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Abstract

Recently, Graph Neural Networks (GNNs) have gained popularity in a variety
of real-world scenarios. Despite the great success, the architecture design of
GNNs heavily relies on manual labor. Thus, automated graph neural network
(AutoGNN) has attracted interest and attention from the research community,
which makes significant performance improvements in recent years. However,
existing AutoGNN works mainly adopt an implicit way to model and leverage the
link information in the graphs, which is not well regularized to the link prediction
task on graphs, and limits the performance of AutoGNN for other graph tasks.
In this paper, we present a novel AutoGNN work that explicitly models the link
information, abbreviated to AutoGEL. In such a way, AutoGEL can handle the
link prediction task and improve the performance of AutoGNNs on the node
classification and graph classification task. Specifically, AutoGEL proposes a
novel search space containing various design dimensions at both intra-layer and
inter-layer designs and adopts a more robust differentiable search algorithm to
further improve efficiency and effectiveness. Experimental results on benchmark
data sets demonstrate the superiority of AutoGEL on several tasks.

1 Introduction

As one of ubiquitous data structures, graph G(E, V ) contains the node-set V = {v1, · · · , vn} and
edge-set E = {e(vi, vj) : vi, vj 2 V }, which can represent a lot of real-world data sets, such as
social networks [Bu et al., 2018], physical systems [Sanchez-Gonzalez et al., 2018], protein-protein
interaction networks [Yue et al., 2020]. In recent years, Graph Neural Networks (GNNs) have been
introduced for various graph tasks and achieve unprecedented success, such as node classification
[Kipf and Welling, 2016a, Hamilton et al., 2017], link prediction [Vashishth et al., 2019, Li et al.,
2020], and graph classification [Niepert et al., 2016, Zhang et al., 2018]. Generally, GNNs encode
G(V,E) into the d-dimensional vector space (e.g., V 2 R|V |⇥d ) that preserves similarity in the
original graph. Despite the great success, those GNNs are restricted to specific instances within GNN
design space [You et al., 2020]. Different graph tasks usually require different GNN architectures
[Gilmer et al., 2017]. For example, compared with the node classification task, GNNs for graph
classification introduces an extra readout phase to obtain graph embeddings. However, architecture
design for these GNNs remains a challenging problem due to the diversity of graph data sets. Given a
graph task, a GNN architecture performs well on one data set does not necessarily imply that it is
also suitable for other data sets [You et al., 2020].

Some pioneer works have been proposed to alleviate the above issue in GNN models. They introduce
Neural Architecture Search (NAS) [Elsken et al., 2019] approaches to automatically design suitable
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GNN architecture for the given data set (i.e., AutoGNN) [Zhou et al., 2019, Gao et al., 2020,
Jiang and Balaprakash, 2020, Zhao et al., 2021]. Architectures identified by these AutoGNNs rival
or surpass the best handcrafted GNN models, demonstrating the potential of AutoGNN towards
better GNN architecture design. Unfortunately, the existing AutoGNNs are mainly designed for the
node classification and graph classification task. Their designs do not include edge embeddings,
i.e., modeling and organizing link information in an implicit way. First, it is difficult for existing
AutoGNNs to handle another important graph task on the edge-level, link prediction (LP) task.
Second, lack of edge embedding makes them inexpressive to leverage the complex link information,
such as direction information of edges and different edge types in multi-relational graphs. Especially,
various edge types could impose different influence for encoding nodes into embeddings, which can
further improve the model performance on the node-level and graph-level tasks. Therefore, a new
AutoGNN is desired to model link information explicitly on various data sets.

To bridge the aforementioned research gap, we propose AutoGEL, a novel AutoGNN framework with
Explicit Link information, which can handle the LP task and improve performance of AutoGNNs
on other graph tasks. Specifically, AutoGEL explicitly learns the edge embedding in the message
passing framework to model the complex link information, and introduces the several novel design
dimensions into the GNN search space, enabling a more powerful GNN to be searched for any given
graph data set. Moreover, AutoGEL adopts a robust differentiable search algorithm to guarantee the
effectiveness of searched architectures and control the computational footprint. We summarize the
contributions of this work as follows:

• The design of existing AutoGNNs follows an implicit way to leverage and organize the link
information, which cannot handle the LP task and limits the performance of AutoGNNs on other
graph tasks. In this paper, we present a novel method called AutoGEL to solve these issues through
explicitly modeling the link information in the graphs.

• AutoGEL introduces several novel design dimensions into the GNN search space at both the
intra-layer and inter-layer designs, so as to improve the task performance. Moreover, motivated by
one robust NAS algorithm SNAS, AutoGEL upgrades the search algorithm adopted in existing
AutoGNNs to further guarantee the effectiveness of final derived GNN.

• The experimental results demonstrate that AutoGEL can achieve better performance than manually
designed models in the LP task. Furthermore, AutoGEL shows excellent competitiveness with
other AutoGNN works on the node and graph classification tasks.

2 Related Work

2.1 General Message Passing Framework

The majority of GNNs follow the neighborhood aggregation schema [Gilmer et al., 2017], i.e., the
Message Passing Neural Network (MPNN), which is formulated as:
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embeddings for v and u respectively, ek
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denotes features for edge e(v, u) (optional), mk+1
v

denotes
the intermediate embeddings gathered from neighborhood N(v), Mk denotes the message function,
AGGk denotes the neighborhood aggregation function, COMk denotes the combination function
between intermediate embeddings and embeddings of node v itself from the last layer, ACTk denotes
activation function. Such message passing phase in (1) repeats for L times (i.e., k 2 {1, · · · , L}).
For graph-level tasks, it further follows the readout phase in (2) where information from the entire
graph G is aggregated through readout function R(·).

2.2 Automated Graph Neural Networks (AutoGNN)

In recent years, AutoGNN has emerged as a promising direction towards better graph neural architec-
ture design [Zhou et al., 2019, Gao et al., 2020, Jiang and Balaprakash, 2020, You et al., 2020, Zhao
et al., 2021, Ding et al., 2021]. To enable a powerful GNN architecture to be searched, AutoGNNs
first propose the GNN search space in the intra-layer level, i.e., providing common choices for several
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Table 1: Overview of Existing AutoGNN Works. The “Differ.” denotes to differentiable algorithm.

