
1 Table of Notions

The notations in this work are summarized in Tab. 1.

Table 1: Table of notations in this work.

Symbol Description

Vectors

x Input data

u Injection of input x

h Intermediate feature of input x

ŷ Prediction of input x

y Groundtruth of input x

θ Parameter vector of the equilibrium module

z A union of u and θ

Functions

M(x) Preprocessing module,M : Rdx → Rdu

F(h, z) Equilibrium module, F : Rdh × Rdz → Rdh

G(h) Postprocessing module, G : Rdh → Rdy

R(θ) Loss function,R : Rdθ → R

Equilibrium states h

h∗ The equilibrium point of F given z

ht The intermediate feature of the tth unrolled step

Gradients & Jacobians
∂L
∂θ Exact gradient of the loss w.r.t. the parameters θ
∂̂L
∂θ Phantom gradient, i.e., an approximation to ∂L

∂θ

∂a
∂b Gradient of a w.r.t. b, i.e.,

(
∂a
∂b

)
ij
=

∂aj

∂bi
.

A An approximation to ∂F
∂θ

(
I − ∂F

∂h

)−1
D An approximation to

(
I − ∂F

∂h

)−1
Scalars

σmax, σmin The maximal/minimal singular value of ∂F∂θ
κ The condition number of ∂F∂θ
k, λ The number of steps and damping factor of phantom gradient

Lh The Lipschitz constant of F w.r.t. h

d� Dimension of vector �

Operators

〈·, ·〉 Inner product

‖ · ‖ Vector norm or operator norm

ρ(·) Spectral radius
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2 Algorithm of Phantom Gradient

The following PyTorch-style [1] pseudocode describes the implementation of both the unrolling-based
phantom gradient (see Alg. 1) and the Neumann-series-based one (see Alg. 2). To implement the
phantom gradient with TensorFlow [2], replace the no_grad context manager with the stop_gradient
operator.

The unrolling-based phantom gradient is computed by the automatic differentiation engine, while
the Neumann-series-based phantom gradient is given by Alg. 3. A special reminder is that, for a
trained model, removing the unrolling steps in the test stage will not lead to a performance decay
but accelerate the inference instead. Similarly, increasing the unrolling steps in the test stage can
not further improve the performance, which is validated using MDEQ model on the CIFAR-10 and
ImageNet datasets. This implies that the root-finding solver has fully converged to an equilibrium
point for the trained model.

Algorithm 1 Unrolling-based phantom gradient, PyTorch-style

# solver: the solver to find h∗, e.g., the Broyden solver in MDEQ.
# func: the explicit function F that defines the implicit model.
# z: the input variables z to solve h∗ = F(h∗, z)
# h: the solution h∗ of the implicit module.
# k: the unrolling steps k.
# lambda_: the damping factor λ.
# training: a bool variable that indicates the training or inference stage.

# Forward pass (Backward pass is accomplished by automatic differentiation)
def forward(z, k, lambda_, training):

with torch.no_grad():
h = solver(func, z)

if training:
for _ in range(k):

h = (1 - lambda_) * h + lambda_ * func(h, z)

return h

3 Proof of Theorems

Theorem 1. Suppose the exact gradient and the phantom gradient are given by Eq. (4) and (5),
respectively. Let σmax and σmin be the maximal and minimal singular value of ∂F/∂θ. If∥∥∥∥A(I − ∂F

∂h

)
− ∂F
∂θ

∥∥∥∥ < σ2
min

σmax
, (A-1)

then the phantom gradient provides an ascent direction of the function L, i.e.,〈
∂̂L
∂θ

,
∂L
∂θ

〉
> 0. (A-2)

Proof. Denote J = ∂F/∂θ, v = ∂L/∂h, and u = (I − ∂F/∂h)−1 v. Let

E = A

(
I − ∂F

∂h

)
− ∂F
∂θ

, (A-3)

and we have ‖E‖ ≤ σ2
min/σmax. Then,〈

∂̂L
∂θ

,
∂L
∂θ

〉
= v>A>J

(
I − ∂F

∂h

)−1
v = u>

(
I − ∂F

∂h

)>
A>Ju = u> (J +E)

