
Appendix: Not All Low-Pass Filters are Robust
in Graph Convolutional Networks

Contents

A Checklist 15

B Broader Impact 16

C Additional Related Work 16

D Additional Preliminaries on Graph Signal Filtering 17

E Measure of Significant Change on the Spectrum 18

F The Results of Multi-edge Perturbation on Targeted Attacks 18

G Details of the Proposed Algorithm 18

H Proofs and Derivations 18

H.1 Proof of Lemma 1 . 18

H.2 Proof of Theorem 1 . 19

H.3 Proof of Theorem 2 . 21

H.4 Proofs of Corollary 1, Corollary 2, Corollary 3 and Corollary 4 21

I Additional Experimental Results 22

I.1 Overview of Datasets . 22

I.2 Adversarial Samples Generation . 22

I.3 Experimental Setups . 22

I.4 T-test on the Performance of GCN-LFR on Clean Datasets. 23

I.5 Sensitivity Analysis on the Ratio of Low-frequency and Weight Coefficient α . . . 23

I.6 Parameter Sharing Architecture . 24

I.7 Running Time for Low-Frequency Components 24

I.8 Defense for Heterophily Datasets . 24

A Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [Yes]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]

2. If you are including theoretical results...

15

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [Yes] We report error bars for part of the experiments, since it
would be too computationally expensive for large datasets.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [No] We were unable to find the license for

the assets we used.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A] The datasets are public benchmarks.
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A] The datasets are public benchmarks.
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

B Broader Impact

Graph Convolutional Networks (GCNs) could be crucial tools for a broad range of applications,
including social networks, computer vision, natural language processing, traffic prediction, chemistry,
protein design, recommendation system and so on [64, 58].

Any of these applications may have a different social effect. The use of GCNs could improve protein
design efficiency and lead to the development of new medicines, but it could also result in job
losses. Though traffic prediction would undoubtedly assist us in better planning our journeys, the
processing of personal data can pose a challenge. Another major problem is that while these graph
responsive assessment models can have the ability to improve results, security concerns often hinder
their practical implementation.

Since the symmetric normalized adjacency matrix is widely chosen as the fundamental building block
of current architectures, the GCN family will profit greatly from the key outcome of our work, given
the societal consequences. Meanwhile, our suggested co-training model GCN-LFR protects against
adversarial threats while maintaining precision in benign situations. With the support of GCN-LFR,
the use of GCNs in safety-critical applications (such as power grids, financial risk control, and drug
screening) can be extended.

C Additional Related Work

Adversarial attacks have become an intriguing direction relating to the behavior of neural networks [62,
59]. The attackers can insert slight perturbation on samples, which is usually unnoticeable to a human,
and the output of neural networks will be completely fooled. While most current works focus on
dealing with the grid or sequential data, adversarial attack and defense on graph neural networks have

16

drawn unprecedented attention from researchers recently [47, 24, 49]. Defenses on graphs. While
GCNs have already shown promising results on various graph-related tasks, fewer efforts are put into
the enhancement of robustness of GCNs, compared with the rapid progress dealing with images or
texts. We briefly introduce the SOTA defense efforts [67, 55, 5, 69, 63, 56, 23] for GCNs here.

• GCN-Jaccard [55] proposes to examine the fake edges in the step of preprocessing of
GCNs by utilizing similarity metrics. [67, 25, 23] focus on proposing new variants of GCN
that can effectively defend against adversarial attack, but they are limited to VanillaGCN
and challenging to be employed upon other GCNs. [5, 69] focus on theoretically certifying
the robustness of GCNs under perturbations of the graph structure and node features instead
of defense mechanisms. Meanwhile, [56] provides the first information-theoretic principle
inherited from the information bottleneck principle for supervised representation learning on
graph-structured data. However, we aim to provide a practical adversarial defense framework
with theoretical explanations.

• GNNGUARD [63] detects the adverse effects existing in the relationship between the graph
structure and node features by neighbor importance estimation and layer-wise graph memory.
Though GNNGUARD [63] can be incorporated with many GCN models, the approach is
derived from the spatial network theory of homophily. In contrast, our GCN-LFR method
considers this problem from the perspective of spectral domain. A similar approach to GNN-
GUARD is Low-Pass [53], which also aims to eliminate the side effects from neighborhoods
by considering low-pass message passing. Given neither public implementation nor source
code upon request is available, we choose not to include Low-Pass in our baselines.

