# Supplementary: Characterizing Generalization under Out-Of-Distribution Shifts in Deep Metric Learning



# A Analyzing the model bias for selecting train-test splits

Figure 1: Normalized FID progession for ooDML train-test splits using different training models and networks. Values are normalized for comparability of FID progression, as FID scores are not upper bounded and as such, absolute values for different networks and pretraining methods differ.

To analyze the impact of the network architecture, pretraining method and training data, respectively the learned feature representations, on the construction of train-test splits and the entailed difficulties, we repeat our class swapping and removal procedure introduced in Section 3 in the main paper using different self-supervised models. Subsequently, we select train-test splits from the same iteration steps. Fig. 1 compares the progression of distribution shifts based on FID scores normalized to the [0, 1] interval for valid comparison. We observe that across all pretrained models, the general FID progressions and sampled train-test splits exhibit very similar learning problem difficulties, indicating that our sampling procedure is robust to the choice of readily available, state-of-the art self-supervised pretrained models.

# **B** Further Details regarding the Experimental Setup

**Datasets.** In total, we utilized three widely used Deep Metric Learning benchmarks: (1) CUB200-2011 [15], which comprises a total of 11,788 images over 200 classes of birds, (2) CARS196 [5] containing 16,185 images of cars distributed over 196 classes and (3) Stanford Online Products (SOP) [10], which introduced 120,053 product images over 22,634 total classes. For CUB200-2011 and CARS196, default splits are simply generated by selecting the last half of the alphabetically sorted classes as test samples, whereas SOP provides a predefined split with 11318 training and 11316 test classes.

**Training details.** For our implementation, we leveraged the PyTorch framework [11]. For training, in all cases, training images were randomly resized and cropped to  $224 \times 224$ , whereas for testing images were resized to  $256 \times 256$  and center cropped to  $224 \times 224$ . Optimization was performed with Adam [4] with learning rate of  $10^{-5}$  and weight decay of  $3 \cdot 10^{-4}$ . Batchsizes where chosen within the range of [86, 112] depending on the size of the utilized backbone network. For default DML ResNet-architectures, we follow previous literature [18, 3, 14, 9] and freeze Batch-Normalization

35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia.



Figure 2: *UMAPs* for easy (split-id 1), medium (split-id 5) and hard (split-id 8/9) for all benchmarks using a ResNet50 backbone pretrained on ImageNet. As can be seen, our iterative class swapping (and removal) procedure (cf. Sec. 3.2 main paper) creates splits in which training and test distributions become increasingly disjoint. Note that while we shifted full classes for semantic consistency, each point corresponds to a single sample (for SOP, random subsampling to 20000 total points was performed).

layers during training. We consistently use an embedding dimensionality of 512 for comparability. For DiVA [8], S2SD [13] and ProxyAnchor [3], parameter choices were set to default values given in the original publications, with small grid searches done to allow for adaptation to backbone changes. For all other remaining objectives, parameter choices were adapted from [14], who provide a hyperparameter selection for best comparability of methods. All experiments were performed on GPU servers containing NVIDIA P100, T4 and Titan X, with results always averaged over multiple seeds - in the case of our objective study five random seeds were utilized, whereas for other ablation-type studies at least three seeds were utilized. These settings are used throughout our study. For the few-shot experiments, the same pipeline parameters were utilized with changes noted in the respective section.

Pretrained network weights for ResNet-architectures where taken from torchvision [6], EfficientNet and BiT weights from timm [17] and SwAV and CLIP pretrained weights from the respective official repositories ([1] and [12]).

**FID scores between** *ooDML* **data splits.** In Tab. 1 we show the measured FID scores between each train-test split of our *ooDML* for the CUB200-2011, CARS196 and SOP benchmarks, respectively.

|                              | Dataset $\downarrow$ split-ID – | $\rightarrow \parallel 1$ | 2           | 3            | 4    | 5          | 6     | 7      | 8     | 9                                              |
|------------------------------|---------------------------------|---------------------------|-------------|--------------|------|------------|-------|--------|-------|------------------------------------------------|
|                              | CUB200-2011                     | 19.2                      | 28.5        | 52.6         | 72.2 | 92.5       | 120.4 | 136.5  | 152.0 | 173.9                                          |
|                              | CARS196                         | 8.6                       | 14.3        | 32.2         | 43.6 | 63.3       | 86.5  | 101.2  | 123.0 | -                                              |
|                              | SOP                             | 3.4                       | 24.6        | 53.5         | 99.4 | 135.5      | 155.3 | 189.8  | 235.1 | -                                              |
| 0.55<br>0.50<br>0.40<br>0.30 | Test: Cub200-2011               | Tr                        | est: Cars1  | 96           |      | Test: O    |       | lucts  |       | ArcFace<br>Multisin<br>DiVA<br>S2SD<br>ImageNo |
| C                            | Counces                         | Cu0200-20                 | Carrier Old | inte i fouud | .15  | Cub200-201 | . C   | a15190 |       |                                                |

Table 1: FID scores between train-test splits in our ooDML benchmark. For details on creating train-test splits constituting the *ooDML* benchmark, please see Sec. 3 in main paper.

Figure 3: *Out-of-Domain Generalization*. Each plot showcases transfer performance from the training dataset (*source*) to a test dataset from a novel domain (*test*). The dashed line represents baseline performance achieved by ResNet50 pretrained on ImageNet.

**Qualitative introspection of** *ooDML* **train-test splits using UMAP.** Fig. 2 visualizes the distribution shift between train-test splits from our proposed *ooDML* benchmark using the UMAP [7] algorithm. For each dataset we show examples for an easy, medium and hard train-test split. Indeed, the distributional shift train to test data is increasing consistently, as indicated by our monotonically increasing FID progressions.

# C On the limits of OOD generalization in Deep Metric Learning

To investigate how well representations  $\phi$  learned by DML approaches transfer *across* benchmark datasets, we train our models on the default training dataset of one benchmark and evaluate them on the default test set of another. Tab. 2 first illustrates the FID scores for all pairwise combinations using the CUB200-2011, CARS196 and SOP datasets. We find all FID scores exceed the previously considered learning problems in our *ooDML* benchmark by far. However, the fact that FID scores are relatively close to another despite large semantic differences between datasets may indicate that FID based on our utilised FID estimator (Sec. 3 main paper) may have reached its limit as a distributional shift indicator, thus not being sufficiently sensitive. Fig. 3 summarizes the generalization performances for different DML approaches on this experimental setting. As can be seen, there are only a few cases where  $\phi$  offers a benefit over the ResNet50 ImageNet baseline, indicating that generalization of DML approaches is primarily limited to shifts within a data domains. Beyond these limits, generic representations learned by self-supervised learning may offer better zero-shot generalization, as also discussed on Sec. 4.4.

## **D** Additional Experimental Results

#### D.1 Zero-shot generalization under varying distribution shifts

This section provides additional results for the experiments presented in Sec. 4 in the main paper. To this end, we provide the exact performance values used to visualize Fig. 2 in the main paper in Tab. 4-6. For the comparison based on the Aggregated Generalization Score (AGS) introduced in Sec. 4.2 in the main paper, Tab. 3 provides the empirical results both for AGS computed based on Recall@1 and mAP@1000. For the latter, Fig. 4 summarizes AGS results using a bar plot similar to Fig. 3 in the main paper.

#### D.2 Influence of network capacity

In Fig. 5 we present all results for our study on the influence of network capacity in Sec. 4.4 in the main paper, in particular also for the remaining datasets CARS196 and SOP. Additionally, we show

Table 2: FID scores between training and test sets across different datasets compared to the highest FID measured by our generated train-test splits.



Figure 4: *Comparison of DML methods via AGS based on mAP@1000 across benchmarks.* To compute AGS (cf. Sec. 4.2 main paper), we aggregate the mAP@1000 performances in Tab. 4-6 across all train-test distribution shifts of our proposed *ooDML* benchmark using the Area-Under-the-Curve metric.

the differences in performances against the mean over all methods for each train-test split (Change against mean). As already discussed in Sec. ?? in the main paper, these experiments similarly show that network capacity has only limited impact on OOD generalization, with benefits saturating eventually.

#### D.3 Measuring structural representation properties on ooDML

This section extends the results presented in Sec. 4.3 in the main paper. We show results for all datasets, i.e. CUB200-2011, CARS196 and SOP, for all metrics measuring structural representation properties discussed in Sec. 4.3 in the main paper. We analyze correlations of these metrics with generalization performance both based on Recall@1 (Fig. 6) and mAP@1000 (Fig. 7). As discussed in the main paper, independent of the underlying performance metric, none of the structural representation properties show consistent correlation with generalization performance across all datasets, suggesting further research into meaningful latent space properties that can be linked to zero-shot generalization independent of chosen objectives and shifts.

## D.4 Few-Shot DML

In Sec. 4.5 in the main paper, we analyzed few-shot adaption of DML representations to novel test distributions as a remedy to bridge their distribution shift to the training data. This section extends showcased results: Fig. 8 presents all our results on both CUB200-2011 (a+b) and CARS196 (c+d) dataset based on both Recall@1 and mAP@1000. The results on CARS196 verify the consistent improvement of leveraging very few examples for embedding space adaption over strict zero-shot transfer based on the original DML representation that we already observed for the CUB200-2011 dataset, which holds disproportionally well for larger distribution shifts. The corresponding data basis for Fig. 8 is presented in Tab. 7 for the CUB200-2011 dataset and in Tab. 8 for the CARS196 dataset.

