR
throughout the environment

2. RND temporarily focuses
on the upper right corner

3. RND by chance explores
the bottom right corner
and forgets it already
explored upper right

4. RND re-explores the
upper right and forgets the
bottom right, gets trapped

Low IR

High IR

Low IR

High IR

Relative
High IR

Relative
High IR

NovelD

NovelD NovelD NovelD NovelD

Figure 1: A hypothetical demonstration of how exploration is done in NovelD versus Random Network
Distillation (RND) [11], in terms of distribution of intrinsic reward (IR). NovelD reaches the goal by continuously
pushing the frontier of exploration while RND gets trapped in the explored regions. Note that IR is defined
differently in RND versus NovelD (See Eqn. 2) and different colors are used to represent IR of RND and NovelD.

regions of interest, these methods sometimes quickly are trapped in one area without sufficiently
exploring others. This results in poor overall exploration of large state space [2]. This is also known
as detachment problem in Go-Explore [17].

On the other hand, provably optimal theoretical RL equipped with optimistic initialization and
visitation count bonus explores the environment much more uniformly [31]. Inspired by that, we
introduce a very simple but effective exploration criterion by weighting each novel area approximate
equally. Our algorithm uses regulated Novelty Difference (NovelD) of consecutive states in a
trajectory. The novelty of a state is calculated by Random Network Distillation (RND [11]). The
underlying intuition is that this criterion provides a large intrinsic reward at the boundary between
the explored and the unexplored regions (Fig. 1). As a result, it induces a very different exploration
pattern comparing to count-based approaches [6, 10, 11, 48, 5] and yields a much broader coverage
over the state space.

We evaluate NovelD on three very challenging exploration environments: MiniGrid [13],
NetHack [34] and Atari games [9]. MiniGrid is a popular benchmark for evaluating exploration
algorithms [52, 12, 24]; NetHack, built from a real game, is a much more realistic, PG-generated
environment with complex goals and skills. Atari games is a widely used benchmark for RL algo-
rithms [40, 11, 18]. NovelD manages to solve all the static environments in MiniGrid within 120M
environment steps, without curriculum learning. In contrast, previous SOTA AMIGo [12] solves 50%
of the tasks, categorized as “easy” and “medium”, by training a separate goal-generating teacher
network in 500M steps. In NetHack, NovelD also outperforms all baselines with a significant margin
on various tasks. NovelD is also tested in various Atari games (e.g., MonteZuma’s Revenge, Venture),
using image-based input and outperforms RND for both CNN and RNN-based networks.

Compared to previous works (e.g., RIDE [52], AMIGo [12] and Go-Explore [17]), NovelD has a
few design advantages: (1) in NovelD, there is almost no hyperparameters; (2) NovelD is one-stage
approach and can be readily combined with any policy learning methods (e.g., PPO), while many
approaches (e.g., RIDE, Go-Explore) are two-stage approaches. (3) NovelD is asymptotic consistent:
its IR vanishes after sufficient exploration, while approaches like RIDE and AMIGo do not. During
our experiments, we observe that compared to the count-based approach and RND, NovelD prioritizes
the unexplored boundary states, yielding much more efficient and broader exploration patterns.

2 Background
In a Markov Decision Process (MDP), we define state space S, action space A, and (non-deterministic)
transition function T : S ⇥A ! P (S) where P (S) is the probability of next state given the current
state and action. The goal is to maximize the expected reward R = E[

PT
k=0 �

krt+k=1] where rt
is the reward and � is the discount factor. In this paper, the total reward received at time step t is
given by rt = ret + ↵rit, where ret is the extrinsic reward given by the environment, rit is the intrinsic
reward from the exploration criterion, and ↵ is a scaling hyperparameter.

2

Trajectory A Trajectory B

Explored region
!"#$%&' (≤ *

Trajectory A

Trajectory B
+

2+

+
2

+
+
2
+
2
+
2

Novelty()!) Novelty()!)
+
2 +

10
+
10
+
10
+
10

Figure 2: The mechanism of NovelD. Two trajectories, A and B. Trajectory A is within the “explored
region” defined as the subset of states with novelty(s)  m for some constant m and tends to have high
accumulated novelty, while Trajectory B explores out of explored regions. RND assigns comparable IR on
A ((1 + 5/2)m = 3.5m) and B ((1 + 4/10 + 2)m = 3.4m), while NovelD assigns much higher IR on B
((2� 1/10)m = 1.9m) than A (0). Moreover, this effect becomes more prominent for longer trajectories. The
value of ↵ in Eq. 1 is a design choice and we use ↵ = 1 here for showing an intuitive example.

3 Exploration via Novelty Difference
3.1 NovelD Intrinsic Reward Criterion

NovelD is a meta-criterion that can be applied on top of any novelty measure novelty(s) that tells
how familiar a state s is for the agent. Formally, along a trajectory, we give agent IR if the previous
state st has been sufficiently explored but st+1 is not:

ri(st,at, st+1) = max [novelty(st+1)� ↵ · novelty(st), 0] , (1)

Here ↵ is a scaling factor. Intuitively, if we define {s : novelty(s)  m} to be an explored region,
then NovelD gives intrinsic reward (IR) to the agent when it explores beyond the boundary of explored
regions. Note that IR is clipped to avoid negative IR if the agent transits back from a novel state
to a familiar state. From the equation, only crossing the frontier matters to the intrinsic reward; if
both st+1 and st are novel or familiar, their difference would be small. For each trajectory going
towards the frontier/boundary, NovelD assigns an approximately equal IR, regardless of the length
(see Sec. 3.2). Like RIDE [52], in our actual implementation, partial observation ot are used instead
of the true state st, when st is not available.

