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Abstract

Perception, in theoretical neuroscience, has been modeled as the encoding of
external stimuli into internal signals, which are then decoded. The Bayesian
mean is an important decoder, as it is optimal for purposes of both estimation and
discrimination. We present widely-applicable approximations to the bias and to
the variance of the Bayesian mean, obtained under the minimal and biologically-
relevant assumption that the encoding results from a series of independent, though
not necessarily identically-distributed, signals. Simulations substantiate the accu-
racy of our approximations in the small-noise regime. The bias of the Bayesian
mean comprises two components: one driven by the prior, and one driven by the
precision of the encoding. If the encoding is ‘efficient’, the two components have
opposite effects; their relative strengths are determined by the objective that the en-
coding optimizes. The experimental literature on perception reports both ‘Bayesian’
biases directed towards prior expectations, and opposite, ‘anti-Bayesian’ biases.
We show that different tasks are indeed predicted to yield such contradictory biases,
under a consistently-optimal encoding-decoding model. Moreover, we recover Wei
and Stocker’s “law of human perception” [1], a relation between the bias of the
Bayesian mean and the derivative of its variance, and show how the coefficient
of proportionality in this law depends on the task at hand. Our results provide a
parsimonious theory of optimal perception under constraints, in which encoding
and decoding are adapted both to the prior and to the task faced by the observer.

1 Introduction

Perception has been described in neuroscience as resulting from a two-stage, ‘encoding-decoding’
process. In the encoding stage, an external stimulus elicits in the brain an internal representation (in
the form of a neural activity) whose statistics depend on the physical properties of the stimulus. In the
decoding stage, the brain makes use of the internal representation to achieve a goal: for instance, to
estimate the magnitude of the stimulus, or to choose the best of two stimuli. It is generally understood
that the encoding capacity of the brain is limited, i.e., that there is some amount of imprecision in
the internal representation. The theory of ‘efficient coding’, however, proposes that the encoding is
optimized, under a constraint on the encoding capacity of the brain; and the theory of the ‘Bayesian
brain’ puts forward the notion that the brain optimally decodes the imprecise representation, through
Bayesian inference. Although these two theories emerged separately, recent models of perception
combine the two into a single, normative account of perception [2–9].

There does not seem to be a general consensus, however, as to what objectives the encoding and
decoding stages optimize [10]; in some models (though not all [8]), the two stages optimize different
objectives [6, 9]. Furthermore, in behavioral experiments involving one-dimensional, physical
magnitudes (such as some orientation or length), human perceptual decisions are often biased, and
they exhibit variability (‘noise’). Recent encoding-decoding models of perception account for these
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patterns, and make specific predictions regarding how, in perceptual tasks, the bias and the variance
of the estimates should relate to the distribution of stimuli (the prior). They predict, in addition, that
the bias should be proportional to the derivative of the variance. Although there is substantial support
for this relation in experimental data [1], the value of the constant of proportionality — including its
sign — remains unclear; it is thus uncertain, in a given task, whether the perceptual bias should be
in one direction, or the other. Experimentally, biases towards the stimuli that are more probable as
per the prior [11–14], and the opposite, i.e., biases towards the less probable stimuli (‘anti-Bayesian
percepts’) [6, 15–17], have both been exhibited. Brayanov and Smith [17] simultaneously find the
former in a task involving (implicit) weight estimation, and the latter in a task involving weight
discrimination.

The bias, in encoding-decoding models of perception, is in great part determined by the ‘decoder’,
i.e., the decoding mechanism. A widely used decoder is the Bayesian mean. The Bayesian mean
is the optimal decoder both in estimation tasks (with squared-error loss), and in a common type of
discrimination tasks (which we describe in more detail below). It is, in the general case, biased;
its bias depends on the prior, but also on the characteristics of the encoding. Here, we present an
analytical approximation to the bias of the Bayesian mean, obtained under very general assumptions
about the encoding. In short, the main assumption is that the encoding takes the form of a series of
independent signals. These signals need not be identically distributed. This corresponds, for instance,
to a population of sensory neurons that are each characterized by a different tuning curve. We do
not endeavor to model the individual properties of each neuron in a population: instead, we rely on
the statistical properties resulting from the accumulation of independent signals, as summarized by
their total Fisher information. This approach also provides an approximation to the variance of the
Bayesian mean. A mathematical result similar to that presented here has been derived in the statistics
literature [18], but to our knowledge its importance for perception models has not been noted.