Table 3: Results for Aggregated Generalization Score (AGS) (cf. Sec. 4.2 main paper) based on Recall@1 and mAP@1000 computed on the *ooDML* benchmark. We show results for various DML methods averaged over over multiple runs.

| $Benchmark \rightarrow$                                          | CUB2           | 00-2011        | CAI              | RS196          | SOP            |                |  |  |  |  |
|------------------------------------------------------------------|----------------|----------------|------------------|----------------|----------------|----------------|--|--|--|--|
| $\overline{\text{Approaches} \downarrow \text{AUC}} \rightarrow$ | R@1            | mAP@1000       | R@1              | mAP@1000       | R@1            | mAP@1000       |  |  |  |  |
| Margin (D) [18]                                                  | $63.6\pm0.3$   | $31.2 \pm 0.2$ | $74.5\pm0.4$     | $25.0\pm0.3$   | $74.6\pm0.1$   | $41.9 \pm 0.1$ |  |  |  |  |
| Multisimilarity [16]                                             | $64.3 \pm 0.3$ | $30.9 \pm 0.2$ | $76.1 \pm 0.2$   | $26.4\pm0.2$   | $74.6\pm0.1$   | $41.7 \pm 0.1$ |  |  |  |  |
| ArcFace [2]                                                      | $63.3\pm0.4$   | $31.6 \pm 0.2$ | $73.2\pm0.3$     | $25.0\pm0.3$   | $73.9\pm0.1$   | $41.1 \pm 0.1$ |  |  |  |  |
| ProxyAnchor [3]                                                  | $65.1 \pm 0.2$ | $32.6 \pm 0.1$ | $76.6 \pm 0.2$   | $27.2 \pm 0.3$ | $74.0 \pm 0.1$ | $40.9 \pm 0.1$ |  |  |  |  |
| R-Margin [14]                                                    | $65.4\pm0.3$   | $31.7 \pm 0.2$ | $77.3\pm0.3$     | $26.9\pm0.2$   | $74.9\pm0.1$   | $42.5 \pm 0.1$ |  |  |  |  |
| Uniform Prior                                                    | $65.7 \pm 0.5$ | $33.0 \pm 0.3$ | $75.8 \pm 0.4$   | $26.0\pm0.4$   | $74.6\pm0.1$   | $41.9 \pm 0.1$ |  |  |  |  |
| DiVA [8]                                                         | $66.4\pm0.3$   | $33.1 \pm 0.3$ | $78.6\pm0.3$     | $27.9\pm0.2$   | $75.0\pm0.1$   | $42.3 \pm 0.1$ |  |  |  |  |
| S2SD                                                             | $67.7 \pm 0.3$ | $33.9 \pm 0.2$ | $ 80.2 \pm 0.2 $ | $29.6 \pm 0.2$ | $75.1 \pm 0.1$ | $42.7 \pm 0.1$ |  |  |  |  |

Table 4: DML generalization performance measured by Recall@1 and mAP@1000 on each train-test split of our *ooDML* benchmark for the CUB200-2011 dataset.

| Method↓   Split (FID)→        | 1 (                                                                                                                                                                                                                                             | 19.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2 (28.                                                               | 5)                                                     | 3 (                                                    | (52.6)                                                 |                                                        | 4 (7                                                   | 2.2)                                                    |                                                         | 5 (9                                                    | 92.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                         | 6(                                                      | 120.4                                                   |                                                         | 7 (                                                     | 136.5                                                   | )           | 8 (                                                     | 152.0)                                                  | 9                                                       | (173.9)                                                 |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|-------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|
| Margin (D)<br>Multisimilarity | 76.20                                                                                                                                                                                                                                           | $0 \pm 0.1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $.79 \pm$                                                            | 0.09                                                   | 65.78<br>66.30                                         | $8 \pm 0.$<br>$3 \pm 0.$                               | $\begin{array}{c c} 05 & 6 \\ 24 & 6 \\ \end{array}$   | 5.38 :<br>6 21 -                                       | $\pm 0.2$                                               |                                                         | 3.30                                                    | $\pm 0.$<br>+ 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 58 6<br>40 6                                            | 31.53<br>32.69                                          | $3 \pm 0.$<br>$3 \pm 0.$                                | $\frac{43}{346}$                                        | 9.95                                                    | $5 \pm 0.7 \pm 0.77$                                    | .27         | 57.6'<br>58-3                                           | $7 \pm 0.5$<br>5 $\pm 0.0$                              | 3 58                                                    | $59 \pm 0.27$<br>20 ± 0.51                              |
| ArcFace                       | 76.10                                                                                                                                                                                                                                           | $0.12 \pm 0.12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 28 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $.34 \pm$<br>$.22 \pm$                                               | 0.08                                                   | 65.19                                                  | $9 \pm 0.$                                             | $\frac{24}{38}$ 6                                      | 4.41 :                                                 | $\pm 0.2$<br>$\pm 0.3$                                  | 396                                                     | 2.53                                                    | $\pm 0.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 05 6                                                    | 51.29                                                   | $9 \pm 0.00$                                            | 27 6                                                    | 0.28                                                    | $3 \pm 0$                                               | .66         | 58.7                                                    | $1 \pm 0.0$<br>$1 \pm 0.7$                              | 4 58                                                    | $53 \pm 0.41$                                           |
| ProxyAnchor<br>R-Margin (D)   | 77.30<br>77.04                                                                                                                                                                                                                                  | $0 \pm 0.1$<br>$1 \pm 0.7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{bmatrix}   4   72 \\   72   72 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $.95 \pm .82 \pm$                                                    | $0.13 \\ 0.18$                                         | 66.64<br>67.10                                         | $4 \pm 0.00 \pm 0.000$                                 | $\begin{array}{c} 09 6\\ 28 6 \end{array}$             | 6.39 :<br>7.31 -                                       | $\pm 0.1$<br>$\pm 0.1$                                  | $\frac{13}{17}6$                                        | $\frac{4.64}{5.31}$                                     | $\pm 0.$<br>+ 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 26 6<br>20 6                                            | 33.03<br>33.57                                          | $3 \pm 0.77 \pm 0.077$                                  | $\begin{array}{c c} 07 & 6 \\ 28 & 6 \end{array}$       | 2.27<br>2.14                                            | $7 \pm 0.1 \pm 0.1 \pm 0.1$                             | .08<br>.27  | 60.2<br>59.9                                            | $5 \pm 0.2$<br>$0 \pm 0.3$                              | 5 60<br>9 60                                            | $44 \pm 0.21$<br>$52 \pm 0.42$                          |
| Uniform Prior                 | 76.53                                                                                                                                                                                                                                           | $3 \pm 0.3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 30 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $.52 \pm$                                                            | 0.17                                                   | 67.67                                                  | $7 \pm 0.$                                             | 36 6                                                   | 7.47 :                                                 | ± 0.3                                                   | 39 6                                                    | 5.42                                                    | $\pm 0.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 53 6                                                    | 64.64                                                   | $1 \pm 0.$                                              | 56 6                                                    | 2.76                                                    | $5\pm0$                                                 | .31         | 60.0                                                    | $3 \pm 0.5$                                             | 5 60                                                    | $84 \pm 0.32$                                           |
| DiVA                          | 78.93<br>77.74                                                                                                                                                                                                                                  | $1 \pm 0.2$<br>$1 \pm 0.2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20 75 25 73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $.20 \pm .15 \pm$                                                    | 0.33<br>0.26                                           | $69.24 \\ 67.97$                                       | $4 \pm 0.7 \pm 0.7$                                    | $\frac{51}{26}$                                        | 8.70 =<br>7.74 =                                       | $\pm 0.2 \\ \pm 0.1$                                    | 26 6                                                    | $7.28 \\ 6.04$                                          | $\pm 0. \pm 0.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 36                                                      | 56.10<br>54.61                                          | $0 \pm 0.1 \pm 0.1 \pm 0.1$                             | $\begin{array}{c c} 43 & 6 \\ 12 & 6 \\ \end{array}$    | $\frac{4.64}{3.14}$                                     | $1 \pm 0.1 \pm 0.1 \pm 0.1$                             | .08<br>.57  | 62.9<br>61.8                                            | $3 \pm 0.2$<br>$3 \pm 0.5$                              | 0 63 7 61                                               | $02 \pm 0.32$<br>$91 \pm 0.36$                          |
| Margin (D)                    | 44.76                                                                                                                                                                                                                                           | $5 \pm 0.2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 27 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $.69 \pm$                                                            | 0.20                                                   | 34.3                                                   | $1 \pm 0.$                                             | 09 3                                                   | 3.59 :                                                 | ± 0.1                                                   | 13 3                                                    | 0.64                                                    | $\pm 0.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 29                                                      | 28.17                                                   | $7 \pm 0.$                                              | 16 2                                                    | 6.72                                                    | $2 \pm 0$                                               | .31         | 25.4                                                    | $5 \pm 0.1$                                             | 8 26                                                    | $18 \pm 0.33$                                           |
| Multisimilarity<br>ArcFace    | 44.21<br>45.45                                                                                                                                                                                                                                  | $\pm 0.1$<br>$\pm 0.2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{bmatrix} 1 & 39 \\ 23 & 40 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $.03 \pm 39 \pm $                                                    | 0.07<br>0.37                                           | 33.79<br>34-39                                         | $0 \pm 0.0 + 0.0$                                      | $\begin{array}{c c} 01 & 3 \\ 14 & 3 \end{array}$      | 3.38 :<br>4 08 -                                       | $\pm 0.2$<br>$\pm 0.0$                                  | 26   3<br>)6   3                                        | $0.75 \\ 1.06$                                          | $\pm 0.$<br>+ 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19 2<br>15 2                                            | 27.83<br>27.58                                          | $3 \pm 0.8 \pm 0.00$                                    | $15 2 \\ 15 2$                                          | $6.58 \\ 7.31$                                          | $3 \pm 0 + 0$                                           | $.15 \\ 44$ | 25.2<br>26 1                                            | $5 \pm 0.2$<br>$9 \pm 0.2$                              | 2 25                                                    | $29 \pm 0.23$<br>$90 \pm 0.22$                          |
| ProxyAnchor                   | 46.20                                                                                                                                                                                                                                           | $0 \pm 0.1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $.99 \pm$                                                            | 0.14                                                   | 35.23                                                  | $3 \pm 0.$                                             | 03 3                                                   | 4.89 :                                                 | $\pm 0.1$                                               | 13 3                                                    | 2.06                                                    | $\pm 0.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 04                                                      | 28.88                                                   | $3 \pm 0.$                                              | 06 2                                                    | 8.15                                                    | $5\pm 0$                                                | .18         | 27.3                                                    | $1 \pm 0.1$                                             | 8 28                                                    | $18 \pm 0.02$                                           |
| R-Margin (D)<br>Uniform Prior | 44.76                                                                                                                                                                                                                                           | $5 \pm 0.4$<br>$0 \pm 0.6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\frac{11}{52}$ 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $.77 \pm .04 \pm$                                                    | $0.15 \\ 0.40$                                         | 34.28<br>36.07                                         | $8 \pm 0.7 \pm 0.17 \pm 0.17$                          | $\frac{06 3}{23 3}$                                    | 4.56 :<br>5.51 :                                       | $\pm 0.2 \\ \pm 0.3$                                    | 29   3<br>33   3                                        | $\frac{1.46}{2.57}$                                     | $\pm 0.1 \pm 0.$ | 11 2 18 3                                               | 28.25<br>30.15                                          | $5 \pm 0.5 \pm 0.05 \pm 0.05$                           | $\begin{array}{c c} 06 & 2 \\ 33 & 2 \end{array}$       | $7.24 \\ 8.64$                                          | $1 \pm 0.1 \pm 0.1 \pm 0.1$                             | .25<br>.20  | 26.4<br>27.2                                            | $8 \pm 0.3 \\ 1 \pm 0.2$                                | 7 26                                                    | $64 \pm 0.39$<br>$73 \pm 0.46$                          |
| S2SD<br>DiVA                  | 47.19                                                                                                                                                                                                                                           | $0.0 \pm 0.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\frac{18}{51}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $.27 \pm 07 \pm 07 \pm 07 \pm 07 \pm 07 \pm 07 \pm 000 \pm 00000000$ | 0.40                                                   | 36.49                                                  | $0 \pm 0.00 \pm 0.000$                                 | $\begin{array}{c c} 02 \\ 3 \\ 24 \\ 3 \end{array}$    | 6.22 :<br>5.63 -                                       | $\pm 0.1$<br>$\pm 0.2$                                  | 193                                                     | 3.79                                                    | $\pm 0. + 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10 3                                                    | 30.69<br>30.05                                          | $0 \pm 0.0 \pm 0.00$                                    | $\frac{08}{25}$                                         | 9.11                                                    | $\pm 0 \\ + 0$                                          | .09<br>31   | 28.5<br>27.8                                            | $1 \pm 0.4$<br>$8 \pm 0.4$                              | 2 28                                                    | $83 \pm 0.30$<br>$86 \pm 0.30$                          |
|                               | Method↓   Split (FID)→ <br>Margin (D)<br>Multisimilarity<br>ArcFace<br>ProxyAnchor<br>R-Margin (D)<br>Uniform Prior<br>S2SD<br>DiVA<br>Margin (D)<br>Multisimilarity<br>ArcFace<br>ProxyAnchor<br>R-Margin (D)<br>Uniform Prior<br>S2SD<br>DiVA | Method↓   Split (FID)→           1           Margin (D)         76.20           Multismilarity         76.42           ArcFace         76.10           ProxyAnchor         77.30           R-Margin (D)         77.40           Uniform Prior         76.55           S2SD         78.92           DiVA         77.74           Margin (D)         44.76           Multismilarity         44.21           ArcFace         45.45           ProxyAnchor         46.20           S2SD         44.77           Uniform Prior         46.00           S2SD         47.11           DiVA         47.71 | Method     Split (FID) $\rightarrow$            1 (19.2)           Margin (D)         76.42 ± 0.3           Multisimilarity         76.44 ± 0.4           ArcFace         76.10 ± 0.3           ProxyAnchor         77.30 ± 0.3           R-Margin (D)         77.04 ± 0.3           Uniform Prior         76.53 ± 0.3           S2SD         78.93 ± 0.3           DiVA         77.74 ± 0.3           Multisimilarity         44.76 ± 0.3           Multisimilarity         44.21 ± 0.0           ArcFace         45.45 ± 0.2           ProxyAnchor         46.20 ± 0.3           R-Margin (D)         44.76 ± 0.3           Multisimilarity         44.76 ± 0.3           Multisimilarity         46.42 ± 1.0           ArcFace         45.45 ± 0.2           ProxyAnchor         46.00 ± 0.0           S2SD         47.19 ± 0.0           DiVA         46.74 ± 0.3 | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$               | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | $\begin{array}{  c c c c c c c c c c c c c c c c c c $ | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ |             | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ |

