
A Appendix

A.1 Random processes

The notion of random vector in infinite-dimensional vector spaces is not general enough to describe
many models of noise, as for example the white noise described in Example 2.7. To overcome this
problem, a possibility is to consider the noise as a random process on Y (see the approach in [16]).
A random process is a collection {εv}v∈Y of real random variables εv, each of them defined on the
same probability space (Ω,F ,P) and labelled by vectors v ∈ Y . Here we assume that the random
process is linear, with zero mean and bounded. This means that

εαv+βw = αεv + βεw, v, w ∈ Y,

and for each v ∈ Y , εv has zero-mean with finite bounded variance

E[ε2
v] ≤ Cε‖v‖2, (26)

where Cε > 0 is a suitable constant independent of v. The existence of Cε is equivalent to assuming
that the covariance operator Σε : Y → Y , given by

E[εvεw] = 〈Σεv, w〉Y , v, w ∈ Y,

is bounded from Y to Y . It is easy to show that if ε : Ω→ Y is a square-integrable random vector,
then the collection of real random variables {εv}v∈Y

εv(ω) = 〈ε(ω), v〉Y (27)

is a linear bounded random process. However, the converse is not true as shown by the following
example.
Example A.1. The Gaussian white noise ε on Y is a random process such that for any v ∈ Y it holds
that ε(v) is a zero mean Gaussian variable, and Σε = I , i.e., E[ε(vi)ε(vj)] = 〈vi, vj〉Y . Suppose
now that ε ∈ Y ∗: then, by Riesz representation theorem there should exist ε̂ ∈ Y s.t. ε(v) = 〈ε̂, v〉Y .
Nevertheless, this leads to a contradiction, since, letting {φi}i be an orthonormal basis of Y ,

E[‖ε‖2Y ∗ ] = E[‖ε̂‖2Y ] =
∑
i,j∈N

E[〈ε̂, φi〉Y 〈ε̂, φj〉Y ] =
∑
i,j∈N

E[ε(φi)ε(φj)] =
∑
i,j∈N
〈φi, φj〉Y ,

which is a divergent sum. It is moreover easy to show that P(‖ε‖Y ∗ <∞) = 0 (see, e.g. [16]).

However, given a random process {εv}v∈Y , it is always possible to define a Gelfand triple K ⊆ Y ⊆
K∗ and random vector ε taking value in K∗ such that (27) holds true for all v ∈ K.

Indeed, let K be a Hilbert space with a continuous embedding ι : K → Y such that ι(K) is dense in
Y and the linear map

K 3 v 7→ ει(v) ∈ L2(Ω,P)

is a Hilbert-Schmidt operator. Observe that (26) implies that the linear map

Y 3 v 7→ εv ∈ L2(Ω,P)

is always bounded, so that it is enough to assume that ι is itself a Hilbert-Schmidt operator. To
construct the Gelfand triple, we identify Y ∗ with Y , but we do not identify K∗ with K. Hence, since
ι(Y ) is dense in Y , then ι∗ : Y → K∗ is injective and Y can be regarded as a (dense) subspace of
K∗, so that K ⊆ Y ⊆ K∗.
For a fixed ι, the canonical identification

HS(K,L2(Ω,P)) ' L2(Ω,P)⊗K∗ ' L2(Ω,P,K∗)

implies that there exists ε ∈ L2(Ω,P,K∗), i.e. a square-integrable random vector ε in K∗, such that

εv(ω) = 〈ε(ω), v〉K∗×K
almost surely. It is easy to show that the random vector ε ∈ K∗ has zero mean and its covariance
operator Σ̃ε, defined as

Σ̃ε : K → K∗ 〈Σ̃εv, w〉K∗×K = E[〈ε, v〉K∗×K〈ε, w〉K∗×K ] v, w ∈ K,
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is given by Σ̃ε = ι∗ ◦ Σε ◦ ι, as shown by (7).

For example, for the white noise on the Hilbert space Y = L2(D), D ⊂ Rd, a possible choice
is K = Hs(D) with s > d/2, so that the embedding is a Hilbert-Schmidt operator (see [25]).
Furthermore, it is possible to show that ε is a Gaussian random vector in K∗ and the space Y ⊆ K∗
is the corresponding Cameron-Martin space, so that P[ε ∈ Y ] = 0 (see [7]).

Finally, observe that if the random process is already a square-integrable random vector of Y , then Σε
is a trace-class operator and we can simply chooseK = Y . Hence the random process setting extends
the usual formalism of random variables. Clearly, if Y is finite dimensional, the two approaches are
equivalent.

A.2 The solution of the regularization problem with fixed h and B

Throughout this section and the following ones, we denote the adjoint of an operator between Hilbert
spaces F : H1 → H2 as F ∗ : H∗2 → H∗1 such that 〈F ∗u, v〉H∗1×H1

= 〈u, Fv〉H∗2×H2
for all v ∈ H1,

u ∈ H∗2. Notice that we identify the spaces X and Y with their dual spaces, so that, e.g., A∗ is
intended as an operator from Y to X . We do not identify K with K∗ nor H with H∗, so that, e.g.,
ι∗ : Y → K∗.
Proposition A.2. Let

• X , Y and K be separable real Hilbert spaces;

• A : X → Y be a bounded map;

• Σε : Y → Y satisfy Assumption 2.4;

• ι : K → Y be an injective linear map satisfying (6);

• B satisfy Assumption 2.8 and h ∈ X .

For y ∈ K∗, the problem

x̂′ = arg min
x′∈X

‖Σ−1/2
ε ABx′‖2Y − 2〈y − ι∗Ah, (Σει)−1ABx′〉K∗×K + ‖x′‖2X (28)

admits a unique solution, which is given by the bounded affine function R′h,B : K∗ → X defined as

R′h,B(y) = (BA∗Σ−1
ε AB + I)−1((Σει)

−1AB)∗(y − ι∗Ah). (29)

Proof. We have

x̂′ = arg min
x′∈X

G(x′), G(x′) = ‖Σ−1/2
ε ABx′‖2Y − 2〈y − ι∗Ah, (Σει)−1ABx′〉K∗×K + ‖x′‖2X .

Since the functional G is strictly convex and differentiable, we can find its unique minimum by
computing the first-order optimality condition. The Gateaux derivative of G in x′ along the direction
w reads as

G′(x′)[w] = 2〈BA∗Σ−1
ε ABx′, w〉X − 2〈y − ι∗Ah, (Σει)−1ABw〉K∗×K + 2〈x′, w〉X

= 2〈BA∗Σ−1
ε ABx′, w〉X − 2〈((Σει)−1AB)∗(y − ι∗Ah), w〉X + 2〈x′, w〉X .

Imposing that G′(x̂′)[w] = 0 for all w ∈ X therefore implies that

(BA∗Σ−1
ε AB + IX)x̂′ = ((Σει)

−1AB)∗(y − ι∗Ah).

The operator BA∗Σ−1
ε AB+ IX is invertible since it is a perturbation of the identity by a self-adjoint,

non-negative operator, which leads to the expression of the minimizer

x̂′ = (BA∗Σ−1
ε AB + IX)−1(((Σει)

−1AB)∗(y − ι∗Ah),

as in (29), where we also use that B is self-adjoint since it is positive.

We now show that R′h,B : K∗ → X is bounded. We need to show that

(BA∗Σ−1
ε AB + IX)−1(((Σει)

−1AB)∗ : K∗ → X
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is bounded. As observed above, since BA∗Σ−1
ε AB is self-adjoint and non-negative, we have that

‖(BA∗Σ−1
ε AB + IX)−1‖X→X ≤ 1. Thus, it remains to show that ((Σει)

−1AB)∗ : K∗ → X is
bounded. Recall that this composition is well defined thanks to Assumption 2.8 (see (9)). We prove
that

(Σει)
−1AB : X → K (30)

is bounded. By assumption, the map Σει : K → Y is bounded, hence closed. Therefore,
(Σει)

−1 : ι(K) ⊆ Y → K is closed too. By assumption, AB : X → Y is bounded, hence closed.
Thus, the composition (30) is closed, hence bounded thanks to the closed graph theorem.

In view of this result, the regularized solution x̂ = h+Bx̂′ to the inverse problem may be written as
in (12):

x̂ = Rh,B(y) = WBy + bh,B , (31)

where
WB = B(BA∗Σ−1

ε AB + IX)−1((Σει)
−1AB)∗,

bh,B = h−B(BA∗Σ−1
ε AB + IX)−1((Σει)

−1AB)∗ι∗Ah,
(32)

and WB : K∗ → X is bounded.