Two terms drive the bias of the Bayesian mean: the variations of the prior across stimulus space,
and the variations of the Fisher information. When the encoding is ‘efficient’, these two terms have
opposite effects. The resulting size — and sign — of the bias will depend on the specifics of the
encoding, and on the objective it optimizes. We show, below, how the encoding objective function
determines the relation between the bias and the prior, the direction of the bias, and the relation of
proportionality between the bias and the derivative of the variance. Our results explain why opposite
biases are obtained in different experiments: when the encoding is optimized for an estimation task
(with squared-error loss), the bias is directed towards the more probable stimuli; while when the
encoding is optimized for discrimination tasks, the opposite is predicted. Finally, we run simulations,
and examine how the accuracy of our asymptotic approximations vary with the amount of imprecision
in the encoding.

2 Bias and variance of the Bayesian mean

We consider an observer presented with a stimulus characterized by a magnitude, x (for instance, its
length, its orientation, or its speed), which is randomly sampled from a prior distribution, π(x). We
assume that the presentation of the stimulus elicits in the brain of the observer an internal represen-
tation, r, as a series of n random signals, r1, . . . , rn, sampled independently from n distributions
conditioned on the stimulus, fi(ri|x). We assume in addition that moments of a sufficient order exist
for all i, and that the rate of growth of these moments is limited in a way that allows us to use a
central limit theorem (see Supplementary Materials). This is the encoding stage. We emphasize that
we assume the signals to be independent, but not necessarily that they are identically distributed.
They can be understood as representing the activity of a neural population in which each neuron
has a different tuning curve, for instance centered on a ‘preferred’ stimulus. (The result we present
is however a mathematical one, and is thus not tied to a particular physical implementation.) The
internal representation, r, is characterized by its Fisher information, I(x), which is the sum of the
Fisher informations of each signal; it is thus of order n. Our calculations rely on the asymptotic
statistical properties resulting from the accumulation of these signals, when n is large. The Fisher
information plays here a central role, by providing a summary measure of the sensitivity of the
representation to the stimulus, effectively abstracting away the specifics of each random signal (such
as, for instance, the individual properties of each neuron in a population).

Turning to the decoding stage, we assume that our observer uses the Bayesian mean. We sketch,
here, the derivation of the approximations to the bias and to the variance of this decoder (a more

2



detailed derivation is presented in the Supplementary Materials). Given an internal representation, r,
the Bayesian mean is

x̂(r) ≡ E[x|r] =
∫
x̃π(x̃)

∏n
i=1 fi(ri|x̃) dx̃∫

π(x̃)
∏n
i=1 fi(ri|x̃) dx̃

. (1)

Fixing r, we denote by L(x) the log-likelihood of a stimulus x, i.e., L(x) =
∑n
i=1 ln fi(ri|x). The

log-likelihood is thus of order n. We rewrite Eq. (1) using the log-likelihood, as

x̂(r) =

∫
x̃π(x̃)eL(x̃) dx̃∫
π(x̃)eL(x̃) dx̃

. (2)

This equation is the ratio of two integrals of the type
∫
g(x̃)eL(x̃) dx̃. With large n, the integrands

are dominated by their values at the point where L(x) reaches its maximum, i.e., at the maximum-
likelihood estimator (MLE). Through Laplace approximations of these integrals, we obtain an
approximate expression of the Bayesian mean, equal to the MLE corrected by a term of order 1/n
that depends on the prior, on the likelihood, and on their derivatives. The MLE has been widely studied
in statistics: approximations to its bias and to its variance, as functions of the Fisher information,
I(x), are well known [19–21]. This allows us to obtain an approximation of order 1/n to the bias of
the Bayesian mean, as

E
[
x̂− x

∣∣x] ' b(x) = 1

I(x)

[
π′(x)

π(x)
− I ′(x)

I(x)

]
, (3)

where x is the true value of the stimulus, and π′ and I ′ are the derivatives of the prior and of the Fisher
information. We emphasize that this is a very general result about the Bayesian mean, obtained under
one main assumption, that a series of independent signals, not necessarily identically distributed,
encodes the stimulus.