Method Graph MPNN Space Search Algorithm Task
#node/edge types he intra inter

GraphNAS � 1/ = 1 ⇥
p

⇥ RL node
AGNN � 1/ = 1 ⇥

p
⇥ EA+RL node

SANE � 1/ � 1 ⇥
p

layer_cnt&_agg deterministic Differ. node
NAS-GCN � 1/ � 1 ⇥

p
layer_cnt EA graph

You et al. [2020] � 1/ = 1 ⇥
p

layer_cnt random node/edge/graph

AutoGEL � 1/ � 1
p p

layer_cnt&_agg stochastic Differ. node/edge/graph

important operators in one MPNN layer (see (1) and (2)). Here we summarize candidate choices for
those operators:

• Message Function Mk: Existing AutoGNNs mainly focus on the node-level and graph-level
task, thus edge embeddings are often not available. Mk(hv,hu, evu) is reduced to Mk(hv,hu).
Typically, M(hv,hu) = avuWhu, where avu denotes the attention scores, and W 2 Rd⇥d

denotes the linear transformation matrix. Note that NAS-GCN [Jiang and Balaprakash, 2020] only
takes the edge feature evu as input without learning edge embeddings. We next denote the edge
embedding to he for distinguishing.

• Aggregation AGGk: It controls the way to aggregate message from nodes’ neighborhood. It can
be any differentiable and permutation invariant functions, usually AGGk 2 [sum,mean,max].
And sum(·) =

P
u2N(v) Mk(hv,hu), mean(·) =

P
u2N(v) Mk(hv,hu)/|N(v)|, and max(·)

denotes channel-wise maximum across the node dimension.
• Combination COMk: It determines the way to merge messages between neighborhood and node

itself. In literature, COMk is selected from [concat, add,mlp], where concat(·) = [hk
v
,m

k+1
v

],
add(·) = h

k
v
+m
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v

, and mlp(·) = MLP(hk
v
+m

k+1
v

) (MLP is Multi-layer Perceptron).
• Activation ACTk: [identity, sigmoid, tanh, relu, elu] are some of the most commonly used

activation functions [Gao et al., 2020].
• Graph Pooling: The pooling operator has been introduced for the graph classification task, such

as [global pool, global attention pool, f latten] [Jiang and Balaprakash, 2020, Wei et al., 2021].

In addition to the above intra-layer operators, several works [You et al., 2020, Zhao et al., 2021,
Jiang and Balaprakash, 2020] propose the idea of searching layer connectivity to combine hidden
representations of different layers in a better way, i.e., inter-layer design. More details will be
discussed in Sec. 3.1.2. After the search space design, AutoGNNs adopt various search algorithms to
search the optimal architecture from the search space. AGNN [Zhou et al., 2019] and GraphNAS [Gao
et al., 2020] follow the reinforcement learning (RL) [Williams, 1992] way to search architectures.
They utilize a recurrent neural network controller for architecture sampling, and update the controller
to maximize the expected performance of sampled architectures. NAS-GCN [Jiang and Balaprakash,
2020] adopt evolutionary algorithm (EA), where new architectures are generated by performing
mutation from parent architectures and the population, i.e., the best performing architectures, are
iteratively updated. However, both RL and EA algorithms require a large number of architectures to
be sampled, which is inherently computational expensive. To improve the search efficiency, SANE
[Zhao et al., 2021] adopts a deterministic differentiable search algorithm DARTS [Liu et al., 2018],
where a supernet containing all candidate operators is constructed and architecture parameters are
jointly optimized with network parameters through gradient descent. Unfortunately, it has been
discussed in SNAS [Xie et al., 2018] that DARTS suffer from the unbounded bias issue towards its
objective, which limits the performance of the final derived model. In Tab. 1, we summarize existing
AutoGNNs from several perspectives: graph, MPNN space, search algorithm, and task scenario.

2.3 GNNs for Link Prediction Task

Even with the great effort invested into the construction and maintenance of networks, many graph
data sets still remain incomplete [Schlichtkrull et al., 2018]. Therefore, the link prediction (LP)
task is one of the most crucial problems in the graph-structured data, which aims to recover those
missing links in a graph [Zhang et al., 2019, 2020a], i.e., predicting the missing node in e(vi, ?)
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where ? denotes the target node that has the potential link with vi. Recently, GNN models have been
introduced to handle the LP task (abbreviated to GLP models), which can be roughly categorized
based on its application scenarios: GLP on homogeneous graphs (i.e., only one type of nodes
and edges [Yang et al., 2016]), and multi-relational graphs (i.e., graphs with multiple edge types
[Toutanova and Chen, 2015]).

2.3.1 Link Prediction on Homogeneous Graphs

As one of the classic approaches for LP task on such homogeneous graphs, heuristic methods
predict link existence according to heuristic node similarity scores [Zhang et al., 2020b]. Despite its
effectiveness in some scenarios, heuristic methods hold strong assumptions on the link formation
mechanism, i.e., highly similar nodes have links. It would fail on those networks where their
assumptions do not hold [Zhang and Chen, 2018]. Furthermore, latent feature-based methods
[Perozzi et al., 2014, Grover and Leskovec, 2016] factorize some network matrices to learn node
embeddings in a transductive way, which limits their generalization ability to unseen data.

Recently, several GLP models have been proposed for the LP task on homogeneous graphs. GAE
[Kipf and Welling, 2016b] applies GNN model over the entire graph and aims to learn node embed-
dings that minimize the graph reconstruction cost through:

H = GCN(X,A), Â = �(HH
>) (3)

where X 2 R|V |⇥D is the feature matrix of nodes, A 2 R|V |⇥|V | is the adjacency matrix, H is
the learned node representations, �(·) is the logistic sigmoid function, Â denotes the reconstructed
adjacency matrix, whose entry Âuv is the predicted score (between 0-1) for target link euv . However,
GAE focus on aggregating node attributes only.

