
A CNN architectures

In this section we describe the denoising architectures used for our computational experiments. All architectures
except BFCNN have additive (bias) terms after every convolutional layer.

A.1 DnCNN

DnCNN [66] consists of 20 convolutional layers, each consisting of 3 ⇥ 3 filters and 64 channels, batch
normalization [23], and a ReLU nonlinearity. It has a skip connection from the initial layer to the final layer,
which has no nonlinear units.

A.2 BFCNN

We use BFCNN [37] based on DnCNN architecture, i.e, we remove all sources of additive bias, including the
mean parameter of the batch-normalization in every layer (note however that the scaling parameter is preserved).

A.3 UNet

Our UNet model [50] has the following layers:

1. conv1 - Takes in input image and maps to 32 channels with 5⇥ 5 convolutional kernels.
2. conv2 - Input: 32 channels. Output: 32 channels. 3⇥ 3 convolutional kernels.
3. conv3 - Input: 32 channels. Output: 64 channels. 3⇥ 3 convolutional kernels with stride 2.
4. conv4- Input: 64 channels. Output: 64 channels. 3⇥ 3 convolutional kernels.
5. conv5- Input: 64 channels. Output: 64 channels. 3⇥ 3 convolutional kernels with dilation factor of 2.
6. conv6- Input: 64 channels. Output: 64 channels. 3⇥ 3 convolutional kernels with dilation factor of 4.
7. conv7- Transpose Convolution layer. Input: 64 channels. Output: 64 channels. 4⇥ 4 filters with stride

2.
8. conv8- Input: 96 channels. Output: 64 channels. 3⇥ 3 convolutional kernels. The input to this layer

is the concatenation of the outputs of layer conv7 and conv2.
9. conv9- Input: 32 channels. Output: 1 channels. 5⇥ 5 convolutional kernels.

The structure is the same as in [68]. This configuration of UNet assumes even width and height, so we remove
one row or column from images in with odd height or width.

A.4 Blind-spot network

We use a modified version of the blind-spot network architecture introduced in Ref. [29]. We rotate the input
frames by multiples of 90� and process them through four separate branches (with shared weights) containing
asymmetric convolutional filters that are vertically causal. The architecture of a branch is described in Table 1.
Each branch has one input channel and one output channel. Each branch is followed by a de-rotation and the
output is passed to a series of three cascaded 1⇥ 1 convolutions and non-linearity for reconstruction with 4 and
96 intermediate output channels, as in [29]. The final convolutional layer is linear and has 1 output channel.

B Datasets

We perform controlled experiments on datasets with different signal and noise structure to evaluate the broad
applicability of GainTuning (see Figure 6 for a visual summary of datasets). We describe each dataset below:

Generic natural images. We use 400 images from BSD400 [34] dataset for pre-training CNNs. We evaluate on
two test sets, Set12 and Set68, with 12 and 68 images, respectively [66].

Images of urban scenes. We evaluate generalization capabilities of GainTuning using a dataset of images
captured in urban settings, Urban100 [22]. These images often contain repeating patterns and structures, unlike
generic natural images (see Figure 6). We evaluate GainTuning on the first 50 images from this dataset.

Images of scanned documents. We use images of scanned documents from the IUPR dataset [4]. We resized
the images in IUPR dataset by a factor of 6, and used the first 50 images from the dataset for evaluation.

Simulated piecewise constant images. We use a dataset of simulated piecewise constant images. These images
have constant regions with boundaries consisting of various shapes such as circles and lines with different