>
Ju

≥ ‖Ju‖2 − ‖E‖‖J‖‖u‖2 ≥
(
σ2

min − σmax‖E‖
)
‖u‖2 > 0,

(A-4)
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Algorithm 2 Neumann-series-based Phantom Gradient, Pytorch-style

# solver: the solver to find h∗, e.g., the Broyden solver in MDEQ.
# func: the explicit function F that defines the implicit model.
# grad(a, b, c): the function to compute the Jacobian-vector product

(∂a/∂b) c
# z: the input variables z to solve h∗ = F(h∗, z)
# h: the output h∗ of the implicit module.
# g: the input gradient ∂L/∂h.
# g_out: the output gradient ∂L/∂z.
# k: the unrolling steps k.
# lambda_: the damping factor λ.

# Forward pass
def forward(z):

with torch.no_grad():
h = solver(func, z)

return h

# Backward pass
def phantom_grad(g, h, z, k, lambda_):

f = (1 - lambda_) * h + lambda_ * func(h, z)

g_hat = g
for _ in range(k-1):

g_hat = g + grad(f, h, g_hat)

g_out = lambda_ * grad(f, z, g_hat)
return g_out

Algorithm 3 Neumann-series-based phantom gradient with O(1) memory
1: Input ∂L/∂h, F , h∗, k, λ.
2: Initialize ĝ = g = ∂L/∂h;
3: f ← (1− λ)h∗ + λF(h∗, z)
4: for i = 1, 2, · · · , k − 1 do
5: ĝ ← g + (∂f/∂h) ĝ; . Compute Jacobian-vector product with automatic differentiation
6: end for
7: gout ← λ (∂f/∂z) ĝ . Compute Jacobian-vector product to obtain the phantom gradient w.r.t. z
8: return ĝ.

which concludes the proof.

Proof of Remerk 1. SupposeA = (∂F/∂θ)D and the condition in (8). Then,∥∥∥∥A(I − ∂F
∂h

)
− ∂F
∂θ

∥∥∥∥ ≤ ∥∥∥∥∂F∂θ
∥∥∥∥∥∥∥∥D(I − ∂F

∂h

)
− I

∥∥∥∥ < σmax ·
1

κ2
=
σ2

min

σmax
, (A-5)

indicating the condition in (A-1) is satisfied.

Theorem 2. Suppose the Jacobian ∂F/∂h is a contraction mapping. Then,

(i) the Neumann series in (14) converges to the Jacobian-inverse (I − ∂F/∂h)−1; and

(ii) if the function F is continuously differentiable w.r.t. both h and θ, the sequence in Eq. (13)
converges to the exact Jacobian ∂h∗/∂θ as T →∞, i.e.,

lim
T→∞

∂hT
∂θ

=
∂F
∂θ

∣∣∣∣
h∗

(
I − ∂F

∂h

∣∣∣∣
h∗

)−1
. (A-6)
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Proof. (i) Since ‖∂F/∂h‖ < 1,

‖B‖ ≤ λ
∥∥∥∥∂F∂h

∥∥∥∥+ (1− λ) ‖I‖ < 1. (A-7)

LetBk =
∑k−1
t=0 B

t, and for each p ∈ N+, we have

‖Bk+p −Bk‖ =

∥∥∥∥∥
k+p−1∑
t=k

Bt

∥∥∥∥∥ ≤ ‖B‖k
∥∥∥∥∥
p−1∑
t=0

Bt

∥∥∥∥∥ ≤ ‖B‖k
p−1∑
t=0

‖B‖t < ‖B‖k

1− ‖B‖
. (A-8)