SEAL [Zhang and Chen, 2018] and DE-GNN [Li et al., 2020] propose to learn the link embedding
from the subgraph structures. Specifically, DE-GNN [Li et al., 2020] considers feature of subgraph
structure X

sub for aggregation and utilize node-set level readout:
H

sub = GCN(Xsub
,A

sub), he = R({hv|v 2 S}), (4)
where S = {u, v} denotes two nodes in the link e(u, v) for LP task, and R(·) is difference-pooling
in DE-GNN, i.e., R(·) = |hu � hv|.

2.3.2 Link Prediction on Multi-relational Graphs

Different from graph form G(E, V ), the multi-relational graph G(E, V,R) usually contains different
types of edges, where r(u, v) indicates the edge type r 2 R existing between u and v. For example,
in recommendation system, users and items are nodes of the bipartite graph, and the edge between
nodes could be “click” and “add_to_cart”. In the knowledge graph (KG) scenario, nodes represent
real-world entities and edges are relations between entities.

Recently, several GLP models have been developed for the LP task on KGs [Schlichtkrull et al., 2018,
Vashishth et al., 2019]. Based on the MPNN framework in (1) and (2), R-GCN [Schlichtkrull et al.,
2018] proposes to model different edge types through edge-specific weight matrix W

k
r

for r 2 R,
where the MPNN in R-GCN is instantiated as:
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(5)

Similar to R-GCN modeling, D-GCN [Marcheggiani and Titov, 2017] and W-GCN [Shang et al.,
2019] are also restricted to learning embeddings for nodes only. Instead, CompGCN [Vashishth et al.,
2019] propose to jointly learn entity and relation embeddings:
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(6)

where h
k
r

denotes the embedding vector for the specific edge type r, and �(r) 2 [incoming,

outgoing, self_loop] records information of directed edges. � : Rd
⇥ Rd

! Rd can be any
entity-relation composition operation, such as sub in TransE [Bordes et al., 2013].

Compared with earlier approaches, GLP models bring remarkable performance gains, illustrating
their superiority over LP task. However, exiting GLP models rely on manual and empirical graph
neural architecture design, such as selecting proper ACT (·) and �(·). Thus, a data-aware GLP model
is desired.
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(b) Inter-layer MPNN search.
Figure 1: The illustration to AutoGEL’s search space: a) given representation h

k in k-th layer
(including edge embedding h

k
e

if available), AutoGEL searches for proper operators of �k, Wk,
AGGk, COMk, ACTk in the intra-layer space, then outputs the hidden node representation h

k+1
v

.
Note that the dotted area will be activated in the scenario of multi-relational graphs.

3 AutoGEL: AutoGNN with Explicit Link Information

3.1 Search Space

In this subsection, AutoGEL explicitly models the link information in the MPNN space, and proposes
several novel operators at both intra-layer (i.e., the message passing in a specific layer) and inter-layer
designs (i.e., the message passing across layers). The overflow of space is shown in Fig. 1.

3.1.1 Intra-layer Message Passing Design

As discussed in Sec. 1 and Sec. 2.2, existing AutoGNNs lack modeling of links, which only utilize
the pure link information of the node neighborhood. Such implicit way fails to handle and leverage
the complex link information. To solve this issue, we present a novel intra-layer message passing
framework, which instantiates (1) as:

m
k+1
v

= AGGk({W
k

�(u)h
k

u
: u 2 N(v)}), (7)

m
k+1
v

= AGGk({W
k

�(e)�
k(hk

u
,h

k

e
) : u 2 N(v)}), (8)

h
k+1
v

= ACTk(COMk({W
k

self
h
k

v
,m

k+1
v

})), (9)

where (7) and (8) aggregate neighbor information for homogeneous and multi-relational graphs,
respectively. Wk

�(u) and W
k

�(u) encode parts of the link information as discussed in the following
paragraph. For multi-relational graphs, neighboring nodes from different edge types should impose
different influence for the center node during message passing. Thus, we utilize the edge embedding
h
k
e

in (8) to further encode the type of links, where h
k
e

is updated by h
k+1
e

= W
k

rel
h
k
e
. And we

incorporate the composition operator �(·) to encode the relationship between edge embedding h
k
e

with node embedding h
k
u

. We highlight the differences between the standard MPNN space (see (1) in
Sec. 2.2) with (7), (8) and (9) as follows:

• Linear Transformation W
k: Given the hidden representation from the last layer, we first apply

linear transformation towards embeddings. In (7), we assign neighborhood-type specific weight ma-
trices Wk

�(u), where �(u) 2 {self, neigh}. Wk

self
, Wk

neigh
are introduced for the node itself and

neighbors respectively. This is a weak attention mechanism towards the basic link information for
homogeneous graphs, which can distinguish edges between self-type and neighbor-type. In multi-
relational graphs, we use edge-aware filters Wk

�(e), where �(e) 2 {self_loop, original, inverse}
encodes the direction information of edge e. We use W

k

sl
, Wk

O
, Wk

I
for self-loop, original, and

inverse edge separately.
• Composition Operator �

k and Edge Embedding h
k
e
: Following CompGCN [Vashishth et al.,

2019], we utilize the composition operator �(hk
u
,h

k
e
) to capture message between the node and

edge embeddings before aggregation step. While CompGCN empirically selects the most proper
�(·) through grid search, we introduce this novel design dimension into our search space, so that
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AutoGEL is able to search for the most suitable one together with other design dimensions in a
more efficient way. Specifically, we incorporate the candidate operators {sub,mult, corr}, where
sub(·) = h

k
u
�h

k
e

[Bordes et al., 2013], mult(·) = h
k
u
⇤h

k
e

[Yang et al., 2014], corr(·) = h
k
u
?h

k
e

[Nickel et al., 2016]. Together with W
k

�(e), the search design on �(hk
u
,h

k
e
) enables AutoGEL to

capture semantic meaningful edges by h
k
e
, and the interaction between nodes with edges by �(·).

That is why AutoGEL can handle the LP task on multi-relational graphs, while another edge-level
model [You et al., 2020] cannot (see Tab. 1).

