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A Basic Facts about Gaussian Distributions

Let N (µ, σ2) denote a Gaussian distribution with mean µ and variance σ2. Let χ2(n) denote a
χ2 distribution with n degrees of freedom. Our analysis extensively uses the following facts about
Gaussian and χ2 distributions:

Definition A.1 (Gaussian and Wigner Random Matrices). We let G ∼ N (n) denote an n × n
random Gaussian matrix with i.i.d. N (0, 1) entries. We let W ∼ W(n) = G + GT denote an n× n
Wigner matrix, where G ∼ N (n).

Fact A.1 (χ2 Tail Bound (Lemma 1 of [1])). Let Z ∼ χ2(n). Then for any x > 0,

Pr[Z ≥ n+ 2
√
nx+ 2x] ≤ e−x

Pr[Z ≤ n− 2
√
nx] ≤ e−x

Fact A.2 (Rotational Invariance). Let R ∈ Rn×n be an orthornormal matrix. Let g ∈ Rn be a
random vector with i.i.d. N (0, 1) entries. Then Rg has the same distribution as g.

Fact A.3 (Upper Gaussian Tail Bound). Let Z ∼ N (0, σ2) be a univariate Gaussian random variable.
Then for any t > 0,

Pr[Z ≥ t] ≤ exp(− t2

2σ2
)

Fact A.4 (Lower Gaussian Tail Bound). Letting Z ∼ N (0, 1) be a univariate Gaussian random
variable, for any t > 0,

Pr[Z ≥ t] ≥ 1√
2π
· 1

t
exp(t2/2)

Lemma A.2 (Concentration of Singular Values of a Gaussian Random Matrix (Eq. 2.3 of [2])).
Let G ∼ N (n), and smax(G) denote the maximum singular value of G. Then ∀t ≥ 0,

Pr[smax(G) ≤ 2
√
n+ t] ≥ 1− 2 exp(−t2/2)

Fact A.5 (KL Divergence Between Multivariate Gaussian Distributions (Eq. 8 of [3], or Section
9 of [4]). Let P ∼ N (µ1,Σ1) and Q ∼ N (µ2,Σ2) be two k-dimensional multivariate normal
distributions. The Kullback-Leibler divergence between P and Q is

DKL(P ‖ Q) =
1

2

{
(µ2 − µ1)TΣ−12 (µ2 − µ1) + tr(Σ−12 Σ1)− ln

det(Σ1)

det(Σ2)
− k
}

Fact A.6 (Conditioning Increases KL Divergence (Theorem 2.2 - 5 of [5])). Let PY |X , QY |X
be two conditional probability distributions over spaces X ∈ X and Y ∈ Y, let PY = PY |XPX and
QY = QY |XPX . Then,

DKL(PY ‖ QY ) ≤ DKL(PY |X ‖ QY |X | PX) :=

∫
DKL(PY |X=x ‖ QY |X=x)dPX

Fact A.7 (KL Divergence Data Processing Inequality (Page 18 of [6])). For any function f and
random variables X and Y on the same probability space, it holds that

DKL(f(X) ‖ f(Y )) ≤ DKL(X ‖ Y )

2



B An Improved Analysis of NA-Hutch++

In this section, we give an improved analysis of NA-Hutch++, showing that the query complexity

of NA-Hutch++ can be improved from O(log(1/δ)/ε), as shown in [7], to O

(√
log(1/δ)

ε + log(1/δ)

)
on PSD (positive semidefinite) input matrices A, to get a (1 ± ε) approximation to tr(A) with
probability 1− δ. The NA-Hutch++ algorithm is duplicated here for convenience as follows:

Algorithm 1 NA-Hutch++ [7]: Stochastic trace estimation with non-adaptive matrix-vector queries

1: Input: Matrix-vector multiplication oracle for PSD matrix A ∈ Rn×n. Number m of queries.
2: Output: Approximation to tr(A).
3: Fix constants c1, c2, c3 such that c1 < c2 and c1 + c2 + c3 = 1.
4: Sample S ∈ Rn×c1m, R ∈ Rn×c2m, and G ∈ Rn×c3m, with i.i.d. N (0, 1) entries.
5: Z = AR, W = AS
6: return t = tr((STZ)†(W TZ)) + 1

c3m

(
tr(GTAG)− tr(GTZ(STZ)†W TG)

)
.

Roadmap. Recall that NA-Hutch++ splits its matrix-vector queries between computing an O(1)-

approximate rank-k approximation Ã and performing Hutchinson’s estimate on the residual matrix
A− Ã. The key to an improved query complexity of NA-Hutch++ is on the analysis of the size of
random Gaussian sketching matrices S, R in Algorithm 1 that one needs to get an O(1)-approximate

rank-k approximation Ã in the Frobenius norm. To get the desired rank-k approximation, we need
S and R to satisfy two properties: 1) subspace embedding as in Lemma 3.3 and 2) approximate
matrix product for orthogonal subspaces as in Lemma 3.4. Specifically, we show in Lemma 3.4 that
choosing S and R to be of size O(k + log(1/δ)) suffices to get the second property with probability
1− δ.