Table 5: DML generalization performance measured by Recall@1 and mAP@1000 on each train-test split of our *ooDML* benchmark for the CARS196 dataset.

| Metric      | $\big  \textbf{Method} {\downarrow}   \textbf{Split}  (\textbf{FID}) {\rightarrow}$ | 1 (8.        | 6)   | 2 (1  | 14.3)      |      | 3 (32.2     | )    | 4 (   | 43.6)         |      | 5 (63     | .3)  | 6    | (86.5)    | )   | 7 (1  | 01.2)     |      | 8 (1 | 23.0)      |
|-------------|-------------------------------------------------------------------------------------|--------------|------|-------|------------|------|-------------|------|-------|---------------|------|-----------|------|------|-----------|-----|-------|-----------|------|------|------------|
|             | Margin (D)                                                                          | $ 83.89 \pm$ | 0.24 | 82.99 | $\pm 0.1$  | 5 81 | $.27 \pm ($ | 0.26 | 78.95 | $0.2 \pm 0.2$ | 0 75 | $.59 \pm$ | 0.32 | 69.9 | $7 \pm 0$ | .61 | 67.41 | $\pm 0.$  | 38 6 | 4.77 | $\pm 0.63$ |
|             | Multisimilarity                                                                     | 84.33 ±      | 0.21 | 83.84 | $\pm 0.1$  | 0 82 | $.03 \pm 0$ | .38  | 80.01 | $\pm 0.0$     | 6 77 | .14 ±     | 0.22 | 72.9 | $7 \pm 0$ | .34 | 69.78 | $\pm 0.$  | 37 6 | 6.01 | $\pm 0.21$ |
|             | ArcFace                                                                             | 81.73 ±      | 0.29 | 81.66 | $\pm 0.3$  | 9 79 | $.57 \pm 0$ | ).23 | 77.19 | $0.0 \pm 0.0$ | 6 74 | $.95 \pm$ | 0.50 | 69.3 | $5 \pm 0$ | .26 | 66.10 | $\pm 0.$  | 21 6 | 2.55 | $\pm 0.62$ |
| D@1         | ProxyAnchor                                                                         | $85.27 \pm$  | 0.17 | 84.81 | $\pm 0.0$  | 5 82 | $.80 \pm 0$ | ).22 | 80.23 | $3 \pm 0.1$   | 9 78 | $.00 \pm$ | 0.40 | 73.0 | $9 \pm 0$ | .21 | 70.24 | $\pm 0.$  | 09 6 | 6.35 | $\pm 0.17$ |
| R@1         | R-Margin (D)                                                                        | $85.21 \pm$  | 0.15 | 84.46 | $\pm 0.3$  | 4 83 | $.26 \pm 0$ | ).22 | 80.73 | $3 \pm 0.2$   | 8 77 | $.45 \pm$ | 0.46 | 74.4 | $2 \pm 0$ | .07 | 71.25 | $\pm 0.$  | 55 6 | 9.20 | $\pm 0.28$ |
|             | Uniform Prior                                                                       | $84.56 \pm$  | 0.16 | 83.96 | $\pm 0.3$  | 0 82 | $.20 \pm 0$ | ).15 | 79.96 | $5 \pm 0.1$   | 8 77 | $.48 \pm$ | 0.37 | 71.0 | $8 \pm 0$ | .42 | 69.06 | $\pm 0.$  | 64 6 | 6.69 | $\pm 0.50$ |
|             | S2SD                                                                                | $87.93 \pm$  | 0.07 | 86.84 | $\pm 0.0$  | 8 85 | $.59 \pm 0$ | 0.10 | 83.18 | $3 \pm 0.1$   | 7 80 | $.55 \pm$ | 0.16 | 77.4 | $2 \pm 0$ | .41 | 74.64 | $\pm 0.$  | 16 7 | 2.62 | $\pm 0.29$ |
|             | DiVA                                                                                | $ 86.74 \pm$ | 0.08 | 85.98 | $\pm 0.1$  | 4 84 | $.43 \pm 0$ | ).11 | 82.16 | $5 \pm 0.0$   | 8 79 | .28 ±     | 0.35 | 75.4 | $1 \pm 0$ | .42 | 72.76 | $\pm 0.$  | 38 7 | 0.43 | $\pm 0.22$ |
|             | Margin (D)                                                                          | $ 33.58 \pm$ | 0.26 | 33.23 | $\pm 0.0$  | 1 30 | $.33 \pm 0$ | 0.28 | 28.50 | $0 \pm 0.2$   | 8 25 | $.99 \pm$ | 0.24 | 21.4 | $3 \pm 0$ | .17 | 18.76 | $\pm 0.$  | 53 1 | 6.56 | $\pm 0.22$ |
|             | Multisimilarity                                                                     | $34.01 \pm$  | 0.29 | 34.37 | $\pm 0.2$  | 0 31 | $.39 \pm 0$ | 0.28 | 29.82 | $2 \pm 0.2$   | 7 28 | $.09 \pm$ | 0.16 | 22.7 | $2 \pm 0$ | .01 | 20.39 | $\pm 0.$  | 09 1 | 7.38 | $\pm 0.15$ |
|             | ArcFace                                                                             | $33.93 \pm$  | 0.20 | 34.19 | $\pm 0.2$  | 2 30 | $.85 \pm 0$ | 0.07 | 28.51 | $\pm 0.2$     | 8 26 | $.71 \pm$ | 0.50 | 20.6 | $7 \pm 0$ | .24 | 18.20 | $\pm 0.$  | 10 1 | 5.40 | $\pm 0.29$ |
| m A B@ 1000 | ProxyAnchor                                                                         | $35.83 \pm$  | 0.17 | 36.22 | $\pm 0.2$  | 0 32 | $.71 \pm ($ | ).19 | 31.07 | $t \pm 0.2$   | 4 29 | $.04 \pm$ | 0.58 | 23.0 | $8 \pm 0$ | .08 | 20.26 | $\pm 0.$  | 26 1 | 7.16 | $\pm 0.10$ |
| mAP@1000    | R-Margin (D)                                                                        | $34.34 \pm$  | 0.24 | 34.69 | $\pm 0.2$  | 0 32 | $.25 \pm 0$ | 0.28 | 30.63 | $3 \pm 0.2$   | 9 28 | $.02 \pm$ | 0.16 | 23.1 | $2 \pm 0$ | .30 | 20.70 | $\pm 0.$  | 34 1 | 8.68 | $\pm 0.06$ |
|             | Uniform Prior                                                                       | $34.03 \pm$  | 0.23 | 34.22 | $\pm 0.3$  | 8 31 | $.05 \pm 0$ | ).52 | 29.56 | $5 \pm 0.3$   | 8 26 | $.99 \pm$ | 0.25 | 22.1 | $9 \pm 0$ | .29 | 20.06 | $\pm 0.$  | 46 1 | 7.80 | $\pm 0.28$ |
|             | S2SD                                                                                | $37.41 \pm$  | 0.14 | 37.43 | $\pm 0.13$ | 8 34 | $.48 \pm 0$ | ).15 | 33.18 | $3 \pm 0.2$   | 4 30 | $.93 \pm$ | 0.32 | 26.1 | $2 \pm 0$ | .15 | 23.56 | $\pm 0.$  | 25 2 | 1.02 | $\pm 0.36$ |
|             | DiVA                                                                                | $ 36.60 \pm$ | 0.40 | 36.65 | $\pm 0.0$  | 9 32 | $.96 \pm 0$ | 0.40 | 31.90 | $0.0 \pm 0.0$ | 8 29 | $.40 \pm$ | 0.24 | 24.2 | $1 \pm 0$ | .25 | 22.10 | $\pm 0.1$ | 24 1 | 9.77 | $\pm 0.16$ |