3.1.2 Inter-Layer Message Passing Design

Traditional MPNNs follows the way in (1), i.e., the input of each MPNN layer is the output of last
layer. Motivated by [Xu et al., 2018a, Li et al., 2019], it is beneficial to use the combination of
previous layers as input to each layer. In this paper, we also design the inter-layer search space to
enables the flexible and powerful GNN architecture to be searched. Specifically, we provide two
design dimensions: layer connectivity and layer aggregation.

• Layer Connectivity: The literature [Li et al., 2019] have shown that incorporating skip connections
(i.e., residual connections and dense connections) across MPNN layers can help alleviating the over-
smoothing issue [Li et al., 2018] and empirically improve the model performance. In this work, we
conduct systematical investigation towards the joint impact of skip connections together with other
design dimension. We select the way of layer connectivity from the set {skip, lc_sum, lc_concat}.
Moreover, the layer connectivity function is given as:

h
k+1
 layer_cnt(hk

,h
k+1) =

8
><

>:

h
k+1

, skip,

sum(hk
,h

k+1), lc_sum,

Wconcat(hk
,h

k+1), lc_concat,

(10)

where h
k denotes embeddings output from k-th MPNN intra-layer. As shown in Fig. 1 (b), the

representation h
k will be fed into k + 1-th MPNN layer to learn h

k+1. Then, AutoGEL combines
h
k with h

k+1 as in (10) to form a new representation, which will be fed to the next layer. Note
that another AutoGNN SANE Zhao et al. [2021] does not include lc_concat.

• Layer Aggregation: JKNet [Xu et al., 2018a] shows that the layer-wise aggregation allows the
adaptive representation learning. The set of candidate layer-wise aggregation defined in AutoGEL
is {skip, la_concat, la_max}. Specifically, the layer aggregation function is defined as:

h = layer_agg(h1
, . . . ,h

L) =

8
><

>:

h
L
, skip,

[h1
|| . . . ||h

L], la_concat,

max(h1
, . . . ,h

L), la_max.

(11)

Note that layer_agg aggregates the representations generated from MPNN layers, i.e., those that
have not been processed by layer_cnt (Fig. 1 (b)). And previous AutoGNNs NAS-GCN [Jiang
and Balaprakash, 2020] and [You et al., 2020] do not include this operator layer_agg.

3.1.3 Pooling

After the intra-layer (Sec. 3.1.1) and inter-layer (Sec. 3.1.2) message passing stages, pooling operation
hx = R({hv|v 2 X}) induces high-level representations, where x and X depend on the given task.

For LP task on homogeneous graphs, the pooling operation outputs the representations of links. In
SEAL [Zhang and Chen, 2018], subgraph-level sortpooling method is utilized to readout information
from the entire enclosing subgraph for the target link. It is proved in [Srinivasan and Ribeiro,
2019] that joint prediction task only requires joint structure representations of target node-set S.
Thus, it is not necessary to introduce complex subgraph-level pooling methods. We following
DE-GNN [Li et al., 2020] to learn link representations by readout only from target node-set, i.e.,
he = R({hv|v 2 S}). Note that the original setting difference-pooling for R(·) in DE-GNN does
not achieve competitive performance in the empirical study. Instead, we provide the powerful pooling
operations {sum,max, concat} to be selected for R(·). As for multi-relational graphs, the pooling
stage is not required since the edge embedding he is learned in the intra-layer MPNN.
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For the node classification task, AutoGEL simply removes R(·) from the search space as literature
does. For the graph classification task, the pooling operation outputs high-level graph representation
hG = R({hv|v 2 G}), and R(·) 2 {global_add_pool, global_mean_pool, global_max_pool}.

3.2 Search Algorithm

Given a candidate set O for a specific operator (e.g., {sum,mean,max} for AGGk), let x be the
hidden vector to be fed into this operator, and ↵o records the weight that operation o 2 O to be
selected. Then the output from this operator is computed as ō(x) =

P
o2O

✓o · o(x), where ✓o 2

{0, 1}. There are multiple operators in AutoGEL’s space (see Sec. 3.1), including intra-layer level
operators (i.e., �k

,W
k
, AGGk, COMk, ACTk), inter-layer operators (i.e., layer_cnt, layer_agg),

and pooling operator R(·). Let ✓ denote the operation selection for all operators. The GNN search
problem can be formulated as max✓,! f(✓,!;D), where f(·) evaluates the performance of a GNN
model ✓ with weight ! on the graph data D.

As discussed in Sec. 2.2, the search algorithm adopted in existing AutoGNNs suffers from several
issues. Especially, the most similar prior work SANE [Zhao et al., 2021] adopts DARTS [Liu et al.,
2018], which directly relaxes ✓ to be continuous and makes the objective f(✓,!;D) deterministic
differentiable. However, several drawbacks brought by the mixed strategy of DARTS [Liu et al., 2018]
have been observed and discussed in the community of neural architecture search. The mixed strategy
usually leads to the inconsistent performance issue, i.e., the performance of the derived child network
at the end of the searching stage shows significant degradation compared with the performance of
the parent network before architecture derivation. That is because the relaxed ✓ cannot converge
to a one-hot vector [Zela et al., 2019, Chu et al., 2020], thus removing those operations at the end
of search actually lead to a different architecture from the final searching result. Moreover, the
mixed strategy must maintain all operators in the whole supernet, which requires more computational
resources than the one-hot vector [Yao et al., 2020].

Fortunately, SNAS [Xie et al., 2018] leverages the concrete distribution [Maddison et al., 2016, Jang
et al., 2016] to propose a stochastic differentiable algorithm, which enables the search objective
differentiable with the reparameterization trick. Let a GNN model ✓ being sampled from the
distribution p↵(✓) that parameterized by the structure parameter ↵ as:

✓o =
exp((log↵o � log(� log(Uo)))/⌧)P

o02O
exp((log↵o0 � log(� log(Uo0)))/⌧)

, (12)

where ⌧ is the temperature of softmax, and Uo is sampled from the uniform distribution, i.e.,
Uo ⇠ Uniform(0, 1). It has been proven that p(lim⌧!0 ✓o = 1) = ↵o/

P
o02O

↵o0 [Maddison et al.,
2016]. This first guarantees that the probability of o being sampled (i.e., ✓o = 1) is proportional to its
weight ↵o. Besides, the one-hot property lim⌧!0 ✓o = 1 makes the stochastic differentiable relaxation
unbiased once converged [Xie et al., 2018]. Then the GNN searching problem is reformulated into
max↵,! E✓⇠p↵(✓)[f(✓,!;D)], where E[·] is the expectation. We leverage SNAS [Xie et al., 2018]
to optimize the weight of GNN ! and the weight of operator ↵.