After that, we show in Lemma B.1 that if a sketching matrix S satisfies the two properties mentioned
above, with size O(k + log(1/δ)), one gets an O(1)-approximate low rank approximation with
probability 1− δ when solving a sketched version of the regression problem minX ‖ST (AX −B)‖F
for fixed matrices A,B with rank(A) = k. Lemma B.1 serves as an intermediate step to construct

an O(1)-approximate rank-k approximation Ã with S,R having a size of only O(k + log(1/δ)) in
Theorem 3.5.

Finally, we combine Theorem 3.2 from [7], which shows the trade-off between the rank k and the
number l spent on estimating the small eigenvalues, and Theorem 3.5, which shows the number
of non-adaptive queries one needs to get a desired rank-k factor, to conclude in Theorem 3.1 that

NA-Hutch++ needs only O

(√
log(1/δ)

ε + log(1/δ)

)
non-adaptive queries, by setting k =

√
log(1/δ)

ε .

Lemma 3.3 (Subspace Embedding (Theorem 6 of [8])). Given δ ∈ (0, 12 ) and ε ∈ (0, 1), let S ∈ Rr×n
be a random matrix with i.i.d. Gaussian random variables N (0, 1r ). Then for any fixed d-dimensional
subspace A ∈ Rn×d, and for r = O((d + log( 1

δ ))/ε2), the following holds with probability 1 − δ
simultaneously for all x ∈ Rd,

‖SAx‖2 = (1± ε)‖Ax‖2

Lemma 3.4 (Approximate Matrix Product for Orthogonal Subspaces). Given δ ∈ (0, 12 ), let
U ∈ Rn×k,W ∈ Rn×p be two matrices with orthonormal columns such that UTW = 0, p ≥
max(k, log(1/δ)), rank(U) = k and rank(W ) = p. Let S ∈ Rr×n be a random matrix with i.i.d.
Gaussian random variables N (0, 1r ). For r = O(k+ log( 1δ )), the following holds with probability 1− δ,

‖UTSTSW ‖F ≤ O(1)‖W ‖F

Proof. Let G =
√
rUTST ∈ Rk×r and H =

√
rSW ∈ Rr×p. Since both U and W have orthonormal

columns, both G and H are random matrices with i.i.d. Gaussian random variables N (0, 1).
Furthermore, let gi,∀i ∈ [k] denote the i-th row of G and hj ,∀j ∈ [p] denote the j-th column of H.

‖UTSTSW ‖2F =

∥∥∥∥ 1√
r
G

1√
r
H

∥∥∥∥2
F

=
1

r2

k∑
i=1

p∑
j=1

〈gi,hj〉2
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=
1

r2

k∑
i=1

p∑
j=1

‖gi‖22
〈

gi
‖gi‖2

,hj

〉2

=
1

r2

k∑
i=1

‖gi‖22

 p∑
j=1

〈 gi
‖gi‖2

,hj〉2


Since ‖ gi

‖g‖2 ‖2 = 1, 〈 gi

‖gi‖2 ,hj〉 ∼ N (0, 1). Thus,

‖UTSTSW ‖2F =
1

r2

k∑
i=1

ci · di

where ci ∼ χ2(r), di ∼ χ2(p), ∀i ∈ [k]. Note that since W has orthonormal columns, ‖W ‖2F = p.

The number r of rows our random sketch matrix S needs in order to obtain an upper bound on
the product of random Gaussian matrices SU and SW , up to a constant factor of ‖W ‖F , depends
on the concentration of SU and SW . Specifically, to apply the χ2 tail bound on some random
variable v ∼ χ2(d) from Fact A.1 and to get that v concentrates around O(1)d with probability
1− δ, the degree d needs to be at least log(1/δ). Since we require p = rank(W ) ≥ log(1/δ), SW is
concentrated with high probability. The concentration of SU depends on rank(U) = k. To upper
bound ‖(SU)T (SW )‖F , we consider two cases for k:

Case I: Consider the case when k ≥ log( 1
δ ):

Since p ≥ k ≥ log( 1
δ ), by Fact A.1, ∀i ∈ [k],

Pr[di ≤ O(1)p] ≥ 1− e−O(k)

Since r = O(k + log(1/δ)), by Fact A.1, ∀i ∈ [k],

Pr[ci ≤ O(1)k] ≥ 1− e−O(k)

By a union bound over 2k χ2 random variables,

Pr

[
k∑
i=1

ci · di ≤ O(1)k2p

]
≥ 1− 2k · e−O(k)

Thus with probability 1−O(δ),

‖UTSTSW ‖2F =
1

r2

k∑
i=1

ci · di

≤ 1

r2
O(1)k2p

=
1

r2
O(1)k2‖W ‖2F

And so r = O(k + log(1/δ)) gives ‖USTSW ‖F ≤ O(1)‖W ‖F with probability 1− δ.