Equation (3) shows, first, that the bias of the Bayesian mean is scaled by the inverse of the Fisher
information, 1/I(x). In other words, the more precise the internal representation about the stimulus,
the smaller the bias. Second, the bias depends on the difference between the relative variation of the
prior (around x), π′(x)/π(x), and the relative variation of the Fisher information, I ′(x)/I(x). The
former induces a ‘prior effect’, by which the Bayesian mean tends to be biased towards more probable
stimuli. The latter induces an ‘encoding effect’, by which the bias tends to be in the direction of
decreasing precision of the encoding. The resulting direction of the bias is the sum of these two
effects. If more probable stimuli are encoded with a higher precision (i.e., if π′ and I ′ have the same
sign), which is what efficient-coding models suggest (see below), then these two effects are opposite.
If in addition the encoding effect is stronger than the prior effect, then the Bayesian mean is biased
towards stimuli of decreasing probability, a bias direction that has been qualified as ‘anti-Bayesian’
[6, 17], although here it is obtained with a Bayesian-mean decoder.

Finally, it is well known that the variance of the MLE converges to the inverse of the Fisher
information, 1/I(x). It is thus the leading term of the variance of the Bayesian mean, and we
find that the additional terms, in the approximation to this variance, are of orders higher than 1/n.
Hence the inverse of the Fisher information is our approximation of order 1/n to the variance of the
Bayesian mean, i.e.,

Var
[
x̂
∣∣x] ' v(x) = 1

I(x)
. (4)

The Bayesian-mean decoder is thus less variable for stimuli that are encoded with higher precision.
Equations (3) and (4) underline how the bias and the variance of the Bayesian mean depend on the
precision of the encoding, as measured by the Fisher information. Different choices of encoding thus
result in different behaviors of the bias and of the variance. We now turn to the question of how the
choice of encoding can be efficiently adapted to the specific task faced by the observer.

3 Efficient coding

Perception allows obtaining some information about the environment, which can then be used to make
decisions. In many situations, an increased precision about the relevant variable (here, the stimulus x)
results in better decisions, and higher rewards. In our setting, the Fisher information of the encoding
stage is a measure of this precision. With an unbounded Fisher information (I(x) → ∞), i.e., with
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infinite encoding precision, the variable is known exactly: both the bias and the variance vanish (Eqs.
(3) and (4)). It is however unlikely that the brain can reach infinite precision in the encoding stage, as
both the number of neurons and their firing rates are bounded quantities. Efficient-coding models,
accordingly, assume that there is a limit to the brain’s encoding capacity. Within this limit, however,
the encoding is assumed to be chosen so as to optimize some objective. Below, we derive the optimal
encoding for each of several objective functions, and we examine the resulting bias and variance of
the Bayesian-mean decoder.

3.1 Encoding objectives for different tasks

As the Bayesian-mean decoder is the one that minimizes the expected squared error, we start by
examining the implications for the encoding stage of this objective function (which corresponds
to an estimation task). Given a stimulus, x, the expected squared error, averaged over the internal
representations, r, is approximately the inverse of the Fisher information, 1/I(x) (see Supplementary
Materials). Given a prior distribution of stimuli, π(x), the expected square error, averaged over the
stimuli, x, is thus approximately ∫

π(x)

I(x)
dx. (5)

An encoding efficiently adapted to this estimation task is thus one in which the Fisher information
minimizes this objective function, under a constraint.

Before further specifying this optimization problem, we examine other objectives, that are implied
by other tasks. An interesting task is one in which the observer is asked to choose between two
presented stimuli, x0 and x1, and then receives a reward equal to (or proportional to) her choice,
i.e., the observer “gets what she chooses” [22], which is generally the outcome in many choice
situations (we call this a “discrimination task with proportional rewards”: it is different from a
“discrimination task with constant rewards”, in which the observer obtains a constant reward if the
chosen stimulus is the correct one, and zero otherwise [23]; we consider the latter case further below).
With this task, assuming that the two stimuli elicit in the brain of the observer two independent
internal representations, r0 and r1, the optimal decoding strategy is to estimate and compare the
expected rewards implied by either choice, i.e., to compute the expected values of the two stimuli,
x̂(r0) and x̂(r1). The Bayesian mean, thus, is also the optimal decoder for this task. This calls for
the examination of the optimal encoding in this case. Given two stimuli, x0 and x1, the observer is
guaranteed to obtain at least the smaller of the two, thus her loss if she chooses the wrong one is the
absolute difference between the two, |x1 − x0|. Hence she aims at minimizing the expected loss∫∫

P (error|x0, x1)|x1 − x0|π(x0)π(x1) dx0 dx1, (6)

where P (error|x0, x1) is the probability of choosing the wrong stimulus (the smaller one); this
probability depends on the Fisher information that characterizes the observer’s encoding stage, I(x).
We find (see Supplementary Materials) that with large n the expected loss is approximated by the
quantity ∫

π2(x)

I(x)
dx. (7)

In both this discrimination task and the estimation task above, a larger Fisher information results
in a smaller loss, and thus better decisions. However, the objective of this discrimination task (Eq.
(7)) and that of the estimation task (Eq. (5)) are not the same. This yields qualitative differences in
perception, which we examine further below.