By the Cauchy’s convergence test, the sequence {Bk} is convergent. Since

(I −B)Bk = I −Bk → I, as k →∞, (A-9)

it follows thatBk → (I −B)
−1, as k →∞. Therefore,

λ

∞∑
t=0

Bt = λ (I −B)
−1

=

(
I − ∂F

∂h

)−1
. (A-10)

(ii) Let Fλ(h, z) = λF(h, z) + (1− λ)h, and
∂Fλ
∂h

= λ
∂F
∂h

+ (1− λ)I. (A-11)

Similar to (A-7), ∂Fλ/∂h is also a contraction mapping. By the Banach Fixed Point Theorem [3],
the sequence {ht} converges to an exact fixed point h∗ of Fλ, which is also a fixed point of F .

Denote

Ut =
∂F
∂θ

∣∣∣∣
ht

, Vt = λ
∂F
∂h

∣∣∣∣
ht

+ (1− λ) I. (A-12)

Since the function F is continuously differentiable w.r.t. both h and θ, we have

lim
t→∞

Ut =
∂F
∂θ

∣∣∣∣
h∗

= U∞, lim
t→∞

Vt = λ
∂F
∂h

∣∣∣∣
h∗

+ (1− λ) I = V∞. (A-13)

According to the conclusion in (i), we have

∂F
∂θ

∣∣∣∣
h∗

(
I − ∂F

∂h

∣∣∣∣
h∗

)−1
= λU∞

∞∑
t=0

V t
∞. (A-14)

Comparing Eq. (13) with Eq. (32), we have∥∥∥∥∥∂hT∂θ − ∂F
∂θ

∣∣∣∣
h∗

(
I − ∂F

∂h

∣∣∣∣
h∗

)−1∥∥∥∥∥ = λ

∥∥∥∥∥
T−1∑
t=0

Ut

T−1∏
s=t+1

Vs −U∞
∞∑
t=0

V t
∞

∥∥∥∥∥
≤λ


∥∥∥∥∥
T−2∑
t=0

Ut

(
T−1∏
s=t+1

Vs − V T−t−1
∞

)∥∥∥∥∥︸ ︷︷ ︸
∆1

+

∥∥∥∥∥
T−1∑
t=0

(Ut −U∞)V T−t−1
∞

∥∥∥∥∥︸ ︷︷ ︸
∆2

+

∥∥∥∥∥U∞
∞∑
t=T

V t
∞

∥∥∥∥∥︸ ︷︷ ︸
∆3

 .

(A-15)
In the following context, we prove Eq. (A-6) by showing that ∆1, ∆2, and ∆3 can be arbitrarily
small when T is sufficiently large.

Preparations. For any ε > 0, since Ut → U∞ and Vt → V∞ as t→∞, there exists N ∈ N+ s.t.
‖Ut −U∞‖ < ε, ‖Vt − V∞‖ < ε, ∀t > N. (A-16)

Since ∂Fλ/∂h is a contraction mapping, there exists γ ∈ (0, 1) s.t.
‖Vt‖ ≤ γ, ‖V∞‖ ≤ γ. (A-17)

Besides, since ∂F/∂θ is a continuous function and {ht} is a convergent sequence, it follows that
{ht} is contained by a compact set and that ∂F/∂θ is bounded on {ht}. Therefore, there exists
M > 0, s.t.

‖Ut‖ ≤M, t = 0, 1, 2, · · · . (A-18)
Taking t→∞, we have ‖U∞‖ ≤M .

4



For ∆1. For t > N , consider∥∥∥∥∥Ut
(

T−1∏
s=t+1

Vs − V T−t−1
∞

)∥∥∥∥∥
≤ ‖Ut‖

T−1∑
s=t+1

∥∥Vt+1Vt+2 · · ·VsV T−s−1
∞ − Vt+1Vt+2 · · ·Vs−1V T−s

∞
∥∥

≤ ‖Ut‖
T−1∑
s=t+1

‖Vt+1‖ ‖Vt+2‖ · · · ‖Vs−1‖ ‖Vs − V∞‖ ‖V∞‖T−s−1

≤M(T − t− 1)γT−t−2ε,

(A-19)

and for t ≤ N , we simply have∥∥∥∥∥Ut
(

T−1∏
s=t+1

Vs − V T−t−1
∞

)∥∥∥∥∥ ≤ ‖Ut‖
(

T−1∏
s=t+1

‖Vs‖+ ‖V∞‖T−t−1
)
≤ 2MγT−t−1. (A-20)

