
A Simulation-Based Inference in HEP

The primary motivation for producing simulations with Monte Carlo (MC) generators, and potentially
by machine learning (ML) generators as well, in experimental high energy physics is to develop
likelihood models for new fundamental physics theories, with unknown values of parameters of
interest [46, 47]. These models are compared with experimental data, such as that collected at the
LHC, to perform hypothesis tests of the theories as well as estimate and develop limits and confidence
intervals for physical parameters [47, 48]. Increasing the number of simulations and their accuracy
can reduce the statistical uncertainties in our models, thus allowing for higher precision measurements
and potential discovery of new physics [49, 50].

In practice, in each analysis we perform rigorous checks of our simulations, including comparisons
in “control regions” (selected portions of the data with a known composition) to check for MC
discrepancies with real data. Mismatches are corrected via reweighting the events, i.e. unrealistic
simulated jets will be given less weight in the overall analysis, and are factored into the final
uncertainties in the analysis results. The same procedure should be followed for data created by
generative ML methods, however, validation before this step using the metrics proposed in Sec. 3,
particularly the W1 scores, should mitigate the possibilities of such outliers.

B JetNet Generation

The so-called parton-level events are first produced at leading-order using MAD-
GRAPH5_aMCATNLO 2.3.1 [51] with the NNPDF 2.3LO1 parton distribution functions [52]. To
focus on a relatively narrow kinematic range, the transverse momenta of the partons and undecayed
gauge bosons are generated in a window with energy spread given by �pT/pT = 0.01, centered
at 1TeV. These parton-level events are then decayed and showered in PYTHIA 8.212 [5] with the
Monash 2013 tune [53], including the contribution from the underlying event. For each original
particle type, 200,000 events are generated. Jets are clustered using the anti-kT algorithm [54],
with a distance parameter of R = 0.8 using the FASTJET 3.1.3 and FASTJET CONTRIB 1.027
packages [55, 56]. Even though the parton-level pT distribution is narrow, the jet pT spectrum is
significantly broadened by kinematic recoil from the parton shower and energy migration in and
out of the jet cone. We apply a restriction on the measured jet pT to remove extreme events outside
of a window of 0.8TeV < pT < 1.6TeV for the pT = 1TeV bin. This generation is a significantly
simplified version of the official simulation and reconstruction steps used for real detectors at the
LHC, so as to remain experiment-independent and allow public access to the dataset.

C Point Cloud Generative Models

Apart from the GAN models discussed in Sec. 3, there are several published generative models for
point clouds which we argue are not applicable to jets.

C.1 ShapeNet Point Clouds

A number of successful generative models exploit a key inductive bias of ShapeNet-based clouds:
that the individual distributions of sampled points conditioned on a particular object are identical and
independent (the i.i.d assumption). This assumption allows for hierarchical generative frameworks,
such as Point-Cloud-GAN (PCGAN) [23], which uses two networks: one to generate a latent object-
level representation, and a second to sample independent points given such a representation. The
PointFlow [24] and Discrete PointFlow [25] models use a similar idea of sampling independently
points conditioned on a learnt latent representation of the shape, but with a variational autoencoder
(VAE) framework and using normalizing flows for transforming the sampled points.

This hierarchical-sampling approach is appealing for ShapeNet clouds, however, as discussed in Sec. 2
the key i.i.d. assumption is not applicable to jets with their highly correlated particle constituents. In
fact, in contrast to ShapeNet objects which have a structure independent of the particular sampled
cloud, jets are entirely defined by the distribution of their constituents.

Another model, ShapeGF [26], uses an approach of again sampling points independently from a
prior distribution, but transforming them to areas of high density via gradient ascent, maximizing a
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Figure 5: Comparison of real and PCGAN-generated distributions for a subset of jet and particle
features. Top: gluon jet features, Middle: light quark jets, Bottom: top quark jets.

learnt log-density concentrated on an object’s surface. This approach suffers as well from the i.i.d.
assumption in the context of jets, and additionally, unlike for ShapeNet point clouds, there is no such
high-density region in momentum-space where particles tend to be concentrated, so learning and
maximizing a log-density is not straightforward.