4 Experiments

4.1 Experimental Setting

AutoGEL2 is implemented on top of code provided in DE-GNN [Li et al., 2020] and CompGCN
[Vashishth et al., 2019] using Pytorch framework [Paszke et al., 2019]. All the experiments are
performed using one single RTX 2080 Ti GPU. More details about data sets, hyper-parameter settings
and search space designs are introduced in Appendix A.1.1, A.1.2 and A.1.3, respectively.

Task and Data sets. For LP task on homogeneous graphs, we follow [Zhang and Chen, 2018, Li
et al., 2020] to utilize the datasets: NS [Newman, 2006], Power [Watts and Strogatz, 1998], Router
[Spring et al., 2002], C.ele [Watts and Strogatz, 1998], USAir [Batagelj and Mrvar, 2009], Yeast
[Von Mering et al., 2002] and PB [Ackland et al., 2005]. As for the LP task on multi-relational graphs,
we mainly adopt benchmark knowledge graphs (KGs), FB15k-237 [Toutanova and Chen, 2015] and
WN18RR [Dettmers et al., 2018].

2Code is available at https://github.com/zwangeo/AutoGEL
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Table 2: Average AUC (with standard deviation) for LP task on homogeneous graphs
Type Model NS Power Router C.ele USAir Yeast PB

Heuristic
CN 94.42±0.95 58.80±0.88 56.43±0.52 85.13±1.61 93.80±1.22 89.37±0.61 92.04±0.35
RA 94.45±0.93 58.79±0.88 56.43±0.51 87.49±1.41 95.77±0.92 89.45±0.62 92.46±0.37
Katz 94.85±1.10 65.39±1.59 38.62±1.35 86.34±1.89 92.88±1.42 92.24±0.61 92.92±0.35

Latent
SPC 89.94±2.39 91.78±0.61 68.79±2.42 51.90±2.57 74.22±3.11 93.25±0.40 83.96±0.86
LINE 80.63±1.90 55.63±1.47 67.15±2.10 69.21±3.14 81.47±10.71 87.45±3.33 76.95±2.76
N2V 91.52±1.28 76.22±0.92 65.46±0.86 84.11±1.27 91.44±1.78 93.67±0.46 85.79±0.78

GLP

VGAE 94.04±1.64 71.20±1.65 61.51±1.22 81.80±2.18 89.28±1.99 93.88±0.21 90.70±0.53
PGNN 94.88±0.77 - - 78.20±0.33 - - 89.72±0.32
SEAL 98.85±0.47 87.61±1.57 96.38±1.45 90.30±1.35 96.62±0.72 97.91±0.52 94.72±0.46

DE-GNN 99.09±0.79 96.68±0.29 98.69±0.17 89.37±0.17 98.04±0.66 98.59±0.26 94.95±0.37

AutoGNN AutoGEL 99.89±0.06 98.00±0.21 99.08±0.28 92.90±1.02 98.49±0.45 99.24±0.10 97.27±0.15

For the node classification task, we compare models on three popular citation networks [Sen et al.,
2008], i.e., Cora, CiteSeer, and PubMed. For the graph classification task, we adopt four standard
benchmarks [Yanardag and Vishwanathan, 2015]: 1) social network datasets: IMDB-BINARY and
IMDB-MULTI, 2) bioinformatics datasets: MUTAG and PROTEINS.

Evaluation Metrics. For node classification and graph classification, we adopt average accuracy as
measurement. We report AUC with standard deviation for LP task on homogeneous graphs. For LP
on KGs, we adopt standard evaluation matrices:
• Mean Reciprocal Ranking (MRR): (

P
|S|

i=1 1/ranki)/|S|, where S and ranki denote test triples
and ranking results, respectively

• Hits@N: (
P

|S|

i=1 (ranki  N))/|S|, where denotes indicator function, and N 2 {1, 3, 10}.

Baselines. For LP on homogeneous graphs, we use the following approaches as baselines: 1)
heuristic methods: CN [Bütün et al., 2018], RA [Zhou et al., 2009], and Katz [Katz, 1953], 2) latent
feature based methods: Spectral clustering (SPC) [Tang and Liu, 2011], LINE [Tang et al., 2015] and
node2vec (N2V) [Grover and Leskovec, 2016], 3) GLP methods: VGAE [Kipf and Welling, 2016b],
PGNN [You et al., 2019], SEAL [Zhang and Chen, 2018], and DE-GNN [Li et al., 2020].

For LP on KGs, we compare AutoGEL with several KG embedding approaches: 1) the geometric
models: TransE [Bordes et al., 2013] and RotatE [Sun et al., 2019], 2) bilinear models: DistMult
[Yang et al., 2014] and ComplEx [Trouillon et al., 2016], 3) GLP models: R-GCN [Kipf and Welling,
2016b], SACN [Shang et al., 2019], VR-GCN [Ye et al., 2019] and CompGCN [Vashishth et al.,
2019], 4) other NN-based models: ConvKB [Nguyen et al., 2017], ConvE [Dettmers et al., 2018],
ConvR [Jiang et al., 2019] and HyperER [Balažević et al., 2019].

For the node classification task, we compare AutoGEL with the following baselines: 1) manually
designed GNNs: GCN [Kipf and Welling, 2016a], GraphSAGE [Hamilton et al., 2017], GAT
[Veličković et al., 2017] and GIN [Xu et al., 2018b], 2) AutoGNNs: GraphNAS [Gao et al., 2020],
SANE [Zhao et al., 2021] and [You et al., 2020]. AGNN Zhou et al. [2019] is not included due to no
available code.