We now wish to derive an alternative expression for WB .
Proposition A.3. Assume that the hypotheses of Proposition A.2 hold true. The operator
B2A∗(ι∗(AB2A∗ + Σε))

−1 extends to a bounded linear operator from K∗ to X , which coincides
with WB . With an abuse of notation, we have

WB = B2A∗(ι∗(AB2A∗ + Σε))
−1. (33)

Proof. First, observe that

((Σει)
−1AB)∗ι∗Σε = ((Σει)

−1AB)∗(Σει)
∗ = ((Σει)(Σει)

−1AB)∗ = (AB)∗ = BA∗,

so that
((Σει)

−1AB)∗ι∗|Im Σε = BA∗Σ−1
ε . (34)

This identity will be used below and in the following.

In order to prove the result, since the operator ι∗(AB2A∗ + Σε) is injective, it is enough to show that
WB satisfies

WBι
∗(AB2A∗ + Σε) = B2A∗.

Replacing the expression of WB given in (32), we obtain

B(BA∗Σ−1
ε AB + IX)−1((Σει)

−1AB)∗ι∗(AB2A∗ + Σε) = B2A∗.

Since B satisfies Assumption 2.8, we have Im(AB2A∗) ⊆ Im(Σει) ⊆ Im Σε. Thus, by (34), the
above identity is equivalent to

B(BA∗Σ−1
ε AB + IX)−1BA∗Σ−1

ε (AB2A∗ + Σε) = B2A∗.

In order to prove this identity, it is enough to show that

(BA∗Σ−1
ε AB + IX)−1BA∗Σ−1

ε (AB2A∗ + Σε) = BA∗.

Since BA∗Σ−1
ε AB + IX is invertible with bounded inverse, this identity is equivalent to

BA∗Σ−1
ε (AB2A∗ + Σε) = (BA∗Σ−1

ε AB + IX)BA∗.

A quick visual inspection shows that this is always true, concluding the proof.

A.3 Proof of Theorem 3.1 and of (16)

The proof of Theorem 3.1 is based on the following observation.
Lemma A.4. Assume that the hypotheses of Theorem 3.1 hold true. Let B1, B2 : X → X satisfy
Assumption 2.8 and suppose that B1 is injective. Then WB1

= WB2
if and only if

B2
1 = B2

2 in (kerA)⊥.
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Proof. Using (32) for WB1 and (33) for WB2 , the condition WB1 = WB2 reads

B1(B1A
∗Σ−1

ε AB1 + IX)−1((Σει)
−1AB1)∗ = B2

2A
∗(ι∗(AB2

2A
∗ + Σε))

−1.

Since B1 is injective, this is equivalent to

((Σει)
−1AB1)∗ι∗(AB2

2A
∗ + Σε) = (B1A

∗Σ−1
ε AB1 + IX)B−1

1 B2
2A
∗.

Since B2 satisfies Assumption 2.8, we have Im(AB2
2A
∗) ⊆ Im(Σει) ⊆ Im Σε. Thus, by (34),

B1A
∗Σ−1

ε (AB2
2A
∗ + Σε) = (B1A

∗Σ−1
ε AB1 + IX)B−1

1 B2
2A
∗.

We readily derive

B1A
∗Σ−1

ε AB2
2A
∗ +B1A

∗ = B1A
∗Σ−1

ε AB2
2A
∗ +B−1

1 B2
2A
∗,

yielding (B2
1 −B2

2)A∗ = 0. By continuity of B1 and B2, this is equivalent to having B2
1 −B2

2 = 0
in ImA∗ = (kerA)⊥, as desired.

Proof of Theorem 3.1. Recall that Rh,B is given by (31).

Step 1: arbitrary affine estimators. We first consider the case of an arbitrary affine estimator
y 7→ Wy + b, where W : K∗ → X is a bounded linear operator and b ∈ X . Thanks to the
independence of x and ε and the fact that Ex = µ and E ε = 0, the corresponding expected error can
be expressed as

Ex,y[‖Wy + b− x‖2X ] = Ex,ε[‖(W (ι∗Ax+ ε) + b− x‖2X ]

= Ex,ε[‖(Wι∗A− IX)x+Wε+ b‖2X ]

= Ex[‖(Wι∗A− IX)(x− µ)‖2X ] + ‖(Wι∗A− IX)µ+ b‖2X + Eε[‖Wε‖2X ]

= tr[(Wι∗A− IX)Σx(Wι∗A− IX)∗] + tr[Wι∗ΣειW
∗] + ‖(Wι∗A− IX)µ+ b‖2X ,

where the last step is a consequence of the definition of the covariance operators, e.g.

Eε[‖Wε‖2X ] =
∑
i

Eε[〈Wε,ϕi〉2X ]

=
∑
i

Eε[〈ε,W ∗ϕi〉2K∗×K ]

=
∑
i

〈ΣειW ∗ϕi, ιW ∗ϕi〉Y

=
∑
i

〈Wι∗ΣειW
∗ϕi, ϕi〉X

= tr[Wι∗ΣειW
∗],

where {ϕi} is an orthonormal basis of X and the third identity follows from (7).

The minimization of the mean square error easily decouples in a minimization in b, yielding

b = (IX −Wι∗A)µ, (35)

and in finding W that minimizes

J(W ) = tr [(Wι∗A− IX)Σx(Wι∗A− IX)∗ +Wι∗ΣειW
∗] .

It is worth observing that, under the introduced hypotheses, such a functional is well-defined. Indeed,
since ι∗Σει is trace-class (cfr. eq. (6)) and W is a bounded operator, the composition Wι∗ΣειW

∗

defines a trace-class operator, and analogously with the first term, since Σx is trace-class.

Step 2: the optimalB. Let us consider the minimization of J . Note that J is convex and differentiable,
hence its minimizer can be found by imposing the following first-order optimality condition

Fix an operator V : K∗ → X , by imposing that the Gateaux derivative of J(W ) along V is zero, we
get

tr [V ι∗(AΣxA
∗ + Σε)ιW

∗ +Wι∗(AΣxA
∗ + Σε)ιV

∗ − V ι∗AΣx − ΣxA
∗ιV ∗] = 0. (36)
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Choose V = w ⊗ v : K∗ → X , where v ∈ K and w ∈ X , then

〈ι∗(AΣxA
∗+Σε)ιW

∗w, v〉K∗×K+〈Wι∗(AΣxA
∗+Σε)ιv, w〉X = 〈ι∗AΣxw, v〉K∗×K+〈ΣxA∗ιv, w〉X ,

so that
〈Wι∗(AΣxA

∗ + Σε)ιv, w〉X = 〈ΣxA∗ιv, w〉X .
Since v and w are arbitrary, we get

W (ι∗AΣxA
∗ι+ ι∗Σει) = ΣxA

∗ι. (37)

It is easy to show that, if W satisfies (37), equality (36) holds true for all V . Since ι(K) is dense in
Y and W , A, Σx and Σε are bounded, (37) is also equivalent to

Wι∗(AΣxA
∗ + Σε) = ΣxA

∗. (38)

Observe that the operator AΣxA
∗ + Σε : Y → Y is positive and injective, hence it has dense range.

Further, ι is injective, and so ι∗ : Y → K∗ has dense range. Thus, ι∗(AΣxA
∗ + Σε) has dense

range. This shows that there exists at most one bounded operator W : K∗ → X satisfying (38).
Furthermore, Proposition A.3 gives that W

Σ
1/2
x

satisfies (38), so that W
Σ

1/2
x

is the unique global
minimizer of J . Since Σx is injective, by Lemma A.4 we have that the B’s such that WB = W

Σ
1/2
x

are those satisfying B2 = Σx in (kerA)⊥, as desired.

Step 3: the optimal h. Let us consider (35). It is evident that b is uniquely determined by W , and we
know that W = W

Σ
1/2
x

. We now show that, in the case b = b
Σ

1/2
x ,h

and W = W
Σ

1/2
x

, equation (35)
reduces to h = µ. Indeed, we have

h− Σ1/2
x (Σ1/2

x A∗Σ−1
ε AΣ1/2

x + IX)−1((Σει)
−1AΣ1/2

x )∗ι∗Ah = (IX −WΣ
1/2
x
ι∗A)µ

⇐⇒ Σ1/2
x (Σ1/2

x A∗Σ−1
ε AΣ1/2

x + IX)−1((Σει)
−1AΣ1/2

x )∗ι∗Ah = h− µ+W
Σ

1/2
x
ι∗Aµ

⇐⇒ ((Σει)
−1AΣ1/2

x )∗ι∗A(h− µ) = (Σ1/2
x A∗Σ−1

ε AΣ1/2
x + IX)Σ−1/2

x (h− µ)

⇐⇒ Σ1/2
x A∗Σ−1

ε A(h− µ) = Σ1/2
x A∗Σ−1

ε A(h− µ) + Σ−1/2
x (h− µ)

⇐⇒ Σ−1/2
x (h− µ) = 0.