Therefore, when T > N + 2, ∆1 can be bounded as follows:

∆1 ≤

(
N∑
t=0

+

T−2∑
t=N+1

)∥∥∥∥∥Ut
(

T−1∏
s=t+1

Vs − V T−t−1
∞

)∥∥∥∥∥
≤ 2M

N∑
t=0

γT−t−1 +Mε

T−2∑
t=N+1

(T − t− 1)γT−t−2

≤ 2MγT−N−1
1− γN+1

1− γ
+

(
1− γT−N−2

(1− γ)2
− (T −N − 2)γT−N−2

1− γ

)
Mε

≤ 2M

1− γ
γT−N−1 +

M

(1− γ)2
ε.

(A-21)

Since M/(1 − γ)2 is a constant and γT−N−1 → 0 as T → ∞, ∆1 can be arbitrarily small for a
sufficiently large T .

For ∆2. Consider∥∥(Ut −U∞)V T−t−1
∞

∥∥ ≤ ‖Ut −U∞‖ ‖V∞‖T−t−1 ≤ {γT−t−1ε, when t ≥ N ;

2MγT−t−1 when t < N.
(A-22)

Therefore, when T > N + 2, ∆2 can be bounded as follows:

∆2 ≤

(
N∑
t=0

+

T−1∑
t=N+1

)∥∥(Ut −U∞)V T−t−1
∞

∥∥ ≤ 2M

N∑
t=0

γT−t−1 + ε

T−1∑
t=N+1

γT−t−1

≤ 2M

1− γ
γT−N−1 +

ε

1− γ
.

(A-23)

Since 1/(1 − γ) is a constant and γT−N−1 → 0 as T → ∞, ∆2 can be arbitrarily small for a
sufficiently large T .

For ∆3. As t→∞, we have∥∥∥∥∥U∞
∞∑
t=T

V t
∞

∥∥∥∥∥ ≤ ‖U∞‖ ‖V∞‖T ∥∥∥(I − V∞)
−1
∥∥∥ ≤M · γT · 1

1− γ
→ 0. (A-24)

As a result, we obtain the conclusion in Eq. (A-6).

Theorem 3. Suppose the loss functionR in Eq. (3) is `-smooth, lower-bounded, and has bounded
gradient almost surely in the training process. Besides, assume the gradient in Eq. (4) is an

5



unbiased estimator of ∇R(θ) with a bounded covariance. If the phantom gradient in Eq. (5) is an
ε-approximation to the gradient in Eq. (4), i.e.,∥∥∥∥∥ ∂̂L∂θ − ∂L

∂θ

∥∥∥∥∥ ≤ ε, almost surely, (A-25)

then using Eq. (5) as a stochastic first-order oracle with a step size of ηn = O(1/
√
n) to update θ

with gradient descent, it follows after N iterations that

E

[∑N
n=1 ηn‖∇R(θn)‖2∑N

n=1 ηn

]
≤ O

(
ε+

logN√
N

)
. (A-26)

Proof. Let ∂̂Ln

∂θ be the phantom gradient at the nth iteration. By `-smoothness ofR, we have

R(θn+1) ≤ R(θn) + 〈∇R(θn),θn+1 − θn〉+
`

2
‖θn+1 − θn‖2

= R(θn)− ηn

〈
∇R(θn),

∂̂Ln
∂θ

〉
+
`η2n
2

∥∥∥∥∥ ∂̂Ln∂θ

∥∥∥∥∥
2

.