15

Name Nout Function

Input 1
enc_conv_0 48 Convolution 3⇥ 3
enc_conv_1 48 Convolution 3⇥ 3
enc_conv_2 48 Convolution 3⇥ 3
pool_1 48 MaxPool 2⇥ 2
enc_conv_3 48 Convolution 3⇥ 3
enc_conv_4 48 Convolution 3⇥ 3
enc_conv_5 48 Convolution 3⇥ 3
pool_2 48 MaxPool 2⇥ 2
enc_conv_6 96 Convolution 3⇥ 3
enc_conv_7 96 Convolution 3⇥ 3
enc_conv_8 48 Convolution 3⇥ 3
upsample_1 48 NearestUpsample 2⇥ 2
concat_1 96 Concatenate output of pool_1
dec_conv_0 96 Convolution 3⇥ 3
dec_conv_1 96 Convolution 3⇥ 3
dec_conv_2 96 Convolution 3⇥ 3
dec_conv_3 96 Convolution 3⇥ 3
upsample_2 96 NearestUpsample 2⇥ 2
concat_2 96+k1 Concatenate output of Input
dec_conv_4 96 Convolution 3⇥ 3
dec_conv_5 96 Convolution 3⇥ 3
dec_conv_6 96 Convolution 3⇥ 3
dec_conv_7 1 Convolution 3⇥ 3

Table 1: Blind-spot network. The convolution and pooling layers are the blind-spot variants
described in Ref. [29].

orientations. The constant region has an intensity value sampled from a uniform distribution between 0 and 1
(see Figure 6). These piecewise constant images provide a crude model for natural images [35, 44, 31], and
a CNN pre-trained on this dataset provides a substrate for testing the ability of GainTuning to adapt to the
complexity of real-world images.

Simulated transmission electron microscopy data. The TEM image data used in this work correspond to
images from a widely utilized catalytic system, which consist of platinum (Pt) nanoparticles supported on a
larger cerium (IV) oxide (CeO2) nanoparticle. We use the simulated TEM image dataset introduced in Ref. [38]
for pre-training CNNs. The simulated dataset contains 1024 x 1024 images, which are binned to match the
approximate pixel size of the experimentally acquired real image series (described below). To equate the intensity
range of the simulated images with those acquired experimentally, the intensities of the simulated images were
scaled by a factor which equalized the vacuum intensity in a single simulation to the average intensity measured
over a large area of the vacuum in a single 0.025 second experimental frame (i.e., 0.45 counts per pixel in the
vacuum region). Furthermore, during TEM imaging multiple electron-optical and specimen parameters can
give rise to complex, non-linear modulations of the image contrast. These parameters include the objective
lens defocus, the specimen thickness, the orientation of the specimen, and its crystallographic shape/structure.
Various combinations of these parameters may cause the contrast of atomic columns in the image to appear as
black, white, or an intermediate mixture of the two. To account for this, the simulated dataset contains various
instances of defocus, tilt, thickness, and shape/structure. We refer interested readers to Ref. [38] for more details.

Real transmission electron microscopy data. The real data consist of a series of images of the Pt/CeO2

catalyst. The images were acquired in a N2 gas atmosphere using an aberration-corrected FEI Titan transmission
electron microscope (TEM), operated at 300 kV and coupled with a Gatan K2 IS direct electron detector [38].
The detector was operated in electron counting mode with a time resolution of 0.025 sec/frame and an incident
electron dose rate of 5,000 e�/Å2/s. The electromagnetic lens system of the microscope was tuned to achieve a
highly coherent parallel beam configuration with minimal low-order aberrations (e.g., astigmatism, coma), and a
third-order spherical aberration coefficient of approximately -13 µm. We refer interested readers to Ref. [38] for
more details.

16

BSD400 Set12

BSD68 Urban100

IUPR Piecewise constant images

Figure 6: Example dataset images. Nine images chosen at random from each dataset.

17

C Details of pre-training and GainTuning

In this section, we describe the implementation details of the pre-training process and our proposed GainTuning
framework.

C.1 Overview

While performing GainTuning, we introduce a scalar multiplicative parameter (gain) in every channel of the
convolutional layers in the denoising CNN. We do not introduce gain parameters in the last layer of the network.
We describe the general optimization process for GainTuning here, and describe any additional modifications for
specific datasets in the respective subsections.

Data. We perform GainTuning on patches extracted from the noisy image. We extracted 400 ⇥ 400 patches
for the electron microscopy dataset, and 50 ⇥ 50 patches for all other datasets. We do not perform any data
augmentation on the extracted patches.