Therefore the optimal value is h? = µ.

Proof of (16). We provide an expression for the minimum value of the expected loss, L(h?, B?).
We have

L(h?, B?) = J(W ?) = tr
[
(W ?ι∗A− IX)Σx(W ?ι∗A− IX)∗ +W ?ι∗ΣειW

?∗] ,
where the optimal linear functional W ? satisfies (38), namely, W ?ι∗ = ΣxA

∗(Σε +AΣxA
∗)−1.

J(W ?) = tr [(W ?ι∗)(AΣxA
∗ + Σε)ι(W

?)∗ − ΣxA
∗ι(W ?)∗ −W ?ι∗AΣx + Σx]

= tr [ΣxA
∗ι(W ?)∗ − ΣxA

∗ι(W ?)∗ −W ?ι∗AΣx + Σx] =

= tr
[
Σx −

(
Σ1/2
x (Σ1/2

x A∗Σ−1
ε AΣ1/2

x + IX)−1((Σει)
−1AΣ1/2

x )∗ι∗AΣx
)]

= tr
[
Σ1/2
x

(
IX −

(
(Σ1/2

x A∗Σ−1
ε AΣ1/2

x + IX)−1Σ1/2
x A∗Σ−1

ε AΣ1/2
x

))
Σ1/2
x

]
= tr

(
Σ1/2
x (Σ1/2

x A∗Σ−1
ε AΣ1/2

x + IX)−1Σ1/2
x

)
,

where the second line is a consequence of (38) the third line is due to (32) and the forth line holds
true by Assumption 2.8 with B = Σ

1/2
x .

A.4 Proof of Theorem 4.1

In order to prove Theorem 4.1, we adapt the classical result on empirical risk minimization to the
present discussion, in particular we follow the simple approach in [12]. We postpone to a future work
the use of more refined techniques [4, 29]. We consider the parameter space Θ ⊂ X × L(X,X) as
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in (19) and assume in particular that it satisfies (21). We recall that every B ∈ Θ2 can be written as
jB̄j∗, being B̄ ∈ HS(H∗, H); moreover, since j = j2 ◦ j1, we can also denote it as B = j2

¯̄Bj∗2 ,
where ¯̄B : X → X , ¯̄B = j1B̄j

∗
1 . Notice that, using that j1 and j2 are injective and have dense range,

given B, then B̄ and ¯̄B are uniquely determined. We can therefore define the following norms on Θ:

‖θ‖∗ = ‖(h,B)‖∗ = max
{
‖h‖X , ‖ ¯̄B‖L(X,X)

}
,

‖θ‖∗∗ = ‖(h,B)‖∗∗ = max
{
‖h̄‖H , ‖B̄‖HS(H∗,H)

}
,

where h̄ = j−1(h). Notice that, according to (19), the set Θ can be seen as a closed subset of the ball
of radius %1 with respect to ‖ · ‖∗∗. Nevertheless, the first result we prove does not require that Θ is
chosen as in (19), nor that the functional Rθ = Rh,B is as in (12).

The following result is a restatement of Proposition 4 in [12].

Lemma A.5. Fix a compact subset Θ of X × {j2 ¯̄Bj∗2 : ¯̄B : X → X bounded}, endowed with
the norm ‖ · ‖∗, and a family of functions Rθ : K∗ → X labelled by θ ∈ Θ satisfying, for a.e.
(x, y) ∈ X ×K∗:

a) ‖Rθ(y)− x‖X ≤M1 for every θ ∈ Θ;

b) ‖Rθ1(y)−Rθ2(y)‖X ≤M2‖θ1 − θ2‖∗, for every θ1, θ2 ∈ Θ.

Then, with probability 1 there exist minimizers of L and L̂ over Θ

θ? = argmin
θ∈Θ

L(θ), θ̂S = argmin
θ∈Θ

L̂(θ),

and, for all η > 0,

Pz∼ρm
[
|L(θ̂S)− L(θ?)| ≤ η

]
≥ 1− 2N

(
Θ,

η

16M1M2

)
e
−mη

2

8M4
1 ,

where N (Θ, r) denotes the covering number of Θ, i.e., the minimum number of balls of radius r (in
norm ‖ · ‖∗) whose union contains Θ.

Proof. For ρ-almost all (x, y) ∈ X ×K∗∣∣‖Rθ1(y)− x‖2X − ‖Rθ2(y)− x‖2X
∣∣ = |〈Rθ1(y)−Rθ2(y), Rθ1(y)− x+Rθ2(y)− x〉|
≤ 2M1M2‖θ1 − θ2‖∗.

By integrating with respect to the probability distribution ρ or the empirical measure ρ̂, the above
bound holds for L, L̂. Indeed,

|L(θ1)− L(θ2)| =
∣∣E[‖Rθ1(y)− x‖2X ]− E[‖Rθ2(y)− x‖2X ]

∣∣
≤ E

[
|‖Rθ1(y)− x‖2X − ‖Rθ2(y)− x‖2X |

]
≤ 2M1M2‖θ1 − θ2‖∗,

(39)

and, with probability 1,

|L̂(θ1)− L̂(θ2)| =

∣∣∣∣∣∣ 1

m

m∑
j=1

‖Rθ1(yj)− xj‖2X −
1

m

m∑
j=1

‖Rθ2(yj)− xj‖2X

∣∣∣∣∣∣
≤ 1

m

m∑
j=1

∣∣‖Rθ1(yj)− xj‖2X − ‖Rθ2(yj)− xj‖2X
∣∣

≤ 2M1M2‖θ1 − θ2‖∗.

(40)

Since both L and L̂ are Lipschitz continuous and Θ is compact, the corresponding minimizers θ? and
θ̂S exist almost surely.

Next, we notice that the event {|L(θ̂S) − L(θ?)| ≤ η} is a superset of the event{
sup
θ∈Θ
|L̂(θ)− L(θ)| ≤ η/2

}
. Indeed,

sup
θ∈Θ
|L̂(θ)− L(θ)| ≤ η

2
⇒ L(θ̂S)− L̂(θ̂S) ≤ η

2
and L̂(θ?)− L(θ?) ≤ η

2
,
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and ultimately it also holds that

0 ≤ L(θ̂S)− L(θ?) =
(
L(θ̂S)− L̂(θ̂S)

)
+
(
L̂(θ̂S)− L̂(θ?)

)
+
(
L̂(θ?)− L(θ?)

)
≤ η,

where we also used the fact that the central difference is negative by definition of θ̂S . Thus,

Pz∼ρm
[
|L(θ̂S)− L(θ?)| ≤ η

]
≥ Pz∼ρm

[
sup
θ∈Θ
|L̂(θ)− L(θ)| ≤ η

2

]
.

We now provide a lower bound for the latter term. In view of (39) and (40), by using the reverse
triangle inequality, for every θ1, θ2 ∈ Θ,∣∣∣|L̂(θ1)− L(θ1)| − |L̂(θ2)− L(θ2)|

∣∣∣ ≤ 4M1M2‖θ1 − θ2‖∗.

Let now N = N
(

Θ, η
8M1M2

)
and consider a discrete set θ1, . . . , θN such that the balls Bk centered

at θk with radius η
8M1M2

cover the entire Θ. In each ball Bk, for every θ ∈ Bk it holds∣∣∣|L̂(θ)− L(θ)| − |L̂(θk)− L(θk)|
∣∣∣ ≤ 4M1M2‖θ − θk‖∗ ≤

η

2
.

Therefore, the event |L̂(θ) − L(θ)| > η is a subset of |L̂(θk) − L(θk)| > η
2 , and a bound (in

probability) of this term can be provided by standard concentration results. Indeed, L̂(θk) is the
sample average of m realization of the random variable ‖Rθk(y)− x‖2X , whose expectation is L(θk).
Moreover, such random variable is bounded by M2

1 by assumption, and therefore via Hoeffding’s
inequality

Pz∼ρm

[
sup
θ∈Bk
|L̂(θ)− L(θ)| > η

]
≤ Pz∼ρm

[
|L̂(θk)− L(θk)| > η

2

]
≤ 2e

−mη
2

2M4
1 .

Notice that this inequality holds uniformly in k. Finally, since Θ is covered by the union of the balls
B1, . . . , BN , with N = N

(
Θ, η

8M1M2

)
, we finally obtain

Pz∼ρm

[
sup
θ∈Θ
|L̂(θ)− L(θ)| ≤ η

]
= 1− Pz∼ρm

[
sup
θ∈Θ
|L̂(θ)− L(θ)| > η

]
≥ 1−

N∑
k=1

Pz∼ρm

[
sup
θ∈Bk

|L̂(θ)− L(θ)| > η

]

≥ 1− 2Ne
−mη

2

2M4
1 .