Table 6: DML generalization performance measured by Recall@1 and mAP@1000 on each train-test split of our *ooDML* benchmark for the SOP dataset.

| Metric      | $\big  \textbf{Method} {\downarrow} \mid \textbf{Split} \ \textbf{(FID)} {\rightarrow}$ | 1 (3    | .4)    | 2 (   | 24.6)      | :     | 3 (53.5     | 5)   | 4    | (99.4)     |       | 5 (1  | 35.5)             | 6    | 6 (155   | 5.3)   | 7    | (189.8)      |        | 8 (235.1)       |    |
|-------------|-----------------------------------------------------------------------------------------|---------|--------|-------|------------|-------|-------------|------|------|------------|-------|-------|-------------------|------|----------|--------|------|--------------|--------|-----------------|----|
|             | Margin (D)                                                                              | 79.39 ± | 0.04   | 78.58 | $\pm 0.05$ | 5 77. | $48 \pm$    | 0.05 | 76.1 | $8 \pm 0.$ | .05[7 | 74.53 | $\pm 0.1$         | 4 72 | $62 \pm$ | 0.05   | 70.6 | $68 \pm 0.1$ | 27 6   | $59.71 \pm 0.0$ | )9 |
|             | Multisimilarity                                                                         | 79.31 ± | 0.09   | 78.40 | $\pm 0.11$ | L 77. | $40 \pm 0$  | 0.06 | 76.1 | $0 \pm 0$  | .10   | 74.45 | $\pm 0.0$         | 7 72 | $63 \pm$ | 0.01   | 70.9 | $00 \pm 0.$  | 10 6   | $59.98 \pm 0.1$ | 14 |
| <b>₽</b> @1 | ArcFace                                                                                 | 79.61 ± | 0.07   | 78.46 | $\pm 0.10$ | ) 77. | $48 \pm 0$  | 0.12 | 75.6 | $7 \pm 0.$ | .03   | 73.70 | $\pm 0.0$         | 4 71 | $78 \pm$ | 0.04   | 69.2 | $21 \pm 0.$  | 13   6 | $57.89 \pm 0.1$ | 14 |
|             | ProxyAnchor                                                                             | 79.73 ± | 0.07   | 78.60 | $\pm 0.02$ | 2 77. | $60 \pm$    | 0.05 | 75.7 | $0 \pm 0$  | .05   | 73.69 | $\pm 0.0$         | 5 71 | $96 \pm$ | 0.12   | 69.3 | $6 \pm 0.$   | 09 6   | $68.07 \pm 0.0$ | )3 |
| K@1         | R-Margin (D)                                                                            | 79.42 ± | = 0.01 | 78.50 | $\pm 0.01$ | L 77. | $75 \pm 0$  | 0.05 | 76.4 | $4 \pm 0.$ | .07   | 74.84 | $\pm 0.0$         | 3 73 | $15 \pm$ | 0.00   | 71.3 | $0 \pm 0.$   | 14     | $70.21 \pm 0.1$ | 16 |
|             | Unifor mPrior                                                                           | 79.42 ± | 0.02   | 78.61 | $\pm 0.04$ | 1 77. | $57 \pm 0$  | 0.05 | 76.1 | $2 \pm 0.$ | .07   | 74.45 | $\pm 0.0$         | 3 72 | $68 \pm$ | 0.06   | 70.6 | $51 \pm 0.1$ | 23 6   | $69.65 \pm 0.1$ | 12 |
|             | S2SD                                                                                    | 79.95 ± | = 0.06 | 78.88 | $\pm 0.09$ | 9 78. | $00 \pm 00$ | 0.11 | 76.6 | $6 \pm 0.$ | .15   | 74.86 | $\pm 0.1$         | 4 73 | $33 \pm$ | 0.06   | 71.1 | $3 \pm 0.$   | 08 7   | $70.19 \pm 0.0$ | )9 |
|             | DiVA                                                                                    | 79.76 ± | 0.08   | 78.75 | $\pm 0.05$ | 5 77. | $81 \pm$    | 0.06 | 76.5 | $8\pm0$    | .05   | 74.83 | $\pm 0.09$        | 9 73 | $15 \pm$ | 0.03   | 71.4 | $2\pm 0.$    | 07 7   | $70.30 \pm 0.1$ | 15 |
|             | Margin (D)                                                                              | 47.47 ± | 0.03   | 46.21 | $\pm 0.10$ | ) 45. | $16 \pm$    | 0.09 | 43.3 | $9 \pm 0.$ | .04   | 41.79 | $\pm 0.1$         | 8 40 | $13 \pm$ | 0.03   | 37.6 | $64 \pm 0.1$ | 31 3   | $36.43 \pm 0.0$ | )9 |
|             | Multisimilarity                                                                         | 47.23 ± | 0.07   | 45.85 | $\pm 0.09$ | 9 44. | $81 \pm 0$  | 0.03 | 43.1 | $7 \pm 0$  | .03   | 41.46 | $\pm 0.0^{\circ}$ | 7 39 | $67 \pm$ | 0.10   | 37.5 | $6 \pm 0.$   | 07     | $36.76 \pm 0.1$ | 13 |
|             | ArcFace                                                                                 | 47.76 ± | = 0.05 | 46.22 | $\pm 0.10$ | ) 45. | $09 \pm 0$  | 0.05 | 42.8 | $5 \pm 0.$ | .07   | 40.86 | $\pm 0.1$         | 39   | $09 \pm$ | 0.09   | 36.0 | $01 \pm 0.$  | 11 3   | $34.68 \pm 0.1$ | 13 |
| A D @ 1000  | ProxyAnchor                                                                             | 47.57 ± | = 0.04 | 45.87 | $\pm 0.02$ | 2 44. | $89 \pm 0$  | 0.03 | 42.5 | $2 \pm 0.$ | .09   | 40.67 | $\pm 0.0$         | 1 38 | $93 \pm$ | : 0.06 | 35.9 | $0 \pm 0.$   | 05     | $84.65 \pm 0.0$ | )0 |
| mAP@1000    | R-Margin (D)                                                                            | 47.94 ± | 0.04   | 46.57 | $\pm 0.01$ | 1 45. | $59 \pm 0$  | 0.05 | 43.8 | $7 \pm 0$  | .00   | 42.26 | $\pm 0.1$         | 1 40 | $68 \pm$ | 0.07   | 38.4 | $4 \pm 0.$   | 19     | $37.08 \pm 0.1$ | 14 |
|             | Uniform Prior                                                                           | 47.49 ± | 0.02   | 46.28 | $\pm 0.07$ | 7 45. | $21 \pm$    | 0.05 | 43.3 | $9 \pm 0.$ | .05   | 41.67 | $\pm 0.12$        | 2 40 | $07 \pm$ | 0.01   | 37.6 | $52 \pm 0.1$ | 21     | $36.37 \pm 0.1$ | 10 |
|             | S2SD                                                                                    | 48.25 ± | 0.04   | 47.08 | $\pm 0.18$ | 3 46. | $09 \pm 0$  | 0.09 | 44.2 | $7 \pm 0$  | .07   | 42.34 | $\pm 0.1$         | 5 40 | 87 ±     | 0.11   | 38.3 | $9 \pm 0.$   | 10     | $36.98 \pm 0.1$ | 11 |
|             | DiVA                                                                                    | 48.08 ± | = 0.06 | 46.57 | $\pm 0.05$ | 5 45. | $50 \pm 0$  | 0.05 | 43.7 | $7 \pm 0$  | .04   | 41.92 | $\pm 0.0$         | 5 40 | $44 \pm$ | 0.10   | 38.1 | $0 \pm 0.$   | 10     | $36.73 \pm 0.0$ | )7 |



Figure 5: Generalization performance for different backbone architectures for varying distribution shifts on full ooDML benchmark (CUB200-2011, CARS196, SOP). To reduce computational load, we only utilised two thirds of the studied splits. Overall, we show absolute Recall@1 performances averaged over 5 runs for each train-test split.