• GCN-SVD [14] finds that only the high-rank singular components of the graph are affected
by the attacking method Nettack [70]. Then GCN-SVD [14] suggests that the power of
Nettack can be greatly reduced if a low-rank approximation of the graph is utilized in
contrast to the original clean graph.

The most related work to this paper is GCN-SVD. However, they only provide empirical observations
on the robustness of low-rank approximation, and use SVD decomposition to purify the poisoned
graph with only the structural information. In this paper, we first build the theoretical connection
between robustness and graph spectrum, then propose a framework integrating both graph structure
and node features to enhance robustness.

Adaptive attacks. In the computer vision community, there has recently been a new branch for
adaptive attacks on defending models [51]. While adaptive adversarial examples can exist in graphs,
there are currently no such works in the graph learning sector. The defense against adaptive attacks
on graph structured data is also interesting and significant, but it is beyond the reach of this research
and will be left as a future work.

D Additional Preliminaries on Graph Signal Filtering

Graph frequency from GSP. Graph Signal Processing (GSP) extends the concept of frequency in
Discrete Signal Processing and focuses on the analysis and processing of data points whose relations
are modeled as a graph [45, 39]. Let L = UΛU> be the eigen-decomposition of the symmetric
normalized Laplacian L, where U = [u>1 , · · · ,u>N] ∈ RN×N and Λ = diag(λ1, · · · , λN) are
the eigenvectors and eigenvalues of L, respectively. The Laplacian matrix has a complete set of
orthonormal eigenvectors U . The eigenvalues are sorted non-decreasingly as 0 ≤ λ1 ≤ λ2 ≤ · · · ≤
λN < 2. Therefore, one can treat each eigenvector u as an oscillation pattern and its corresponding
eigenvalue λ as the frequency of the oscillation. In other words, the frequency of an eigenvector ui
of the Laplacian matrix is its corresponding eigenvalue λi [20]:

u>i Lui = u>i λiui = λi. (6)

To be consistent with the Laplacian matrix-based definition of graph frequency, throughout this
paper, we call the frequency components of Laplacian with small eigenvalues as low-frequency
components and vice versa. Due to the connection between the symmetric normalized adjacency
matrix Â = In −L and L, the eigenvalues of Â read ΛÂ = In −ΛL, which range from −1 to 1.
Specifically, the low-frequency components refer to frequency components of L with eigenvalues
in [0, 1) (of Â with eigenvalues in (0, 1]), and the high-frequency components refer to frequency
components of L with eigenvalues in (1, 2] (of Â with eigenvalues in (−1, 0)).

17

E Measure of Significant Change on the Spectrum

There are two ways to define the significant change in eigenvalues. One is the absolute change as
we demonstrated in Figure 1, and the other one is the rate of change over eigenvalues before and
after perturbation. We discuss the two ways here with respect to the influence on the reconstructed
adjacency matrixA′. Considering the perturbation on the all frequencies as a diagonal matrix ε, where
εii is the absolute change on ith eigenvalue. Thus for the original adjacency matrix A = UΛUT ,
the reconstructed adjacency matrix after perturbation by ε is approximated as A′ = U(Λ + ε)UT =
UΛUT + UεUT . Thus the absolute change can better reflect the perturbation on the reconstructed
A′, which is directly related to the analysis of robustness.

F The Results of Multi-edge Perturbation on Targeted Attacks

In this part, we give the results under the multi-edge targeted perturbation, where T = {u} and
∆ > 1. Specifically, we discuss the type of attacks that either consecutively inserting or deleting
edges on the clean graph. In this situation, the attacker directly manipulates the adjacent edges of u.
Corollary 3 (Low-frequency). Assume that p adversarial edges are either consecutively inserted or
deleted on node u from the clean graph, i.e., E ∪P or E \P , where P refers to the set of p adversarial
edges. Then, with the same assumptions as in Theorem 1, there exists a pair of λa and λb, so that
|
∑
v∈P ∆λav| > |

∑
v∈P ∆λbv| always holds if λa and λb satisfy

max
v∈P

(
0,
dbv − dav + cavλa

cbv

)
< λb < 1; −1 < λa < min

v∈P

(dav − cbv + dbv
cav

, 0
)
,

where cav = u2
au + u2

av , dav = 2uau · uav , cbv = u2
bu + u2

bv , and dbv = 2ubu · ubv .

