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A Asymptotic approximations

To derive the bias of the Bayesian mean, we first derive the bias of the maximum-likelihood estimator
(MLE), after which we express the Bayesian mean as a function of the MLE. We assume that the
prior, ⇡(x), and the likelihoods of the internal signals, x 7! fi(ri|x), are smooth functions, so that
all the derivatives taken below are well defined.

A.1 Bias of the maximum-likelihood estimator

Here we present the main steps of a derivation of the bias of the MLE. Our derivation is directly
inspired by Cox and Snell (1968) (Ref. [21]). Let x be the stimulus. As in the main text,
r = (r1, . . . , rn) is a vector of n samples drawn independently from n distributions, fi(ri|x).
We use the following notations:

Li(x) = ln fi(ri|x), (17)

and L(x) =
nX

i=1

Li(x). (18)

We start with well-known results. First, we necessarily have EL0
i(x) = 0 at any point x. Second, the

Fisher information of the variable ri is:

Ii(x) = VarL0
i(x) = E[L0

i(x)2] = �EL00
i (x), (19)

and the Fisher information of the vector r is

I(x) = VarL0(x) =
nX

i=1

Ii(x) = E[L0(x)2] = �EL00(x). (20)

We assume that the sequences of random variables (L0
1(x), . . . , L0

n(x)) and (L00
1(x), . . . , L00

n(x))
satisfy the conditions of the Lyapunov central limit theorem1. The central limit theorem provides
convergence results for the sums L0(x) =

P
L0
i(x) and L00(x) =

P
L00
i (x), as n goes to infinity:

L0(x)p
I(x)

d�! N(0, 1), (21)

1 Lyapunov central limit theorem: let (X1, . . . , Xn) be a sequence of independent random variables with
finite expectation and variance, and let X =

P
i Xi and s2n =

P
i VarXi. If there exists � > 0 such that

limn!1
1

s2+�
n

P
i E[|Xi �EXi|2+�] = 0, then (X �EX)/sn converges in distribution to the standard normal

distribution, N(0, 1).
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and
L00(x) + I(x)

VarL00(x)
d�! N(0, 1). (22)

Thus
L0(x) = O(

p
n) (23)

and
L00(x) = �I(x) + O(

p
n). (24)

Note that I(x) and L(x) and its derivatives are of order n.
Let x⇤ be the maximum-likelihood estimator. We have L0(x⇤) = 0, and thus approximately

L0(x) + (x⇤ � x)L00(x) = 0. (25)
This results in

x⇤ � x =
L0(x)

�L00(x)
=

L0(x)

I(x)
+ O

⇣ 1

n

⌘
. (26)

Thus
E(x⇤ � x) = O

⇣ 1

n

⌘
, (27)

and
E(x⇤ � x)2 =

1

I(x)
+ O

⇣ 1

n3/2

⌘
. (28)

We now expand L0(x⇤) to a higher order:

L0(x) + (x⇤ � x)L00(x) +
1

2
(x⇤ � x)2L000(x) = 0, (29)

where L000 is the third derivative of L. Taking the expected value, we obtain

E(x⇤�x)EL00(x)+Cov
⇣
x⇤�x, L00(x)

⌘
+

1

2
E(x⇤�x)2EL000(x)+

1

2
Cov

⇣
(x⇤�x)2, L000(x)

⌘
= 0.

(30)
We examine the orders of magnitude, in terms of powers of n, of the elements in this equation. We
find (dropping temporarily the dependence on x of L and I)

Cov
⇣
x⇤ � x, L00

⌘
=

1

I
EL0L00 + O

⇣ 1p
n

⌘
, (31)

Cov
⇣
(x⇤ � x)2, L000

⌘
= O

⇣ 1

n

⌘
, (32)

and E(x⇤ � x)2EL000 =
1

I
EL000 + O

⇣ 1p
n

⌘
. (33)

Substituting these relations in Eq. (30) we have

�IE(x⇤ � x) +
1

I
EL0L00 +

1

2I
EL000 + O

⇣ 1p
n

⌘
= 0, (34)

and thus

E(x⇤ � x) =
1

I2

 
EL0L00 +

1

2
EL000

!
+ O

⇣ 1

n3/2

⌘
. (35)

We note that EL000 =
P

i EL000
i , and, as the samples are independently drawn, EL0L00 =

P
i EL0

iL
00
i .