The two encoding objectives presented so far are such that the decoding used by our observer
(the Bayesian mean) optimizes these objectives, resulting in an encoding-decoding mechanism
consistently optimized for these objectives. Another encoding objective studied in the literature is
the maximization of the mutual information between the stimulus and the internal representation,
MI(x, r). This objective has been seen as a ‘general-purpose’ encoding objective, that is useful for
many different tasks, although not optimal for most [6, 10]. As shown by Clarke and Barron [24],
when the internal representation is a series of n signals (as we have assumed), the mutual information
can be approximated using the Fisher information, as

MI(x, r) =
1

2
ln

n

2πe
+H(X) +

1

2

∫
π(x) ln I(x) dx+ o(1), (8)
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where H(X) is the entropy of the stimulus. The first two terms of this equation do not depend
on the Fisher information. As for the third term, we follow Ref. [9] in noting that ln I(x) =
limα→0

1
α (1− I(x)−α), and thus maximizing the mutual information is equivalent to minimizing

the objective function

lim
α→0

∫
π(x)

Iα(x)
dx. (9)

The similarities between Eqs. (5), (7), and (9) call for considering the general objective function∫
πa(x)

Ip/2(x)
dx, (10)

where a ∈ {1, 2} and p > 0. This general objective function includes the three objectives mentioned
above. In addition, with a = 1, minimizing the objective in Eq. (10) is approximately equivalent to
minimizing the Lp reconstruction error, as shown by Morais and Pillow [9]. With a = 1 and p = 1,
it corresponds to minimizing the average discrimination threshold (i.e., the distance needed to be able
to distinguish two stimuli that are close). Finally, with a = 2 and p = 1, Eq. (10) is the expected loss
in a discrimination task with constant rewards (see Supplementary Materials).

3.2 Optimal encodings under a constraint

The general objective function just presented (Eq. (10)) captures a large gamut of different objectives.
In all cases, a larger Fisher information results in improved decisions. We assume, however, that a
constraint prevents the observer’s brain from choosing an unbounded Fisher information, i.e., that its
encoding capacity is limited. Specifically, we call ‘efficient’ an encoding that solves the problem

min
I(x)

∫
πa(x)

Ip/2(x)
dx s.t.

∫
Iq/2(x) dx ≤ Kq/2, (11)

where a ∈ {1, 2}, p > 0, q > 0, and K > 0. The constraint on the encoding capacity, in Eq. (11),
is the same as in Ref. [9], but we minimize a more general objective function. The solution to this
optimum problem is

I(x) = K

(
πγ/2(x)∫
πγ/2(x̃) dx̃

)2

, where γ =
2a

p+ q
. (12)

Thus in all the tasks mentioned above, the optimal Fisher information is proportional to a power of
the prior (I(x) ∝ πγ(x)), i.e., efficient coding allocates greater precision to the more frequent stimuli,
although the exact allocation depends on the specifics of the objective function [22, 23, 25–27] and of
the encoding constraint. Henceforth, we set q = 1. The resulting constraint is one that arises naturally
in a noisy communication channel (see Supplementary Materials); it is the constraint used in Ref. [6].

4 Behavior of the Bayesian mean with different efficient codings

The Equation (12) just presented implies that the relative variation of the Fisher information is
proportional to the relative variation of the prior, as

I ′(x)

I(x)
= γ

π′(x)

π(x)
. (13)

In other words, the ‘encoding effect’, as we have called it above, is predicted to be proportional to the
‘prior effect’, and the former is larger than the latter if γ > 1. As mentioned, the relative strength of
these two effects determines the direction of the bias. Substituting Eq. (13) in our approximation of
the bias (Eq. (3)) results in

b(x) = (1− γ)π
′(x)

π(x)