Then we have the robust interval under multi-edge perturbation as:
Corollary 4 (Robust interval). With the same assumptions from Theorem 2 and Corollary 3,
|
∑
v∈P ∆λav| > |

∑
v∈P ∆λbv| always holds for any −1 < λa < 0 if λb satisfies

max
v∈P

(
0,
dbv − dav + cavλa

cbv

)
< λb < min

v∈P

(dbv + dav − cavλa

cbv
, 1
)
. (7)

The proofs of Corollary 3 and Corollary 4 can be found in Section H.4.
Remark 4. From Corollary 3 and Corollary 4 , we can come to the same remarks with one-edge
perturbation that the low-frequency components of Â from the robust interval could be more robust
than the high-frequency ones when we successively insert or delete edges in the graph.

G Details of the Proposed Algorithm

In Algorithm 1, we take node classification as the example task. It is worth noting that GCN-LFR is a
general robust training framework for defending any GCN-based model on various graph learning
tasks such as graph classification and link prediction.

H Proofs and Derivations

H.1 Proof of Lemma 1

We include two immediate results to prove Lemma 1. The perturbation on the eigenvalue of an
undirected graph resulting from edge modification has been well studied in literature [66, 4, 9].
From [46], we have:

Lemma 2. [4] λ is an eigenvalue of D−1/2AD−1/2 := Â with eigenvector û = D1/2u if and
only if λ and u solve the generalized eigen-problem Au = λDu.

According to Lemma 2, instead of solving Â directly, we solve the generalized eigen-problem
Au = λDu to obtain the eigenvalue of Â. Therefore, the eigenvalues of Â after perturbation can be
well approximated by the clean adjacency matrix A and corresponding eigen-pair before attack. For
the approximation of the perturbed eigenvalue, we have:

18

Algorithm 1 A training procedure of GCN-LFR for node classification tasks.

1: Input: A poisoned graph G′ with adjacency matrix A′ and feature matrix X; The node labels y; The
GCN-based modelMGCN; The regularization netMLFR; The number of epochs T ; The weight coefficient
α.

2: Output: The model parameter Θ ofMGCN.
3: Initialize the modelsMGCN andMLFR.
4: for t = 1 to T do
5: z ∼ uniform(0, 1) {Generate a random number in [0, 1).}
6: if z ≥ α then
7: L ← LGCN(MGCN(A

′,X;Θ),y)
8: else
9: L ← LLFR(MLFR(A

′,X;Θ,F),y)
10: end if
11: Optimize L.
12: end for
13: Return Θ .

Lemma 3. [46] We denote A′ = A + ∆A as a perturbed version of A by modifying edges, and
∆D as the respective change in the degree matrix. Â = UΛU> is the eigen-decomposition of the
symmetric normalized adjacency matrix Â. λy and uy are the yth eigen-pair of eigenvalue and
eigenvector of Â and also solve the generalized eigen-problem Auy = λyDuy . Then the perturbed
eigenvalue λ

′

y can be calculated as:

λ′y = λy + (u>y ∆Auy − λyu>y ∆Duy) +O(‖∆A‖). (8)

With Lemma 2 and Lemma 3, we now can conduct proof of Lemma 1:

Proof. Lemma 1. Let eu be the vector of all zeros and a single one at position u. Then, we derive

∆A = ∆wuv(eue
>
v + eve

>
u), (9)

∆D = ∆wuv(eue
>
u + eve

>
v), (10)

where ∆wuv = (1− 2Auv) indicates the edge flip, i.e ±1. Thus, by substituting Eq.(9) and Eq.(10)
into Eq.(8), we obtain

∆λy = ±
(
2uyu · uyv − λy(u2

yu + u2
yv)
)
. (11)

H.2 Proof of Theorem 1

Proof. Theorem 1. Since the perturbation contains two cases: edge insertion and edge deletion, we
will discuss each case separately. We first denote ca = u2

au+u2
av , da = 2uau ·uav , cb = u2

bu+u2
bv ,

and db = 2ubu · ubv .