Episodic Restriction on Intrinsic Reward (ERIR). Simply using Eqn. 1 to guide exploration can
result in the agent going back and forth between novel states st+1 and their previous states st. RIDE
[52] avoids this by scaling the intrinsic reward ri(s) by the inverse of the episodic state visitation
counts. NovelD puts a more aggressive restriction: the agent is only rewarded when it visits the state
s for the first time in an episode. Thus, the intrinsic reward of NovelD becomes:

ri(st,at, st+1) = max [novelty(st+1)� ↵ · novelty(st), 0] ⇤ I{Ne(st+1) = 1} (2)

Ne here stands for episodic state count and is reset every episode. In contrast, the novelty measure
novelty(·) is a life-long counter throughout training.

Novelty Measure using Random Network Distillation. How to accurate measure the novelty of a
state s in large-scale stochastic environments remains an open problem [6]. Similar to RND [11], we
use the difference between a random fixed target network � and a trainable predictor network �0w as
a novelty measure:

novelty(st) = novelty(st;w) := k�(st)� �0w(st)k2, (3)

Once the novelty score for state st is computed, we minimize novelty(st;w) with respect to w
and perform a one-step weight update for w, which is the parameter of the predictor network �0w.
Therefore, when st is visited again, the quantity novelty(st;w) will be lower, showing that the state
has been seen in the past.

3.2 Conceptual Advantages of NovelD over Existing Criteria
We show the distinct preference of exploration directions between RND and NovelD. We also see that
NovelD is a consistent algorithm, the intrinsic reward converges to zero after sufficient exploration.

Explore via Novelty Difference. Fig. 2 shows the conceptual comparison between NovelD (Eq. 2)
and exploration with novelty measure alone (e.g., RND). We could clearly see their distinctive
preferences: our criterion tends to reward more the trajectories that move out of the explored regions
(Trajectory B), which typically show a profile of stable novelty measure until a sudden boost when it
ventures into an unknown region. On the other hand, count-based approaches can be trapped within
explored regions where the trajectories have low but consistent novelty rewards (Trajectory A).

3

Agent

Door

Obstruction

Goal

Box

MRN6 MRN7S-
8

MRN12-
S10

KCS3R3 KCS4R3 KCS5R3 KCS6R3 OM2Dl-
h

OM2Dl-
hb

OM1Q OM2Q OMFULL

ICM

RND

RIDE

AMIGO

BeBold

*MR is short for MultiRoom, KC is for KeyCorridor, OM is for ObstructedMaze: Solved within 120M
steps

: Unsolved

NovelD

Figure 3: MiniGrid Environments. Left: a procedurally-generated OMFull environment. Right: NovelD
solves challenging tasks which previous approaches cannot solve. Note that we evaluate all methods for 120M
steps. AMIGo gets better results when trained for 500M steps as shown in [12], but is still not as good as results
obtained by NovelD in 120M steps.

Asymptotic Inconsistency. Approaches that define IR as the difference between state representations
k (st)� (st+1)k (is a learned embedding network) [63, 38] suffer from asymptotic inconsistency.
In other words, their IR does not vanish even after sufficient exploration: ri 6! 0 when N ! 1.
This is because when the embedding network converges after sufficient exploration, the agent can
always obtain non-zero IR if a significant change occurs in state representation (e.g., opening a door
or picking up a key in MiniGrid). Therefore, the learned policy does not maximize the extrinsic
reward re, deviating from the goal of RL. Automatic curriculum approaches [12]) have similar issues
due to an ever-present IR. In contrast, our Eq. 4 is asymptotically consistent as ri ! 0 when N ! 1.

4 Experiments
We evaluate NovelD on challenging procedurally-generated environment MiniGrid [13], several
hard-exploration scenarios in Atari games, and NetHack [34] with sparse rewards (i.e., get reward
only when reaching the final goal). For all the experiments and all exploration approaches (including
NovelD), we use PPO [55] as the base RL algorithm and add intrinsic reward specified by various
methods, to encourage exploration.

In MiniGrid, we compare NovelD with RND [11], ICM [49], RIDE [52] and AMIGo [12]. We only
evaluate AMIGo for 120M steps in our experiments. The algorithm obtains better results when trained
for 500M steps as shown in [12]. For all other baselines, we follow the same training paradigm from
[52]. Mean and standard deviation across four runs of different seeds are computed.

NovelD solves all the static tasks provided by MiniGrid. In contrast, all the baselines end up with
zero rewards on half of the tasks we tested. In NetHack, NovelD achieves SOTA with a large margin
over baselines (IMPALA [19] without exploration bonus and RND).

4.1 MiniGrid Environments

We mainly use three challenging environments from MiniGird: Multi-Room (MR), Key Corridor

(KC) and Obstructed Maze (OM). We use these abbreviations for the rest of the paper (e.g., OM2Dlh
stands for ObstructedMaze2Dlh). Fig. 3 shows one example of a rendering on OMFull as well as all
the environments we tested with their relative difficulty.