Moreover, just as with the relation E[L0
i(x)2] = �EL00

i (x), there are relations between the means of
higher powers and higher derivatives of Li. In particular, one can show that

E[L0
i(x)L00

i (x)] =
1

2
[I 0i(x) � Ji(x)], (36)

where I 0i(x) is the derivative of Ii(x) and Ji(x) = E[L0
i(x)3]. Another relation is

E[L000
i (x)] =

1

2
Ji(x) � 3

2
I 0i(x). (37)

Substituting these relations in Eq. (35) results in the following expression for the bias of the
maximum-likelihood estimator:

E(x⇤ � x) = �I 0(x) + J(x)

4I2(x)
+ O

⇣ 1

n3/2

⌘
, (38)

where J(x) =
P

i Ji(x) = E[L0(x)3].

2



A.2 Bias of the Bayesian mean

As shown in Eq. (2), the Bayesian mean is the ratio of two integrals of the type
R
g(x̃)eL(x̃) dx̃,

which is amenable to a Laplace approximation. Let " = x̃ � x⇤. Taylor expansions of L(x̃) and g(x̃)
at x⇤ yield the approximations

L(x̃) = L(x⇤) +
1

2
L00(x⇤)"2 +

1

6
L000(x⇤)"3 +

1

24
L(4)(x⇤)"4 + O(n"5), (39)

and thus

eL(x̃) = eL(x⇤)e
1
2L

00(x⇤)"2
⇣
1 +

1

6
L000(x⇤)"3 +

1

24
L(4)(x⇤)"4 + O(n"5)

⌘
, (40)

and
g(x̃) = g(x⇤) + g0(x⇤)" +

1

2
g00(x⇤)"2 +

1

6
g000(x⇤)"3 +

1

24
g(4)(x⇤)"4 + O("5), (41)

where L(4) if the fourth derivative of L, and g0, g00, g000 and g(4) are the first to fourth derivatives of
g. The product of the right-hand sides of the last two equations is a polynomial of " multiplied by a
Gaussian function of ". Taking the integral of this product, we find
Z

g(x̃)eL(x̃) dx̃ =

"
g(x⇤)+

g00(x⇤)

�2L00(x⇤)
+

1
4g(x

⇤)L(4)(x⇤) + g0(x⇤)L000(x⇤)

2(L00(x⇤))2
+O(

1

n2
)

#
eL(x⇤)

p
2⇡p

|L00(x⇤)|
.

(42)
We use this approximation in the expression of the Bayesian mean (Eq. (2)), with g(x) = x⇡(x) for
the numerator, and g(x) = ⇡(x) for the denominator. We obtain an expression of the Bayesian mean
as a function of the MLE, as

x̂ = x⇤ +
1

�L00(x⇤)

⇡0(x⇤)

⇡(x⇤)
+

1

2

L000(x⇤)

(L00(x⇤))2
+ O(1/n2). (43)

This equation is consistent with the result reported by Ref. [34]. We can further approximate the
right-hand side by taking the functions involved at the point x instead of at the MLE x⇤. We have

L00(x⇤) = L00(x) + O(
p
n), (44)

1

�L00(x⇤)
=

1

L00(x)
+ O(1/n3/2), (45)

⇡0(x⇤)

⇡(x⇤)
=

⇡0(x)

⇡(x)
+ O(1/

p
n), (46)

and
L000(x⇤)

(L00(x⇤))2
=

L000(x)

(L00(x))2
+ O(1/n3/2), (47)

thus
x̂ = x⇤ +

1

�L00(x)

⇡0(x)

⇡(x)
+

1

2

L000(x)

(L00(x))2
+ O(1/n3/2). (48)

In addition, using Eq. (24),
1

L00(x)
= � 1

I(x)
+ O(1/n3/2), (49)

and
L000(x)

(L00(x))2
=

EL000(x)

I2(x)
+ O(1/n3/2), (50)

thus
x̂ = x⇤ +

1

I(x)

⇡0(x)

⇡(x)
+

1

2

EL000(x)

I2(x)
+ O(1/n3/2). (51)