Case II: Consider the case when k < log( 1
δ ).

Since p ≥ log( 1
δ ), by Fact A.1, ∀i ∈ [k],

Pr [di ≤ O(1)p] ≥ 1− e−O(log(1/δ))

Since r = O(k + log(1/δ)), by Fact A.1, ∀i ∈ [k],

Pr [ci ≤ O(1) log(1/δ)] ≥ 1− e−O(log(1/δ))

By a union bound over 2k χ2 random variables, for k < log(1/δ)

Pr

[
k∑
i=1

ci · di ≤ O(1)k log(1/δ)p

]
≥ 1− 2k · e−O(log(1/δ))
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Thus with probability 1−O(δ),

‖UTSTSW ‖2F =
1

r2

k∑
i=1

ci · di

≤ 1

r2
O(1)k log(1/δ)p

=
1

r2
O(1)k log(1/δ)‖W ‖2F

Since k < log(1/δ), r = O(k + log(1/δ)) in this case gives ‖UTSTSW ‖F ≤ O(1)‖W ‖F with
probability 1− δ.

Combining Case I and Case II allows us to conclude that for r = O(k+log(1/δ)), ‖UTSTSW ‖F ≤
O(1)‖W ‖F with probability 1− δ.

Lemma B.1 (Upper Bound on Regression Error). Given δ ∈ (0, 12 ), let A,B be matrices that both
have n rows and rank(A) = k. Let S ∈ Rn×r be a random matrix with i.i.d. N (0, 1r ) Gaussian

random variables. Let X̃ = arg minX ‖ST (AX − B)‖F and X∗ = arg minX ‖AX − B‖F . For
r = O(k + log(1/δ)), the following holds with probability 1− δ,

‖AX̃ −B‖F ≤ O(1)‖AX∗ −B‖F

Proof. Consider an orthonormal basis U for the column span of A. Let Ỹ = arg minY ‖SUY −SB‖2
and Y ∗ = arg minY ‖UY −B‖2. By the normal equations, the solutions to the two least squares

problems are Ỹ = (SU)†SB1 and Y ∗ = UTB.

We first show that ‖UỸ −B‖F ≤ O(1)‖UY ∗ −B‖F .

‖UỸ −B‖2F = ‖UY ∗ −B‖2F + ‖UỸ −UY ∗‖2F
= ‖UY ∗ −B‖2F + ‖Ỹ − Y ∗‖2F (Since U has orthonormal columns)

= ‖UY ∗ −B‖2F + ‖(SU)†SB −UTB‖2F
= ‖UY ∗ −B‖2F + ‖(UTSTSU)−1UTSTSB −UTB‖2F

Since S is a matrix with i.i.d. N (0, 1r ) Gaussian random variables, by Fact 3.3, for any vector
v ∈ Rn, with probability 1 − δ and for some fixed constant ε1 ∈ (0, 1), ‖SUv‖2 = (1 ± ε1)‖Uv‖2.
This implies the singular values of SU are in the range [1− ε1, 1 + ε1]. Thus,

‖UỸ −B‖2F ≤ ‖UY ∗ −B‖2F +O(1)‖(UTSTSU)((UTSTSU)−1UTSTSB −UTB)‖2F
= ‖UY ∗ −B‖2F +O(1)‖UTSTSB −UTSTSUUTB‖2F
= ‖UY ∗ −B‖2F +O(1)‖UTSTS(B −UY ∗)‖2F

Consider p = rank(UY ∗ − B). If p = O(k), then rank(B) = O(k). For r = O(k), we can use

S to reconstruct A and B. In this case, X̃ = X∗ and so ‖UỸ −B‖F ≤ O(1)‖UY ∗ −B‖F . If
p = O(log(1/δ)), then rank(B) = O(k + log(1/δ)). For r = O(k + log(1/δ)), we can again use S to

reconstruct A and B and get ‖UỸ −B‖F ≤ O(1)‖UY ∗ −B‖F .

Now consider p ≥ max(k, log(1/δ)). First note that B−UY ∗ = B−UUTB = (I−UUTB), where
U has orthonormal columns and thus, UUT is the projection matrix onto the column span col(U) of
U . We have (B −UY ∗) ⊥ col(U). Second, we can w.l.o.g. assume that UY ∗ −B has orthonormal
columns; indeed, otherwise let U ′R′ = B−UY ∗ be the QR decomposition where U ′ is an orthonormal
basis for col(B −UY ∗). Then ‖UTSTS(B −UY ∗)‖2F = ‖UTSTSU ′R′‖2F = ‖UTSTSU ′‖2F .

Applying Lemma 3.4, with probability 1−O(δ),

‖UỸ −B‖2F ≤ ‖UY ∗ −B‖2F +O(1)‖UY ∗ −B‖2F
1† denotes the Moore-Penrose pseudoinverse
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= O(1)‖UY ∗ −B‖2F

This concludes that ‖UỸ −B‖F ≤ O(1)‖UY ∗ −B‖F .