To support our overall claim of the inviability of the i.i.d. assumption for particle clouds, we train
a PCGAN model on JetNet and show the produced feature distributions in Fig. 5. We can see, as
expected, while this network is partially reproducing the particle feature distributions, it is entirely
unable to learn the jet-level structure in particle clouds.

C.2 Molecular Point Clouds

3D molecules are another common point-cloud-style data structure, and there have been developments
in generative models in this area as well. Kohler et al. [27] introduce physics-motivated normalizing
flows equivariant to rotations around the center of mass, i.e. the SO(N) symmetries, for generating
point clouds. This is appealing as normalizing flows give access to the explicit likelihood of generated
samples, and having an architecture equivariant to physical symmetries such as 3D rotations can
improve the generalizability and interpretability of the model. Since jets are relativistic, however, we
require an architecture equivariant to the non-compact SO(3, 1) Lorentz group, to which this model
has not been generalized yet. Simm et al. [28] present a reinforcement-learning-based approach for
generating 3D molecules, using an agent to iteratively add atoms to a molecule and defining the
reward function as the energy difference between the new molecule and the old with the new atom
at the origin. This reward function is not directly applicable to jets. where particle distributions
are based on the QCD dynamics rather than on minimizing the total energy. Finally, Gebauer et
al. [29] introduce G-SchNet, an autoregressive model for producing molecules represented as point
clouds, iteratively adding one atom at a time based on the existing molecule. Their iterative procedure
however was proposed for point clouds of at most nine atoms, and does not scale well in terms of
time to larger clouds.

Overall, all the models discussed heavily incorporate inductive biases which are specific to their
respective datasets and don’t apply to JetNet. However, they are extremely interesting approaches
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nonetheless, and adapting them with jet-motivated biases should certainly be explored in future work.
Indeed, a significant contribution of our work is publishing a dataset which can facilitate and hopes
to motivate such development.

D Training and Implementation Details

PyTorch code and trained parameters for models in Table 2 are provided in the MPGAN reposi-
tory [43]. Models were trained and hyperparameters optimized on clusters of NVIDIA GeForce RTX
2080 Ti, Tesla V100, and A100 GPUs.

D.1 MPGAN

We use the least squares loss function [57] and the RMSProp optimizer with a two time-scale
update rule [39] with a learning rate (LR) for the discriminator three times greater than that of the
generator. The absolute rate differed per jet type. We use LeakyReLU activations (with negative slope
coefficient 0.2) after all MLP layers except for the final generator and discriminator outputs where
tanh and sigmoid activations respectively are applied. We attempted discriminator regularization to
alleviate mode collapse via dropout [58], batch normalization [22], a gradient penalty [59], spectral
normalization [60], adaptive competitive gradient descent [61] and data augmentation of real and
generated graphs before the discriminator [62–64]. Apart from dropout (with fraction 0.5), none of
these demonstrated significant improvement with respect to mode dropping or cloud quality.

We use a generator LR of 10�3 and train for 2000 epochs for gluon jets, 2⇥ 10�3 and 2000 epochs
for top quark jets, and 0.5⇥ 10�3 and 2500 epochs for light quark jets. We use a batch size of 256
for all jets.

D.2 rGAN, GraphCNNGAN, TreeGAN, and PointNet-Mix

For rGAN and GraphCNNGAN we train two variants: (1) using the original architecture hyperpa-
rameters in Refs. [30, 31] for the 2048-node point clouds, and (2) using hyperparameters scaled down
to 30-node clouds—specifically: a 32 dimensional latent space, followed by layers of 64, 128, and 90
nodes for r-GAN, or followed by two graph convolutional layers with node features sizes of 32 and 24
respectively for GraphCNN-GAN. The scaled-down variant performed better for both models, and its
scores are the ones reported in Table 2. For TreeGAN, starting from single vertex—in analogy with a
jet originating from a single particle—we use five layers of up-sampling and ancestor-descendant
message passing, with a scale-factor of two in each and node features per layer of 96, 64, 64, 64, and
64 respectively. LRs, batch sizes, loss functions, gradient penalties, optimizers, ratios of critic to
generator updates, activations, and number of epochs are the same as in the original paper and code.
We use the architecture defined in [34] for the PointNet-Mix discriminator.