We have thus written the Bayesian mean, x̂, as the MLE, x⇤, corrected by a function of the true
stimulus, x. Substituting EL000(x) (see Eq. (37)), we obtain

x̂ = x⇤ +
1

I(x)

⇡0(x)

⇡(x)
+

1

4

J(x)

I2(x)
� 3

4

I 0(x)

I2(x)
+ O(1/n3/2). (52)

Using the expression of the bias of the MLE, derived above (Eq. (38)), we obtain, in expectation,

Ex̂ = x +
1

I(x)

⇡0(x)

⇡(x)
� I 0(x)

I2(x)
+ O(1/n3/2). (53)

The second and third term constitute our approximation to the bias of the Bayesian mean, b(x)
(Eq. (3)). Equation (53) is consistent with the result (3.10) of Ref. [18].
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A.3 Variance and expected squared error of the Bayesian mean

Using Eqs. (52) and (53), we derive an approximation to the squared deviation of x̂ from its mean, as

(x̂ � Ex̂)2 = (x⇤ � x)2 + O(1/n3/2). (54)

(The orders of additional terms are powers of 1/n greater than or equal to 3/2.) From Eq. (28) it
follows that the variance of the Bayesian mean is

E(x̂ � Ex̂)2 =
1

I(x)
+ O(1/n3/2). (55)

Finally, we consider the expected squared error of the Bayesian mean,

E(x̂ � x)2 = E(x̂ � x⇤)2 + 2E(x̂ � x⇤)(x⇤ � x) + E(x⇤ � x)2. (56)

The first two terms are of order 1/n2, and the third is given by Eq. (28). Thus

E(x̂ � x)2 =
1

I(x)
+ O(1/n3/2). (57)

B The bias of the Bayesian mean cannot be ‘globally anti-Bayesian’

The posterior-mean decoder assigns to any internal representation r the decoded value x̂(r) ⌘ E[x|r],
where the expectation is over the joint distribution for x and r implied by the prior ⇡ and the encoding
rule. This decoding rule, together with the prior and the encoding rule, then defines a joint distribution
for x, r and x̂. The law of iterated expectations implies that E[E[x|r] |x̂(r) = x̂] = E[x|x̂], where
the outer expectation on the left integrates over the marginal joint distribution for r and x̂, and the
expectation on the right integrates over the marginal joint distribution for x and x̂. Hence posterior-
mean decoding requires that

E[x |x̂] = x̂ (58)
for all x̂, regardless of the nature of the prior and the encoding rule.

We will say that the bias function b⇤(x) is globally anti-Bayesian if there exists some measure x̄
of the central tendency under the prior (this might be the prior mode, but it could also be the prior
median, the prior mean, the geometric mean, or any other point in the interior of the support) such
that b⇤(x) < 0 for all x < x̄ and b⇤(x) > 0 for all x > x̄ (so that the estimate is repelled from the
value x̄). Note that in the case of a unimodal prior (one with ⇡0(x) > 0 for all x < x̄ and ⇡0(x) < 0
for all x > x̄, where x̄ is the mode), and the encoding rule (12), our asymptotic approximations
(15)–(16) imply that the bias function should be globally anti-Bayesian whenever � > 1.

But this property is inconsistent with Eq. (58). Suppose that the bias is globally anti-Bayesian. It
follows that E[x̂ � x̄ |x] must be greater than x � x̄ whenever the latter quantity is positive, and
smaller than it whenever the latter quantity is negative; hence one must have

E[(x̂ � x̄)2 |x] > (x � x̄)2 (59)

for any x 6= x̄. Taking the expectation of both sides of this inequality under the prior for x, and again
using the law of iterated expectations, we see that we must have

E[(x̂ � x̄)2] = E[E[(x̂ � x̄)2 |x]] > E[(x � x̄)2] (60)

in the case of any prior that does not place the entire probability mass at x = x̄.

At the same time, posterior-mean decoding requires that we must have

E[(x � x̄)2 |x̂] = (E[x � x̄ |x̂])2 + Var[x � x̄ |x̂] (61)
= (x̂ � x̄)2 + Var[x|x̂] (62)

as a consequence of Eq. (58). Taking the expectation of both sides (integrating over the marginal
distribution for x̂), and again using the law of iterated expectations, we see that we must have

E[(x � x̄)2] = E[E[(x � x̄)2 |x̂]] = E[(x̂ � x̄)2] + E[Var[x|x̂]]. (63)

But this implies that we must have

E[(x � x̄)2] � E[(x̂ � x̄)2], (64)
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contradicting Eq. (60).