In MiniGrid, all environments are of size K⇥K (K is environment-specific) where each tile contains
an object: wall, door, key, ball, chest, etc. The action space is defined as turn left, turn right, move
forward, pick up an object, drop an object, and toggle an object (e.g., open or close a door). MR
consists of a series of rooms connected by doors and the agent must open the door to get to the next
room. Success is achieved when the agent reaches the goal. In KC, the agent has to explore the
environment to find the key and open the door along the way to achieve success. OM is the hardest:
the doors are locked, the keys are hidden in boxes, and doors are obstructed by balls.

Results. NovelD manages to solve all the static environments in MiniGrid. In contrast, all baselines
solve only up to medium-level tasks and fail to make any progress on more difficult ones. Note that
some medium-level tasks we define here are categorized as hard tasks in RIDE and AMIGo (e.g.,
KCS4R3 is labeled as “KCHard” and KCS5R3 is labeled as “KCHarder” in their works). Fig. 4 shows
the results of our experiments. Half of the environments (e.g., KCS6R3, OM1Q) are extremely hard
and all the baselines fail. In contrast, NovelD easily solves all listed above without any curriculum
learning. We also provide the testing performance for NovelD and all baselines in Tab. 3. The results
are averaged across four seeds and 32 random initialized environments.

4

Figure 4: Results for various hard exploration environments from MiniGrid. NovelD successfully solves all the
environments while all other baselines only manage to solve two to three relatively easy ones.

Table 1: Visitation counts for the toy corridor environment
after 3K episodes. NovelD explores corridors more uniformly
than count-based approaches.

C1 C2 C3 C4 Entropy

Length 40 10 30 10 –

Count-Based 66K ± 28K 8K ± 8K 23K ± 35K 13K ± 18K 1.06 ± 0.39
NovelD Tabular 26K ± 2K 28K ± 8K 25K ± 6K 29K ± 9K 1.97 ± 0.02
RND 0.2K ± 0.2K 70K ± 53K 0.2K ± 0.07K 26K ± 44K 0.24 ± 0.28
NovelD 27K ± 6K 23K ± 3K 31K ± 12K 26K ± 8K 1.96 ± 0.05

Table 2: Entropy of the visitation counts of
each room. Such state distribution of NovelD
is much more uniform than RND.

0.2M 0.5M 2.0M 5.0M

Room1 3.48 / 3.54 3.41 / 3.53 3.51 / 3.56 3.49 / 3.56
Room2 2.87 / � 3.09 / 3.23 3.51 / 3.53 3.35 / 3.56
Room3 � / � � / � � / 4.02 3.42 / 4.01
Room4 � / � � / � � / 2.74 2.85 / 2.87

⇤ Results are presented in the order of “RND / NovelD”.

259K

MultiRoomN7S8

Explore All
Rooms!

BeBold

1.7M 2.8M 4.6M

160K 2.5M

…

9.8M

Environment
Steps

RND
Stuck in the
5th Room!

NovelD

Figure 5: Normalized visitation counts N(st)/Z (Z is a normalization constant) for the locations of agents.
NovelD successfully explores all rooms within 4.6M steps while RND gets stuck in the fifth room within 9.8M
steps.

Multi-Room environments are relatively easy in MiniGrid. However, all the baselines except RIDE
fail. As we increase the room size and number (e.g., MRN12S10), NovelD can achieve the goal quicker
than RIDE. Our method quickly solves these environments within 20M environment steps.

On Key Corridor environments, RND, AMIGo, RIDE, IMPALA and NovelD successfully solves
KCS3R3 while ICM makes reasonable progress. However, when we increase the room size (e.g.,
KCS5R3), none of the baseline methods work. NovelD manages to solve these environments in 40M
environment steps. The agent demonstrates the ability to explore the room and finds the corresponding
key to open the door in a randomized, procedurally generated environment.

Obstructed Maze environments are also tricky. As shown in Fig. 4, RIDE and RND manage to
solve the easiest task OM2Dlh which doesn’t contain any obstructions. In contrast, NovelD not only
rapidly solves OM2Dlh, but also solves four more challenging environments including OMFull. These
environments have obstructions blocking the door (as shown in Fig. 3) and are much larger than
OM2Dlh. Our agent learns to move the obstruction away from the door to open the door and enter the
next room in these environments. This “skill” is hard to learn since no extrinsic reward is assigned to
moving the obstruction. However, learning the skill is critical to achieving the goal.

5

RND

BeBold

Focus on 1st room Focus on 2nd room Focus on 2nd room Focus on 3rd room

Focus on 1st room Focus on 1st & 2nd

room
Focus on 1st & 2nd

room
Focus on 2nd & 3rd

room

NovelD

Figure 6: IR heatmaps for three-room environment. We can see that the high-IR region of NovelD has a more
clear focus (the frontier) comparing to RND.

4.2 Analysis of Intrinsic Reward in Pure Exploration

We observe that NovelD leads to a more focused exploration at the boundary and broader state
coverage by only using IR in the environment (“pure exploration” setting).