D.3 FPND

Apart from the number of input particle features (three in our case, excluding the mask feature), we
use the original ParticleNet architecture in Ref. [10]. We find training with the Adam optimizer, LR
10�4, for 30 epochs outperformed the original recommendations on our dataset. Activations after the
first fully connected layer, pre-ReLU, are used for the FPND measurement.

D.4 PCGAN

We use the original PCGAN implementation for the sampling networks and training, with a 256-
dimensional latent object representation. For the latent code GAN we use a 3 layer fully connected
network for both the generator, with an input size of 128 and intermediate layer sizes of 256 and
512, and discriminator, with intermediate layer sizes of 512 and 256, trained using the Wasserstein-
GAN [65] loss with a gradient penalty.
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Figure 6: Particle prelT and relative jet mass distributions of real jets and those generated by MPGAN
without our masking strategy. Left: gluon, right: light quark jets. We see that while for gluon
jets the generator learns distributions correctly, it struggles to learn the discontinuous spike, due to
the zero-padded particles, in the light quark prelT distribution. This also leads to a distorted mass
distribution.

E Masking Strategies

In JetNet, jets with fewer than 30 particles are zero-padded to fill the 30-particle point cloud.
Such zero-padded particles pose a problem for the generator, which is not able to learn this sharp
discontinuity in the jet constituents (Fig. 6).
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Figure 7: The four alternative masking strategies which we test.

To counter this issue, we experiment with five masking strategies, out of which the one described in
Sec. 4 was most successful. The four alternatives, which all involve the generator learning the mask
without any external input, are shown in Fig. 7.
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Figure 8: Loss curve of a training on light quark jets with masking strategy 3, typical of loss curves
with all four strategies.

Strategy 1 treats the mask homogeneously as an extra feature to learn. A variation of this weights the
nodes in the discriminator the mask. In strategy 2, a mask is calculated for each generated particle
as a function of its prelT , based on an empirical minimum cutoff in the dataset. In particular, both a
Heaviside-step-function and a continuous mask function as in the figure are tested. The standard MP
discriminator, as described in Sec. 4, is used. Strategy 3 sees the generator applying an FC layer per
particle in the initial cloud to learn their respective masks, with both the MP discriminator, as well
as a variant with the number of unmasked nodes in the clouds added as an extra feature to the FC
layer. In strategies 1 and 3 we test both binary and continuous masks. Finally, in strategy 4, we train
an auxiliary network to choose a number of particles to mask (as opposed to sampling from the real
distribution), which is then passed into the standard MP generator.

We find that all such strategies are unable to produce accurate light quark jets, and in fact trainings for
each diverge in the fashion depicted in Fig. 8, even using each discriminator regularization method
mentioned in App. D). We conclude that learning the number of particles to produce is a significant
challenge for a generator network, but is a relatively simple feature with which to discriminate
between real and fake jets. To equalize this we use the strategy in Sec. 4 where the number of
particles to produce is sampled directly from the real distribution, removing the burden of learning
this distribution from the generator network.

F Jet Images

Figs. 9–11 show samples of real and generated “jet images”: discretized representations of jets in the
angular-coordinate-plane.
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Figure 9: Random samples of discretized images in the ⌘rel ��rel plane, with pixel intensities equal
to particle prelT , of real and generated gluon jets (left), and an average over 10,000 such sample images
(right).
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Figure 10: Random samples of discretized images in the ⌘rel ��rel plane, with pixel intensities equal
to particle prelT , of real and generated light quark jets (left), and an average over 10,000 such sample
images (right).
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Figure 11: Random samples of discretized images in the ⌘rel ��rel plane, with pixel intensities equal
to particle prelT , of real and generated top quark jets (left), and an average over 10,000 such sample
images (right).
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