Thus the bias cannot have the assumed (anti-Bayesian) sign for all x in the support of the prior,
assuming that x 6= x̄ with positive probability. The numerical solutions shown in Figure 1 for the
cases with � > 1 do not violate this prediction, even when ⌫ is small. When ⌫ = 0.005, we see
in each of the last two columns that the bias is anti-Bayesian (and closely tracks the prediction of
the asymptotic approximation) for all values of x within two standard deviations of the prior mean
(which is also the prior mode); but whereas the asymptotic approximation predicts that the bias should
continue to be anti-Bayesian even for more extreme values of x, our numerical solutions indicate a
sharp change in the sign of the bias for more extreme values of x. When ⌫ is larger, the anti-Bayesian
bias is even stronger for values of x near the prior mean, but the range of values of x for which the
bias is anti-Bayesian is smaller (because the range of values for which the asymptotic approximation
is reliable shrinks).

The validity of the asymptotic approximation for small enough values of ⌫ means that for any value
of x, the value of b⇤(x) approaches the value b(x) given by the asymptotic approximation for all
small enough values of ⌫. In the case of a unimodal prior (as assumed in Figure 1), this means that
b⇤(x) has the anti-Bayesian sign for all small enough values of ⌫. However, this does not mean that
the bias will be globally anti-Bayesian for any value of ⌫, since the convergence of b⇤(x) to the
globally anti-Bayesian function b(x) is not uniform in x. Our numerical results indicate that b⇤(x)
converges relatively rapidly to b(x) for values of x near the prior mean, but more and more slowly
for progressively more extreme values of x.

C Encoding objective functions

To approximate the expected loss in a discrimination task with proportional rewards (Eq. (6)), we
note that asymptotically, the MLE is normally distributed (see Eqs. (21) and (26)), and that it provides
an approximation to the Bayesian mean (see Eq. (52)). We thus approximate the distribution of the
Bayesian-mean estimator x̂i of the stimulus xi by a Gaussian distribution with mean xi and variance
1/I(xi). The difference between two estimates, x̂1 � x̂0, is then normally distributed around x1 �x0,
with variance 1/I(x0) + 1/I(x1). With

z =
x1 � x0q
1

I(x0)
+ 1

I(x1)

, (65)

and denoting by � the standard normal CDF, the probability of erroneously ordering the two stimuli
is �(z) if z < 0, and �(�z) if z > 0, i.e., P (error|x0, x1) = �(�|z|). Fixing x0 (in Eq. (6)), the
expected loss averaged over x1 is approximately

Z
�(�|z|)|z|

⇣ 1

I(x0)
+

1

I(x1)

⌘
⇡(x1) dz (66)

' ⇡(x0)

I(x0)

Z
2�(�|z|)|z| dz (67)

/ ⇡(x0)

I(x0)
. (68)

The expected loss in a discrimination task with proportional rewards (Eq. (6)) is thus proportional to
this quantity averaged over the distribution of x0, i.e., it to the quantity in Eq. (7).

As for the expected loss with constant rewards, it is proportional to
ZZ

P (error|x0, x1)⇡(x0)⇡(x1) dx0 dx1. (69)

With the same approximations as those presented just above, it is straightforward to show that this
quantity is proportional to the approximate expected loss

Z
⇡2(x)p
I(x)

dx, (70)

i.e., Eq. (10) with a = 2 and p = 1.
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Finally, the discrimination threshold is the difference �x0 between two close stimuli x0 and x1 =
x0 + �x0 such that the probability of correctly distinguishing the two is above some given success
rate. We approximate the probability of error, as

P (error|x0, x1 = x0 + �x0) = �

 
�|�x0 |q

1
I(x0)

+ 1
I(x0+�x0 )

!
(71)

' �
⇣

� |�x0 |
r

I(x0)

2

⌘
(72)

' 1

2
� |�x0 |

r
I(x0)

2
�0(0). (73)

The discrimination threshold is thus proportional to 1/
p

I(x0), and its average over the distribution
of stimuli x0 is proportional to: Z

⇡(x0)p
I(x0)

dx0, (74)

i.e., Eq. (10) with a = 1 and p = 1.