Finally, consider the QR decomposition of A = UR where U is an orthonormal basis for the column

span of A and R is an arbitrary matrix. Let X̃ = arg minX ‖SAX −SB‖2 and X∗ = ‖AX −B‖2.
Note that

min
X
‖SAX − SB‖F = min

Y
‖SURY − SB‖F = min

Y
‖SUY − SB‖F

min
X
‖AX −B‖F = min

Y
‖URY −B‖F = min

Y
‖UY −B‖F

Thus,

‖AX̃ −B‖F = ‖UỸ −B‖F ≤ O(1)‖UY ∗ −B‖F = O(1)‖AX∗ −B‖F

The following Theorem and its proof follows Theorem 4.7 of [9], except that: 1) to get a rank k
approximation to the matrix A, the number of columns in the sketching matrices S and R was
required to be m = O(k log( 1

δ )) in Theorem 4.7 of [9]; 2) S and R in Theorem 4.7 of [9] are
random sign matrices. By applying Lemma B.1, we show that this number m can be reduced to
O(k + log( 1

δ )), and consider a specific application to PSD matrices.

Theorem 3.5. Let A ∈ Rn×n be an arbitrary PSD matrix. Let Ak = arg minrank-kAk
‖A − Ak‖F

be the optimal rank-k approximation to A in Frobenius norm. If S ∈ Rn×m and R ∈ Rn×cm are
random matrices with i.i.d. N (0, 1) entries for some fixed constant c > 0 with m = O(k + log(1/δ)),

then with probability 1− δ, the matrix Ã = (AR)(STAR)†(AS)T satisfies

‖A− Ã‖F ≤ O(1)‖A−Ak‖F

Proof. First, we consider S to be a random matrix with i.i.d. N (0, 1
m ) entries and R to be a random

matrix with i.i.d. N (0, 1
cm ) entries.

Consider X̃ = arg minX ‖STARX − STA‖F = (STAR)†STA
and X∗ = arg minX ‖ARX −A‖F . By Lemma B.1, with probability 1− δ,

‖ARX̃ −A‖F ≤ O(1)‖ARX∗ −A‖F

Now let Ak = arg minrank k Ak
‖A−Ak‖F be the optimal rank-k approximation to A.

Consider Xopt = arg minX ‖XAk −A‖F and X ′ = arg minX ‖XAkR−AR‖F = (AR)(AkR)†.

By Lemma B.1 again, with probability 1− δ,

‖X ′Ak −A‖F = ‖(AR)(AkR)†Ak −A‖F
≤ O(1)‖XoptAk −A‖F = O(1)‖A−Ak‖F

This implies a good rank-k approximation exists in the column span of AR. We now have with
probability 1− δ,

‖ARX∗ −A‖F ≤ ‖(AR)(AkR)†Ak −A‖F ≤ O(1)‖A−Ak‖F

Thus by a union bound, with probability 1− 2δ,

‖AR(STAR)†STA−A‖F = ‖ARX̃ −A‖F
≤ O(1)‖ARX∗ −A‖F
≤ O(1)‖A−Ak‖F

Since we consider PSD A, STA = (AS)T . Let Ã = (AR)(STAR)†(AS)T , it follows that with
probability 1− 2δ,

‖A− Ã‖F ≤ O(1)‖A−Ak‖F

Let S′ =
√
mS and R′ =

√
cmR so that both S′ and R′ have i.i.d. N (0, 1) entries. Notice that

(AR′)(S′TAR′)†(AS′)T = (AR)(STAR)†(AS)T . Thus S, R can be chosen to both be random
matrices with i.i.d. N (0, 1) entries. The theorem follows after adjusting δ by a constant factor.
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Theorem 3.2 (Theorem 4 of [7]). Let A ∈ Rd×d be PSD, δ ∈ (0, 12 ), l ∈ N, k ∈ N. Let Ã

and ∆ be any matrices with tr(A) = tr(Ã) + tr(∆) and ‖∆‖F ≤ O(1)‖A − Ak‖F where Ak =
arg minrank k Ak

‖A − Ak‖F . Let Hl(M) denote Hutchinson’s trace estimator with l queries on

matrix M . For fixed constants c, C, if l ≥ c log( 1
δ ), then with probability 1− δ, Z = tr(Ã) +Hl(∆),

|Z − tr(A)| ≤ C
√

log(1/δ)

kl
· tr(A)

Theorem 3.1. Let A be a PSD matrix. If NA-Hutch++ is implemented with

m = O

(√
log(1/δ)

ε
+ log(1/δ)

)

matrix-vector multiplication queries, then with probability 1− δ, the output of NA-Hutch++, t, satisfies
(1− ε)tr(A) ≤ t ≤ (1 + ε)tr(A).

Proof. Set k = l = O(

√
log(1/δ)

ε ).

Consider Ã = (AR)(STAR)†(AS)T , where S ∈ Rn×s,R ∈ Rn×r are both random matrices with

i.i.d. N (0, 1) entries, and ∆ = A− Ã.