BatchNorm layers during GainTuning. If the denoising CNN contains batch normalization (BN) layers (only
DnCNN [66] and BFCNN [37] in our experiments), we freeze their statistics while performing GainTuning.
That is, we do not re-estimate the mean and standard deviation parameter for each layer from the test data.
Instead, we re-use the original values estimated from pre-training dataset.

Optimization for GainTuning. We use Adam [26] optimizer. We empirically find that training for 100 steps
with a starting learning rate of 10�4 which is reduced to 10�5 after the 20th step performs well across most
situations (see sections below for hyper-parameters used in different experiments). Here, we define each step
as a pass through 5000 random patches extracted from the test image. When performing experiments which
compare optimizing all parameters to optimizing only gain during the adaptation process, we kept the learning
rate constant at 10�5 for both options, and trained for 1000 steps.

C.2 Natural images

Pre-training dataset. Our experiments are carried out on 180 ⇥ 180 natural images from the Berkeley
Segmentation Dataset [34]. We use a training set of 400 images. The training set is augmented via downsampling,
random flips, and random rotations of patches in these images [66]. We train the CNNs on patches of size
50⇥ 50, which yields a total of 541,600 clean training patches.

Pre-training process. We train DnCNN, BFCNN and UNet using the Adam Optimizer [26] for 100 epochs
with an initial learning rate of 10�3 and a decay factor of 0.5 for every 10 epochs after the 50th, with no early
stopping [37].

GainTuning. We follow the same procedure as Section C.1.

C.3 Piecewise constant images

Pre-training dataset. We generated a synthetic dataset of piecewise constant images with the varied boundary
shapes like slanted lines and circles (see Figure 6). The intensity values of the constant regions were uniformly
sampled between 0 and 1. The generated patches were of size 50⇥ 50 to mimic the training process for natural
images [66].

Pre-training. We train DnCNN, BFCNN and UNet using the Adam Optimizer [26] using the same process as
in Section C.2. For each epoch, we generated 50, 000 random patches.

GainTuning . We follow the same procedure as Section C.1.

C.4 Electron microscope data

Pre-training dataset. Our experiments are carried out on 400 ⇥ 400 patches extracted from about 5000
simulated TEM introduced in Ref. [38]. The training set is augmented via downsampling, random flips, and
random rotations of patches in these images [38, 60].

Optimization Details: We trained using Adam [26] optimizer with a starting learning of 10�4. The learning
rate was decreased by a factor of 2 at checkpoints [20, 25, 30] during a total training of 40 epochs [38].

GainTuning. We performed GainTuning using Adam [26] optimizer with a constant learning rate of 10�5 for
100 steps. Each step consisted of 1000 randomly sampled patches of size 400 ⇥ 400 extracted from the test
image.

18

C.5 Computational resources used

The computations were performed on an internal cluster equipped with NVIDIA RTX8000 and NVIDIA V100
GPUs. We used open-source pre-trained networks when available.

D Approximation for SURE

Let x be an N -dimensional ground-truth random vector x and let y := x + n be a corresponding noisy
observation, where n ⇠ N (0,�2

nI). Stein’s Unbiased Risk Estimator (SURE) provides an expression for
the mean-squared error between x and the denoised estimate f✓(y) (where f✓ denotes an arbitrary denoising
function), which only depends on the distribution of noisy observations y:

Ex,y

1
N

kx� f✓(y)k2
�
= Ey

"
1
N

ky � f✓(y)k2 � �2 +
2�2

N

NX

k=1

@(f✓(y)k)
@yk

#
(8)

The last (divergence) term in the equation is costly to compute. Therefore, we make use of a Monte Carlo
approximation of SURE introduced by Ref. [47]:

NX

k=1

@(f✓(y)k)
@yk

⇡ 1
✏N

hñ, f✓(y + ✏ñ)� f✓(y)i (9)

where hx, yi represents the dot product between x and y, ñ represents a sample from N (0, 1), and ✏ represents a
fixed, small, positive number. We set ✏ = � ⇥ 1.4⇥ 10�4 for our computational experiments [55]. Equation (9)
has been used in the implementation of several traditional [47], and deep learning based [36, 56, 55] denoisers.