Broader State Coverage in Long-Corridor Environment. We design a toy environment with four
disconnected corridors with lengths 40, 10, 30, and 10 respectively. The agent starts from the common
entry of the corridors and picks which corridor to enter. In this example, there is no extrinsic reward,
and the agent’s exploration is guided by IR. We use deep Q-learning (i.e,. Q function is parameterized
by a deep network) and try various IRs. This includes tabular IR (count-based and NovelD tabular)
and neural-network-approximated IR (RND and NovelD) respectively for this experiment. We remove
clipping from NovelD for a fair comparison. Tab. 1 shows the visitation counts across 4 runs w.r.t.
each corridor after 600 episodes of training. NovelD tabular explores all four corridors uniformly. On
the other hand, count-based approaches focus on only two out of four corridors. NovelD also shows
much more stable performance across runs as the standard deviation is much lower than RND.

Visitation Counts Analysis in MiniGrid. To study whether NovelD yields a broader state coverage
in MiniGrid, we test NovelD and RND in a fixed (instead of procedurally generated for simplicity)
MRN7S8 environment. It contains 7 rooms connected by doors. We define two metrics to measure the
effectiveness of an exploration strategy: (1) visitation counts N(s) at every state over training, and
(2) entropy of visitation counts in each room: H(⇢0(s)) where ⇢0(s) = N(s)P

s2Sr
N(s) .

Fig. 5 shows the heatmap of normalized visitation counts N(st)/Z, where Z is the normalization
constant. At first, RND enters room 2 faster than NovelD. However, NovelD consistently makes
progress exploring new states and discovers all the rooms in 5M steps, while RND gets stuck in room
5 even trained with 10M steps.

In Tab. 2, the entropy of distribution in each room H(⇢0(s)) for NovelD is larger than that of RND.
This suggests that NovelD encourages a more uniform exploration of the states than RND.

Intrinsic Reward Heatmap Analysis in MiniGrid. We visualize the IR produced in our algorithm
and study whether it has a higher focus on the boundary. We generate the plot by running the policy
from different checkpoints for 2K steps and plot the IR associated with each state in the trajectory.
States that do not receive IR from the sampled trajectories are left blank. From Fig. 6, we can see
that before opening the door to the 2nd room, the NovelD IR is only high in the first one. As soon as
the agent opens the door, the boundary of the explored region gets pushed to the next one. This can
also be illustrated in the figure that regions with high IR are also changed correspondingly. In other
words, this shows that when the door between two rooms becomes a bottleneck for exploration, IR of
NovelD focuses on solving this. A similar phenomenon happens between the 2nd and 3rd rooms. In
contrast, the IR in RND is more spread out (e.g., both 1st and 2nd room in the second figure).

4.3 Ablation Study

Episodic Restriction on IR and Clipping n NovelD. To illustrate the importance of exploring via
novelty difference, we compare NovelD with a modified version of RND: RND+ERIR. ERIR only
gives RND intrinsic reward when visiting a new state for the first time in an episode. As shown in
Fig. 7, the ERIR also improves the performance of RND, but NovelD has much better results. We
remove ERIR from NovelD and performance also drops.

6

-0.1NovelDNovelD NovelD NovelD NovelD

Figure 7: Ablation Study on NovelD with different scaling factor ↵ and clipping threshold �. Results show that
there exist an optimal choice for ↵ = 0.5 and � = 0.

Figure 8: Ablation for NovelD under different representations. Successor representation sometimes works
better than random feature, but not consistently.

Figure 9: Results for tasks on NetHack. NovelD achieves the SOTA results comparing to RND and IMPALA.

The optimal scaling ratio and clipping factor. We did an ablation on how different scaling ratio ↵
and clipping factor � is affecting the performance of NovelD. Specifically, with the hyperparameter
↵ and �, the intrinsic reward now takes the form:

ri(st,at, st+1) = max [novelty(st+1)� ↵ · novelty(st),�] , (4)

Results show that ↵ = 0.5 and � = 0 works the best. We also compare with AK18 [15] since they
use a difference-based IR as well. AK18 achieves zero-reward so we don’t run them on all the tasks.

NovelD under Different Representations. To study how NovelD performs under different represen-
tations, we set both the target �(v) and predictor network �0(v) in RND to be MLP and uses the same
CNN-based encoders v = f(s) to project the image to a vector for both of them. We trains another
CNN-based encoder f 0(s) according to different criteria and replace f(s) with f 0(s) periodically.
Note that once we changed the representation of states, the novelty measure changes. So we store all
the samples and retrain the predictor and target from scratch. We tries four different representations
of the encoder: ICM [49] tries to learn a compact representation that are informative about state
transition, Random embedding, DBC [62] follows the criterion of aggregating model-irrelevant
states and Successor Features [37] of random embedded states captures the expected future features
(f 0(st) = E[

P
t=0 �

t�(st)] where � is a random embedding network).

We see that from Fig 8, DBC and ICM got zero reward since their representations are very compact
and every state s look similar to the RND networks. Thus, the predictor network quickly approximates
the target network well and induces zero IR. For successor representation of random embedding, it
works better than random in KC series of maps but worse in MR maps.

4.4 Atari Games
Atari games are common benchmarks for RL exploration. We test NovelD on multiple hard explo-
ration tasks (e.g., MonteZuma’s Revenge, Gravitar, Solaries). We use the same paradigm as RND [11]

7

RND

RND RND

Figure 10: Results for hard exploration Atari games on Venture, Solaries and Gravitar. NovelD achieves strong
results comparing to RND.