By Theorem 3.5, for s = r = O(k + log(1/δ)) = O(

√
log(1/δ)

ε + log(1/δ)), with probability 1− δ,

‖∆‖F ≤ O(1) · ‖A−Ak‖F

Thus for the output of NA-Hutch++, t, by Theorem 3.2 and a union bound, with probability 1− 2δ,

|t− tr(A)| ≤ ε · tr(A)

The total number of non-adaptive queries NA-Hutch++ needs is

m = s+ r + l = O

(√
log(1/δ)

ε
+ log(1/δ)

)
.
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C Lower Bounds

In this section, we show that a query complexity of O

(√
log(1/δ)

ε + log(1/δ)

)
is tight for any non-

adaptive trace estimation algorithm, up to a O(log log(1/δ)) factor, stated in Theorem 4.1. The

analysis considers two separate cases: for small ε, we show the term O

(√
log(1/δ)

ε

)
is tight in

Section C.1, and for any ε, we show the term O(log(1/δ)) is tight up to a O(log log(1/δ)) factor
in Section C.2. When combined, these two lower bounds handle arbitrary ε, since the latter lower
bound dominates precisely when the former lower bound does not apply.

Our hard distribution consists of shifted Wigner matrices and exploits the symmetry and concentration
properties of the Gaussian ensemble.

Theorem 4.1 (Lower Bound for Non-Adaptive Queries). Let ε ∈ (0, 1). Any algorithm that
accesses a real PSD matrix A through matrix-vector multiplication queries Aq1,Aq2, . . . ,Aqm,
where q1, . . . ,qm are real-valued, non-adaptively chosen vectors, requires

m = Ω

(√
log(1/δ)

ε
+

log(1/δ)

log log(1/δ)

)

queries to output an estimate t such that with probability at least 1−δ, (1−ε)tr(A) ≤ t ≤ (1+ε)tr(A).

Proof of Theorem 4.1. For small ε = O(1/
√

log(1/δ)), note that the first term

√
log(1/δ)

ε dominates.

Theorem 4.2 (see Section C.1) shows any algorithm needs Ω

(√
log(1/δ)

ε

)
non-adaptive queries in

this case.

For ε > 1/
√

log(1/δ), note that the second term log(1/δ) dominates. Theorem 4.3 (see Section C.2)

shows any algorithm needs Ω( log(1/δ)
log log(1/δ) ) non-adaptive queries for any ε ∈ (0, 1).

The two cases combined imply an Ω

(√
log(1/δ)

ε + log(1/δ)
log log(1/δ)

)
lower bound.

C.1 Case 1: Lower Bound for Small ε

Suppose that we draw a matrix G ∈ Rn×n from the Gaussian distribution and try to learn the
entries of the matrix via matrix-vector queries. After a few queries, it turns out that the conditional
distribution of the remaining matrix is also Gaussian-distributed, no matter how the queries are
chosen. This nice property allows concise reasoning for lower bounding the remaining uncertainty of
the matrix, even after seeing a few query results.

Lemma C.1. (Conditional Distribution [Lemma 3.4 of [10]]) Let G ∼ N (n) be as in Definition A.1
and suppose our matrix is W = (G + G>)/2. Suppose we have any sequence of vector queries,
v1, ...,vT , along with responses wi = Wvi. Then, conditioned on our observations, there exists a
rotation matrix V , independent of wi, such that

V WV > =

[
Y1 Y >2
Y2 W̃

]

where Y1, Y2 are deterministic and W̃ = (G̃ + G̃>)/2, where G̃ ∼ N (n− T ).

Theorem 4.2 (Lower Bound for Small ε). For any PSD matrix A and all ε = O(1/
√

log(1/δ)),
any algorithm that succeeds with probability at least 1 − δ in outputting an estimate t such that
(1− ε)tr(A) ≤ t ≤ (1 + ε)tr(A), requires

m = Ω(
√

log(1/δ)/ε)

matrix-vector queries.

Proof. By standard minimax arguments, it suffices to construct a hard distribution for any determin-
istic algorithm.
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Consider G ∼ N (n) for n = Ω(log(1/δ)). From concentration of the singular values of large Gaussian
matrices (Lemma A.2), with probability at least 1− δ/10 we have ‖G‖op ≤ C

√
n for some absolute

constant C.

Therefore, consider the family of matrices W = I + 1
2C
√
n

(G + G>). From our bound on ‖G‖op,
with probability at least 1− δ/10, W is positive semi-definite and symmetric. Furthermore, since
tr(G) ∼ N(0, n), we see that tr(W ) ≤ 2n with probability at least 1− δ/10.

We set the multiplicative error to ε =

√
log(1/δ)

n and it suffices to show that if we see only n/2

queries, we can compute tr(W ) up to additive error at best c
√

log(1/δ) with probability at least
1− δ, for some c = Ω(1). By Lemma C.1, we see that conditioned on the queries, our matrix W

can be decomposed into a determined part and a Gaussian submatrix W̃ = 1
2C
√
n

(G̃ + G̃>), where

G̃ ∼ N (n/2).