Lemma A.5 provides a very general result: in order to apply it to our current framework, we have to
first show that the functional Rθ defined as in (12) satisfies the assumptions a) and b) in the statement.
This is the subject of the following result.
Lemma A.6. Under the assumptions of Section 4.1, let Θ be as in (19). then the family of functions
Rθ : K∗ → X , defined by (12), satisfies the assumptions of Lemma A.5.

Proof. Without loss of generality we assume that ‖j1‖L(H,X) ≤ 1 and ‖j2‖L(X,X) ≤ 1. We first
notice that, thanks to (21), for any B1, B2 ∈ Θ,

‖((Σει)−1AB1)∗ − ((Σει)
−1AB2)∗‖L(K∗,X) ≤ ‖(Σει)−1A(B1 −B2)‖L(X,K)

= ‖(Σει)−1Aj2( ¯̄B1 − ¯̄B2)j∗2‖L(X,K)

≤ ‖(Σει)−1Aj2‖L(X,K)‖ ¯̄B1 − ¯̄B2‖L(X,X).

Denote by %3 = ‖(Σει)−1Aj2‖L(X,K). Note that, thanks to (21), arguing as in the proof of Propo-
sition A.2 we have that (Σει)

−1Aj2 : X → K is bounded. Then, by (19), for every B1, B2 ∈ Θ2,

‖((Σει)−1AB1)∗ − ((Σει)
−1AB2)∗‖L(X,K) ≤ %3‖ ¯̄B1 − ¯̄B2‖L(X,X),

‖((Σει)−1AB1)∗‖L(X,K) ≤ %1%3.
(41)
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Assumption a) in Lemma A.5 requires that ‖Rθ(y)− x‖X ≤M1 for a.e. (x, y) ∈ X ×K∗ and for
all θ. Notice that, by the expression of Rθ = Rh,B in (12),

‖Rθ(y)− x‖X ≤ ‖h‖X + ‖B‖L(X,X)‖(BA∗Σ−1
ε AB + IX)−1‖L(X,X)‖((Σει)−1AB)∗‖L(K∗,X)

· (‖y‖K∗ + ‖ι∗A‖L(X,K∗)‖h‖X) + ‖x‖X
≤ %1 + %2

1%3(%2 + ‖ι∗A‖L(X,K∗)%1) + ρ2 =: M1,

where we have also used (19), (22), (41) and the fact that the norm of (BA∗Σ−1
ε AB + IX)−1 is less

than or equal to 1.

Assumption b) requires instead that ‖Rθ1(y) − Rθ2(y)‖X ≤ M2‖θ1 − θ2‖∗. According to the
definition of ‖ · ‖∗, we can decouple the perturbation of θ and study separately the perturbation of h
and of B. We observe that

Rh1,B(y)−Rh2,B(y) = (h1 − h2)−B(BA∗Σ−1
ε AB + IX)−1((Σει)

−1AB)∗ι∗A(h1 − h2),

hence again by (41), (22) and (19) we get

‖Rh1,B(y)−Rh2,B(y)‖ ≤ (1 + %2
1%3‖ι∗A‖L(X,K∗))‖h1 − h2‖X .

The treatment of the perturbations of B is slightly more delicate. Let Ci = (BiA
∗Σ−1

ε ABi + IX)−1.
Then we have

Rh,B1
(y)−Rh,B2

(y)

= (B1C1((Σει)
−1AB1)∗ −B2C2((Σει)

−1AB2)∗)(y − ι∗Ah)

= (B1 −B2)C1((Σει)
−1AB1)∗(y − ι∗Ah) +B2(C1 − C2)((Σει)

−1AB1)∗(y − ι∗Ah)

+B2C2(((Σει)
−1AB1)∗ − ((Σει)

−1AB2)∗)(y − ι∗Ah)

In the latter summation, by means of (41), (22) and (19) we easily get that the first and the third
terms are both bounded by %1%3(%2 + ‖ι∗A‖L(X,K∗)%1)‖ ¯̄B1 − ¯̄B2‖L(X,X). The second term can be
reformulated taking into account that

C1 − C2 = (IX +B1A
∗Σ−1

ε AB1)−1 − (IX +B2A
∗Σ−1

ε AB2)−1

= (IX +B1A
∗Σ−1

ε AB1)−1(B2A
∗Σ−1

ε AB2 −B1A
∗Σ−1

ε AB1)(IX +B2A
∗Σ−1

ε AB2)−1,

and its norm can be bounded by 2%3
1%

2
3‖ι∗A‖L(X,K∗)(%2+‖ι∗A‖L(X,K∗)%1)‖ ¯̄B1− ¯̄B2‖L(X,X) using

similar arguments.

Now that the assumptions a) and b) of Lemma A.5 are guaranteed, we have to show the compactness
of the parameter class Θ. The following lemma only assumes that Θ is defined as in (19), by means
of a Hilbert space H and a compact, dense-range operator j : H → X .

Lemma A.7. The set Θ defined as in (19) is a compact subset ofX×{j2 ¯̄Bj∗2 : ¯̄B : X → X bounded}
with respect to the topology induced by the norm ‖ · ‖∗.

Proof. We first show that Θ1 ×Θ2 is compact. Set
¯̄Θ2 = {j1B̄j∗1 : B̄ ∈ HS(H∗, H), ‖B̄‖HS(H∗,H) ≤ %1} (42)

so that Θ2 = {j2 ¯̄Bj∗2 : ¯̄B ∈ ¯̄Θ2}. The definition of the norm ‖ · ‖∗ implies that Θ1×Θ2 is compact
with respect to the topology induced by the norm ‖ · ‖∗ if and only if Θ1 × ¯̄Θ2 is compact as subset
of X ×HS(X,X) endowed with the product topology. Hence, it is enough to show that Θ1 and ¯̄Θ2

are compact in X and HS(X,X), respectively. By definition, since j is compact and Θ1 is the image
of the closed ball of radius ρ1 in H , then Θ1 is compact.

In order to prove that ¯̄Θ2 is compact, we identify HS(H∗, H) and HS(X,X) withH⊗H andX⊗X ,
respectively, so that for all v, w ∈ H , v ⊗ w : H∗ → H is the rank one operator

(v ⊗ w)(z) = 〈z, w〉H∗,H v, z ∈ H∗.
With this identification, since

j1(v ⊗ w)j∗1 = (j1v)⊗ (j1w),
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the map B̄ 7→ j1B̄j
∗
1 is given by

j1 ⊗ j1 : H ⊗H → X ⊗X,
which is compact, since j1 is so. As above, ¯̄Θ2 is the image of the closed ball of radius ρ1 in H ⊗H ,
so that it is a compact subset of HS(X,X).

The compactness of Θ follows from the fact that the subset of positive operators ¯̄B : X → X is
closed in HS(X,X) and B = j2

¯̄Bj∗2 is positive if and only if ¯̄B is positive.

To conclude the proof of Theorem 4.1, we need to provide an explicit expression for the covering
numbers of the set Θ in the ‖ · ‖∗ norm. This is possible, e.g. by assuming the polynomial decay of
the singular values of j1 as in (20), by means of some tools that are presented in the next section.

A.5 Entropy numbers, singular values and covering numbers

Let H and X be real Hilbert spaces and let B denote the unit closed ball in H. We use instead the
notation B(v, ε) to denote the closed ball in X with center v and radius ε. For any compact operator
T : H → X we can define the following quantities.

1. Entropy numbers: for each k ∈ N, k ≥ 1,

εk(T ) = inf{ε > 0 | ∃v1, . . . , vk ∈ X such that ∪ki=1 B(vi, ε) ⊇ T (B)};
2. Singular values: sk(T ) = λk(|T |), where λk(|T |) is the k-th non-zero eigenvalue of |T |,

which are counted with their multiplicity and ordered in a non-increasing way. If |T | has
less than K non-zero eigenvalues, then sk(T ) = 0 for k ≥ K.

3. Covering numbers of T : the covering numbers of the set T (B); namely, for r > 0,

Nr(T ) = N (T (B), r) = inf{k ∈ N∗ | ∃v1, . . . , vk ∈ X such that ∪ki=1B(vi, r) ⊇ T (B)}.