Case 1 (Insertion). One-edge is inserted to the graph, i.e., E ∪ euv . Therefore,

∆λy = 2uyu · uyv − λy(u2
yu + u2

yv), (12)

which implies that ∆λa = da − caλa and ∆λb = db − cbλb. Since we assume u ≥ 0 for all u from
Assumption 1, thus for −1 < λa < 0, we can have ∆λa > 0 for all λa, i.e., |λa| > 0. Then we
conduct category discussion on ∆λb with 0 < λb < 1.

1. For ∆λb ≥ 0, we have λb ≤ 2ubu·ubv

u2
bu+u2

bv
= db

cb
< 1. When λb satisfies:

1 > λb > max

(
0,
db − da + caλa

cb

)
, (13)

19

we have

λb >
db − da + caλa

cb
λbcb > db − da + caλa
λbcb > db − (da − caλa)

λbcb > db −∆λa
∆λa > db − λbcb = ∆λb
|∆λa| > ∆λb

Next, we discuss if λb always exists in the interval 0 < λb < 1. Since cb − db = u2
bu +u2

bv − 2ubu ·
ubv = (ubu+ubv)

2 > 0, da = 2uau ·uav > 0, ca = u2
au+u2

av > 0, and−1 < λa < 0, we obtain

1 >
db − da + caλa

cb
cb > db − da + caλa

λa < 0 ≤ da + (cb − db)
ca

caλa < da + (cb − db)
db − da + caλa < cb

1 >
db − da + caλa

cb
.

Therefore, the lower bound of λb, represented as max
(

0, db−da+caλa

cb

)
, is always smaller than the

upper bound of λb, which indicates that there always exists λb making |∆λa| > ∆λb when ∆λb > 0.

Thus, we summarize that under ∆λb ≥ 0 and Inequality(13), we conclude that |∆λa| > ∆λb =
|∆λb|.

2. For ∆λb < 0, we have λb > 2ubu·ubv

u2
bu+u2

bv
> 0. We first consider the second condition in Inequality(4):

−1 < λa < min
(da − cb + db

ca
, 0
)
.

With this condition, we can have

caλa < da − cb + db

db + da − caλa
cb

> 1.

Considering λb represents the low-frequency component and 0 < λb < 1, we can always have:

λb < 1 ≤ db + da − caλa
cb

(14)

cbλb < db + da − caλa
−(db − cbλb) < da − caλa

−∆λb < ∆λa
|∆λb| < |∆λa|.

Thus, we summarize the condition under ∆λb < 0 as

db
cb
< λb < 1. (15)

Next, we discuss if λa always exists in the interval −1 < λa < 0. Therefore, the lower bound of λa
should be smaller than the upper bound of λa, which indicates that the following inequality should be

20

satisfied

−1 <
da − cb + db

ca
cb − db < ca + da

(ubu − ubv)
2 < (uau + uav)

2. (16)

Here Inequality(16) is assumed in Theorem 1 as Inequality(3).

Combining the conditions Inequality(13) and Inequality(15) for two cases of ∆λb concludes the first
condition in Inequality(4), which concludes the proof.

Case 2 (Deletion). One edge is deleted from the graph, i.e., E\euv . Therefore,

∆λy = −2uyu · uyv + λy(u2
yu + u2

yv). (17)

It is the trivial extension of one-edge insertion case as the opposite number of ∆λy and leads to the
same conditions. Therefore, we omit the proof here.

H.3 Proof of Theorem 2

Proof. Theorem 2. To make the conclusion from Theorem 1 stands for all −1 < λa < 0, we first
conclude the condition Inequality(13) for ∆λb > 0. Then, for λb < 0, the |∆λa| > −∆λb = |∆b|
will hold if

λb < min

(
db + da − caλa

cb
, 1

)
(18)

according to Inequality(14) for all −1 < λa < 0. Then, we discuss that the upper bound of λb is
always greater than 0. Since −1 < λa < 0, then we obtain

−caλa > 0

db + da − caλa > db + da > 0

db + da − caλa
cb

>
db + da
cb

> 0.

Therefore, there always exists λb holding |∆λa| > −∆λb = |∆b| for ∆λb < 0.

Next, we discuss the lower bound and upper bound of λb for all kinds of ∆λb. We derive

db + da − caλa
cb

− db − da + caλa
cb

=
db + da − caλa − db + da − caλa

cb

=
2da − 2caλa

cb
>0,

where ca > 0, −1 < λa < 0, da > 0, and cb > 0. Hence, we have

db + da − caλa
cb

>
db − da + caλa

cb
,

which indicates that the upper bound of λb is always larger than the lower bound of λb.