Therefore, our conditional distribution of the trace of W is, up to a deterministic shift, the same as

the distribution of W̃ , which is simply a Gaussian with variance 1/C2. Since we must determine a
Gaussian of constant variance up to an additive error of c

√
log(1/δ) with probability at least 1− δ,

we conclude that c = Ω(1).

C.2 Case 2: Lower Bound for Every ε

We give a general Ω( log(1/δ)
log log(1/δ) ) lower bound, that holds for every ε ∈ (0, 1), on the query complexity

for non-adaptive trace estimation algorithms stated in Theorem 4.3. The proof of Theorem 4.3 is
via a reduction to a distribution testing problem in Problem 4.4, whose hardness (in terms of query
complexity) is shown in Lemma 4.5.

Theorem 4.3 (Lower Bound on Non-adaptive Queries for PSD Matrices). Let ε ∈ (0, 1). Any
algorithm that accesses a real, PSD matrix A through matrix-vector queries Aq1,Aq2, . . . ,Aqm,
where q1, . . . ,qm are real-valued non-adaptively chosen vectors, requires

m = Ω

(
log(1/δ)

log log(1/δ)

)
to output an estimate t such that with probability at least 1− δ, (1− ε)tr(A) ≤ t ≤ (1 + ε)tr(A).

Proof. The proof is via reduction to a distribution testing problem stated in Problem 4.4. Given a
real, PSD input matrix A, let A be an algorithm that uses m non-adaptive matrix-vector queries
and outputs a trace estimation t of A such that for some ε ∈ (0, 1), with probability at least 1− δ,
(1− ε)tr(A) ≤ t ≤ (1 + ε)tr(A).

Consider n = log(1/δ). Let Zi,∀i ∈ [n] be the i-th diagonal entry of W ∼ W(n) = G + GT as in
Definition A.1. Note that G has i.i.d. N (0, 1) entries, and that the diagonal of G and GT are the
same. This implies Zi ∼ N (0, 4).

Since the Zi are i.i.d.,

tr(W ) =

n∑
i=1

Zi ∼ N (0, 4n) = N (0, 4 log(1/δ))

By Fact A.3,

Pr[tr(W ) ≥ 2
√

2 log(1/δ)] ≤ δ

Pr[tr(W ) ≤ −2
√

2 log(1/δ)] ≤ δ

For a unit vector g
‖g‖2 ∈ Rn,

tr

(
g

‖g‖2
gT

‖g‖2

)
=

∥∥∥∥ g

‖g‖2

∥∥∥∥2
2

= 1

Let B be the random matrix generated from distribution P or Q in Problem 4.4. First, we claim
that with probability at least 1− 4δ, B is a PSD matrix. Note that C log3/2( 1

δ ) · 1
‖g‖22

ggT is PSD.

Thus it suffices to show W + 6
√

log( 1
δ )I is PSD with high probability.

9



By Lemma A.2, with probability 1− 2δ,

‖G‖op ≤ 3
√

log(1/δ)

By the triangle inequality and a union bound, with probability 1− 4δ,

‖W ‖op = ‖G + GT ‖op ≤ 6
√

log(1/δ)

This implies W + 6
√

log( 1
δ )I is PSD with probability 1− 4δ.

If B ∼ P, with probability at least 1− δ,

tr(B) = C log3/2(1/δ) + tr(W ) + 6 log3/2(1/δ)

≥ (C + 6) log3/2(1/δ)− 2
√

2 log(1/δ)

If B ∼ Q, with probability at least 1− δ,

tr(B) = tr(W ) + 6 log3/2(log(1/δ)) ≤ 2
√

2 log(1/δ) + 6 log3/2(1/δ)

Consider the trace estimation algorithm A and let the output t = A(B). Consider the constant

C > 10(1+ε)
1−ε − 6. If B ∼ P, with probability at least 1− 2δ,

t ≥ (1− ε)tr(B)

≥ (1− ε)
(

(C + 6) log3/2(1/δ)− 2
√

2 log(1/δ)
)

> 6(1 + ε) log3/2(1/δ)

If B ∼ Q, with probability at least 1− 2δ,

t ≤ (1 + ε)tr(B)

≤ (1 + ε)
(

6 log3/2(1/δ) + 2
√

2 log(1/δ)
)

< 6(1 + ε) log3/2(1/δ)

In the worst case, if any of the instances generated from P or Q is non-PSD, our algorithm A fails.
Thus A determines which distribution B comes from with probability at least 1−6δ. By Lemma 4.5,

this requires the number of matrix-vector queries A uses to be m = Ω( log(1/δ)
log log(1/δ) ).

Problem 4.4 (Hard PSD Matrix Distribution Test). Given δ ∈ (0, 12 ), set n = log(1/δ). Choose
g ∈ Rn to be an independent random vector with i.i.d. N (0, 1) entries. Consider two distributions:

• Distribution P on matrices
{
C log3/2( 1

δ ) · 1
‖g‖22

ggT + W + 6
√

log( 1
δ )I
}

, for some fixed con-

stant C > 1.