(A-27)

Let

en =
∂L
∂θ

∣∣∣∣
θ=θn

− ∂̂Ln
∂θ

(A-28)

be the approximation error at the nth iteration. Taking expectation w.r.t. the first n iterations, we have
E1∼n [R(θn+1)] = E1∼n−1 [En [R(θn+1) | 1 ∼ n− 1]] = E1∼n−1 [En [R(θn+1) |θn]] , (A-29)

where the first equality comes from the law of total expectation, while the second from the fact
that the stochasticity of the first n− 1 steps is totally captured by the value θn. Consider the inner
expectation in Eq. (A-29), and we omit the condition on θn when no ambiguity is made. Note that in
the following derivation, all expectations, variances, and covariances are conditioned on θn.

En [R(θn+1)] ≤ En

R(θn)− ηn〈∇R(θn), ∂̂Ln
∂θ

〉
+
`η2n
2

∥∥∥∥∥ ∂̂Ln∂θ

∥∥∥∥∥
2


= R(θn)− ηn

〈
∇R(θn),En

[
∂̂Ln
∂θ

]〉
+
`η2n
2

En

∥∥∥∥∥ ∂̂Ln∂θ

∥∥∥∥∥
2
 ,

(A-30)

where

En

[
∂̂Ln
∂θ

]
= En

[
∂L
∂θ

∣∣∣∣
θ=θn

− en

]
= ∇R(θn)− En [en] , (A-31)

and

En

∥∥∥∥∥ ∂̂Ln∂θ

∥∥∥∥∥
2
 =

∥∥∥∥∥En
[
∂̂Ln
∂θ

]∥∥∥∥∥
2

+ tr

(
Covn

(
∂̂Ln
∂θ

))
. (A-32)

Suppose ‖∇R(θn)‖ ≤ G almost surely, and then we have∥∥∥∥∥En
[
∂̂Ln
∂θ

]∥∥∥∥∥
2

= ‖∇R(θn)− En [en]‖2 ≤ (G+ ε)2. (A-33)

Moreover, by the properties of covariance,

tr

(
Covn

(
∂̂Ln
∂θ

))
= tr

(
Covn

(
∂L
∂θ

∣∣∣∣
θ=θn

− en

))

= tr

(
Covn

(
∂L
∂θ

∣∣∣∣
θ=θn

))
+ tr (Covn (en))− 2 tr

(
Covn

(
∂L
∂θ

∣∣∣∣
θ=θn

, en

))

≤ 2 tr

(
Covn

(
∂L
∂θ

∣∣∣∣
θ=θn

))
+ 2 tr (Covn (en)) ,

(A-34)
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where the last inequility comes from

|tr (Cov (a, b))| ≤
∑
i

|Cov (ai, bi)| ≤
∑
i

√
Var (ai)Var (bi) ≤

∑
i

Var (ai) + Var (bi)

2

=
1

2
(tr (Cov (a)) + tr (Cov (b))) .

(A-35)

By the Popoviciu’s inequality on variances [4], the second term in (A-34) can be bounded by dθε2,
i.e.,

tr (Covn (en)) ≤ dθε2, (A-36)
where dθ denotes the dimension of θ. Finally, since the gradient estimator ∂L/∂θ has a bounded
covariance, there exists M > 0, s.t.

tr

(
Covn

(
∂L
∂θ

∣∣∣∣
θ=θn

))
≤M, almost surely. (A-37)

Combining (A-30), (A-31), (A-32), (A-33), (A-34), and (A-37), we have

En [R(θn+1)] ≤ R(θn)− ηn ‖∇R(θn)‖2 + ηn 〈∇R(θn),En [en]〉+Kη2n,

≤ R(θn)− ηn ‖∇R(θn)‖2 + ηn ‖∇R(θn)‖ ‖En [en]‖+Kη2n

≤ R(θn)− ηn ‖∇R(θn)‖2 + ηnGε+Kη2n,

(A-38)

where K = `
(
(G+ ε)2 + 2M + 2dθε

2
)
/2 is a constant. Substitute (A-38) into Eq. (A-29), and it

becomes

E1∼n [R(θn+1)] ≤ E1∼n−1 [R(θn)]− ηnE1∼n−1

[
‖∇R(θn)‖2

]
+ ηnGε+Kη2n. (A-39)