Figure 6: *Generalization metrics computed on ooDML benchmark for all datasets* measured against Recall@1. Each column plots one of the (normalized) measured structural representation property (cf. Sec. 4.3 main paper) over the corresponding Recall@1 performance for all examined DML methods and distribution shifts. Trendlines are computed as least squares fit over all datapoints (overall), respectively only those corresponding to default splits (default).



Figure 7: *Generalization metrics computed on ooDML benchmark for all datasets* measured against mAP@1000. Each column plots one of the (normalized) measured structural representation property (cf. Sec. 4.3 main paper) over the corresponding mAP@1000 performance for all examined DML methods and distribution shifts. Trendlines are computed as least squares fit over all datapoints (overall), respectively only those corresponding to default splits (default).







50 75 Train/Test FID

50 75 Train/Test FID



50 75 Train/Test FID 50 75 Train/Test FID

Figure 8: *Few-Shot adaptation of DML representations on CUB200-2011 and CARS196.* Columns show average Recall@1 performance over 10 episodes of 2- and 5-shot adaption as well as the baseline zero-shot DML results on the same train-test splits (based on *ooDML* benchmark) for various DML approaches (fewshot and zeroshot), highlighting a substantial benefit of few-shot adaptation for *a priori* unknown distribution shifts (see black line highlighting relative improvements). Relative improvements are computed as relative change of few-shot performance against respective zero-shot performance.

Table 7: Evaluation of zero-generalization and subsequent few-shot adaptation measured by Recall@1 and mAP@1000 based on few-shot dataplits built from the train-test splits of the *ooDML* benchmark (CUB200-2011). Results are further summarized in Fig. 8 (a) and (b).