RND
RND

NovelD NovelD

Figure 11: Results for hard exploration MonteZuma’s Revenge. NovelD achieves good performance on both
CNN and RNN networks comparing to RND.

and the same set of hyperparameters on 128 parallel environments. We use the code base from RND
and 84x84 image of the game as input. In NovelD, same RNN network architecture is used for
all the tasks (except for the fourth figure Fig. 11, we use simple CNN architecture). The baseline
algorithm being used is PPO. Due to the computation limit, we didn’t run NovelD to 2 billion steps
as originally reported in the RND paper. We mark the performance of RND at the similar steps as red
dot. Note that we didn’t compare with SOTA method Go-Explore since it involves a lot of hand-tuned
hyperparameters and highly incorporates domain knowledge. For another strong baseline NGU [5],
since there is no open-sourced implementation online, it is hard for us to evaluate their code and do a
fair comparison with them.

In Fig. 11, we can see that using CNN-based model, NovelD achieves approximately 10000 external
rewards after two Billion frames while the performance reported in RND [11] is around 6700. When
using an RNN-based model, NovelD reached around 13000 external rewards in 100K updates while
RND only achieves 4400. In Fig. 10, we also see that NovelD manage to explore 23 rooms in the
given steps while RND only explores 17. For other games (e.g., Venter, Gravitor and Solaries),
NovelD is consistently better than RND in the given steps, achieving 500 to 1000 more rewards.

For the implementation of ERIR, a simple pixel-based hash table is used for counting. We found that
the hash table gives reasonable performance even in the stochastic environments. This is different
from Go-Explore [17] where heavy domain-knowledge is incorporated.

4.5 The NetHack Learning Environment

We also evaluate NovelD in NetHack Learning Environment [34], a more challenging and realistic
environment. The player needs to descend over 50 procedurally-generated levels to the bottom and
find “Amulet of Yendor” in the dungeon. The procedure can be described as first retrieve the amulet,
then escape the dungeon and finally unlock five challenging levels (the four Elemental Planes and
the Astral Plane). We test NovelD on a set of tasks with tractable subgoals in the game: Staircase:
navigating to a staircase to the next level, Pet: reaching a staircase and keeping the pet alive, Gold:
collecting gold, Score: maximizing the score in the game, Scout: scouting to explore unseen areas in
the environment, and Oracle: finding the oracle (an in-game character at level 5-9).

Results in Fig. 9 show that NovelD surpasses PPO+RND and IMPALA (without exploration bonus)
on all tasks. Especially on Pet, NovelD outperforms the other two with a huge margin. This again
illustrates the strong performance of NovelD in an environment with huge action spaces and long-
horizon reward. Oracle is the hardest task and no approaches are able to find the oracle and obtain a
reward of 1000. NovelD still manages to find a policy with less negative rewards (i.e., a penalty of
taking actions that do not lead to game advancement, like moving towards a wall). 2

5 Discussion

2On NetHack, we do not report RIDE performance. Our attempt fails and the authors verify it doesn’t work
yet on NetHack.

8

Figure 12: Results for NovelD under the Noisy-
TV setting introduced in RIDE [52]. NovelD still
have strong performance under the noisy TV envi-
ronment.

Determinstic and Stochastic Environments. Nov-
elD can both work with deterministic(MiniGrid) and
stochastic(NetHack and Atari) environments. Al-
though reaching the frontier of a stochastic environ-
ment is itself a hard problem, by putting a high IR
on the boundary states and training the agent with
RL algorithms, the policy will prefer to reach those
frontier states more frequently. In such case, NovelD
also manage to achieve its exploration purpose. In
addition to that, we also test NovelD in stochastic
environments like NetHack [34] and Atari games,
showing superior performance. Finally, the hash-
tabled based ERIR do have some potential issue in
stochastic environments. However, in all of the tasks
we tested, it doesn’t show a clear problem of directly applying it in stochastic environments.

Noisy TV problem. As mentioned in [11], curiosity-based and count-based criterion will get stuck
in nosity-TV problem. However, RND manages to mitigate this problem [11]. Since we also adopt
RND as the novelty measure, NovelD also shows the resilient to the problem. We also test NovelD
in a manually-made noisty-TV setting in MiniGrid introduced in RIDE [52], where there always
some blocks changing color at every time step. NovelD still gain a strong performance even under
this setting. In addition, empirically we don’t see the performance degrade of NovelD due to the
nosiy-TV problem in all our experiments including MiniGrid, Atari Games and NetHack.

Limitations. We don’t test NovelD in some continuous RL domains. Especially, directly applying
ERIR to that for those tasks (e.g., some robotics tasks) might lead to some performance degrade. We
leave a more general solution of this to future work.

6 Related Work

In addition to the two criteria (count-based and state-diff based) mentioned above, another stream
of defining IRs is curiosity-based. The main idea is to encourage agents to explore areas where the
prediction of the next state from the current learned dynamical model is wrong. Dynamic-AE [60]
computes the distance between the predicted and the real state on the output of an autoencoder,
ICM [49] learns the state representation through a forward and inverse model and EMI [32] computes
the representation through maximizng mutual information I([s, a]; s0) and I([s, s0]; a).