D Encoding constraint

The specific constraint on the Fisher information that we consider, q = 1 in Eq. (11), has been used
in the literature, in particular in Ref. [6] for a similar optimization problem. This constraint on the
possible variation in the Fisher information over the sensory space arises in any model where one
assumes that information must be transmitted through a communication channel that produces a noisy
output signal r when an input signal m is supplied, where m (like the physical feature to be encoded)
is unidimensional, though r need not be.

Suppose that the conditional probabilities p(r|m) are given by the biophysics of the channel, but that
both the way that physical states x are encoded as inputs to the channel (i.e., the encoding function
m = m(x)) and the way that an estimate of the physical state is produced using the output signal
(i.e., the decoding function x̂ = x̂(r)) are to be optimized for a given environment (prior distribution
over states x) and decision problem. Then in the case of any differentiable, monotonically increasing
encoding function m(x), the Fisher information at x is equal to

I(x) = h(@ log p(r|m(x))

@x
)2i = h(@ log p(r|m(x))

@m
· m0(x))2i = m0(x)2 · I⇤(m(x)),

where I⇤(m) is the Fisher information of the channel at input signal m (which is independent of
the encoding rule). By reparameterizing the input space (which is innocuous if we allow arbitrary
monotonic encoding rules), we can choose a measure of m such that I⇤(m) = k2 > 0 over the
entire input range of the channel. It then follows that (I(x))1/2 = km0(x), so that for any monotonic
encoding rule,

R
(I(x))1/2dx = k(m̄ � m), where m and m̄ are the lower and upper bounds of the

range of the encoding function. If the properties of the channel require m to remain within a bounded
range, then this range (called the “Thurstone invariant” in Ref. [35]) determines a finite upper bound
for
R

(I(x))1/2dx.

As a concrete example of such a coding problem, we assume in our calculations that the internal
representation r is a real number, drawn from a Gaussian distribution N(m(x), ⌫2), where ⌫ is
independent of the input m(x). This is an example of a communication channel for which the Fisher
information is uniform over the channel input space, I⇤(m) = ⌫�2 for all m. As a more biophysically
realistic example, Ganguli and Simoncelli [36] propose a model with a heterogeneous population
of neurons whose tuning curves “tile” the line corresponding to different values of m, a nonlinear
transformation of the stimulus space (where the nonlinear transformation is to be optimized). In this
example, r is high-dimensional (it corresponds to a vector of spike counts by the different neurons in
the population), but the probabilities p(r|m) are taken as given, and moreover satisfy a translational
invariance that imply (as in our simpler model) that I⇤(m) is uniform over the input space m. The
finiteness of the range of possible values of m for which this uniform Fisher information can be
maintained then follows from the finiteness of the population of neurons (Ganguli and Simoncelli
link the Fisher information of their channel to the local density of the population of neurons in

6



each range of values of m). Ref. [7] derives the same form of resource constraint in a model of a
neuron whose firing rate follows a sigmoidal tuning curve; here the input signal m corresponds to a
monotonic transformation of the neuron’s firing rate (so that the encoding function m(x) is effectively
the neuron’s tuning curve), while the output signal r is the number of spikes produced. In this case,
the bounded range for m reflects a bounded range of possible firing rates for the neuron.

In addition, Wei and Stocker [37] argue that the quantity bounded in this constraint is proportional to
the number of different stimuli that the encoding is able to discriminate, thus providing a measure of
the encoding capacity of a neural system. They note, moreover, that this formulation of the resource
constraint has the attractive feature of being invariant under reparameterization of x.

E Errors in the approximations

Figure 3 shows in logarithmic scale the absolute error of the approximations to the bias and to the
variance of the Bayesian mean.
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Figure 3: Errors in the approximations of the bias and the variance of the Bayesian mean,
under different encodings. First row: Absolute difference between the bias and its approximation,
|b⇤(x) � b(x)|, as a function of the stimulus magnitude, x, with different amounts of encoding noise,
⌫, and with the encoding adapted to four different objectives, each characterized by its constant
�: 2/3, 1, 4/3, and 2 (first to last column). Second row: Absolute difference between the standard
deviation and its approximation, |v⇤(x)
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2 |.

7