| Metric   | Shot | Use  | $ \mathbf{Method}\!\!\downarrow\! \mathbf{Split}\!\rightarrow\! $ | 1                                                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                 | 3                                                                                               | 4                                                                                                   | 5                                                                                                   | 6                                                                                                   | 7                                                                                                   | 8                                                                                                   | 9                                                                                                   |
|----------|------|------|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
|          | ,    | Zero | ArcFace<br>Multisimilarity<br>S2SD<br>DiVA                        | $\begin{array}{c} 69.88 \pm 0.12 \\ 70.02 \pm 0.09 \\ 75.35 \pm 0.15 \\ 74.86 \pm 0.10 \end{array}$  | $55.06 \pm 0.057 \pm 0.000$<br>$54.87 \pm 0.0000$<br>$71.38 \pm 0.0000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c c c} 0.12 & 5 \\ 0.11 & 5 \\ 0.14 & 6 \\ 0.16 & 6 \end{array}$ | $8.76 \pm 0.12$<br>$9.88 \pm 0.11$<br>$6.56 \pm 0.14$<br>$5.17 \pm 0.12$                        | $\begin{array}{c} 58.02\pm 0.10\\ 60.71\pm 0.17\\ 65.85\pm 0.10\\ 63.83\pm 0.19\end{array}$         | $\begin{array}{c} 55.14 \pm 0.14 \\ 56.96 \pm 0.16 \\ 64.47 \pm 0.14 \\ 62.63 \pm 0.12 \end{array}$ | $\begin{array}{c} 54.43 \pm 0.11 \\ 54.82 \pm 0.18 \\ 63.56 \pm 0.13 \\ 62.48 \pm 0.10 \end{array}$ | $\begin{array}{c} 52.04 \pm 0.12 \\ 52.33 \pm 0.11 \\ 61.66 \pm 0.12 \\ 60.45 \pm 0.12 \end{array}$ | $\begin{array}{c} 49.49 \pm 0.13 \\ 51.67 \pm 0.14 \\ 58.87 \pm 0.17 \\ 57.99 \pm 0.16 \end{array}$ | $\begin{array}{c} 51.00\pm 0.21\\ 52.45\pm 0.13\\ 60.12\pm 0.10\\ 57.96\pm 0.16\end{array}$         |
| P@1      |      | Few  | ArcFace<br>Multisimilarity<br>S2SD<br>DiVA                        | $\begin{vmatrix} 70.88 \pm 0.31 \\ 72.26 \pm 0.32 \\ 76.03 \pm 0.33 \\ 75.07 \pm 0.24 \end{vmatrix}$ | $66.76 \pm 67.96 \pm 67.96 \pm 67.96 \pm 670.96 \pm 670.970.96 \pm 670.96 \pm 670.960.96 \pm 670.96 \pm 670.97$                                                                                                                                     | $\begin{array}{c c} 0.39 & 6 \\ 0.29 & 6 \\ 0.34 & 6 \\ 0.43 & 6 \end{array}$   | $\begin{array}{c} 0.97 \pm 0.22 \\ 2.64 \pm 0.27 \\ 7.56 \pm 0.36 \\ 5.96 \pm 0.34 \end{array}$ | $\begin{array}{c} 60.77 \pm 0.35 \\ 62.82 \pm 0.29 \\ 66.81 \pm 0.31 \\ 64.38 \pm 0.40 \end{array}$ | $\begin{array}{c} 58.45 \pm 0.39 \\ 60.52 \pm 0.28 \\ 66.22 \pm 0.27 \\ 63.79 \pm 0.35 \end{array}$ | $\begin{array}{c} 57.42 \pm 0.34 \\ 58.90 \pm 0.32 \\ 65.45 \pm 0.27 \\ 63.26 \pm 0.32 \end{array}$ | $\begin{array}{c} 55.55 \pm 0.49 \\ 56.82 \pm 0.31 \\ 64.34 \pm 0.40 \\ 62.30 \pm 0.29 \end{array}$ | $\begin{array}{c} 52.11 \pm 0.33 \\ 56.07 \pm 0.37 \\ 61.26 \pm 0.33 \\ 59.49 \pm 0.36 \end{array}$ | $\begin{array}{c} 55.01 \pm 0.55 \\ 56.92 \pm 0.39 \\ 62.96 \pm 0.33 \\ 59.54 \pm 0.44 \end{array}$ |
| R@1      | 5    | Zero | ArcFace<br>Multisimilarity<br>S2SD<br>DiVA                        | $\begin{array}{c} 69.96 \pm 0.15 \\ 70.15 \pm 0.19 \\ 75.24 \pm 0.22 \\ 74.71 \pm 0.18 \end{array}$  | $54.44 \pm 0$<br>$55.66 \pm 0$<br>$71.81 \pm 0$<br>$70.37 \pm 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c c c} 0.12 & 5 \\ 0.19 & 5 \\ 0.10 & 6 \\ 0.17 & 6 \end{array}$ | $8.43 \pm 0.17$<br>$9.42 \pm 0.27$<br>$5.88 \pm 0.22$<br>$5.18 \pm 0.15$                        | $\begin{array}{c} 57.67 \pm 0.21 \\ 59.71 \pm 0.13 \\ 65.03 \pm 0.24 \\ 64.93 \pm 0.11 \end{array}$ | $\begin{array}{c} 54.42 \pm 0.27 \\ 56.59 \pm 0.18 \\ 63.49 \pm 0.27 \\ 62.27 \pm 0.21 \end{array}$ | $\begin{array}{c} 54.01 \pm 0.28 \\ 55.39 \pm 0.19 \\ 62.69 \pm 0.30 \\ 62.17 \pm 0.22 \end{array}$ | $\begin{array}{c} 51.85 \pm 0.28 \\ 54.26 \pm 0.31 \\ 61.81 \pm 0.22 \\ 60.40 \pm 0.29 \end{array}$ | $\begin{array}{c} 49.08 \pm 0.26 \\ 51.20 \pm 0.21 \\ 57.40 \pm 0.19 \\ 57.42 \pm 0.26 \end{array}$ | $\begin{array}{c} 50.61 \pm 0.21 \\ 52.10 \pm 0.21 \\ 57.55 \pm 0.18 \\ 57.26 \pm 0.26 \end{array}$ |
|          |      | Few  | ArcFace<br>Multisimilarity<br>S2SD<br>DiVA                        | $\begin{array}{c} 73.41 \pm 0.31 \\ 74.66 \pm 0.33 \\ 75.70 \pm 0.21 \\ 76.05 \pm 0.40 \end{array}$  | $59.19 \pm 0.000$<br>$70.88 \pm 0.0000$<br>$72.88 \pm 0.0000$<br>$72.61 \pm 0.0000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c c} 0.32 & 6 \\ 0.26 & 6 \\ 0.35 & 6 \\ 0.25 & 6 \end{array}$   | $\begin{array}{c} 4.16 \pm 0.53 \\ 5.95 \pm 0.38 \\ 8.77 \pm 0.41 \\ 7.93 \pm 0.40 \end{array}$ | $\begin{array}{c} 63.87 \pm 0.34 \\ 65.62 \pm 0.35 \\ 68.46 \pm 0.23 \\ 67.42 \pm 0.46 \end{array}$ | $\begin{array}{c} 61.92 \pm 0.43 \\ 63.36 \pm 0.36 \\ 67.75 \pm 0.29 \\ 65.59 \pm 0.38 \end{array}$ | $\begin{array}{c} 61.48 \pm 0.33 \\ 63.55 \pm 0.35 \\ 66.38 \pm 0.41 \\ 65.43 \pm 0.38 \end{array}$ | $\begin{array}{c} 59.86 \pm 0.40 \\ 62.40 \pm 0.35 \\ 66.24 \pm 0.54 \\ 65.02 \pm 0.39 \end{array}$ | $\begin{array}{c} 55.89 \pm 0.49 \\ 59.11 \pm 0.45 \\ 63.37 \pm 0.51 \\ 61.21 \pm 0.45 \end{array}$ | $\begin{array}{c} 58.98 \pm 0.53 \\ 60.88 \pm 0.37 \\ 63.56 \pm 0.43 \\ 61.28 \pm 0.41 \end{array}$ |
|          | 2    | Zero | ArcFace<br>Multisimilarity<br>S2SD<br>DiVA                        | $\begin{array}{c} 38.95 \pm 0.08 \\ 37.19 \pm 0.07 \\ 43.56 \pm 0.09 \\ 43.33 \pm 0.08 \end{array}$  | $34.03 \pm 032.46 \pm 038.66 \pm 037.99 \pm 0000000000000000000000000000000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.06 29<br>0.07 2<br>0.07 3<br>0.05 3                                           | $9.13 \pm 0.04$<br>$7.75 \pm 0.04$<br>$4.41 \pm 0.05$<br>$3.43 \pm 0.04$                        | $\begin{array}{c} 29.22 \pm 0.05 \\ 27.99 \pm 0.04 \\ 33.23 \pm 0.05 \\ 31.00 \pm 0.05 \end{array}$ | $\begin{array}{c} 25.29 \pm 0.04 \\ 24.86 \pm 0.03 \\ 30.59 \pm 0.04 \\ 29.75 \pm 0.03 \end{array}$ | $\begin{array}{c} 22.25 \pm 0.05 \\ 22.22 \pm 0.10 \\ 28.08 \pm 0.05 \\ 28.02 \pm 0.07 \end{array}$ | $\begin{array}{c} 21.56 \pm 0.05 \\ 21.00 \pm 0.06 \\ 26.76 \pm 0.06 \\ 26.69 \pm 0.06 \end{array}$ | $\begin{array}{c} 19.76 \pm 0.04 \\ 20.12 \pm 0.06 \\ 24.89 \pm 0.04 \\ 24.73 \pm 0.05 \end{array}$ | $\begin{array}{c} 21.17 \pm 0.05 \\ 21.51 \pm 0.05 \\ 27.98 \pm 0.04 \\ 25.63 \pm 0.05 \end{array}$ |
| 1000     |      | Few  | ArcFace<br>Multisimilarity<br>S2SD<br>DiVA                        | $\begin{array}{c} 37.71 \pm 0.25 \\ 39.57 \pm 0.27 \\ 45.94 \pm 0.31 \\ 44.36 \pm 0.33 \end{array}$  | $33.11 \pm 0$<br>$34.20 \pm 0$<br>$41.26 \pm 0$<br>$38.67 \pm 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.21 2<br>0.16 3<br>0.22 3<br>0.17 3                                            | $8.63 \pm 0.21$<br>$0.20 \pm 0.18$<br>$7.53 \pm 0.23$<br>$4.33 \pm 0.21$                        | $\begin{array}{c} 28.60 \pm 0.19 \\ 30.02 \pm 0.17 \\ 36.33 \pm 0.20 \\ 32.51 \pm 0.42 \end{array}$ | $\begin{array}{c} 25.94 \pm 0.18 \\ 27.36 \pm 0.23 \\ 34.35 \pm 0.14 \\ 30.72 \pm 0.22 \end{array}$ | $\begin{array}{c} 23.84 \pm 0.20 \\ 24.07 \pm 0.20 \\ 32.37 \pm 0.24 \\ 29.37 \pm 0.21 \end{array}$ | $\begin{array}{c} 22.62 \pm 0.27 \\ 23.22 \pm 0.27 \\ 31.91 \pm 0.29 \\ 28.31 \pm 0.29 \end{array}$ | $\begin{array}{c} 21.06 \pm 0.23 \\ 22.94 \pm 0.23 \\ 29.90 \pm 0.24 \\ 25.63 \pm 0.22 \end{array}$ | $\begin{array}{c} 23.26 \pm 0.20 \\ 24.59 \pm 0.26 \\ 32.36 \pm 0.19 \\ 26.94 \pm 0.22 \end{array}$ |
| mAP@1000 | 5    | Zero | ArcFace<br>Multisimilarity<br>S2SD<br>DiVA                        | $\begin{array}{c} 38.91 \pm 0.10 \\ 37.45 \pm 0.09 \\ 43.61 \pm 0.12 \\ 43.34 \pm 0.10 \end{array}$  | $33.79 \pm 0$<br>$32.38 \pm 0$<br>$39.01 \pm 0$<br>$37.96 \pm 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.05 2<br>0.06 2<br>0.08 3<br>0.08 3                                            | $9.30 \pm 0.06$<br>$7.80 \pm 0.06$<br>$4.25 \pm 0.07$<br>$3.65 \pm 0.07$                        | $\begin{array}{c} 29.06 \pm 0.08 \\ 27.76 \pm 0.09 \\ 33.16 \pm 0.09 \\ 31.49 \pm 0.12 \end{array}$ | $\begin{array}{c} 25.24 \pm 0.07 \\ 24.61 \pm 0.07 \\ 30.67 \pm 0.07 \\ 29.72 \pm 0.08 \end{array}$ | $\begin{array}{c} 22.38 \pm 0.09 \\ 22.46 \pm 0.08 \\ 27.73 \pm 0.09 \\ 28.17 \pm 0.10 \end{array}$ | $\begin{array}{c} 21.62\pm 0.09\\ 21.75\pm 0.10\\ 26.70\pm 0.12\\ 26.95\pm 0.12 \end{array}$        | $\begin{array}{c} 19.75 \pm 0.05 \\ 20.10 \pm 0.06 \\ 25.40 \pm 0.07 \\ 24.47 \pm 0.09 \end{array}$ | $\begin{array}{c} 21.52 \pm 0.06 \\ 21.56 \pm 0.07 \\ 25.74 \pm 0.12 \\ 25.47 \pm 0.09 \end{array}$ |
|          |      | Few  | ArcFace<br>Multisimilarity<br>S2SD<br>DiVA                        | $\begin{array}{c} 43.22 \pm 0.28 \\ 45.68 \pm 0.28 \\ 51.67 \pm 0.35 \\ 46.29 \pm 0.27 \end{array}$  | $38.71 \pm 0.45 \pm$ | 0.20 3<br>0.24 3<br>0.25 4<br>0.20 3                                            | $\begin{array}{c} 4.14 \pm 0.22 \\ 5.46 \pm 0.21 \\ 3.33 \pm 0.22 \\ 7.77 \pm 0.22 \end{array}$ | $\begin{array}{c} 33.79 \pm 0.32 \\ 35.18 \pm 0.31 \\ 42.85 \pm 0.19 \\ 36.10 \pm 0.24 \end{array}$ | $\begin{array}{c} 31.06 \pm 0.29 \\ 32.25 \pm 0.34 \\ 41.21 \pm 0.24 \\ 34.27 \pm 0.28 \end{array}$ | $\begin{array}{c} 29.41 \pm 0.23 \\ 31.21 \pm 0.24 \\ 38.43 \pm 0.25 \\ 33.17 \pm 0.28 \end{array}$ | $\begin{array}{c} 27.86 \pm 0.20 \\ 30.69 \pm 0.26 \\ 38.68 \pm 0.26 \\ 32.93 \pm 0.29 \end{array}$ | $\begin{array}{c} 25.53 \pm 0.25 \\ 27.88 \pm 0.24 \\ 36.35 \pm 0.26 \\ 29.44 \pm 0.27 \end{array}$ | $\begin{array}{c} 28.15 \pm 0.32 \\ 29.86 \pm 0.26 \\ 36.82 \pm 0.28 \\ 30.07 \pm 0.35 \end{array}$ |

Table 8: Evaluation of zero-generalization and subsequent few-shot adaptation measured by Recall@1 and mAP@1000 based on few-shot dataplits built from the train-test splits of the *ooDML* benchmark (CARS196). Results are further summarized in Fig. 8 (c) and (d).