Properties of covering and entropy numbers have recently been used in the study of instability in
inverse problems [28]. We have the following results (see [11]):

εk(T ) ≤ r ⇐⇒ Nr(T ) ≤ k; (43)

and for all k ∈ N, k ≥ 1

sup
1≤`<∞

(
k−1/`

(
Π`
i=1si(T )

)1/`) ≤ εk(T ) ≤ 14 sup
1≤`<∞

(
k−1/`

(
Π`
i=1si(T )

)1/`)
. (44)

We now use these properties to quantify the covering numbers N (Θ, r) appearing in Lemma A.5.
We assume, for simplicity, that %1 = 1. For %1 6= 1, we can rescale the covering numbers by the
formula N (%B, r) = N (B, r/%), where %B = {%b : b ∈ B}. By the definition of Θ, it is evident
that N (Θ, r) ≤ N (Θ1, r)N (Θ2, r). The following two lemmas take care of estimating the covering
numbers of Θ1 and Θ2, respectively.
Lemma A.8. Under Assumption (20) we have

ln(N (Θ1, r)) ≤ Cr−
1
s , r > 0, (45)

where C > 0 is independent of r.

Proof. Observe that N (Θ1, r) = Nr(j) ≤ N r
‖j2‖L(X,X)

(j1). Condition (20) yields

Π`
i=1si(j1) . (`!)−s . `−s`es`,

where the last bound is a consequence of the fact that (`)! ≥ e``e−`. Estimate (44) implies that

εk(j1) . sup
1≤`<∞

(
k−1/`

(
`−s`es`

)1/`)
= sup

1≤`<∞

(
k−1/``−ses

)
.

Let t = 1/`, since the function e−t ln kts takes its maximum at t = s/ ln k, then

εk(j1) . (ln k)−s,

where the constant in . depends on s. Eq. (43) yieldsN(ln k)−s(j1) . k and ultimately the thesis.
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Lemma A.9. Under assumption (20), for every s′ ∈ (0, s) we have

ln(N (Θ2, r)) ≤ Cr−
1
s′ , r > 0, (46)

where C > 0 is independent of r.

Proof. Observe that N (Θ2, r) = N ( ¯̄Θ2, r) = Nr(j1 ⊗ j1), since j1 ⊗ j1 represents the (compact)
embedding of HS(H∗, H) into HS(X,X), see the proof of Lemma A.7 and (42).

We bound the singular values of j1 ⊗ j1. Let f : (0,+∞)→ N be defined by

f(t) = #{(k1, k2) ∈ N∗ × N∗ : sk1,k2(j1 ⊗ j1) = sk1(j1)sk2(j1) ≥ t}.

Then, for all k ∈ N∗ we have

sk(j1 ⊗ j1) = sup{t ∈ (0,+∞) : f(t) ≥ k}.

By the polynomial decay of the singular values (20)

f(t) ≤ #{(k1, k2) ∈ N∗ × N∗ : (k1k2)−s ≥ Ct} = g(t),

where C is a suitable constant. Then,

sk(j1 ⊗ j1) ≤ sup{t ∈ (0,+∞) : g(t) ≥ k}.

We now estimate g(t). Let τ = (Ct)−1/s and N = [τ ] be the integer part of τ . Fix 0 < ε < 1

g(t) = #{(k1, k2) ∈ N∗ × N∗ : k1k2 ≤ (Ct)−1/s = τ}

=

N∑
k1=1

[
τ

k1

]
≤

N∑
k1=1

τ

k1
≤ τ +

∫ N

1

τ

x
dx

≤ τ(1 + ln(τ)) ≤ 1

ε
τ1+ε .

1

ε
t−(1+ε)/s

where (1 + lnx) ≤ ε−1xε provided that 0 < ε < 1. Set s/2 ≤ s′ = s/(1 + ε) < s, then

g(t) .
s

s− s′
t−

1
s′

so that
sk(j1 ⊗ j1) . k−s

′
. (47)

Clearly, the above bound holds true also when 0 < s′ < s/2. The proof follows by repeating the
argument of the proof of Lemma A.8.

We are now able to prove the main result of section 4.1.

Proof of Theorem 4.1. By Lemma A.8 and A.9, we conclude that

ln(N (Θ, r)) ≤ ln(N (Θ1, r)) + ln(N (Θ2, r)) . r−
1
s + r−

1
s′ . r−

1
s′ .

Substituting this result in Lemma A.5 allows to conclude that

Pz∼ρm
[
|L(θ̂z)− L(θ∗)| ≤ η

]
≥ 1− ec̃1η

−1/s′−c̃2mη2 = 1− e−τ .

We can express η as a function of m and τ when η < 1 by the following estimate:

τ ≥ c̃2mη2 − c̃1η−1/s′ ⇒ c̃2mη
2+ 1

s′ ≤ c̃1 + τη1/s′ ≤ c̃1 + τ,

and therefore (with constants c1, c2 independent of m, τ, η)

|L(θ̂z)− L(θ∗)| ≤ η ≤
(
c̃1 + τ

c̃2m

) 1
2+1/s′

≤
(
c1 + c2

√
τ√

m

)1− 1
2s′+1

,

with probability larger than or equal to 1− e−τ .
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A.6 Proof of Theorem 4.2

In the unsupervised setting, the regularizer RĥU ,B̂U is given by

RĥU ,B̂U (y) = ĥU + B̂2
UA
∗(ι∗(AB̂2

UA
∗ + Σε))

−1(y − ι∗AĥU ), y ∈ K∗,

where

ĥU = µ̂ =
1

m

m∑
j=1

xj , B̂2
U = Σ̂x =

1

m

m∑
j=1

(xj − µ̂)⊗ (xj − µ̂).

Hence, in order to analyze the statistical properties of RĥU ,B̂U , we first provide two concentration

inequalities for µ̂ and Σ̂x, which are known since x is a sub-Gaussian random vector in X . We
include the proofs for the sake of completeness.
Lemma A.10. Let x be a κ sub-Gaussian vector as in (24). Fix τ > 0, then, with probability
exceeding 1− 2e−τ ,

‖µ̂− µ‖ ≤ cκ

(√
tr(Σx)

m
+ 2

√
τ‖Σx‖
m

)
, (48)

where c > 0 is a universal constant.

Proof. Define ξ = x− µ where µ = E[x]. It is easy to show that ξ is a zero mean κ sub-Gaussian
vector and its covariance matrix is Σx = E[ξ ⊗ ξ]. The assumption that ξ is a sub-Gaussian random
variable (24) can be equivalently expressed by requiring that

‖〈ξ, v〉X‖ψ2
≤ κ‖〈ξ, v〉X‖2,

where ‖〈ξ, v〉X‖ψ2
= supp≥2

‖〈ξ,v〉X‖p√
p . For each v in the unit ball B1 of X , we set ξv = 〈ξ, v〉X

and we regard (ξv)v∈B1 as a random process on B1, viewed as metric space with respect to the metric
d(v, w) = ‖ξv − ξw‖2. Since B1 = −B1, then

‖ξ‖X = sup
v∈B1

|〈ξ, v〉| = sup
v∈B1

〈ξ, v〉

and a standard result of random processes – see Exercise 8.6.5 and Theorem 8.5.5 in [48] – gives that

P
(

sup
v∈B1

|ξv| ≤ cκ(W (B1) + tdiam(B1))

)
≥ 1− 2e−t

2

, t > 0,

where c is a universal constant, W is the width of the process

W (B1) = E[ sup
v∈B1

〈ξ, v〉X ] = E[ sup
v∈B1

|〈ξ, v〉X |] = E[‖ξ‖X ],

and diam(B1) is the diameter of B1 with respect to the metric d(v, w)

diam(B1) = sup
v,w∈B1

d(v, w) = sup
v,w∈B1

‖〈ξ, v〉 − 〈ξ, w〉‖2 = sup
v,w∈B1

E[〈ξ, v − w〉2]1/2

= sup
v,w∈B1

(〈Σξ(v − w), v − w〉)1/2 ≤ 2‖Σξ‖1/2L(X,X).

Hölder’s inequality implies that

E[‖ξ‖X ] ≤ E[‖ξ‖2X ]1/2 = (tr(Σx))1/2,

so that we get
P
(
‖ξ‖X ≤ cκ

(√
tr Σx + 2t

√
‖Σx‖

))
≥ 1− 2e−t

2

. (49)

Define ξ1 = x1 − µ, . . . , ξm = xm − µ, which are i.i.d. as ξ. We claim that there exists an absolute
constant d such that ξ̂ = 1

m

∑m
j=1 ξj is dκ sub-Gaussian. Indeed,

‖〈
m∑
j=1

ξj , v〉‖2ψ2
= ‖

m∑
j=1

〈ξj , v〉‖2ψ2

≤ d2
m∑
j=1

‖〈ξj , v〉‖2ψ2
≤ d2κ2

m∑
j=1

‖〈ξj , v〉‖22 = d2κ2‖
m∑
j=1

〈ξj , v〉‖22,
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where the first inequality is due to the rotational invariance property of sub-Gaussian real random
variables [48, Proposition 2.6.1], and the last equality is a consequence of the independence of the
variables ξj . Thus ξ̂ = µ̂− µ is dκ sub-Gaussian. Notice that the covariance of ξ̂ is given by

E[ξ̂ ⊗ ξ̂] =
1

m2

∑
i,j

E[ξi ⊗ ξj ] =
1

m

∑
j

E[ξj ⊗ ξj ] =
1

m
Σx.