By taking a summation over the first N steps, we have

E1∼N

[
N∑
n=1

ηn ‖∇R(θn)‖2
]
≤ R(θ1)− E1∼N [R(θN+1)] +Gε

N∑
n=1

ηn +K

N∑
n=1

η2n

≤ R(θ1)−m+Gε

N∑
n=1

ηn +K

N∑
n=1

η2n,

(A-40)

where m = infθR(θ) sinceR is lower-bounded. Dividing a factor of
∑N
n=1 ηn, we have

E1∼N

[∑N
n=1 ηn‖∇R(θn)‖2∑N

n=1 ηn

]
≤ Gε+ R(θ1)−m∑N

n=1 ηn
+K

∑N
n=1 η

2
n∑N

n=1 ηn
. (A-41)

Since ηn = O(1/
√
n), it follows that

N∑
n=1

ηn = O
(√

N
)
,

∑N
n=1 η

2
n∑N

n=1 ηn
= O

(
logN√
N

)
. (A-42)

Combining (A-41) and Eq. (A-42) concludes the proof.

Remark 1. The assumption thatR has almost-surely bounded gradient at {θn}Nn=0 is reasonable.
Because of the existence of norm-based regularizations, e.g., weight decay, we can assume θ is almost
surely optimized within a compact set in the parameter space. If we further assumeR is continuously
differentiable, the almost-sure boundedness of ‖∇R‖ within the compact set follows its continuity.

Remark 2. We justify the assumption that the gradient in Eq. (4) has a bounded covariance. For
the SGD algorithm, the stochasticity of the gradient in Eq. (4) comes from the random sampling of
the training example (or the training mini-batch) from the dataset. Since there are finite samples in
the training set, the covariance of Eq. (4) remains finite. Moreover, as Theorem 2 only considers a
finite training schedule, i.e., N steps, the possible combination of the selected sample (or mini-batch)
at each step is still finite (even though its number grows combinatorially). Therefore, it is reasonable
to assume the gradient in Eq. (4) has a bounded covariance.
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4 Experiment Details

In this section, we introduce the experimental settings of this paper in detail and discuss some
additional findings of training implicit models.

4.1 Synthetic Setting

For the synthetic setting, the following model is used:

h∗ = F (h∗ + u) (A-43)

where F is an 1-layer network with spectral normalization [5], and u, h∗ ∈ RN×D. The loss L is
given by the mean squared error (MSE) between h∗ and y. We choose N = 32 and D = 128 and
randomly sample 50000 data pairs (u, y) to compute the gradient ∂L/∂u.

We generate a symmetric weight matrix for the network and constrain the Lipschitz constant Lh
to a given level using spectral normalization. For the visualization in the main paper, we adopt
Lh = 0.9. For the additional visualization on the stability of the solver in Fig. 1, we choose Lh from
{0.9, 0.99, 0.999, 0.9999}.
To solve h∗, we employ the fixed-point iteration as the solver. For the synthetic setting, we use 100
fixed-point iterations to obtain h∗ that satisfies the relative error ‖h∗ − F(h∗,u)‖/‖h∗‖ ≤ 10−5.
For the visualization in Fig. 1, we also apply 100 fixed-point iterations for each Lh.

4.2 Ablation Setting

For the ablation setting, we use the original MDEQ-Tiny [6] model (170K parameters) on CIFAR-10
[7] classification without any architecture modification. Therefore, the performance gain upon the
state-of-the-art method is due to the improved training efficiency thanks to the proposed phantom
gradient.

The experiments are conducted without data augmentation as in [6]. The training schedule, batch
size, cosine learning rate annealing strategy, and other hyperparameters are kept unchanged for all
ablation experiments. We also follow the official training protocol of MDEQ1 to reproduce its result.