H.4 Proofs of Corollary 1, Corollary 2, Corollary 3 and Corollary 4

Proof. Corollary 3. Suppose every edge added/deleted from the consecutive adding/deleting process
satisfies Theorem 1, we have ∑

v∈P
|∆λav| >

∑
v∈P
|∆λbv| (19)

21

holds for λa and λb satisfy

max
v∈P

(
0,
dbv − dav + cavλa

cbv

)
< λb < 1;

−1 < λa < min
v∈P

(dav − cbv + dbv
cav

, 0
)
,

where cav = u2
au + u2

av , dav = 2uau · uav , cbv = u2
bu + u2

bv , and dbv = 2ubu · ubv .

Given the non-negativity of U , we have ∆λav > 0 for all v ∈ P under edge insertion, and ∆λav < 0
for all v ∈ P under edge deletion. Thus, we have |

∑
v∈P ∆λav| =

∑
v∈P |∆λav|. While the sign of

∆λbv is not determined, we have |
∑
v∈P ∆λbv| ≤

∑
v∈P |∆λbv| by Cauchy Inequality. Substituting

both of them in Inequality(19) concludes the proof.

The proof for Corollary 1 is straightforward from the proof for Corollary 3, and the proofs of
Corollary 2 and Corollary 4 are the trivial extension of Theorem 2 with the help of Corollary 1 and
Corollary 3. Thus we omit the details here.

I Additional Experimental Results

I.1 Overview of Datasets

We mainly focus on five node classification benchmark datasets under the semi-supervised setting. We
use three citation networks with binary features: Cora [37], Citeseer and Pubmed [43], which aim to
classify the research topics of papers, and two different types of datasets from GNN-Benchmark [44]:
Coauthor CS is a coauthor network aiming to predict the most active field of study for each author
from the KDD Cup 2016 challenge4, and Amazon Photo [36] is a co-purchase network that intends
to predict the category of products from Amazon. A statistical overview of all datasets is provided in
Table 7.

Table 7: Dataset statistics. Edge density describes the fraction of all possible edges in the graph.

Dataset Nodes Edges Classes Features Edge density
Citeseer 3,327 4,732 6 3,703 0.0004
Cora 2,708 5,429 7 1,433 0.0004
Pubmed 19,717 44,338 3 500 0.0001
Coauthor CS 18,333 81,894 15 6,805 0.0001
Amazon Photo 7,487 11,9043 8 745 0.0011

I.2 Adversarial Samples Generation

We evaluate our model under three kinds of adversarial attack settings from the existing studies:
targeted attack with one-edge perturbation (Nettack-One [70]), targeted attack with multi-edge
perturbation (Nettack-Multi [70]), and non-targeted attack (Mettack [71]). In the targeted attack
settings, following the same protocol in [70], we select 40 correctly classified nodes as targets for
each dataset. The selected nodes include 10 nodes with the largest classification margin, 20 random
nodes, and 10 nodes with the smallest margin. We run the whole attack and defense procedure for
each target node and report average classification accuracy. Note that every successfully attacked
node will contribute to a 0.025 decrease in accuracy. To be consistent with previous works [63],
we set the perturbation budget ∆ = 1 for the targeted node under Nettack-One and ∆ = Nu under
Nettack-Multi. In the non-targeted attack setting, due to the high computational cost of Mettack, we
set the perturbation rate as 10% (i.e., ∆ = 0.1E) with the ‘A-Meta-Self’ training strategy.

I.3 Experimental Setups

To select hyperparameters and GCN model architectures, we closely follow guidelines of original au-
thors and relevant papers on GCNs (VanillaGCN [27], JK-Net [61], SGC [54], Graph-U-Net [16], and

4https://kddcup2016.azurewebsites.net

22

GCNII [10]), baseline defense algorithms (GCN-Jaccard [55], GCN-SVD [14], GNNGUARD [63],
and Pro-GNN [25]), and models for generating adversarial attacks (Nettack-One [70], Nettack-
Multi [70], and Mettack [71]). Note that our motivation is to provide a robust training paradigm that
enhances the robustness of any given GCN backbone, thus some recent efforts on proposing new
variants of GCNs are not eligible for comparison.