For the graph classification task, we compare AutoGEL with the following baselines: 1) manually
designed GNNs: PATCHY-SAN [Niepert et al., 2016], DGCNN [Zhang et al., 2018], GCN [Kipf
and Welling, 2016a], GraphSAGE [Hamilton et al., 2017] and GIN [Xu et al., 2018b], 2) AutoGNNs:
[You et al., 2020]. Note that NAS-GCN is specifically designed for molecular property prediction,
which is not included in the comparison.

4.2 Comparison with GLP models

The model comparison for LP task on homogeneous graphs and knowledge graphs have been
summarized in Tab. 2 and 3, respectively. As shown in Tab. 2, heuristic methods perform well on
several datasets, but they fail to handle data sets Power and Router. Latent feature-based methods
improve the performance on these two data sets but cannot achieve competitive results on other
data sets. GLP models outperform heuristic methods and latent feature-based methods, showing
their superiority towards LP task. Specifically, DE-GNN is our strongest baseline, where vanilla
GCN is adopted to learn node representations for all datasets, then link representation is induced
by pooling node embeddings in (4). However, DE-GNN fails to handle the data-diversity issue and
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Table 3: MRR and Hits@N for LP task on knowledge graphs
Type Model FB15k-237 WN18RR

MRR Hits@10 Hits@3 Hits@1 MRR Hits@10 Hits@3 Hits@1

Geometric TransE .294 .465 - - .226 .501 - -
RotatE .338 .533 .375 .241 .476 .571 .492 .428

Bilinear DisMult .241 .419 .263 .155 .430 .490 .440 .390
ComplEx .247 .428 .275 .158 .440 .510 .460 .410

NN-based

ConvKB .243 .421 .371 .155 .249 .524 .417 .057
ConvE .325 .501 .356 .237 .430 .520 .440 .400
ConvR .350 .528 .385 .261 .475 .537 .489 .443

HyperER .341 .520 .376 .252 .465 .522 .477 .436

GLP

R-GCN .248 .417 - .151 - - - -
SACN .350 .540 .390 .260 .470 .540 .480 .430

VR-GCN .248 .432 .272 .159 - - - -
CompGCN .355 .535 .390 .264 .479 .546 .494 .443

AutoGNN AutoGEL .357 .538 .391 .266 .479 .549 .492 .444

Table 4: Average accuracy (%) for node classification and graph classification

Type Model Node Classification Graph Classification
Cora CiteSeer Pubmed IMDB-B IMDB-M MUTAG PROTEINS

PATCHYSAN - - - 71.00 45.20 92.60 75.90
DGCNN - - - 70.00 47.80 85.80 75.50

Manual GCN 88.11 76.66 88.58 74.00 51.90 85.60 76.00
GNNs GraphSAGE 87.41 75.99 88.34 72.30 50.90 85.10 75.90

GAT 87.19 75.18 85.73 - - - -
GIN 86.00 73.40 87.99 75.10 52.30 89.40 76.20

AutoGNN

GraphNAS 88.40 77.62 88.96 - - - -
SANE 89.26 78.59 90.47 - - - -

You et al. [2020] 88.50 74.90 - - 47.80 - 73.90
AutoGEL 89.89 77.66 89.68 81.20 56.80 94.74 82.68

cannot consistently achieve leading performance on all data sets. In this paper, AutoGEL first adopts
the pooling way in DE-GNN, then enables a more flexible way to select the most suitable pooling
function R(·) (see Sec. 3.1.3) instead of the fixed pooling function in DE-GNN. Searching the pooling
function and other operators make AutoGEL handle the data-diversity issue, and consistently achieve
the state-of-the-art performance for LP task on homogeneous graphs. Furthermore, we demonstrate
the model performance of LP task on knowledge graphs in Tab. 3. Note that the improvements on
KGs is not as obvious as that on homogeneous graphs. In practice, GLP models run longer than
Geometric and Bilinear models, which leads to the difficulty of tuning hyper-parameters (see more
discussions in Appendix A.4).

Moreover, we present several cases of searched architectures in Appendix A.2. And we show several
ablation studies to provide some insights into the AutoGEL space design in Appendix A.3, including
the impacts of the inter-level design, pooling operator, weight transformation matrices, and edge
embedding.

4.3 Comparison with AutoGNN models

To compare with other AutoGNNs, we also demonstrate the performance of AutoGEL on node-level
and graph-level tasks. The empirical comparison on the node classification and graph classification
task is shown in Tab. 4. AutoGEL shows the great generalization ability towards different graph tasks.
AutoGEL outperforms all the manually designed GNN baselines and also achieves competitive results
with existing AutoGNNs designed specifically for these tasks. The data sets for node classification
task usually contains rich node features. AutoGEL simplifies the attention mechanism in existing
GNNs for node classification from auv (see Sec. 2.2) to W

k

�(u) in (7), which leads to slightly
inadequate performance. We notice that AutoGEL brings more significant performance gains on
the graph classification task. The data sets for graph classification have not sufficient node features
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Table 5: The search time (clock time in seconds) of AutoGNNs on the node classification task.
Model Cora Citeseer PubMed

GraphNAS [Gao et al., 2020] 3240 3665 5917
SANE [Zhao et al., 2021] 14 35 54

AutoGEL 12 16 19

(a) LP task on NS (b) LP task on FB15k-237 (c) NC task on Cora (d) GC task on PROT

Figure 2: Performance frequency statistics over multiple runs for each task

as those data sets for node classification, which requires effective learning from graph structures.
AutoGEL is more suitable for this task by learning from edges.

We also compare the search efficiency between AutoGNNs in Tab. 5. Statistics for other AutoGNNs
are taken from the start-of-the-art SANE [Zhao et al., 2021], which sets search epochs to 200 for all
the AutoGNN baselines. To reduce search cost in GraphNAS, SANE and AutoGEL leverages the
idea of parameter sharing Pham et al. [2018] to avoid repeatedly training weights of different sampled
GNN architectures. Moreover, AutoGEL adopts a more advanced search algorithm compared with
SANE (see Sec. 3.2), thereby further reduces the search cost. We show experimental results of a
variant of AutoGEL in search algorithm in Appendix A.3. And more details about search efficiency
are reported in Appendix A.4.