For the training protocol without pretraining, we substitute the unrolled pretraining stage by implicit
differentiation. For the training protocol without Dropout, we remove the variational Dropout from
the model. We also experiment with the SGD optimizer under the standard hyperparameter setting,
i.e., a learning rate of 0.1, a momentum of 0.9, and a weight decay of 0.0001.

We train the MDEQ model using the two types of phantom gradient with the SGD optimizer (under the
hyperparameters mentioned above) and other hyperparameters unchanged from the original setting.
The model is trained without shallow-layer pretraining, suggesting an O(k) and O(1) peak memory
usage for the unrolling-based and the Neumann-series-based phantom gradient, respectively. In both
cases, the damped fixed-point iteration starts at the solution obtained by the Broyden’s method.

We monitor the Jacobian spectral radius ρ(∂F/∂h) during training for both forms of phantom
gradient. It shows that the radius can grow without restriction for the state-free NPG when the
phantom gradient includes high-order terms and cannot exactly match the gradient of a computational
sub-graph. A similar phenomenon is observed when using the state-free gradient estimate from
implicit differentiation with considerable numerical errors in the forward and backward passes [8].
On the contrary, for the state-dependent UPG, the Jacobian spectral radius is kept within a reasonable
region during training thanks to the implicit Jacobian regularization.

4.3 Experiments at Scale

For large-scale experiments, we adopt MDEQ and MDEQ-Small on the CIFAR-10 [7] and ImageNet
[9] benchmarks, respectively, DEQ (PostLN) [10] and DEQ (PreLN) [8] on the Wikitext-103 [11]
dataset, and IGNN [12] on graph classification (COX2, PROTEINS) and node classification (PPI)
benchmarks.

1Code available at https://github.com/locuslab/mdeq.
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Figure 1: Visualization of gradient solvers under different Lh.

ConvNet-based Implicit Models on Vision Datasets. To train MDEQ on CIFAR-10, we employ
the UPG with λ = 0.5 and k = 5, i.e., A5,0.5. Besides, we use the SGD optimizer with a learning
rate of 0.1, a momentum of 0.9, and a weight decay of 0.0001, and keep other experimental settings
unchanged, including the number of training epochs, the batch size, the learning rate annealing
strategy, etc.

We adopt two settings on ImageNet. The first setting follows the practice of [6] to pretrain the model
for the same number of epochs. Afterwards, the UPG withA5,0.6 is used to train the model for the
remaining training schedule. This setting achieves a test accuracy of 75.2%. In the second setting,
we adopt the UPG to train the implicit model throughout, leaving the UPG to automatically transit
from the pretraining stage to the regular training stage. This setting demonstrates a test accuracy of
75.7%. The difference confirms that the automatic transition property of UPG helps alleviate the
burden of hyperparameter tuning, i.e., the number of steps in the pretraining stage, and benefit to the
final performance as well.

We also verify the implicit Jacobian regularization from the UPG on ImageNet. By calculating the
Jacobian spectral radius of the trained model on the validation set through the power method, we
find that the radius ρ(∂Fλ/∂h) is retained around 1, although the radius of the equilibrium module
ρ(∂F/∂h) usually exceeds 1 (but also remains bounded). This finding provides us with a potential
path to explain why the damping operation can enhance the naive unrolling to match or even surpass
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the standard implicit differentiation for ConvNets on vision tasks. We conjecture that the damping
operation allows the equilibrium module to evolve within a wider range, e.g., ρ(∂F/∂h) > 1, which
contributes to its better representative capacity, while maintaining stability regarding the backward
pass, i.e., ρ(∂Fλ/∂h) ≈ 1.