Another line of research is using information gain to reward the agent. VIME [28] uses a Bayesian
network to measure the uncertainty of the learned model. Later, to reduce computation, a deterministic
approach has been adopted [1]. Other works also propose to use an ensemble of networks for
measuring uncertainty [50, 56]. We can also reward the agent by Empowerment [33, 25, 53, 42],
prioritizing the states that the agent can take control through its actions. It is different from state-diff:
if st+1 differs from st but not due to agent’s choice of actions, then the empowerment at st is zero.
Other criteria exist, e.g., diversity [20], feature control [30, 16] or the KL divergence between current
distribution over states and a target distribution of states [35].

Outside of intrinsic reward, researchers have proposed to use randomized value functions to encourage
exploration [46, 27, 47]. Adding noise to the network is also shown to be effective [23, 51]. There
has also been effort putting to either explicitly or implicitly separate exploration and exploitation [14,
22, 36]. Go-Explore series [17, 18] also fall in this category. We might also set up different goals for
exploration [26, 43, 3]. Another stream of research studies exploration problem using model-based
approaches [8, 44, 45]. They either assume a world model is given or attempt to learn it, which is
often impractical when the environment is complex. However, NovelD is completely model-free and
can be applied widely to complicated environments.

Curriculum learning [7] has also been used to solve hard exploration tasks. The curriculum can be
explicitly generated by: searching the space [54], teacher-student setting [39], increasing distance
between the starting point and goal [29] or using a density model to generate a task distribution for
the meta learner [21]. NovelD never explicitly generates a curriculum.

9

7 Conclusion
In this work, inspired by breadth-first search, we introduce a new criterion for intrinsic reward (IR)
that encourages exploration using a regulated difference of novelty measure using RND. Based on
the criterion, our algorithm NovelD successfully solves all static tasks in a procedurally generated
MiniGrid environment, which is a significant improvement over the previous SOTA. In multiple
environments, NovelD shows a broader state coverage with a focus of IR on the boundary states. We
also evaluate NovelD on NetHack, a more challenging task. NovelD outperforms all the baselines by
a large margin. In summary, this simple criterion and the ensuing algorithm demonstrate effectiveness
in solving sparse reward problems in reinforcement learning, opening up new opportunities to many
real-world applications.

8 Acknowledgements

This project occurred under the BAIR Commons at UC-Berkeley and we thanks Commons sponsors
for their support. In addition to NSF CISE Expeditions Award CCF-1730628, UC Berkeley research
is supported by gifts from Alibaba, Amazon Web Services, Ant Financial, CapitalOne, Ericsson,
Facebook, Futurewei, Google, Intel, Microsoft, Nvidia, Scotiabank, Splunk and VMware.

References
[1] Joshua Achiam and Shankar Sastry. Surprise-based intrinsic motivation for deep reinforcement

learning. arXiv preprint arXiv:1703.01732, 2017.

[2] Alekh Agarwal, Mikael Henaff, Sham Kakade, and Wen Sun. PC-PG: Policy cover directed
exploration for provable policy gradient learning. arXiv preprint arXiv:2007.08459, 2020.

[3] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder,
Bob McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience
replay. In Advances in neural information processing systems, pages 5048–5058, 2017.

[4] Adrià Puigdomènech Badia, Bilal Piot, Steven Kapturowski, Pablo Sprechmann, Alex Vitvitskyi,
Daniel Guo, and Charles Blundell. Agent57: Outperforming the atari human benchmark. arXiv

preprint arXiv:2003.13350, 2020.

[5] Adrià Puigdomènech Badia, Pablo Sprechmann, Alex Vitvitskyi, Daniel Guo, Bilal Piot, Steven
Kapturowski, Olivier Tieleman, Martín Arjovsky, Alexander Pritzel, Andew Bolt, et al. Never
give up: Learning directed exploration strategies. arXiv preprint arXiv:2002.06038, 2020.

[6] Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi
Munos. Unifying count-based exploration and intrinsic motivation. In Advances in neural

information processing systems, pages 1471–1479, 2016.

[7] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning.
In Proceedings of the 26th annual international conference on machine learning, pages 41–48,
2009.

[8] Ronen I Brafman and Moshe Tennenholtz. R-max-a general polynomial time algorithm for
near-optimal reinforcement learning. Journal of Machine Learning Research, 3(Oct):213–231,
2002.

[9] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. Openai gym, 2016.

[10] Yuri Burda, Harri Edwards, Deepak Pathak, Amos Storkey, Trevor Darrell, and Alexei A Efros.
Large-scale study of curiosity-driven learning. arXiv preprint arXiv:1808.04355, 2018.

[11] Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random
network distillation. arXiv preprint arXiv:1810.12894, 2018.

[12] Andres Campero, Roberta Raileanu, Heinrich Küttler, Joshua B Tenenbaum, Tim Rocktäschel,
and Edward Grefenstette. Learning with amigo: Adversarially motivated intrinsic goals. arXiv

preprint arXiv:2006.12122, 2020.

10

[13] Maxime Chevalier-Boisvert, Lucas Willems, and Suman Pal. Minimalistic gridworld environ-
ment for openai gym. https://github.com/maximecb/gym-minigrid, 2018.

[14] Cédric Colas, Olivier Sigaud, and Pierre-Yves Oudeyer. Gep-pg: Decoupling exploration and
exploitation in deep reinforcement learning algorithms. arXiv preprint arXiv:1802.05054, 2018.