Setting τ = t2, by applying (49) to ξ̂ we can finally deduce that

P

(
‖ξ̂‖X ≤ cdκ

(√
tr Σx
m

+ 2

√
τ‖Σx‖
m

))
≥ 1− 2e−τ ,

which provides the claimed bound by redefining the universal constant c.

The following lemma is a restatement of a fundamental result in [30]. We include in the statement
also the previous inequality.
Lemma A.11. Let x be a κ sub-Gaussian vector as in (24). Fix τ > 1, then, with probability
exceeding 1− 3e−τ ,

‖Σ̂x − Σx‖ ≤ cκ2‖Σx‖max

{√
tr Σx
m‖Σx‖

,
tr Σx
m‖Σx‖

,

√
τ

m
,
τ

m

}
, (50)

‖µ̂− µ‖ ≤ cκ

(√
tr(Σx)

m
+ 2

√
τ‖Σx‖
m

)
, (51)

where c is a universal constant.

Proof. We first introduce the operator

Σ̂ξ =
1

m

m∑
j=1

ξj ⊗ ξj =
1

m

m∑
j=1

(xj − µ)⊗ (xj − µ).

Since E[Σ̂ξ] = Σx, Theorem 9 of [30] gives that

‖Σ̂ξ − Σx‖ ≤ c′‖Σx‖max

{√
tr Σx
m‖Σx‖

,
tr Σx
m‖Σx‖

,

√
τ

m
,
τ

m

}
, (52)

with probability greater than 1− e−τ . As usual, it holds that

Σ̂x =
1

m

m∑
j=1

(xj − µ̂)⊗ (xj − µ̂) =
1

m

m∑
j=1

(xj − µ+ µ− µ̂)⊗ (xj − µ+ µ− µ̂)

=
1

m

m∑
j=1

(xj − µ)⊗ (xj − µ) + (µ− µ̂)⊗

 1

m

m∑
j=1

(xj − µ)


+

 1

m

m∑
j=1

(xj − µ)

⊗ (µ− µ̂) + (µ̂− µ)⊗ (µ̂− µ)

= Σ̂ξ − (µ̂− µ)⊗ (µ̂− µ).

As a consequence,
‖Σ̂x − Σx‖ ≤ ‖Σ̂ξ − Σx‖+ ‖µ̂− µ‖2.

By (52) and (48), with probability exceeding 1− 3e−τ , we have both (51) and

‖Σ̂x − Σx‖ ≤ c′‖Σx‖max

{√
tr Σx
m‖Σx‖

,
tr Σx
m‖Σx‖

,

√
τ

m
,
τ

m

}

+ cκ2

(
tr(Σx)

m
+ 4

√
τ‖Σx‖ tr(Σx)

m
+ 4

τ‖Σx‖
m

)
,

which provides the claimed bounds by redefining the constants c.
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The following lemma shows that the excess risk L(ĥU , B̂U )− L(h?, B?) is bounded by ‖Σ̂x − Σx‖
and ‖µ̂ − µ‖. Note that Lemma A.6 would provide a bound in terms of ‖Σ̂x

1
2 − Σ

1
2
x ‖. Since the

square root is a monotone increasing function, it holds true that

‖Σ̂x
1
2 − Σ

1
2
x ‖ ≤

√
‖Σ̂x − Σx‖,

see Theorem X.1.1 of [5], which would provide a worse bound.

Lemma A.12. Assume that AΣxA
∗ + Σε : Y → Y has a bounded inverse, that the operator

A∗(ι∗(AΣxA
∗ + Σε))

−1 : ι∗(Y ) ⊆ K∗ → X

extends to a bounded operator from K∗ to X , and that

‖(AΣxA
∗ + Σε)

−1A(Σ̂x − Σx)A∗‖ ≤ 1/2. (53)

Then
|L(ĥU , B̂U )− L(h?, B?)| = O

(
‖Σ̂x − Σx‖

)
+ O (‖µ̂− µ‖) , (54)

where the constant in O only depends on A,Σx, Σε, ι and µ.

Proof. Let
x̂U = RĥU ,B̂U (y), x? = Rh?,B?(y),

so that
L(ĥU , B̂U )− L(h?, B?) = E

[
‖x̂U − x‖2

]
− E

[
‖x? − x‖2

]
.

Since x? minimizes the mean square error, clearly L(ĥU , B̂U )− L(h?, B?) ≥ 0 . We now prove the
upper bound. Since

‖x̂U − x‖2 − ‖x? − x‖2 = ‖x̂U − x?‖2 + 2〈x̂U − x?, x? − x〉
≤ ‖x̂U − x?‖2 + 2‖x̂U − x?‖‖x? − x‖,

then, by Hölder inequality,

E
[
‖x̂U − x‖2

]
− E

[
‖x? − x‖2

]
≤ E

[
‖x? − x̂U‖2

]
+ 2
√
E [‖x̂U − x?‖2]E [‖x? − x‖2]

= O
(√

E [‖x̂U − x?‖2]
)
, (55)

where the constant in O only depends on A,Σx and Σε. By (15) and the definition of x̂U

x? = ΣxA
∗(ι∗(AΣxA

∗ + Σε))
−1(y − ι∗Aµ) + µ = W̃y + b̃

x̂U = Σ̂xA
∗(ι∗(AΣ̂xA

∗ + Σε))
−1(y − ι∗Aµ̂) + µ̂ = Ŵy + b̂,

where W̃ and Ŵ are given in (33), for B2 = Σx and B2 = Σ̂x, respectively, and b̃, b̂ in (35). As a
consequence,

x̂U − x? = (Ŵ − W̃ )y + b̂− b̃ = Wy + b = Wι∗A(x− µ) +Wε+Wι∗Aµ+ b,

where
W = Ŵ − W̃ , b = b̂− b̃.

Hence, taking into account that x− µ and ε are zero mean random variables, we obtain

E
[
‖x̂U − x?‖2

] 1
2 =

(
tr [W (ι∗AΣxA

∗ι+ ι∗Σει)W
∗] + ‖Wι∗Aµ+ b‖2|

) 1
2

≤ tr [W (ι∗AΣxA
∗ι+ ι∗Σει)W

∗]
1
2 + ‖Wι∗Aµ+ b‖

≤ (tr (ι∗AΣxA
∗ι+ ι∗Σει))

1
2 ‖W‖+ ‖Wι∗Aµ+ b‖. (56)

We now bound the norm of W where

W = Σ̂xA
∗(ι∗(AΣ̂xA

∗ + Σε))
−1 − ΣxA

∗(ι∗(AΣxA
∗ + Σε))

−1.
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A delicate issue is that (ι∗(AΣ̂xA
∗+Σε))

−1 and (ι∗(AΣxA
∗+Σε))

−1 do not have bounded inverses,
see the remark after Theorem 3.1. We first prove that AΣ̂xA

∗ + Σε has a bounded inverse. Indeed,
let ∆ = A(Σ̂x − Σx)A∗, then

AΣ̂xA
∗ + Σε = (AΣxA

∗ + Σε)
(
I + (AΣxA

∗ + Σε)
−1∆

)
.

By assumption (53), ‖(AΣxA
∗ + Σε)

−1∆‖ ≤ 1/2 < 1, so that using Neumann series we have that
AΣ̂xA

∗ + Σε is invertible and

(AΣ̂xA
∗ + Σε)

−1 − (AΣxA
∗ + Σε)

−1

=
(
I + (AΣxA

∗ + Σε)
−1∆

)−1
(AΣxA

∗ + Σε)
−1 − (AΣxA

∗ + Σε)
−1

=
((
I + (AΣxA

∗ + Σε)
−1∆

)−1 − I
)

(AΣxA
∗ + Σε)

−1

=
(
I + (AΣxA

∗ + Σε)
−1∆

)−1
(AΣxA

∗ + Σε)
−1∆(AΣxA

∗ + Σε)
−1.

Then, on ι∗(Y ) ⊆ K∗

(i∗(AΣ̂xA
∗ + Σε))

−1 − (i∗(AΣxA
∗ + Σε))

−1

=
(
I + (AΣxA

∗ + Σε)
−1∆

)−1
(AΣxA

∗ + Σε)
−1A(Σ̂x − Σx)A∗(i∗(AΣxA

∗ + Σε))
−1.