• Distribution Q on matrices
{
W + 6

√
log( 1

δ )I
}

.

where W ∼ W(n) = G + GT as in Definition A.1. Let A be a random matrix drawn from either
P or Q with equal probability. Consider any algorithm which, for a fixed query matrix Q ∈ Rn×q,
observes AQ, and guesses if A ∼ P or A ∼ Q with success probability at least 1− δ.

Lemma 4.5 (Hardness of Problem 4.4). Given δ ∈ (0, 12 ). Consider a non-adaptively chosen query

matrix Q ∈ Rn×q on input A ∈ Rn×n, as in Problem 4.4, where n = log(1/δ). If q = o( log(1/δ)
log log(1/δ) ),

no algorithm can solve Problem 4.4 with success probability 1− δ.

Proof. We claim that without loss of generality, we only need to consider Q to be the first q standard
basis vectors, i.e., Q = Eq = [e1, e2, . . . , eq]. First note that we only need to consider query matrix
Q with orthonormal columns, since for general Q, letting Q = UR be the QR decomposition of
Q, we can reconstruct AQ from (AU)R. Next, let Q̄ ∈ Rn×(n−q) be the orthonormal basis for
null(Q). Define an orthornomal matrix R = [Q, Q̄] ∈ Rn×n. By Fact A.2, WEq has the same
distribution as WREq = WQ. Similarly, (C log( 1δ ) · 1

‖g‖22
ggT + W )Eq has the same distribution as

10



(C log( 1
δ ) · 1

‖g‖22
ggT + W )Q. Therefore, we only need to consider the case when the queries are the

first q standard basis vectors.

Consider the two possible observed distributions from Problem 4.4: 1) distribution P ′, which has
(C log( 1

δ ) · 1
‖g‖22

ggT + W + 2
√

log(1/δ)I)Q for fixed constant C > 1, and 2) distribution Q′ which

has (W + 2
√

log(1/δ)I)Q.

We argue that if the number q of queries is too small, then the total variation distance between P ′
and Q′, conditioned on an event E with probability at least δ, is upper bounded by a small constant.
This will imply that no algorithm can succeed with probability at least 1− δ. We upper bound the
total variation distance between P ′ and Q′ via the Kullback–Leibler (KL) divergence between P ′
and Q′ and then apply Pinsker’s inequality.

Consider the following event on over the randomness of g: E =
{

g : 1
‖g‖2 ‖g

TQ‖2 ≤ 1
50C2n3

}
. Note

that gTQ = [〈g, e1〉, 〈g, e2〉, . . . , 〈g, eq〉] = [g1,g2, . . . ,gq], i.e., the first q coordinates of g. First, we
show that Pr[E ] = Ω(δ).

Since gi ∼ N (0, 1), by Fact A.4, for the i-th entry of gTQ, ∀i ∈ [q],

Pr[|gi| ≤
1

10C · n√q
] = Ω(

1

n
√
q

)

which implies for a single entry,

Pr[g2
i ≤

1

100C2 · n2q
] = Ω(

1

n
√
q

)

Since all q queries are independent, for all entries i ∈ [q],

Pr[‖gTQ‖22 ≤
1

100C2 · n2
] = Ω((

1

n
√
q

)q) = Ω(exp(−q
2

ln(n2q)))

Consider the following conditional probability,

Pr

[
‖gTQ‖22 ≤

1

100C2 · n2
∧ ‖g‖22 ≥

n

2

]
= Pr

[
‖g‖22 ≥

n

2

∣∣∣∣ ‖gTQ‖22 ≤ 1

100C2 · n2

]
· Pr

[
‖gTQ‖22 ≤

1

100C2 · n2

]

Assume q < n
2 and let g(q+1):n denote the q + 1-th to the n-th entry of g. Note that all entries of g

are independent and ‖g(q+1):n‖22 ∼ χ2(d) with degree d > n
2 . By Fact A.1, since ‖g‖22 ≥ ‖g(q+1):n‖22,

Pr

[
‖g‖22 ≥

n

2

∣∣∣∣ ‖gTQ‖22 ≤ 1

100C2 · n2

]
= Ω(1)

Thus,

Pr

[
1

‖g‖22
‖gTQ‖22 ≤

1

50C2n3

]
≥ Pr

[
‖gTQ‖22 ≤

1

100C2 · n2
∧ ‖g‖22 ≥

n

2

]
≥ Ω(1) · Ω

(
exp(−q

2
ln(n2q))

)
Assume we only have a small number q = o( log(1/δ)

log log(1/δ) ) of queries. Then,

Pr[E ] = Pr

[
1

‖g‖22
‖gTQ‖22 ≤

1

50C2 · n3

]
≥ 10δ (1)

Note that n = log(1/δ), and so

Pr[E ] = Pr[C2 log3(
1

δ
)
‖gTQ‖22
‖g‖22

≤ 1

50
] ≥ 10δ

11



Next, note that it suffices to show that the probability of success conditioned on E is less than 1/3.
This implies our result since E occurs with probability at least 10δ, implying that our probability of
failure is indeed Ω(δ). Therefore, we focus on showing that the probability of success conditioned on
g ∈ E is small via standard information theoretic arguments with KL divergence bounds.