E GainTuning prevents overfitting

We perform controlled experiments to compare test-time updating of (1) all parameters of a CNN, and (2) only
the gain parameters. We briefly describe each experiment and our findings in this section.

Comparison across different cost functions. We fine-tune (a) all parameters, and (b) only gain parameters of
a DnCNN [66] model when the test image is (1) in-distribution, (2) corrupted with out-of-distribution noise
and (c) contains image features which are different from the training set. Fine-tuning only the gain parameters
outperforms fine-tuning all parameters in all of these situations for different choices of cost functions (see
Figures 7, 8 and 9)

Comparison across different architectures. We fine-tune (a) all parameters, and (b) only gain parameters of a
DnCNN [66], BFCNN [37] and, UNet [50] model when the test image is (a) in-distribution, (b) corrupted with
out-of-distribution noise and (c) contains image features which are different from the training set. Fine-tuning
only the gain parameters often outperforms fine-tuning all parameters in all of these situations for different
choices of cost functions (see Figure 10). Figure 10 shows results for a CNN trained on generic natural images
and tested on images of urban scenes. In this case, training all parameters of the CNN outperforms training only
the gains (see Section 7 for a discussion). Interestingly, training gains is comparable to training all parameters
when we corrupt the images from urban scenes with a noise level that is also outside the training range (see
Figure 11).

GainTuning does not require early stopping. Optimizing all parameters of a CNN during adaptation often
results in overfitting (see Figure 10). In contrast, optimizing only the gain parameters for longer periods of time
results improves performance without overfitting (Figure12).

Real electron microscopy data. We fine-tune (a) all parameters, and (b) gain parameters to adapt a CNN to
real images of nanoparticle acquired through an electron microscope. The CNN was pre-trained on the simulated
data described in Section B. Optimizing only the gain parameters outperforms optimizing all parameter and does
not require early stopping (Figure 13)

GainTuning outperforms fine-tuning last few layers of the CNN. We compared GainTuning to selectively
fine-tuning last n layers for DnCNN with n = 20 layers. GainTuning out-performed fine-tuning last layers by a
substantial margin (see Table 2 for details). Note that gains only constitute 1.15K or 0.17% of the parameters,
while fine-tuning only the last 2 layers is 37K or 5.63% parameters (about 33x more than the number of gains).
The in-distribution and out-of-distribution noise consists of adapting a DnCNN trained on natural images with
� 2 [0, 55] for natural images (Set12) with � = 30 and � = 70 respectively. We adapted a CNN trained on
piecewise constant images with � 2 [0, 55] to natural images (Set12) with � = 30 for out-of-distribution signal
experiments.

19

Loss In-distribution Out-of-distribution noise Out-of-distribution signal

SURE

Noise Re-
sampling

Figure 7: GainTuning prevents overfitting. Comparison of adaptive training of all network parame-
ters, and GainTuning (training of gains only), using two different unsupervised objectives - SURE
(top) and noise resampling (bottom). The distributions of performance improvements are shown
as box plots. See Figure 8 for corresponding scatterplots. For in-distribution, we evaluate a CNN
pre-trained on natural images corrupted with Gaussian noise of standard deviation � 2 [0, 55] on
natural images (Set12) at � = 30. For out-of-distribution noise we evaluate natural images (Set12) at
� = 70. For out-of-distribution signal we evaluate a CNN trained on piecewise constant images at
� 2 [0, 55] on natural images (set12) at � = 30. Please refer to Section F for details.