Transformer-based Implicit Models on Language Datasets. For language modeling on Wikitext-
103, we follow the official training protocol of the DEQ model [10]. However, the UPG leads to
inferior generalization capacity on the test set while the training loss is similar to that of implicit
differentiation. The NPG even fails to optimize the DEQ (PostLN) model unless the explicit Jacobian
regularization [8] or the adaptive damping factor, e.g., λ = 1/ρ(∂F/∂h), is applied.

The performance discrepancy of different implicit models suggests the following perspective. The
loss landscape and training strategy are the two sides of the same coin. Architecture, dataset, and
loss function jointly define the loss landscape that has considerable impact on the preferable training
strategy. For the ConvNet-based implicit model trained on vision tasks, the loss landscape is likely
more regular so that the model trained on the phantom gradient can extricate itself from severe
overfitting and achieve remarkable performance with acceleration despite the biased gradient estimate
(which means the approximation error cannot be easily zeroed out by taking the expectation over
the data distribution). For the Transformer-based implicit model on language processing tasks, in
contrast, it is more arduous to employ the phantom gradient due to a lack of regularity of the loss
landscape, thus inspiring us to supplement with additional regularization on the loss landscape.

To this end, we introduce the explicit Jacobian regularization (JR) [8] to strengthen the regularity
of the loss landscape. The training protocol follows the official source of DEQ with JR2. Note that
with the implicit Jacobian regularization effect of the UPG, the weight of the explicit JR can be
significantly reduced, e.g., from 2.0 to 0.1, and the training stability is still maintained. Meanwhile,
the explicit JR can also play a vital role in alleviating overfitting for the UPG. Combining the UPG
with explicit JR demonstrates an impressive test perplexity of 24.4 with 2.2× training acceleration
(with 14 forward Broyden iterations), and a test perplexity of 24.0 with 1.7× training acceleration
(with 20 forward Broyden iterations).

Our results indicate that it is more tactful to understand the training strategy combined with the loss
landscape instead of only focusing on the former but neglecting the latter.

GNN-based Implicit Models on Graph Datasets. To conduct experiments on graph datasets,
we follow the default architectures and training settings of the IGNN model [12]3. We employ
different damping factor λ for both graph classification and node classification. In the experiments,
we encounter the training stability issue for IGNN on the PPI node classification task. Specifically,
the IGNN model suffers from training collapse when using either the UPG or the exact gradient by
implicit differentiation. Hence the best result from three runs is reported for this task. We conjecture
that the stability issue comes from hyperparameter selection regarding the projected gradient in
IGNN, since it is not easy to figure out the proper hyperparameters for well-posedness. For graph
classification, the stability issue is not observed.

4.4 Additional Analysis on the Gradient Solver

To illustrate the vulnerability the gradient solver for implicit differentiation in the ill-conditioned
cases, we provide the optimization dynamics in Fig. 1 and its comparison with the phantom gradient
in the synthetic setting. We plot (1) the optimization objective ‖(I − ∂F/∂h)ĝ − ∂L/∂h‖, (2) the
relative error ‖(I − ∂F/∂h)ĝ− ∂L/∂h‖/‖ĝ‖, (3) the cosine similarity between the solved gradient
ĝ (or the phantom gradient) and the exact gradient g, and (4) the L1 norm of the solved gradient ĝ,
the phantom gradient, and the exact gradient g. Here, in the context of optimization, ĝ is the solution
of the backward linear system solved by the Broyden’s method.

Fig. 1 shows that the gradient solver diverges in ill-conditioned situations. It is shown that the
phantom gradient demonstrates much better stability, especially in the extremely ill-conditioned
cases, e.g., Lh = 0.9999. As for the Broyden’s method, more optimization steps do not necessarily
make the solved gradient more aligned to the exact gradient, as indicated by the oscillating cosine

2Code available at https://github.com/locuslab/deq.
3Code available at https://github.com/SwiftieH/IGNN.

10

https://github.com/locuslab/deq
https://github.com/SwiftieH/IGNN


similarity. Besides, the norm of the solved gradient also tends to explode in the optimization process,
while the phantom gradient maintains a moderate norm throughout.
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