4.4 The Empirical Study on Robustness

All effectiveness results in the main context (Tab. 2, Tab. 3, and Tab. 4) are reported under the average
of 4 runs. Note that Tab. 3 and Tab. 4 do not contain variance due to space limits. To illustrate the
robustness of AutoGEL, here we report results after multiple runs of AutoGEL on several tasks in
Fig. 2. We set the number of different runs as 10 for FB15k-237 dataset and 50 for the rest, due to the
relative longer running time required for FB15k-237. We can see that even in the some worst cases,
AutoGEL still rival or surpass its strongest baselines over all the tasks, its indicating the effectiveness.

5 Conclusion

In this paper, we present a novel AutoGNN with explicit link information, named AutoGEL. Specifi-
cally, AutoGEL incorporates the edge embedding in the MPNN space, and proposes several novel
design dimensions at intra-layer and inter-layer designs. Moreover, AutoGEL upgrades the search
algorithm of AutoGNNs by leveraging a promising NAS algorithm SNAS. Experimental results well
demonstrate that AutoGEL not only achieves the leading performance on the LP task, but also shows
competitive results on the node and graph classification tasks.

For future works, one direction worth trying is to adapt AutoGNNs to the LP task on hyper-relational
KGs, which contain a lot of hyper-relational facts r(u1, . . . , un), n � 2. First, the pioneer data-aware
methods for LP tasks on KGs are mainly based on the bilinear models, such as AutoSF [Zhang
et al., 2020c] and ERAS [Shimin et al., 2021]. Introducing the MPNN space can promote a more
comprehensive search space because the composition operator is not limited to the bilinear models.
Second, using the multi-relational hypergraph could be a more natural way to model hyper-relational
facts [Yadati, 2020, Di et al., 2021]. Another interesting direction is to search GNN architectures on
dynamic graph data sets. Note that search efficiency would be the most challenging issue. One of the
key points is to make full use of previous well-trained GNN controllers.

10



6 Acknowledgements

Lei Chen’s work is partially supported by National Key Research and Development Program of
China Grant No. 2018AAA0101100, the Hong Kong RGC GRF Project 16202218, CRF Project
C6030-18G, C1031-18G, C5026-18G, RIF Project R6020-19, AOE Project AoE/E-603/18, Theme-
based project TRS T41-603/20R, China NSFC No. 61729201, Guangdong Basic and Applied
Basic Research Foundation 2019B151530001, Hong Kong ITC ITF grants ITS/044/18FX and
ITS/470/18FX, Microsoft Research Asia Collaborative Research Grant, HKUST-NAVER/LINE AI
Lab, Didi-HKUST joint research lab, HKUST-Webank joint research lab grants.

References
Zhan Bu, Jie Cao, Hui-Jia Li, Guangliang Gao, and Haicheng Tao. Gleam: A graph clustering

framework based on potential game optimization for large-scale social networks. Knowledge and
Information Systems, 55(3):741–770, 2018.

Alvaro Sanchez-Gonzalez, Nicolas Heess, Jost Tobias Springenberg, Josh Merel, Martin Riedmiller,
Raia Hadsell, and Peter Battaglia. Graph networks as learnable physics engines for inference and
control. In ICML, pages 4470–4479. PMLR, 2018.

Xiang Yue, Zhen Wang, Jingong Huang, Srinivasan Parthasarathy, Soheil Moosavinasab, Yungui
Huang, Simon M Lin, Wen Zhang, Ping Zhang, and Huan Sun. Graph embedding on biomedical
networks: methods, applications and evaluations. Bioinformatics, 36(4):1241–1251, 2020.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016a.

William L Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large graphs.
arXiv preprint arXiv:1706.02216, 2017.

Shikhar Vashishth, Soumya Sanyal, Vikram Nitin, and Partha Talukdar. Composition-based multi-
relational graph convolutional networks. arXiv preprint arXiv:1911.03082, 2019.

Pan Li, Yanbang Wang, Hongwei Wang, and Jure Leskovec. Distance encoding: Design provably
more powerful neural networks for graph representation learning. NeurIPS, 33, 2020.

Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. Learning convolutional neural networks
for graphs. In ICML, pages 2014–2023. PMLR, 2016.

Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-to-end deep learning
architecture for graph classification. In AAAI, volume 32, 2018.

Jiaxuan You, Zhitao Ying, and Jure Leskovec. Design space for graph neural networks. NeurIPS, 33,
2020.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In ICML, pages 1263–1272. PMLR, 2017.

Thomas Elsken, Jan Hendrik Metzen, Frank Hutter, et al. Neural architecture search: A survey. J.
Mach. Learn. Res., 20(55):1–21, 2019.

Kaixiong Zhou, Qingquan Song, Xiao Huang, and Xia Hu. Auto-gnn: Neural architecture search of
graph neural networks. arXiv preprint arXiv:1909.03184, 2019.

Yang Gao, Hong Yang, Peng Zhang, Chuan Zhou, and Yue Hu. Graph neural architecture search. In
IJCAI, volume 20, pages 1403–1409, 2020.

Shengli Jiang and Prasanna Balaprakash. Graph neural network architecture search for molecular
property prediction. arXiv preprint arXiv:2008.12187, 2020.

Huan Zhao, Quanming Yao, and Weiwei Tu. Search to aggregate neighborhood for graph neural
network. ICDE, 2021.

11



Yuhui Ding, Quanming Yao, Huan Zhao, and Tong Zhang. Diffmg: Differentiable meta graph search
for heterogeneous graph neural networks. In SIGKDD, pages 279–288, 2021.

Lanning Wei, Huan Zhao, Quanming Yao, and Zhiqiang He. Pooling architecture search for graph
classification. CIKM, 2021.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3-4):229–256, 1992.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. arXiv
preprint arXiv:1806.09055, 2018.

Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin. Snas: stochastic neural architecture search.
arXiv preprint arXiv:1812.09926, 2018.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan Titov, and Max
Welling. Modeling relational data with graph convolutional networks. In European semantic web
conference, pages 593–607. Springer, 2018.

Yongqi Zhang, Quanming Yao, Yingxia Shao, and Lei Chen. Nscaching: simple and efficient negative
sampling for knowledge graph embedding. In ICDE, pages 614–625. IEEE, 2019.