1

I(x)
, (14)

which makes predicting the sign of the bias straightforward: if γ < 1, the bias is directed toward
stimuli of increasing probability, while if γ > 1, it is directed toward stimuli of decreasing probability
(and if γ = 1, there is no bias).
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Before relating these predictions to the corresponding objective functions, we look at the variance
of the Bayesian mean and how it relates to its bias, when the encoding is of the form prescribed by
Eq. (12). The variance of the Bayesian mean is approximately equal to the inverse of the Fisher
information (Eq. (4)), which is proportional to a power of the prior (Eq. (12)), thus the variance of
the Bayesian mean is inversely proportional to the same power of the prior, i.e.,

v(x) ∝ 1

πγ(x)
. (15)

An efficient coding of the stimuli thus results in a greater variability of the Bayesian mean for the
stimuli that are less frequent. Furthermore, the bias can be expressed as a linear function of the
derivative of the inverse of the Fisher information (e.g., substitute in Eq. (14) the relative variation
of the prior implied by Eq. (13)), i.e., as a linear function of the derivative of the variance, v′(x).
Specifically,

b(x) =
γ − 1

γ
v′(x). (16)

The bias of the Bayesian mean is thus predicted to be proportional to the derivative of its variance.
We note that the relation between these two quantities does not depend on the prior, π(x), hence it
is predicted even for an observer who holds incorrect beliefs about the distribution of the stimuli
(perhaps because of incomplete learning).

Our results show that the direction of the bias, and the value and sign of the constant of proportionality
in Eq. (16), depend on the objective function that the encoding stage optimizes, and thus on the task
that the observer is facing. For an estimation task with squared-error loss (γ = 2/3), the bias is in
the direction of the more probable stimuli. Conversely, for a discrimination task with proportional
rewards (γ = 4/3), the bias is in the direction of the less probable stimuli. Our observer’s decoder,
the Bayesian mean, is optimal for the two tasks just mentioned, and thus for these two tasks and the
corresponding optimal choices of encoding, the entire encoding-decoding process is consistently
optimal; yet the resulting directions of the biases in these two tasks are opposite. This underlines
the impact of the choice of encoding on the observer’s perceptions. As for the other objectives, we
find that minimizing the expected discrimination threshold (γ = 1) results in the absence of any bias
(b(x) = 0), and minimizing the expected loss in a discrimination task with constant rewards yields
the same encoding as maximizing the mutual information (γ = 2), which results in a bias toward the
less probable stimuli. Table 1 summarizes these results.

Table 1: The direction of the bias of the Bayesian mean depends on the objective that the
encoding stage optimizes. For each of the encoding objectives (rows), values of the corresponding
constants (a, p, and γ, with q = 1), power of the prior which the optimal Fisher information is
proportional to (I(x) ∝), sign of the bias of the Bayesian mean in comparison to that of the derivative
of the prior (bπ′), and relation between the bias, b(x), and the derivative of the variance, v′(x). If
bπ′ < 0, the bias is ‘anti-Bayesian’, i.e., in the direction of less probable stimuli. ‘*’ indicates the
objectives for which the Bayesian mean is optimal.

Encoding objective a p γ I(x) ∝ bπ′ Bias vs. variance

Squared error* 1 2 2/3 π2/3(x) > 0 b(x) = − 1
2v
′(x)

Discrimin. threshold 1 1 1 π(x) = 0 b(x) = 0

Discrimin. task with proportional rewards* 2 2 4/3 π4/3(x) < 0 b(x) = 1
4v
′(x)

Discrimin. task with constant rewards 2 1 2 π2(x) < 0 b(x) = 1
2v
′(x)

Mutual Information MI(x, r) 1 0 2 π2(x) < 0 b(x) = 1
2v
′(x)

5 Simulations

To assess the quality of the approximations presented above, we run simulations of an encoding-
decoding process, and compare the approximated and true values of the bias and variance of the
Bayesian-mean decoder, with different efficient encodings, and under different amounts of imprecision
in the encoding. We study a case in which a normally-distributed stimulus is encoded through a
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Figure 1: Bias and variance of the Bayesian mean, and approximations thereof, under different
encodings. First row: Bias, b∗(x) (solid lines), and approximation to the bias, b(x) (dashed lines), as
a function of the stimulus magnitude, x, with different amounts of encoding noise, ν, and with the
encoding adapted to four different objectives, each characterized by its constant γ: 2/3, 1, 4/3, and 2
(columns). The second panel also shows the prior, a standard normal distribution (m = 0, σ = 1).
Second row: Standard deviation, v∗(x)

1
2 (solid lines), and its approximation, v(x)

1
2 (dashed lines).