Across all experiments, for a fair comparison, we keep the common hyperparameters as the same,
including the number of layers as 2, hidden units as 128, learning rate as 0.01, weight decay as
5e − 4, the number of epochs as 200 and dropout rate as 0.5. The cross-entropy loss is optimized
using the Adam optimizer [26]. For GCN-LFR, we set the ratio of top low-frequency to k = d%N ,
which indicates that we treat the top d% smallest eigenvalues as low-frequency components. For each
dataset, d is chosen from grid search in {5, 10, · · · , 50}. Meanwhile, we set the weight coefficient α
for balancing two losses to 0.5, unless otherwise stated.

We utilize a PyTorch based package, DeepRobust (https://github.com/DSE-MSU/DeepRobust)
[34], to implement the adversarial attack models and baseline defense algorithms except for
GNNGUARD, which is from their public code. We utilize the PyTorch Geometric package
(https://github.com/rusty1s/pytorch_geometric) to acquire all mentioned datasets and
implement GCN models. The training and evaluation of models are realized with PyTorch
(https://pytorch.org). For all methods, we report the performance of single run for Nettack-One,
and repeat every experiment 5 times then report the mean performance for Nettack-Multi and Mettack.
For other parameters, we follow the setup in [70, 71]. We have run most of the experiments on a
single 16GB GeForce GTX TITAN X GPU.

5% 10% 15% 20% 25% 30% 35% 40% 45% 50%
Proportion of Low-Frequency

65

70

75

80

85

A
cc

ur
ac

y
(%

)

GCN-LFR

Figure 6: Grid search on the ratio of low-
frequency.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Weight Coefficient α

65

70

75

80

85

A
cc

ur
ac

y
(%

)

Benign
Attacked

Figure 7: Grid search on the weight coefficient α.

I.4 T-test on the Performance of GCN-LFR on Clean Datasets.

For better demonstration of Table 4, we perform significance tests to verify that GCN-LFR achieves on
par performance in comparison with the backbone using double-sided T-test. We use Python package
scipy.stats.ttest_ind and report the average results over different backbones in Table 8. We
can find that most of the p-value is larger than 0.05, thus we cannot reject the null hypothesis of
identical average scores, which supports our claim.

Table 8: T-test on the classification accuracy over all benign datasets (i.e., non-attacked) w or w/o
LFR.

Dataset Cora Citeseer Pubmed Coauthor CS Amazon Photo

p-value 0.610 0.198 0.313 0.005 0.190

I.5 Sensitivity Analysis on the Ratio of Low-frequency and Weight Coefficient α

We choose to set the weight coefficient α as 0.5 simply because this setting has already shown
consistently better performance across all datasets. Thus we choose not to tune this hyperparameter.
However, for better illustration, we provide the defending results against one-edge perturbation on
Cora dataset upon the grid search on the proportion of low-frequency within {5%, 10%, · · · , 50%} in

23

https://github.com/DSE-MSU/DeepRobust
https://github.com/rusty1s/pytorch_geometric
https://pytorch.org

Figure 6. Interestingly, we can find that the robustness of GCN-LFR stops enhancing when the ratio
becomes large. Meanwhile, we also conduct the sensitivity analysis of GCN-LFR w.r.t α on Cora
dataset under both benign (no attack happens and tested on the full testset) and one-edge perturbation
(tested on the selected 40 nodes as targets) within {0.1, 0.2, · · · , 0.9} in Figure 7. We can observe that
GCN-LFR is relatively insensitive to α and stays effective even under extreme conditions. Relatively
larger α also leads to better robustness but worse performance in benign situation.

I.6 Parameter Sharing Architecture

The two-channel cooperation with parameter sharing aims to transfer the robustness of GCN-LFR to
the main channel through regularization. To further demonstrate the effectiveness of this architecture,
we implement a variant of GCN-LFR but only without parameter sharing, which we denote as
GCN-LFR-NoShare. Table 9 demonstrates the defense performance of three models by reporting the
accuracy after attack. We can observe that even we do not share the parameters between the main
channel and the LFR channel, the defense performance can still be enhanced.

Table 9: Defense performance (multi-class classification accuracy) against non-targeted attacks under
Mettack.