Conditioning on event E , we now upper bound the KL divergence between P ′ and Q′ conditioned on
a fixed g ∈ E . Since both distributions come from symmetric matrices, we remove the redundant
random variables from observed random matrices from P ′,Q′ and consider only the lower triangular
portion, so that both have dimensions l = n + (n − 1) + · · · + (n − (q − 1)). Note that these
redundant random variables in the upper triangular portion can be removed without increasing the
KL divergence, since they are perfectly correlated with its counterpart variable in the lower triangular
region, which we show as follows:

Consider two lists LP′ , LQ′ of l random variables, corresponding to a vectorization of the observed
lower triangular part of the random matrices from P ′ and Q′. Consider also a function f , which
duplicates parts of the random variables in LP′ and LQ′ , such that f(LP′) and f(LQ′) reconstruct
the original observed matrix of size n× q from P ′ and Q′, respectively. Then, by the data processing
inequality of KL divergence from Fact A.7,

DKL(P ′ ‖ Q′) = DKL(f(LP′) ‖ f(LQ′)) ≤ DKL(LP′ ‖ LQ′)

From now on, we assume that P ′,Q′ are lower triangular. The KL divergence between P ′|g and Q′|g
considering the lower triangular part can be calculated since they are both multivariate Gaussians
with the same covariance matrix (of rank l). The KL divergence thus only depends on the difference
between the mean ∆µ of the two multivariate Gaussians (see Fact A.5), which is the lower triangular

part contained in C log3/2( 1
δ ) ggT

‖g‖22
Q. Furthermore, since all redundant variables are removed, the

distribution on the remaining variables is dimension-independent, with variance 2 from the randomness
of W .

Let M̃ = [m1, . . . ,mq] be the observed lower triangular parts of ∆µ, where mi ∈ Rn−i+1,∀i ∈ [q].
Let Q = [q1, . . . ,qq] where qi ∈ Rn,∀i ∈ [q] be the queries. By Fact A.5, for any g ∈ E (an event of
probability at least 10δ),

DKL(P ′|g ‖ Q′|g) ≤ DKL(LP′ |g ‖ LQ′ |g)

≤
q∑
i=1

‖C log3/2(
1

δ
)mi‖22

≤ C2 log3(
1

δ
)

q∑
i=1

‖ ggT

‖g‖22
qi‖22

= C2 log3(
1

δ
)

q∑
i=1

〈 g

‖g‖2
,qi〉2

= C2 log3(
1

δ
)
‖gTQ‖22
‖g‖22

≤ 1

50

By Fact A.6, since conditioning (on g) increases KL divergence between P ′ and Q′, let f(g) be the
conditional probability density of g on E . Then,

DKL(P ′ ‖ Q′) ≤
∫
g

DKL(P ′|g ‖ Q′|g)f(g)dg ≤ DKL(P ′|g ‖ Q′|g) =
1

50

By Pinsker’s inequality, given E happens,

DTV (P ′ ‖ Q′) ≤
√

1

2
DKL(P ′ ‖ Q′) =

√
1

100
<

1

3

If the total variation distance between any two distributions P ′ and Q′ is at most δ, then any
algorithm that distinguishes between P ′ and Q′ can succeed with probability at most 2 1

2 + δ
2 .

2For two arbitrary distributions P ′ and Q′, let the total variation distance between them be DTV (P ′ ‖ Q′) =

12



Since DTV (P ′ ‖ Q′) ≤ 1
3 in our case, this implies that any algorithm for distinguishing P ′ and Q′ can

succeed with probability at most 1
2 + 1

2 ·
1
3 = 2

3 , and so fails with probability > 1
3 . Since Pr[E ] ≥ 10δ,

the overall failure probability of an algorithm for distinguishing P from Q is thus 10δ · 13 > δ. This

implies that to achieve success probability at least 1− δ, q = Ω( log(1/δ)
log log(1/δ) ).

supE |P ′(E) − Q′(E)| = δ, where E is an event. Consider an algorithm A that distinguishes samples from P ′ or
Q′, and an arbitrary sample x. Let E = Pr[A(x) = P ′,x ∼ P ′]. If A succeeds with probability ≥ 1

2
+ δ

2
, then

this implies Pr[A(x) = P ′,x ∼ P ′] ≥ 1
2
+ δ

2
, and Pr[A(x) = P ′,x ∼ Q′] ≥ 1

2
+ δ

2
− δ = 1

2
− δ

2
. This also implies

Pr[A(x) = Q′,x ∼ Q′] ≤ 1− ( 1
2
− δ

2
) = 1

2
+ δ

2
, which means the success probability A is at most 1

2
+ δ

2
.
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