normally-distributed representation. Specifically, the prior is a Gaussian distribution with mean m
and standard deviation σ, i.e., x ∼ N(m,σ2). Given a stimulus, x, the distribution of the encoding
internal representation, r, is Gaussian, centered on a transformation of the stimulus, µ(x), and with
standard deviation ν (the ‘encoding noise’), i.e., r|x ∼ N(µ(x), ν2). The ‘transducer’ function
x 7→ µ(x) is an increasing function that maps the stimulus space to the interval [0, 1]. The Fisher
information of this encoding scheme is I(x) = (µ′(x)/ν)2, i.e., the local steepness of the transducer,
together with the encoding noise, determine the precision of the encoding. It follows that any encoding
rule of this kind necessarily satisfies the constraint in Eq. (11) (with q = 1), where the capacity limit
is given by K = 1/ν2. Efficient coding, with a given objective (i.e., with a given γ), determines the
Fisher information, and thus the transducer µ(x). Under any objective considered here, the optimal
encoding and decoding can be written in terms of the centered, scaled stimulus, (x−m)/σ. Hence
without loss of generality we study the case of a standard normal prior distribution, i.e., m = 0 and
σ = 1. Finally, note that we have posited a scalar representation, r, and not a multi-dimensional
vector, because in the case of independent Gaussian signals, a weighted sum of the signals (which
will itself be a Gaussian random variable) is a sufficient statistic for the likelihood.

We run simulations in which the encoding noise, ν, spans a range of values: ν = 0.005, 0.01, 0.02,
0.05, and 0.1 (these different magnitudes of the encoding noise can be compared to the standard
deviation of the prior, σ = 1). We simulate the encoding process for values of γ that correspond to
the objective functions mentioned above (γ ∈ {2/3, 1, 4/3, 2}), including the expected square error
(γ = 2/3, Eq. (5)) and the expected loss in a discrimination task with proportional rewards (γ = 4/3,
Eq. (7)), for which the Bayesian mean is the optimal decoder. In all these cases (characterized by
the encoding noise ν and the constant γ), we numerically compute the true bias of the Bayesian
mean and its variance, which we denote by b∗(x) and v∗(x), and compare them to their analytical
approximations, b(x) and v(x).

When the encoding minimizes the expected squared error (γ = 2/3), and when it minimizes the
expected discrimination threshold (γ = 1), the true bias is in the direction of the mean of the prior,
i.e., for positive values of the stimulus, the bias is negative (Fig. 1, first two columns, first row, solid
lines). When the encoding minimizes the expected loss in discrimination tasks and when it maximizes
the mutual information (γ = 4/3 or 2), the stimuli close to the prior mean are perceived with a bias
away from the mean, and thus toward less probable stimuli. In other words, with these encodings the
encoding effect is stronger than the prior effect, and yields ‘anti-Bayesian percepts’. Further from
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the prior mean, however, the direction of the bias reverses, and points toward the mean (i.e., toward
the more probable stimuli; Fig. 1, last two columns, first row, solid lines). Hence when the bias is
‘anti-Bayesian’ for stimuli close to the mean, it reverses for stimuli farther from the mean. We note
that it is not possible to have a ‘globally anti-Bayesian’ bias: this is not only a feature of the specific
examples shown here; it is a general implication of posterior-mean estimation (see Supplementary
Materials).

The approximation to the bias is accurate when the stimulus is close to the mean; its quality for a
given stimulus depends on the amount of encoding noise, ν. With γ = 2/3 (squared-error objective),
and under small encoding noise (ν ≤ 0.01), the error in the approximation is below 10−4 for any
stimulus within two standard deviations (±2 s.d.) of the prior mean (see Supplementary Materials).
With γ = 1 (discrimination-threshold objective), the approximation to the bias is zero, while the
true bias is different from zero, but small; under small encoding noise (ν ≤ 0.01) the error is
below 10−3 for stimuli within ±2 s.d. of the mean. With γ = 4/3 and 2 (discrimination-tasks and
mutual-information objectives), close to the prior mean the approximation to the bias is correctly
directed away from the mean. Further from the mean, the approximation does not reverse (as does the
true bias), resulting in large errors. However, within ±2 s.d. of the prior and under small encoding
noise (ν ≤ 0.01), the error remains below 10−3, for γ = 4/3; and for γ = 2, the error is below 10−2

for most stimuli within ±2 s.d. (see Supplementary Materials). As for the standard deviation of the
Bayesian-mean decoder, similarly, the approximation is more accurate for stimuli close to the prior
mean, and errors increase with the encoding noise (Fig. 1, second row).