The density of ι∗(Y ) ⊂ K∗ and the assumption that A∗(i∗(AΣxA
∗ + Σε))

−1 extends to a bounded
operator from K∗ to X implies that

‖(i∗(AΣ̂xA
∗ + Σε))

−1 − (i∗(AΣxA
∗ + Σε))

−1‖

≤ ‖
(
I + (AΣxA

∗ + Σε)
−1∆

)−1 ‖ ‖(AΣxA
∗ + Σε)

−1A‖‖Σ̂x − Σx‖‖A∗(i∗(AΣxA
∗ + Σε))

−1‖

≤ 2‖(AΣxA
∗ + Σε)

−1A‖‖Σ̂x − Σx‖‖A∗(i∗(AΣxA
∗ + Σε))

−1‖,

where we used (53) to bound ‖
(
I + (AΣxA

∗ + Σε)
−1∆

)−1 ‖ with 2, so that

‖(i∗(AΣ̂xA
∗ + Σε))

−1 − (i∗(AΣxA
∗ + Σε))

−1‖ . ‖Σ̂x − Σx‖, (57)

where the constant in . only depends on A,Σx and Σε. Since

W = Σ̂xA
∗
(

(ι∗(AΣ̂xA
∗ + Σε))

−1 − (ι∗(AΣxA
∗ + Σε))

−1
)

+ (Σ̂x − Σx)A∗(ι∗(AΣxA
∗ + Σε))

−1,

eq. (57) and the fact that ‖Σ̂x‖ ≤ ‖Σ̂x − Σx‖+ ‖Σx‖ both imply

‖W‖ . ‖Σ̂x − Σx‖+ ‖Σ̂x − Σx‖2 = O
(
‖Σ̂x − Σx‖

)
, (58)

where the constants in . and O only depend on A,Σx and Σε. We now observe that

b = (µ̂− µ)− (Ŵ ι∗Aµ̂− W̃ ι∗Aµ) = (µ̂− µ)− Ŵ ι∗A(µ̂− µ)−Wι∗Aµ,

so that
Wι∗Aµ+ b = (I − Ŵ ι∗A)(µ̂− µ),

and

‖Wι∗Aµ+ b‖ ≤ ‖(I − Ŵ ι∗A)‖ ‖µ̂− µ‖ ≤ (‖(I − W̃ ι∗A)‖+ ‖Wι∗A‖) ‖µ̂− µ‖.

Eq. (58) implies that

‖Wι∗Aµ+ b‖ . ‖µ̂− µ‖+ ‖µ̂− µ‖‖Σ̂x − Σx‖ = O (‖µ̂− µ‖) , (59)

where the constants in . and O only depend on A,Σx, Σε and µ. Eqs. (55) and (56) with (59)
give (54).

We are now able to prove the main result of section 4.2.
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Proof of Theorem 4.2 . Since the map C 7→ (AΣxA
∗ + Σε)

−1ACA∗ is continuous from L(X,X)
into L(Y, Y ), there exists δ > 0 such that

‖(AΣxA
∗ + Σε)

−1ACA∗‖ ≤ 1/2 ∀C ∈ L(X,X) ‖C‖ ≤ δ.
Set m0 ∈ N such that

cκ2‖Σx‖max

{√
tr Σx

m0‖Σx‖
,

tr Σx
m0‖Σx‖

,

√
τ

m0
,
τ

m0

}
≤ δ,

where c is the constant in Lemma A.11. Eq. (50) implies that for all m ≥ m0 condition (53) is
satisfies with probability exceeding 1 − 4e−τ . Possibly redefining m0, by (50) and (51) we can
assume that on the same event

max{‖µ̂− µ‖, ‖Σ̂x − Σx‖} ≤ min{1, c1 + c2
√
τ√

m
}, (60)

where c1 and c2 are suitable constants independent of m and τ . Hence, eq. (54) implies that on the
same event

|L(ĥU , B̂U )− L(h?, B?)| = O
(
‖Σ̂x − Σx‖

)
+ O (‖µ̂− µ‖) ≤ C c1 + c2τ√

m
,

where the last inequality is a consequence of (60). Eq. (25) is now clear.

A.7 Numerical results: further details

A.7.1 Experimental setup

In Section 5, we set X = L2(T1), being T1 the one-dimensional torus. For any N > 0, we can

introduce the partition {IN,i}Ni=1 of the interval (0, 1), being IN,i =

(
i− 1

N
,
i

N

)
and define the

1D-pixel basis {ϕN,i}Ni=1 as follows:

ϕN,i(t) =
√
NχN,i(t), χN,i(t) =

{
1 t ∈ IN,i,
0 otherwise.

The functions {ϕN,i}Ni=1 form an orthogonal set, and we define XN as the linear space generated by
them. Each element u ∈ XN can be uniquely represented by a vector u ∈ RN as follows:

ui =
1

|IN,i|

∫
IN,i

u =
√
N〈u, ϕN,i〉X , u(t) =

N∑
i=1

〈u, ϕN,i〉XϕN,i(t) =

N∑
i=1

1√
N
uiϕN,i(t).

As a consequence, for u ∈ XN , we can compute ‖u‖2X =
∑N
i=1〈u, ϕN,i〉2 = 1

N

∑N
i=1 u

2
i . The

representation of a linear operator B : XN → XN can be done via a matrixB ∈ RN×N as follows:
Bi,j = 〈BϕN,j , ϕN,i〉X ; v = Bu ⇐⇒ v = Bu.

In order to generate a discrete version of the random process ε and of the random variable x, we first
generate the vectors νx, νε such that each component [νx]i and [νε]i is independently distributed
with mean 0 and covariance 1. In the proposed tests, we either draw from a Gaussian distribution
N (0, 1) or a uniform distribution Unif(−

√
3,
√

3), taking advantage of the Matlab commands randn
and rand. Then in order to approximate the white noise process ε, with zero mean and covariance
operator Σε = σ2I , we introduce ε such that

E[εiεj ] = E[
√
N〈ε, ϕN,i〉

√
N〈ε, ϕN,j〉] = σ2Nδij ,

thus resulting in ε = σ
√
Nνε. As an alternative, we also consider a random process whose

components with respect to the Haar wavelet basis are randomly sampled as a white noise, i.e.,
ε = σ

√
NW Tνε, whereW is the discrete Haar wavelet transform andW T its transpose.

The random variable x is instead computed as x = µ+
√
NΣ1/2

x νx, being

µi =
√
N〈µ, ϕN,i〉X , [Σ1/2

x ]i,j = 〈Σ1/2
x ϕN,j , ϕN,i〉X .

In the experiments, we picked µ(t) = 1− |2t− 1| and Σ
1/2
x s.t.

Σ1/2
x u(t) =

∫
T1

kΣx(t′)u(t− t′)dt, kΣx(t) = 1− exp(−(c/t)4)χ(−c,c)(t),

being c = 0.2. Finally, we selected σ = 0.05. In Figure 3, we show some signals from the training
sample, both in dimension N = 64 and N = 256.
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(a) (b) (c)

(d) (e) (f)

Figure 3: Signals drawn from the joint distribution in the case where both x and ε are Gaussian.
(a),(b),(c): N = 64, (d),(e),(f): N = 256. We show in black the original signal x, in red the noisy
datum y = x+ ε and in green the reconstruction Rθ?(y) associated with the optimal regularizer.

A.7.2 Implementation aspects

As expressed in Section 5, it is possible to compute the mean squared error L associated with the
optimal parameter θ? = (h?, B?) and the learned parameters θ̂S = (ĥS , B̂S) , θ̂U = (ĥU , B̂U )
with an explicit formula. Indeed, since the employed data are synthetically generated, we can take
advantage of the knowledge of µ,Σx,Σε. We simulate the computations in Section 3 and in Appendix
A.3, in a finite-dimensional context: here, since for any N the operator Σε is invertible, Assumption
2.8 is satisfied with K = Y . The expression of the regularizer in (12) then reads as

Rh,B(y) = Wy + b,

being W = B2A∗(Σε +AB2A∗)−1 and b = (IX −WA)h. Moreover, as in Appendix A.3, we can
compute

L(h,B) = tr[(WA− IX)Σx(WA− IX)∗] + tr[WΣεW
∗] + ‖(WA− IX)µ+ b‖2X .

By this formula, it is possible to compute the mean squared error associated to any parameter θ, and

in particular for (h?, B?) = (µ,Σ
1/2
x ) and (ĥU , B̂U ) = (µ̂, Σ̂x

1/2
).