| Metric     | Shot | Use  | $ \mathbf{Method}{\downarrow}   \mathbf{Split}{\rightarrow}$ | 1                                                                                                   |                              | 2                                                        |                                                                                     | 3                                                              |                              |                                  | 4                                                              |                                                             |                                  | 5                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                               | 7                                       |                              |                                                                                                  | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |
|------------|------|------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------|----------------------------------|----------------------------------------------------------------|-------------------------------------------------------------|----------------------------------|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------|------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
|            |      | Zero | ArcFace<br>Multisimilarity<br>S2SD<br>DiVA                   | $\begin{array}{c} 78.30 \pm 0.08 \\ 79.07 \pm 0.07 \\ 83.84 \pm 0.06 \\ 81.39 \pm 0.20 \end{array}$ | 76.6<br>78.0<br>82.9<br>79.9 | $7 \pm 0.0$<br>$2 \pm 0.0$<br>$6 \pm 0.0$<br>$4 \pm 0.0$ | 9 74.82<br>9 74.10<br>9 82.53<br>8 79.08                                            | $2 \pm 3 \pm $ | 0.08<br>0.06<br>0.08<br>0.35 | 71.13<br>72.90<br>79.50<br>75.58 | $1 \pm 5 \pm 5 \pm 10$                                         | 0.08<br>0.11<br>0.07<br>0.28                                | 69.18<br>72.72<br>77.14<br>73.89 | $\pm 0.03 \\ \pm 0.00 \\ \pm 0.10 \\ \pm 0.13$             | $\begin{array}{c c} 8 & 64.5; \\ 6 & 67.80 \\ 0 & 73.84 \\ 8 & 69.94 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $3 \pm 0.$<br>$3 \pm 0.$<br>$4 \pm 0.0$<br>$4 \pm 0.3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12   59.<br>17   60.<br>09   69.<br>31   66.                                  | 79 ±<br>82 ±<br>67 ±<br>97 ±            | 0.09<br>0.14<br>0.13<br>0.23 | 58.8<br>59.3<br>68.3<br>64.3                                                                     | $2 \pm 0$<br>$1 \pm 0$<br>$1 \pm 0$<br>$6 \pm 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .09<br>.13<br>.11<br>.48 |
| Del        |      | Few  | ArcFace<br>Multisimilarity<br>S2SD<br>DiVA                   | $\begin{array}{c} 81.54 \pm 0.21 \\ 81.45 \pm 0.28 \\ 85.57 \pm 0.20 \\ 83.65 \pm 1.39 \end{array}$ | 80.0<br>80.2<br>84.4<br>82.0 | $3 \pm 0.3 \\ 5 \pm 0.2 \\ 1 \pm 0.2 \\ 2 \pm 0.6$       | $\begin{array}{c c c} 0 & 79.53 \\ 7 & 77.74 \\ 0 & 83.74 \\ 6 & 81.79 \end{array}$ | 3 ±<br>4 ±<br>4 ±<br>9 ±                                       | 0.26<br>0.41<br>0.21<br>0.75 | 76.5<br>76.3<br>81.8<br>79.4     | $4 \pm 1 \pm 5 \pm 3 \pm 3$                                    | 0.26<br>0.29<br>0.23<br>0.33                                | 75.10<br>75.10<br>79.85<br>77.76 | $\pm 0.3 \\ \pm 0.2 \\ \pm 0.2 \\ \pm 1.0 \\$              | $   \begin{bmatrix}     71.42 \\     872.23 \\     377.04 \\     574.38   \end{bmatrix} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $2 \pm 0.2$<br>$3 \pm 0.2$<br>$4 \pm 0.2$<br>$3 \pm 0.3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c c} 26 & 67. \\ 29 & 68. \\ 28 & 74. \\ 38 & 71. \end{array}$ | 13 ±<br>25 ±<br>27 ±<br>19 ±            | 0.38<br>0.44<br>0.34<br>0.57 | $     \begin{array}{c}       67.0 \\       66.8 \\       73.4 \\       69.3     \end{array} $    | $5 \pm 0 \\ 4 \pm 0 \\ 8 \pm 0 \\ 8 \pm 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .34<br>.38<br>.35<br>.86 |
| K@I        | 5    | Zero | ArcFace<br>Multisimilarity<br>S2SD<br>DiVA                   | $\begin{array}{c} 77.82 \pm 0.14 \\ 78.19 \pm 0.15 \\ 83.75 \pm 0.11 \\ 82.27 \pm 0.10 \end{array}$ | 75.5<br>78.0<br>82.9<br>80.1 | $2 \pm 0.1$<br>$0 \pm 0.1$<br>$6 \pm 0.1$<br>$2 \pm 0.3$ | $\begin{array}{c c c} 1 & 73.9 \\ 4 & 74.0 \\ 3 & 81.9 \\ 1 & 78.6 \\ \end{array}$  | 1 ±<br>) ±<br>2 ±<br>5 ±                                       | 0.12<br>0.18<br>0.13<br>0.56 | 71.10<br>72.93<br>78.88<br>76.03 | 0 ±<br>3 ±<br>3 ±<br>3 ±                                       | $\begin{array}{c} 0.16 \\ 0.16 \\ 0.12 \\ 0.67 \end{array}$ | 69.30<br>71.77<br>77.19<br>73.82 | $\pm 0.10 \\ \pm 0.17 \\ \pm 0.09 \\ \pm 0.53$             | $\begin{array}{c} 6 \\ 6 \\ 7 \\ 6 \\ 7 \\ 6 \\ 7 \\ 2 \\ 4 \\ 6 \\ 7 \\ 2 \\ 4 \\ 6 \\ 9 \\ 4 \\ 6 \\ 9 \\ 4 \\ 6 \\ 9 \\ 4 \\ 6 \\ 9 \\ 4 \\ 6 \\ 9 \\ 4 \\ 6 \\ 9 \\ 4 \\ 6 \\ 9 \\ 4 \\ 6 \\ 7 \\ 2 \\ 4 \\ 7 \\ 2 \\ 4 \\ 7 \\ 2 \\ 4 \\ 7 \\ 2 \\ 4 \\ 7 \\ 2 \\ 4 \\ 7 \\ 2 \\ 4 \\ 7 \\ 2 \\ 4 \\ 7 \\ 2 \\ 4 \\ 7 \\ 2 \\ 4 \\ 7 \\ 2 \\ 4 \\ 7 \\ 2 \\ 4 \\ 7 \\ 2 \\ 4 \\ 7 \\ 2 \\ 4 \\ 7 \\ 2 \\ 4 \\ 7 \\ 2 \\ 4 \\ 7 \\ 2 \\ 4 \\ 7 \\ 2 \\ 4 \\ 7 \\ 2 \\ 4 \\ 7 \\ 2 \\ 4 \\ 7 \\ 2 \\ 4 \\ 7 \\ 2 \\ 4 \\ 7 \\ 2 \\ 4 \\ 7 \\ 2 \\ 4 \\ 7 \\ 2 \\ 4 \\ 7 \\ 2 \\ 4 \\ 7 \\ 2 \\ 4 \\ 7 \\ 2 \\ 4 \\ 7 \\ 2 \\ 4 \\ 7 \\ 2 \\ 4 \\ 7 \\ 2 \\ 4 \\ 7 \\ 2 \\ 4 \\ 7 \\ 2 \\ 4 \\ 7 \\ 2 \\ 4 \\ 7 \\ 2 \\ 4 \\ 7 \\ 2 \\ 4 \\ 7 \\ 2 \\ 4 \\ 7 \\ 2 \\ 4 \\ 7 \\ 2 \\ 4 \\ 7 \\ 2 \\ 4 \\ 7 \\ 2 \\ 4 \\ 7 \\ 2 \\ 4 \\ 7 \\ 2 \\ 4 \\ 7 \\ 2 \\ 4 \\ 7 \\ 2 \\ 4 \\ 7 \\ 2 \\ 4 \\ 7 \\ 2 \\ 4 \\ 7 \\ 2 \\ 4 \\ 7 \\ 2 \\ 4 \\ 7 \\ 2 \\ 7 \\ 2 \\ 4 \\ 7 \\ 7 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$ | $0 \pm 0.14 \pm 0.174 \pm 0.1774 \pm $                                                         | 12   59.<br>19   61.<br>19   69.<br>26   66.                                  | 64 ±<br>59 ±<br>30 ±<br>72 ±            | 0.15<br>0.15<br>0.10<br>0.43 | 56.2<br>57.7<br>66.6<br>63.7                                                                     | $0 \pm 0 7 \pm 0 7 \pm 0 6 \pm $ | .18<br>.18<br>.09<br>.63 |
|            |      | Few  | ArcFace<br>Multisimilarity<br>S2SD<br>DiVA                   | $\begin{array}{c} 83.74 \pm 0.19 \\ 83.67 \pm 0.28 \\ 86.69 \pm 0.17 \\ 86.11 \pm 0.36 \end{array}$ | 82.0<br>82.5<br>85.3<br>83.9 | $7 \pm 0.1$<br>$6 \pm 0.3$<br>$7 \pm 0.2$<br>$4 \pm 0.3$ | $\begin{array}{c c} 9 & 81.30 \\ 5 & 80.87 \\ 1 & 84.65 \\ 5 & 83.64 \end{array}$   | ) ±<br>7 ±<br>5 ±<br>4 ±                                       | 0.33<br>0.20<br>0.19<br>0.45 | 79.3<br>79.6<br>82.7<br>82.3     | 4 ±<br>3 ±<br>7 ±<br>5 ±                                       | $\begin{array}{c} 0.25 \\ 0.29 \\ 0.18 \\ 0.52 \end{array}$ | 78.04<br>78.17<br>81.05<br>80.24 | $\pm 0.22 \pm 0.22 \pm 0.12 \pm 0.13 \pm 0.13$             | 5 73.75<br>5 75.68<br>8 77.96<br>1 76.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $5 \pm 0.3$<br>$3 \pm 0.3$<br>$5 \pm 0.3$<br>$3 \pm 0.3$<br>$3 \pm 0.3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 26   71.<br>32   72.<br>18   75.<br>56   74.                                  | $27 \pm 37 \pm 79 \pm 61 \pm 100$       | 0.40<br>0.52<br>0.17<br>1.02 | 69.6<br>70.7<br>74.4<br>73.0                                                                     | $\begin{array}{c} 0 \pm 0 \\ 3 \pm 0 \\ 3 \pm 0 \\ 2 \pm 0 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .36<br>.39<br>.18<br>.67 |
|            |      | Zero | ArcFace<br>Multisimilarity<br>S2SD<br>DiVA                   | $\begin{array}{c} 30.37 \pm 0.04 \\ 28.95 \pm 0.03 \\ 33.08 \pm 0.04 \\ 31.69 \pm 0.11 \end{array}$ | 28.9<br>28.3<br>32.9<br>30.1 | $8 \pm 0.0 \\ 8 \pm 0.0 \\ 6 \pm 0.0 \\ 3 \pm 0.0$       | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                               | 3 ±<br>3 ±<br>9 ±<br>4 ±                                       | 0.02<br>0.02<br>0.02<br>0.03 | 24.40<br>23.98<br>28.95<br>26.80 | 6 ±<br>8 ±<br>2 ±<br>0 ±                                       | $\begin{array}{c} 0.03 \\ 0.04 \\ 0.05 \\ 0.10 \end{array}$ | 21.52<br>23.13<br>27.28<br>24.38 | $\pm 0.03 \\ \pm 0.03 \\ \pm 0.03 \\ \pm 0.03 \\ \pm 0.13$ | $     \begin{array}{c}       3 & 17.8 \\       3 & 17.7 \\       3 & 22.16 \\       2 & 19.7 \\     \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $1 \pm 0.0$<br>$1 \pm 0.0$<br>$3 \pm 0.0$<br>$7 \pm 0.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | )5  14.<br>)5  14.<br>)5  19.<br>22  17.                                      | 52 ±<br>90 ±<br>33 ±<br>89 ±            | 0.03<br>0.03<br>0.04<br>0.12 | $\begin{array}{c} 13.9 \\ 14.1 \\ 17.7 \\ 16.3 \end{array}$                                      | $3 \pm 0 \\ 7 \pm 0 \\ 4 \pm 0 \\ 2 \pm 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .03<br>.04<br>.05<br>.13 |
| A D @ 1000 |      | Few  | ArcFace<br>Multisimilarity<br>S2SD<br>DiVA                   | $\begin{array}{c} 32.75 \pm 0.35 \\ 33.23 \pm 0.32 \\ 39.14 \pm 0.22 \\ 37.71 \pm 1.35 \end{array}$ | 31.4<br>32.0<br>38.4<br>35.3 | $3 \pm 0.3 \\ 8 \pm 0.2 \\ 4 \pm 0.2 \\ 2 \pm 1.1$       | $5   31.35 \\ 9   29.19 \\ 7   37.06 \\ 4   34.15 \\ \end{cases}$                   | 5 ±<br>9 ±<br>5 ±<br>1 ±                                       | 0.16<br>0.29<br>0.25<br>0.71 | 28.7<br>28.7<br>35.6<br>32.8     | 4 ±<br>5 ±<br>9 ±<br>3 ±                                       | 0.27<br>0.32<br>0.31<br>0.23                                | 26.93<br>28.38<br>34.50<br>31.05 | $\pm 0.2 \\ \pm 0.3 \\ \pm 0.2 \\ \pm 0.4 \\$              | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $7 \pm 0.3$<br>$3 \pm 0.3$<br>$3 \pm 0.3$<br>$3 \pm 0.3$<br>$9 \pm 0.3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                         | 58 ±<br>85 ±<br>46 ±<br>44 ±            | 0.19<br>0.36<br>0.22<br>0.88 | $   \begin{array}{c}     20.1 \\     20.8 \\     26.0 \\     22.6   \end{array} $                | $2 \pm 0$<br>$2 \pm 0$<br>$1 \pm 0$<br>$8 \pm 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .28<br>.32<br>.33<br>.42 |
| mAP@1000"- | ,    | Zero | ArcFace<br>Multisimilarity<br>S2SD<br>DiVA                   | $\begin{array}{c} 30.55 \pm 0.08 \\ 27.95 \pm 0.07 \\ 33.57 \pm 0.06 \\ 32.06 \pm 0.13 \end{array}$ | 28.2<br>27.7<br>32.7<br>30.1 | $8 \pm 0.0 \\ 8 \pm 0.0 \\ 1 \pm 0.0 \\ 4 \pm 0.1$       | $\begin{array}{c} 6 & 26.78 \\ 7 & 25.18 \\ 9 & 30.29 \\ 0 & 27.67 \end{array}$     | 3 ±<br>5 ±<br>9 ±<br>7 ±                                       | 0.05<br>0.06<br>0.07<br>0.12 | 24.68<br>24.10<br>28.64<br>27.13 | $8 \pm 6 \pm 14 \pm 14$<br>$4 \pm 14 \pm 14$<br>$3 \pm 14$     | $\begin{array}{c} 0.06 \\ 0.07 \\ 0.06 \\ 0.22 \end{array}$ | 21.64<br>22.83<br>27.61<br>24.87 | $\pm 0.04 \pm 0.04 \pm 0.04 \pm 0.04 \pm 0.04 \pm 0.04$    | $\begin{array}{c} 16.94 \\ 17.95 \\ 21.78 \\ 7 \\ 20.05 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $4 \pm 0.05 \pm 0.000 \pm 0.00000000000000000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | )5  14.<br>)4  14.<br>)5  18.<br> 1  17.                                      | 46 ±<br>88 ±<br>30 ±<br>66 ±            | 0.04<br>0.05<br>0.19<br>0.19 | $     \begin{array}{c}       13.1 \\       13.5 \\       16.2 \\       15.7 \\     \end{array} $ | $4 \pm 0 \\ 5 \pm 0 \\ 2 \pm 0 \\ 9 \pm 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .06<br>.05<br>.22<br>.22 |
|            |      | Few  | ArcFace<br>Multisimilarity<br>S2SD<br>DiVA                   | $\begin{array}{c} 42.52 \pm 0.21 \\ 43.43 \pm 0.37 \\ 44.67 \pm 0.12 \\ 47.79 \pm 0.85 \end{array}$ | 40.3<br>42.3<br>43.1<br>45.7 | $3 \pm 0.3 \\ 0 \pm 0.3 \\ 3 \pm 0.1 \\ 2 \pm 1.0$       | $\begin{array}{c c}1 & 39.46 \\ 8 & 39.99 \\ 6 & 40.66 \\ 0 & 44.92 \end{array}$    | 6 ±<br>9 ±<br>6 ±<br>2 ±                                       | 0.17<br>0.33<br>0.15<br>0.72 | 37.5<br>38.4<br>38.7<br>43.6     | $5 \pm 2 \pm $ | $\begin{array}{c} 0.21 \\ 0.35 \\ 0.17 \\ 0.42 \end{array}$ | 36.33<br>38.12<br>37.80<br>41.62 | $\pm 0.23$<br>$\pm 0.33$<br>$\pm 0.14$<br>$\pm 1.09$       | $3 31.42 \\ 33.73 \\ 34.33 \\ 36.89 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $2 \pm 0.25 \pm 0.25 \pm 0.251 \pm 0.$ | 20 28.<br>19 31.<br>24 32.<br>13 34.                                          | $92 \pm 02 \pm 24 \pm 24 \pm 41 \pm 12$ | 0.28<br>0.51<br>0.33<br>0.37 | 27.7<br>29.7<br>30.3<br>31.5                                                                     | $6 \pm 0$<br>$1 \pm 0$<br>$0 \pm 0$<br>$6 \pm 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .16<br>.31<br>.30<br>.49 |