We also look at the true bias of the Bayesian mean, b∗(x), as a function of the derivative of its
variance, d

dxv
∗(x), in order to examine the accuracy of the relation of proportionality between these

quantities that we have derived from their approximations, when the encoding is optimized (Eq. (16)).
For stimuli near the prior mean, e.g., within one standard deviation (±1 s.d.), and under encoding
noise ν below 0.05, the true bias and derivative of the variance are fairly close to the line prescribed
by the relation of proportionality. The slope of this line depends on the constant γ, i.e., on the task
for which the encoding is optimized (see Table 1). For stimuli further from the mean, these two
quantities diverge from the linear relation (Fig. 2), but the prediction that they should have the same
sign holds over a range of stimuli. For instance, with γ = 2 and ν = 0.02, the signs are the same for
most values of the stimulus within ±2 s.d. of the prior mean. This weaker prediction implies that we
should have an ‘anti-Bayesian’ bias (when γ > 1) over the range of stimuli in which the variance
increases with the distance from the prior mean.
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Figure 2: Linear relation between the bias and the derivative of the variance, close to the prior
mean. Bias, b∗(x), as a function of the derivative of the variance, d

dxv
∗(x), for positive values of the

stimuli (x > 0), with different amounts of encoding noise, ν (colored lines), and with the encoding
adapted to different objectives. Equation (16) predicts a linear relation between the two quantities
(dashed line). With γ < 1, the slope is negative; with γ > 1, the slope is positive. For x = 0, both
quantities are zero. The dots and the stars indicate the points at which the stimulus is one and two
standards deviations away from the prior mean (x = 1σ and 2σ). These curves are symmetric about
the origin; values for x < 0 are not shown here.
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6 Discussion

We have presented analytical approximations to the bias and to the variance of the Bayesian-mean
decoder, under the assumption that the stimulus is encoded through a series of independent signals,
though not necessarily identically distributed. The approximated bias is the sum of two components:
one driven by the variations of the prior, which directs the bias towards more probable stimuli, and
one driven by the variations of the encoding Fisher information, which directs the bias towards less
precisely encoded stimuli (Eq. (3)). When the encoding is efficiently adapted to a given task (such as
an estimation task or a discrimination task), these approximations predict a linear relation between
the bias and the derivative of the variance (Eq. (16)). The overall direction of the bias depends on the
task for which the encoding is optimized (Eq. (14), Table 1). The approximations and the predicted
relation are most accurate in the small-noise regime (Fig. 1 and 2).

The approximation to the bias (Eq. (3)) makes explicit the respective roles of the prior and of the
encoding in the bias of the Bayesian mean. Traditionally, Bayesian models have been associated
to biases directed towards the more probable stimuli [11–14]: in Eq. (3), the term involving the
variations of the prior, π′(x)/π(x), captures this ‘prior effect’. The term involving the variations of
the Fisher information, −I ′(x)/I(x), is directed towards less-precisely encoded stimuli. Indeed, a
stimulus that is less precisely-encoded yields imprecise representations, that a more precisely-encoded
stimulus would be comparatively unlikely to yield; as a result, the estimated stimulus, decoded from
these representations, tends to be “pushed away” from the more precisely-encoded stimulus, and
towards the less precisely-encoded stimulus.

This ‘encoding effect’ is opposite to the ‘prior effect’, if more probable stimuli are encoded with
higher precision (as in efficient-coding models, e.g., Eq. (12)). The ways in which the precision
matters depend on the task at hand. Consider, for example, an estimation task with a loss function
equal to |x̂−x|p. If p is large, then small errors do not matter greatly; while if p is small, the smallest
error in the estimate results in a large loss. Thus with small p, the precision with which a stimulus is
observed will have a large impact on the task performance; and under a constraint on the encoding
capacity, it will be beneficial to allocate more precision to the more frequently occurring stimuli (e.g.,
I(x) ∝ π2(x), in the limit p→ 0). By contrast, with large p, a small estimation error will not yield a
large loss, even for a stimulus that occurs frequently. This results in a different optimal allocation
of the precision, with a ‘flatter’ Fisher information (in the limit p→∞, I(x) is constant). In other
words, the variations of the optimal Fisher information depend on the extent to which small errors are
costly. This also applies to other tasks: in a discrimination task with constant rewards, mis-ordering
two stimuli that are extremely close results in the maximum possible loss; while in a discrimination
task with proportional rewards, it would only result in a loss proportionally as small as the difference
between the two stimuli. Consequently, the former task results in an optimal Fisher information that
varies more strongly with the prior than that in the latter task (I(x) ∝ π2(x) vs. I(x) ∝ π4/3(x); see
Table 1). As for the objective of maximizing the mutual information, it is equivalent to the limiting
case p → 0 of the estimation task, i.e., to a task in which all mis-estimations of the stimulus are
equally costly, no matter how small the distance between the stimulus and the estimate.