In order to detect the empirical risk minimizer (ĥS , B̂S), and in particular to compute the quantity
L(ĥS , B̂S), we rely on the same strategy adopted for the minimization of L. Therefore, we first look
for the affine functional Wy + b which minimizes the empirical risk, defined as

L̂b,W =
1

m

m∑
j=1

‖Wyj + b− xj‖2X ;

then, if the optimal b and W can be written as W = B2A∗(Σε +AB2A∗)−1 and b = (IX −WA)h,
the pair (h,B) is a minimizer of L̂(h,B). Thanks to the empirical mean and covariance matrices

ŷ =
1

m

m∑
j=1

yj , Σ̂y =
1

m

m∑
j=1

(yj − ŷ)⊗ (yj − ŷ), Σ̂yx =
1

m

m∑
j=1

(yj − ŷ)⊗ (xj − µ̂),
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it is also possible to provide a more explicit formula for L̂b,W . Indeed,

L̂b,W =
1

m

m∑
j=1

(
‖W (yj − ŷ)‖2X + ‖xj − µ̂‖2X − 2〈W (yj − ŷ), xj − µ̂〉X + ‖Wŷ − µ̂+ b‖2X

)
= tr[W Σ̂yW

∗] + tr[Σ̂x]− 2 tr[W Σ̂yx] + ‖Wŷ − µ̂+ b‖2X ,

where we have used that
∑
j(yj − ŷ) = 0 and

∑
j(xj − µ̂) = 0. Thus, the minimizer of L̂b,W is the

affine operator associated withW = Σ̂xyΣ̂−1
y and b = µ̂−Wŷ. Unfortunately, suchW does not yield

the optimal parameter B̂S : indeed, W cannot be written in the form W = B2A∗(Σε +AB2A∗)−1,
but rather W = MA∗(Σε +AMA∗)−1, where the resulting M is not symmetric. We overcome such
issue by considering the symmetric part of M , which we denote by M ′. Indeed, despite the operator
W ′ associated with M ′ is possibly different from the minimizer of L̂b,W among the functionals of the
form W = B2A∗(Σε +AB2A∗)−1, numerical evidence shows that the values of L evaluated in W ′

and W are very close. Since the former is an upper bound of L(ĥS , B̂S) and the latter a lower bound,
we conclude that the expected loss L evaluated in W ′ provides a sufficiently tight upper estimate of
the value of L(ĥS , B̂S), without explicitly requiring the computation of B̂S and ĥS .

As a final remark, we show how the generalization bounds in probability obtained in Theorems 4.1
and 4.2 can be reformulated in expectation. Let us first consider the unsupervised case, in which

Pz∼ρm

[
|L(ĥU , B̂U )− L(h?, B?)| ≤ c3

1√
m

+ c4

√
τ√
m

]
≥ 1− e−τ .

Inverting η = c3
1√
m

+ c4
√
τ√
m

in terms of τ we get

Pz∼ρm
[
|L(ĥU , B̂U )− L(h?, B?)| ≤ η

]
≥ 1− c̃1e−c̃2mη

2

.

This can be translated into a bound in expectation by means of the following identity:

Ez∼ρm
[
|L(ĥU , B̂U )− L(h?, B?)|

]
=

∫ ∞
0

Pz∼ρm
[
|L(ĥU , B̂U )− L(h?, B?)| > η

]
dη .

1√
m
.

In a similar way, in the supervised case we have (see the Appendix A.5)

Pz∼ρm
[
|L(θ̂z)− L(θ∗)| ≤ η

]
≥ 1− ec1η

−1/s′−c2mη2 .

Notice that, when η → 0, such bound could be meaningless, as the term ec1η
−1/s′

blows up. We
therefore substitute it with the following estimate:

Pz∼ρm
[
|L(θ̂z)− L(θ∗)| ≤ η

]
≥ 1−min{1, ec1η

−1/s′−c2mη2}.

As a consequence,

Ez∼ρm
[
|L(ĥU , B̂U )− L(h?, B?)|

]
=

∫ ∞
0

Pz∼ρm
[
|L(ĥU , B̂U )− L(h?, B?)| > η

]
dη

≤
∫ ∞

0

min{1, ec1η
−1/s′−c2mη2}dη.

Notice that 1 ≤ ec1η−1/s′−c2mη2 when c1η−1/s′ ≥ c2mη2, namely when η ≤ η̂(m) =
(

c1
c2m

) 1
2+1/s′ .

Thus,

Ez∼ρm
[
|L(ĥU , B̂U )− L(h?, B?)|

]
≤ η̂(m) +

∫ ∞
η̂(m)

ec1η
−1/s′−c2mη2dη

≤ η̂(m) +

∫ ∞
η̂

ec1η̂
−1/s′−c2mη2dη =

 c1η̂
−1/s′ − c2mη2 = −β2

dη =
1

√
c2m

β√
c1η̂−1/s′ + β2

dβ ≤ 1
√
c2m

dβ


≤ η̂(m) +

1
√
c2m

∫ ∞
0

e−β
2

dβ .

(
1

m

) 1
2+1/s′

+
1√
m
,
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Sample size, m
Model (1) 3000 6463 13925 30000 64633 139248 300000

N = 64, unsup. 0.00174 0.00119 0.00076 0.00056 0.00038 0.00025 0.00018
N = 64, sup. 0.00398 0.00233 0.00156 0.00111 0.00067 0.00044 0.00031
N = 256, unsup. 0.00195 0.00131 0.00086 0.00063 0.00040 0.00029 0.00020
N = 256, sup. 0.01369 0.00485 0.00246 0.00134 0.00092 0.00052 0.00037

Model (2)
N = 64, unsup. 0.00177 0.00129 0.00082 0.00053 0.00034 0.00023 0.00019
N = 64, sup. 0.00380 0.00236 0.00158 0.00103 0.00058 0.00044 0.00032
N = 256, unsup. 0.00199 0.00126 0.00094 0.00056 0.00044 0.00028 0.00019
N = 256, sup. 0.01449 0.00487 0.00250 0.00142 0.00086 0.00058 0.00035

Model (3)
N = 64, unsup. 0.00188 0.00125 0.00083 0.00056 0.00039 0.00027 0.00018
N = 64, sup. 0.00407 0.00240 0.00154 0.00105 0.00069 0.00044 0.00028
N = 256, unsup. 0.00190 0.00134 0.00088 0.00057 0.00040 0.00028 0.00019
N = 256, sup. 0.01434 0.00503 0.00248 0.00135 0.00089 0.00052 0.00036

Table 1: Tabulated values of the excess risks associated with Figures 1(c),??(c),??(c), computed at
two discretization levels and in three different statistical setups: Gaussian variable x and (1) uniform
white noise ε, (2) Gaussian white noise ε, and (3) white noise ε uniformly distributed w.r.t. the Haar
wavelet transform.

and the leading order is
(

1
m

) 1
2+1/s′ , which can be rewritten as

(
1√
m

)1− 1
2s′+1 , and converges to 1√

m

for large values of s′ (namely, of s).

Finally, in Table 1 we report the numerical values of the excess risk |L(ĥU , B̂U )− L(h?, B?)| and
|L(ĥS , B̂S)− L(h?, B?)| associated with all the studied cases.

A.8 An ill-posed inverse problem: deconvolution of 1D signals

We provide a numerical verification of the estimates of Theorems 4.1 and 4.2 for a 1D deconvolution
problem, extending the experiments of section 5 to the case of an ill-posed operator A. We consider
again X = Y = L2(T1), and introduce the convolution operator (Ax)(t) = (k ∗ x)(t) =

∫
T k(t−

τ)x(τ)dτ . This operation can be used to describe the blurring of one-dimensional signals, the
function k being the convolutional filter, or point spread function. In our experiments, we consider
k(t) = χ

[−L,L](t), the indicator function of the interval [−L,L], and set L = 0.02. Such a kernel
k can be referred to as the average filter. When discretizing the interval T1 with N 1D-pixels, the
operator A reduces to a discrete (periodic) convolution with a constant vector k, whose number of
entries is LN . Both at a continuous and at a discrete level, the deconvolution problem is known to be
ill-posed (see, e.g., [38]), and the smallest singular value of the discretized operator vanishes as N
grows. Nevertheless, we expect to observe the same generalization bounds as in the denoising case.

We replicate the same experiments as in section 5, assuming that x is a random Gaussian variable
(with mean µ and covariance Σx as reported in section 5) and ε is white uniform noise with covariance
Σε = σ2I . We fix a noise level of 2.5% by setting σ equal to the 2.5% of the peak value of the
average signal. The results of the numerical experiments are reported in Figure 4. We observe that in
both scenarios the decay of the excess risk is of the order 1/

√
m, and the unsupervised technique still

provides (slightly) better results, which in particular are not affected by the increased ill-posedness of
the operator at a much refined scale.
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(a) (b) (c)

Figure 4: Decay of the excess risks |L(θ̂S)− L(θ?)| and |L(θ̂U )− L(θ?)| (with standard deviation
error bars) with two different discretization sizes, N = 64 (a) and N = 256 (b), and comparison (c).
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