Fine-tuning

All params Last n layers Only gains
n = 10 n = 4 n = 3 n = 2 n = 1

Num. params
(% of total params)

668,225
(100%)

334,081
(49.95%)

111,745
(16.72%)

74,689
(11.18%)

37,633
(5.63%)

577
(0.09%)

1,152
(0.17%)

in-distribution -0.33 0.09 0.05 0.04 0.04 0.06 0.14
out-of-distr.

noise 1.92 1.92 2.05 2.06 2.10 2.13 3.11

out-of-distr.
signal -4.48 0.92 1.12 1.06 0.93 0.83 1.45

Table 2: GainTuning vs selectively fine-tuning last few layers. We compared GainTuning to
selectively fine-tuning last n layers for a DnCNN with n = 20 layers. Table entries indicate the
change in performance (i.e., the performance in PSNR after fine-tuning minus the PSNR of the pre-
trained network - larger positive values are better). Across different tasks, GainTuning outperformed
fine-tuning last layers by a significant margin. The in-indistribution and out-of-distribution signal
consists of adapting a DnCNN trained on natural images with � 2 [0, 55] for natural images (Set12)
with � = 30 and � = 70 respectively. We adapted a CNN trained on piecewise constant images with
� 2 [0, 55] to natural images (Set12) with � = 30 for out-of-distribution signal experiments.

F Performance of GainTuning

F.1 In-distribution test image

Different architectures. We evaluated DnCNN [66], UNet [50] and BFCNN [37] architectures for this task. All
models were trained on denoising Gaussian white noise of standard deviation � 2 [0, 55] from generic natural
images. Results of DnCNN and UNet are presented in Figure 3 in the main paper. Results for the BFCNN
architecture are provided in Table 3.

20

Loss In-distribution Out-of-distribution noise Out-of-distribution signal

SURE

Noise Re-
sampling

Figure 8: GainTuning prevents overfitting. Performance obtained from adaptively training all
network parameters (blue points), compared to GainTuning (orange points) using the SURE loss,
plotted against performance of the originally trained network. Each data point corresponds to one
image in the dataset. The dashed line represents the identity (i.e., no improvement). Training all
parameters (blue points) often leads to degraded performance, but training only the gains (orange
points), leads to an improvement. For in-distribution test images, we evaluate a CNN pre-trained on
natural images corrupted with Gaussian noise of standard deviation � 2 [0, 55] on natural images
(Set12) at � = 30. For out-of-distribution noise we test on natural images (Set12) at � = 70. For
out-of-distribution signal we test a CNN trained on piecewise constant images at � 2 [0, 55] on
natural images (set12) at � = 30. Please refer to Section F for details.

Model �
Set12 Set68

Pre-trained GainTuning Pre-trained GainTuning

BFCNN 30 29.52 29.61 28.36 28.45

Table 3: Results for BFCNN. Results for BFCNN [37] architecture trained on BSD400 dataset
corrupted with Gaussian noise of standard deviation � 2 [0, 55]. Results for other architectures are
provided in Section 5.1.

Different cost functions. We provide the results of evaluating DnCNN architecture with different cost functions
in Table 7.

Distribution of improvements. We visualize the distribution of improvements in denoising performance for
different architectures after performing GainTuning using the SURE cost function in Figure 14. As discussed
in Section 7, if the CNN is optimized well and the test image is in-distribution, GainTuning can degrade
performance. This degradation is atypical (3 out of 408 total evaluations) and very small (maximum degradation
of 0.02 dB in PSNR).

F.2 Out-of-distribution noise

Different Architectures. We summarize the results using DnCNN in Table 4 in the main paper. Figure 10
shows that the UNet architecture is also able to generalize to out-of-distribution noise.

Different Loss Functions. We provide the results of evaluating DnCNN architecture with different cost
functions in Table 7.