If the ‘encoding effect’ is stronger than the ‘prior effect’, the resulting bias is ‘anti-Bayesian’, i.e.,
directed towards the less probable stimuli. Such biases have been reported in the literature [6, 15–17].
Although Wei and Stocker [6] show that efficient coding can indeed account for them, ‘anti-Bayesian’
biases seem at odds with the traditional ‘Bayesian’ biases mentioned above. An interesting example
is provided by Brayanov and Smith [17], who find that when subjects compare the weights of two
objects (a discrimination task), their perceptions are ‘anti-Bayesian’. But in a task involving the
estimation of weights, the behavior of subjects is consistent with a ‘Bayesian’ bias, towards prior
expectations. Our theoretical results readily explain these seemingly contradictory findings: different
tasks imply different efficient codings, which imply different strengths of the ‘encoding effect’, and
thus different biases. Specifically, as shown in Table 1, an estimation task with squared-error loss
results in a bias towards more probable stimuli, while the two discrimination tasks we consider yield
biases towards less probable stimuli. Our predictions are thus consistent with the empirical results of
Brayanov and Smith.

We obtain, moreover, a relation of proportionality between the bias and the derivative of the variance
of the Bayesian mean, when the encoding is efficient (Eq. (16)). This prediction is consistent with
that of Wei and Stocker [1], who also predict a relation of proportionality, although only when the
objective is to maximize the mutual information, which is not the objective in many tasks (moreover,
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actual encodings do not seem to be always consistent with this objective, even in early sensory areas
[27]). Wei and Stocker call the relation a “law of human perception”, and find strong empirical
support for it; but the proportionality constant is left unspecified. In our derivation, the encoding
optimizes a general objective function (Eq. (10)), which includes the mutual information as a special
case, but also includes objectives related to common tasks, such as estimation and discrimination
tasks. We predict in addition how the value and sign of the constant of proportionality should depend
on the objective that the encoding optimizes. Morais and Pillow [9] present related results: they
also consider a generalized objective function, although it does not include discrimination tasks.
They derive a similar relation of proportionality in the case of the maximum a posteriori (MAP)
decoder, and conjecture a relation in the case of the Bayesian mean. In these studies, however,
often both the encoding and decoding stages are optimized to some objectives, but different ones,
e.g., the encoding maximizes the mutual information while the decoding minimizes the squared
error. Although the mutual information might be a reasonably good ‘general-purpose’ objective, the
empirical results of Brayanov and Smith suggest that the brain is able to optimize different objectives.
For estimation tasks with squared-error loss, and for discrimination tasks with proportional rewards,
the encoding-decoding scheme we investigate is consistently optimal, i.e., both the encoding and the
encoding are optimal for these tasks.

Our derivations rely on the following assumptions: the encoding consists in an accumulation of
independent signals; it is optimized for a given task, under the constraint in Eq. (11); the decoder
is the Bayesian mean; and the noise is small. Note that the assumptions of optimal encoding and
decoding implicitly entails that the decision-maker knows the prior. Violations of these assumptions
would distort the results in ways that would be interesting to explore, but that are outside the scope of
this paper. The relevance of the Bayesian approach, for instance, has been a matter of debate (see
Refs. [30–33]). As for the independence assumption, while noise in the activities of neurons in the
brain is typically correlated [28, 29], our derivations rely on a central limit theorem, and we surmise
that they should withstand some amount of correlation in the encoding.

Overall, our results suggest a parsimonious theory of perception, which mainly rests on assumptions
of optimality and on a constraint on the encoding capacity. Under this theory, just three elements
shape the statistics of percepts: the prior, the specifics of the task, and the encoding constraint.

We do not see any obvious, potentially negative societal impacts of our research. Indirectly, a
better understanding of human perception could be used for deceptive purposes; we deem such an
application to be very speculative at this stage.
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