[15] Ildefons Magrans de Abril and Ryota Kanai. Curiosity-driven reinforcement learning with
homeostatic regulation. In 2018 International Joint Conference on Neural Networks (IJCNN),
pages 1–6. IEEE, 2018.

[16] Nat Dilokthanakul, Christos Kaplanis, Nick Pawlowski, and Murray Shanahan. Feature control
as intrinsic motivation for hierarchical reinforcement learning. IEEE transactions on neural

networks and learning systems, 30(11):3409–3418, 2019.

[17] Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O Stanley, and Jeff Clune. Go-explore:
a new approach for hard-exploration problems. arXiv preprint arXiv:1901.10995, 2019.

[18] Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O Stanley, and Jeff Clune. First return
then explore. arXiv preprint arXiv:2004.12919, 2020.

[19] Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Volodymir Mnih, Tom Ward,
Yotam Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl
with importance weighted actor-learner architectures. arXiv preprint arXiv:1802.01561, 2018.

[20] Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you
need: Learning skills without a reward function. arXiv preprint arXiv:1802.06070, 2018.

[21] Carlos Florensa, David Held, Markus Wulfmeier, Michael Zhang, and Pieter Abbeel. Reverse
curriculum generation for reinforcement learning. arXiv preprint arXiv:1707.05300, 2017.

[22] Sébastien Forestier, Yoan Mollard, and Pierre-Yves Oudeyer. Intrinsically motivated goal
exploration processes with automatic curriculum learning. arXiv preprint arXiv:1708.02190,
2017.

[23] Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Ian Osband, Alex
Graves, Vlad Mnih, Remi Munos, Demis Hassabis, Olivier Pietquin, et al. Noisy networks for
exploration. arXiv preprint arXiv:1706.10295, 2017.

[24] Anirudh Goyal, Riashat Islam, Daniel Strouse, Zafarali Ahmed, Matthew Botvinick, Hugo
Larochelle, Yoshua Bengio, and Sergey Levine. Infobot: Transfer and exploration via the
information bottleneck. arXiv preprint arXiv:1901.10902, 2019.

[25] Karol Gregor, Danilo Jimenez Rezende, and Daan Wierstra. Variational intrinsic control. arXiv

preprint arXiv:1611.07507, 2016.

[26] Zhaohan Daniel Guo and Emma Brunskill. Directed exploration for reinforcement learning.
arXiv preprint arXiv:1906.07805, 2019.

[27] Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dab-
ney, Dan Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining
improvements in deep reinforcement learning. arXiv preprint arXiv:1710.02298, 2017.

[28] Rein Houthooft, Xi Chen, Yan Duan, John Schulman, Filip De Turck, and Pieter Abbeel. Vime:
Variational information maximizing exploration. In Advances in Neural Information Processing

Systems, pages 1109–1117, 2016.

[29] Allan Jabri, Kyle Hsu, Abhishek Gupta, Ben Eysenbach, Sergey Levine, and Chelsea Finn. Un-
supervised curricula for visual meta-reinforcement learning. In Advances in Neural Information

Processing Systems, pages 10519–10531, 2019.

[30] Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z Leibo,
David Silver, and Koray Kavukcuoglu. Reinforcement learning with unsupervised auxiliary
tasks. arXiv preprint arXiv:1611.05397, 2016.

11

https://github.com/maximecb/gym-minigrid

[31] Chi Jin, Zeyuan Allen-Zhu, Sebastien Bubeck, and Michael I Jordan. Is q-learning provably
efficient? In Advances in Neural Information Processing Systems, pages 4863–4873, 2018.

[32] Hyoungseok Kim, Jaekyeom Kim, Yeonwoo Jeong, Sergey Levine, and Hyun Oh Song. Emi:
Exploration with mutual information. arXiv preprint arXiv:1810.01176, 2018.

[33] Alexander S Klyubin, Daniel Polani, and Chrystopher L Nehaniv. All else being equal be
empowered. In European Conference on Artificial Life, pages 744–753. Springer, 2005.

[34] Heinrich Küttler, Nantas Nardelli, Alexander H Miller, Roberta Raileanu, Marco Selvatici,
Edward Grefenstette, and Tim Rocktäschel. The nethack learning environment. arXiv preprint

arXiv:2006.13760, 2020.

[35] Lisa Lee, Benjamin Eysenbach, Emilio Parisotto, Eric Xing, Sergey Levine, and Rus-
lan Salakhutdinov. Efficient exploration via state marginal matching. arXiv preprint

arXiv:1906.05274, 2019.

[36] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of deep
visuomotor policies. The Journal of Machine Learning Research, 17(1):1334–1373, 2016.

[37] Marlos C Machado, Marc G Bellemare, and Michael Bowling. Count-based exploration with
the successor representation. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 34, pages 5125–5133, 2020.

[38] Kenneth Marino, Abhinav Gupta, Rob Fergus, and Arthur Szlam. Hierarchical RL using
an ensemble of proprioceptive periodic policies. In International Conference on Learning

Representations, 2019. URL https://openreview.net/forum?id=SJz1x20cFQ.

[39] Tambet Matiisen, Avital Oliver, Taco Cohen, and John Schulman. Teacher-student curriculum
learning. IEEE transactions on neural networks and learning systems, 2019.

[40] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint

arXiv:1312.5602, 2013.