Yongqi Zhang, Quanming Yao, and Lei Chen. Interstellar: Searching recurrent architecture for
knowledge graph embedding. NeurIPS, 33:10030–10040, 2020a.

Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning with
graph embeddings. In ICML, pages 40–48. PMLR, 2016.

Kristina Toutanova and Danqi Chen. Observed versus latent features for knowledge base and
text inference. In Proceedings of the 3rd workshop on continuous vector space models and their
compositionality, pages 57–66, 2015.

Muhan Zhang, Pan Li, Yinglong Xia, Kai Wang, and Long Jin. Revisiting graph neural networks for
link prediction. arXiv preprint arXiv:2010.16103, 2020b.

Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. arXiv preprint
arXiv:1802.09691, 2018.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social representa-
tions. In SIGKDD, pages 701–710, 2014.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In SIGKDD,
pages 855–864, 2016.

Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint arXiv:1611.07308,
2016b.

Diego Marcheggiani and Ivan Titov. Encoding sentences with graph convolutional networks for
semantic role labeling. arXiv preprint arXiv:1703.04826, 2017.

Chao Shang, Yun Tang, Jing Huang, Jinbo Bi, Xiaodong He, and Bowen Zhou. End-to-end structure-
aware convolutional networks for knowledge base completion. In AAAI, volume 33, pages
3060–3067, 2019.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko.
Translating embeddings for modeling multi-relational data. In NIPS, pages 1–9, 2013.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embedding entities and
relations for learning and inference in knowledge bases. arXiv preprint arXiv:1412.6575, 2014.

Maximilian Nickel, Lorenzo Rosasco, and Tomaso Poggio. Holographic embeddings of knowledge
graphs. In AAAI, volume 30, 2016.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. Representation learning on graphs with jumping knowledge networks. In ICML, pages
5453–5462. PMLR, 2018a.

12



Guohao Li, Matthias Muller, Ali Thabet, and Bernard Ghanem. Deepgcns: Can gcns go as deep
as cnns? In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
9267–9276, 2019.

Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks for
semi-supervised learning. In AAAI, volume 32, 2018.

Balasubramaniam Srinivasan and Bruno Ribeiro. On the equivalence between positional node
embeddings and structural graph representations. arXiv preprint arXiv:1910.00452, 2019.

Arber Zela, Thomas Elsken, Tonmoy Saikia, Yassine Marrakchi, Thomas Brox, and Frank Hutter. Un-
derstanding and robustifying differentiable architecture search. arXiv preprint arXiv:1909.09656,
2019.

Xiangxiang Chu, Tianbao Zhou, Bo Zhang, and Jixiang Li. Fair darts: Eliminating unfair advantages
in differentiable architecture search. In ECCV, pages 465–480. Springer, 2020.

Quanming Yao, Ju Xu, Wei-Wei Tu, and Zhanxing Zhu. Efficient neural architecture search via
proximal iterations. In AAAI, volume 34, pages 6664–6671, 2020.

Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous
relaxation of discrete random variables. arXiv preprint arXiv:1611.00712, 2016.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. arXiv
preprint arXiv:1611.01144, 2016.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. arXiv preprint arXiv:1912.01703, 2019.

Mark EJ Newman. Finding community structure in networks using the eigenvectors of matrices.
Physical review E, 74(3):036104, 2006.

Duncan J Watts and Steven H Strogatz. Collective dynamics of ‘small-world’networks. nature, 393
(6684):440–442, 1998.

Neil Spring, Ratul Mahajan, and David Wetherall. Measuring isp topologies with rocketfuel.
SIGCOMM, 32(4):133–145, 2002.

Vladimir Batagelj and Andrej Mrvar. Pajek datasets (2006), 2009.

Christian Von Mering, Roland Krause, Berend Snel, Michael Cornell, Stephen G Oliver, Stan-
ley Fields, and Peer Bork. Comparative assessment of large-scale data sets of protein–protein
interactions. Nature, 417(6887):399–403, 2002.

Robert Ackland et al. Mapping the us political blogosphere: Are conservative bloggers more
prominent? In BlogTalk Downunder 2005 Conference, Sydney. BlogTalk Downunder 2005
Conference, Sydney, 2005.

Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. Convolutional 2d
knowledge graph embeddings. In AAAI, volume 32, 2018.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. AI magazine, 29(3):93–93, 2008.

Pinar Yanardag and SVN Vishwanathan. Deep graph kernels. In SIGKDD, pages 1365–1374, 2015.

Ertan Bütün, Mehmet Kaya, and Reda Alhajj. Extension of neighbor-based link prediction methods
for directed, weighted and temporal social networks. Information Sciences, 463:152–165, 2018.

Tao Zhou, Linyuan Lü, and Yi-Cheng Zhang. Predicting missing links via local information. The
European Physical Journal B, 71(4):623–630, 2009.

Leo Katz. A new status index derived from sociometric analysis. Psychometrika, 18(1):39–43, 1953.

13



Lei Tang and Huan Liu. Leveraging social media networks for classification. Data Mining and
Knowledge Discovery, 23(3):447–478, 2011.

Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. Line: Large-scale
information network embedding. In WWW, pages 1067–1077, 2015.

Jiaxuan You, Rex Ying, and Jure Leskovec. Position-aware graph neural networks. In ICML, pages
7134–7143. PMLR, 2019.

Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. Rotate: Knowledge graph embedding by
relational rotation in complex space. arXiv preprint arXiv:1902.10197, 2019.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume Bouchard. Complex
embeddings for simple link prediction. In ICML, pages 2071–2080. PMLR, 2016.

Rui Ye, Xin Li, Yujie Fang, Hongyu Zang, and Mingzhong Wang. A vectorized relational graph
convolutional network for multi-relational network alignment. In IJCAI, pages 4135–4141, 2019.

Dai Quoc Nguyen, Tu Dinh Nguyen, Dat Quoc Nguyen, and Dinh Phung. A novel embedding
model for knowledge base completion based on convolutional neural network. arXiv preprint
arXiv:1712.02121, 2017.

Xiaotian Jiang, Quan Wang, and Bin Wang. Adaptive convolution for multi-relational learning.
In Proceedings of the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers),
pages 978–987, 2019.
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