Dataset VanillaGCN GCN-LFR-NoShare GCN-LFR
Cora 0.771 ± 0.010 0.778 ± 0.012 0.791 ± 0.012

Citeseer 0.654 ± 0.012 0.663 ± 0.012 0.670 ± 0.015
Amazon Photo 0.824 ± 0.012 0.670 ± 0.015 0.843 ± 0.015

I.7 Running Time for Low-Frequency Components

The extra complexity brought by our proposed method only lies in the acquisition of the low-frequency
components. Thus aside from the complexity analysis, we provide the mean time of this procedure
averaging from 5 runs on all datasets in Table 10. We can find that this burden resulting from LFR is
acceptable across all datasets.

Table 10: Running time for preprocessing of low-frequency components.

Dataset Cora Citeseer Pubmed Coauthor CS Amazon Photo

LFR Burden (s) 2.351 3.764 480.583 426.237 55.003

Table 11: Classification accuracy on both benign and attacked heterophily datasets. The first row
reports the results of VanillaGCN. The second row reports the results of JK-Net.

VanillaGCN GNNGUARD VanillaGCN GCN-LFR VanillaGCNDataset Benign Attacked Benign Attacked Benign Attacked

Wisconsin 0.478 ± 0.013 0.434 ± 0.067 0.487 ± 0.016 0.461 ± 0.063 0.526 ± 0.019 0.480 ± 0.033
Chameleon 0.496 ± 0.014 0.395 ± 0.012 0.488 ± 0.011 0.472 ± 0.010 0.516 ± 0.032 0.446 ± 0.021

JK-Net GNNGUARD JK-Net GCN-LFR JK-Net

Wisconsin 0.488 ± 0.014 0.433 ± 0.023 0.509 ± 0.022 0.469 ± 0.031 0.523 ± 0.058 0.483 ± 0.025
Chameleon 0.494 ± 0.013 0.386 ± 0.027 0.461 ± 0.012 0.441 ± 0.021 0.553 ± 0.039 0.465 ± 0.026

I.8 Defense for Heterophily Datasets

The study considering both low and high frequencies in GNNs grows rapidly in recent years [33, 65].
Current research suggests that GCNs are implicit low-pass filtering models [54, 35]. Thus the high-
frequency components, which are mostly filtered out during training, would have less impact on the
final learnt representations. Meanwhile, the high-frequency components may contain more noise
in comparison with low-frequency ones even on the clean graphs [35], which further limits their
contribution to the robustness of GCNs. Thus in this paper, we focus on studying the robustness
property for the low-frequency components and prove that not all low-frequency components are
robust against adversarial attacks.

24

For better demonstration, we also choose two representative heterophily datasets, i.e., Wisconsin and
Chameleon [40, 68], and evaluate the performance under both benign and adversarial settings (with
Mettack). The results can be found in Table 11. One can find that our proposed method still enhances
the performance of GCN backbone on both clean and poisoned graphs. This is consistent with our
theoretical findings since we do not impose assumptions on the homophily of the underlying datasets.
The investigation on high-frequency components might lead to a promising research direction and we
leave it as interesting future work.

25

	Introduction
	Related Work
	Preliminaries
	Graph Convolutional Networks
	Poisoning Structural Attacks

	Methodology
	Problem Formulation
	Spectral View of Structural Attacks
	One-edge Perturbation
	Robust Interval of Low-Frequency
	Non-Targeted Perturbation

	GCN-LFR: General Robust Training Paradigm
	Auxiliary Regularization Net MLFR
	Co-Training Framework
	Complexity Analysis

	Experiments
	Experimental Setup
	Defense Results Against Targeted and Non-Targeted Attacks
	Ablation Studies

	Conclusion and Limitations
	Checklist
	Broader Impact
	Additional Related Work
	Additional Preliminaries on Graph Signal Filtering
	Measure of Significant Change on the Spectrum
	The Results of Multi-edge Perturbation on Targeted Attacks
	Details of the Proposed Algorithm
	Proofs and Derivations
	Proof of Lemma 1
	Proof of Theorem 1
	Proof of Theorem 2
	Proofs of Corollary 1, Corollary 2, Corollary 3 and Corollary 4

	Additional Experimental Results
	Overview of Datasets
	Adversarial Samples Generation
	Experimental Setups
	T-test on the Performance of GCN-LFR on Clean Datasets.
	Sensitivity Analysis on the Ratio of Low-frequency and Weight Coefficient .
	Parameter Sharing Architecture
	Running Time for Low-Frequency Components
	Defense for Heterophily Datasets