[41] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

[42] Shakir Mohamed and Danilo Jimenez Rezende. Variational information maximisation for
intrinsically motivated reinforcement learning. In Advances in neural information processing

systems, pages 2125–2133, 2015.

[43] Junhyuk Oh, Yijie Guo, Satinder Singh, and Honglak Lee. Self-imitation learning. arXiv

preprint arXiv:1806.05635, 2018.

[44] P Ortner and R Auer. Logarithmic online regret bounds for undiscounted reinforcement learning.
Advances in Neural Information Processing Systems, 19:49, 2007.

[45] Ian Osband, Daniel Russo, and Benjamin Van Roy. (more) efficient reinforcement learning via
posterior sampling. arXiv preprint arXiv:1306.0940, 2013.

[46] Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration via
bootstrapped dqn. In Advances in neural information processing systems, pages 4026–4034,
2016.

[47] Ian Osband, Benjamin Van Roy, Daniel J Russo, and Zheng Wen. Deep exploration via
randomized value functions. Journal of Machine Learning Research, 20(124):1–62, 2019.

[48] Georg Ostrovski, Marc G Bellemare, Aaron van den Oord, and Rémi Munos. Count-based
exploration with neural density models. arXiv preprint arXiv:1703.01310, 2017.

[49] Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition Workshops, pages 16–17, 2017.

12

https://openreview.net/forum?id=SJz1x20cFQ

[50] Deepak Pathak, Dhiraj Gandhi, and Abhinav Gupta. Self-supervised exploration via disagree-
ment. arXiv preprint arXiv:1906.04161, 2019.

[51] Matthias Plappert, Rein Houthooft, Prafulla Dhariwal, Szymon Sidor, Richard Y Chen, Xi Chen,
Tamim Asfour, Pieter Abbeel, and Marcin Andrychowicz. Parameter space noise for exploration.
arXiv preprint arXiv:1706.01905, 2017.

[52] Roberta Raileanu and Tim Rocktäschel. Ride: Rewarding impact-driven exploration for
procedurally-generated environments. arXiv preprint arXiv:2002.12292, 2020.

[53] Christoph Salge, Cornelius Glackin, and Daniel Polani. Empowerment–an introduction. In
Guided Self-Organization: Inception, pages 67–114. Springer, 2014.

[54] Jürgen Schmidhuber. Powerplay: Training an increasingly general problem solver by continually
searching for the simplest still unsolvable problem. Frontiers in psychology, 4:313, 2013.

[55] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[56] Pranav Shyam, Wojciech Jaśkowski, and Faustino Gomez. Model-based active exploration. In
International Conference on Machine Learning, pages 5779–5788, 2019.

[57] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driess-
che, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mas-
tering the game of go with deep neural networks and tree search. nature, 529(7587):484–489,
2016.

[58] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur
Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of
go without human knowledge. nature, 550(7676):354–359, 2017.

[59] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur
Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. A general
reinforcement learning algorithm that masters chess, shogi, and go through self-play. Science,
362(6419):1140–1144, 2018.

[60] Bradly C Stadie, Sergey Levine, and Pieter Abbeel. Incentivizing exploration in reinforcement
learning with deep predictive models. arXiv preprint arXiv:1507.00814, 2015.

[61] Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Jun-
young Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster
level in starcraft ii using multi-agent reinforcement learning. Nature, 575(7782):350–354, 2019.

[62] Amy Zhang, Rowan McAllister, Roberto Calandra, Yarin Gal, and Sergey Levine. Learning
invariant representations for reinforcement learning without reconstruction. arXiv preprint

arXiv:2006.10742, 2020.

[63] Jingwei Zhang, Niklas Wetzel, Nicolai Dorka, Joschka Boedecker, and Wolfram Burgard.
Scheduled intrinsic drive: A hierarchical take on intrinsically motivated exploration. arXiv

preprint arXiv:1903.07400, 2019.

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] We claim to propose efficient exploration criterion that
achieves strong results. The experiments are conducted in MiniGrid, NetHack and
MonteZuma’s Revenge.

(b) Did you describe the limitations of your work? [Yes] We discuss limitations in the
Discussion section.

13

(c) Did you discuss any potential negative societal impacts of your work? [No] We do
not foresee any obvious negative societal impacts from our work, which contributes a
general-purpose exploration algorithm.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [N/A] We don’t have

theorem part.
(b) Did you include complete proofs of all theoretical results? [N/A] We don’t have

theorem part.
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] We upload the
code in supplemental material.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] We include the training detail in supplemental material.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] We include the error bars for experiments.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [No]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [No]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [No] We use publicly available datasets/tasks.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [No] We don’t use data of this sort.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

14

	Introduction
	Background
	Exploration via Novelty Difference
	NovelD Intrinsic Reward Criterion
	Conceptual Advantages of NovelD over Existing Criteria

	Experiments
	MiniGrid Environments
	Analysis of Intrinsic Reward in Pure Exploration
	Ablation Study
	Atari Games
	The NetHack Learning Environment

	Discussion
	Related Work
	Conclusion
	Acknowledgements
	Appendix
	Final Testing Performance for MiniGrid
	Hyperparameters for MiniGrid
	Analysis for MiniGrid
	Results for All Static Environments in MiniGrid
	Hyperparameter for NetHack