### References

- Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand Joulin. Unsupervised learning of visual features by contrasting cluster assignments. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors, *Advances in Neural Information Processing Systems*, volume 33, pages 9912–9924. Curran Associates, Inc., 2020.
- [2] Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos Zafeiriou. Arcface: Additive angular margin loss for deep face recognition. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, June 2019.
- [3] Sungyeon Kim, Dongwon Kim, Minsu Cho, and Suha Kwak. Proxy anchor loss for deep metric learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2020.
- [4] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. 2015.
- [5] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained categorization. In *Proceedings of the IEEE International Conference on Computer Vision Workshops*, pages 554–561, 2013.
- [6] Sébastien Marcel and Yann Rodriguez. Torchvision the machine-vision package of torch. In *Proceedings* of the 18th ACM International Conference on Multimedia, MM '10, page 1485–1488, New York, NY, USA, 2010. Association for Computing Machinery.
- [7] Leland McInnes, John Healy, Nathaniel Saul, and Lukas Grossberger. Umap: Uniform manifold approximation and projection. *The Journal of Open Source Software*, 3(29):861, 2018.
- [8] Timo Milbich, Karsten Roth, Homanga Bharadhwaj, Samarth Sinha, Yoshua Bengio, Björn Ommer, and Joseph Paul Cohen. Diva: Diverse visual feature aggregation for deep metric learning. In Andrea Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael Frahm, editors, *Computer Vision – ECCV 2020*, pages 590–607, Cham, 2020. Springer International Publishing.
- [9] Kevin Musgrave, Serge Belongie, and Ser-Nam Lim. A metric learning reality check, 2020.
- [10] Hyun Oh Song, Yu Xiang, Stefanie Jegelka, and Silvio Savarese. Deep metric learning via lifted structured feature embedding. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pages 4004–4012, 2016.
- [11] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in pytorch. In *NIPS-W*, 2017.
- [12] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever. Learning transferable visual models from natural language supervision. *CoRR*, abs/2103.00020, 2021.
- [13] Karsten Roth, Timo Milbich, Björn Ommer, Joseph Paul Cohen, and Marzyeh Ghassemi. S2SD: simultaneous similarity-based self-distillation for deep metric learning. *CoRR*, abs/2009.08348, 2020.
- [14] Karsten Roth, Timo Milbich, Samarth Sinha, Prateek Gupta, Bjorn Ommer, and Joseph Paul Cohen. Revisiting training strategies and generalization performance in deep metric learning. In Hal Daumé III and Aarti Singh, editors, *Proceedings of the 37th International Conference on Machine Learning*, volume 119 of *Proceedings of Machine Learning Research*, pages 8242–8252. PMLR, 13–18 Jul 2020.
- [15] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The Caltech-UCSD Birds-200-2011 Dataset. Technical Report CNS-TR-2011-001, California Institute of Technology, 2011.
- [16] Xun Wang, Xintong Han, Weilin Huang, Dengke Dong, and Matthew R. Scott. Multi-similarity loss with general pair weighting for deep metric learning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, June 2019.
- [17] Ross Wightman. Pytorch image models. https://github.com/rwightman/pytorch-image-models, 2019.
- [18] Chao-Yuan Wu, R Manmatha, Alexander J Smola, and Philipp Krahenbuhl. Sampling matters in deep embedding learning. In *Proceedings of the IEEE International Conference on Computer Vision*, pages 2840–2848, 2017.