21

In-distribution Out-of-distribution noise Out-of-distr. signal

Gaussian (� = 70) Poisson (⇣ = 0.5)

Figure 9: GainTuning prevents overfitting. Comparison of adaptive training of all network parame-
ters, and GainTuning (training of gains only) using blind-spot cost function. The distribution of the
gain in performance is visualized as a box plot. For in-distribution, we evaluate a CNN pre-trained
on natural images corrupted with Gaussian noise of standard deviation � 2 [0, 55] on natural images
(Set12) at � = 30. For out-of-distribution noise we evaluate natural images (Set12) at � = 70
(Gaussian noise), and ⇣ = 0.5 for Poisson noise. For out-of-distribution signal we evaluate a CNN
trained on piecewise constant images at � 2 [0, 55] on natural images (Set 12) at � = 30. We used
network architecture in [29] for our experiments.

Test set �
Trained on � 2 [0, 55]

Baselines

Bias Free
Model [37]

Trained on
� 2 [0, 100]

LIDIA [59] S2S [46]
Pre-trained GainTuning Pre-trained Adapted

Set12 70 22.45 25.54 25.59 25.50 23.69 25.01 24.61
80 18.48 24.57 24.94 24.88 22.12 24.17 23.64

BSD68 70 22.15 24.89 24.87 24.88 23.28 24.57 24.29
80 18.72 24.14 24.38 24.36 21.87 23.97 23.65

Table 4: GainTuning for out-of-distribution noise. We evaluate a DnCNN trained on generic
natural images for � 2 [0, 55] on a test set of generic natural images corrupted with � = {70, 80},
which is outside the training range of the network. GainTuning is able is generalize effectively to
this out-of-distribution test set. GainTuning achieves comparable performance to a network trained
with supervision on a large range of noise levels (� 2 [0, 100]) an bias-free models which is an
architecture explicitly designed to generalize to noise levels outside the training range. GainTuning
also outperforms LIDIA [59], a specialized architecture and adaptation procedure, and Self2Self [46],
a method trained exclusively on the test image.

Comparison to baselines. Table 4 summarizes the result of evaluating a DnCNN trained on generic natural
images for � 2 [0, 55] on a test set of generic natural images corrupted with � = {70, 80}, which is outside the
training range of the network. GainTuning is able to generalize effectively to this out-of-distribution test set.
GainTuning achieves comparable performance to a network trained with supervision on a large range of noise
levels (� 2 [0, 100]), and a bias-free model which is explicitly designed to generalize to noise levels outside the
training range. GainTuning also outperforms LIDIA [59] (a specialized architecture and adaptation procedure).
and Self2Self [46] (a method trained exclusively on the test image).

22

In distribution. Natural images (� 2 [0, 55]) ! Set12 (� = 30)

Out-of-distribution noise. Natural images (� 2 [0, 55]) ! Set12 (� = 70)

Out-of-distribution signal. Natural images (� 2 [0, 55]) ! Urban100 (� = 30)

DnCNN UNet BFCNN

Figure 10: GainTuning prevents overfitting. We compare training all parameters of the network
(blue) and only the gain parameters (orange) during the adaptation process. All architectures are
trained using the SURE cost function. 23

DnCNN BFCNN

Figure 11: Out-of-distribution noise and signal. We compare training all parameters of the network
(blue), and only the gain parameters (orange) during the adaptation process. The CNN is pre-trained
on generic natural images corrupted with Gaussian noise of standard deviation � 2 [0, 55]. We
apply GainTuning to adapt it to images of urban scenes (high self-similarity, hence different signal
characteristics from natural images) corrupted with � = 70 (which is outside the training range of
noise). All architectures are trained using the SURE cost function.

F.3 Out-of-distribution image

Different Architectures. We summarize the results using DnCNN in Table 4 in the main paper. Figures 10
show that the UNet and BFCNN architectures are also able to generalize to test data with different characteristics
from the training data when adapted using GainTuning .

Different Loss Functions. We provide the results of evaluating the DnCNN architecture with different cost
functions in Table 7.

Comparison to baselines. Results of comparison to LIDIA [59], a specialized architecture to perform adaptation,
and Self2Self [46] a method trained exclusively on the test image is summarized in Table 6. While GainTuning
outperforms LIDIA, it does not match the performance of Self2Self (see Section 7 for a discussion on this).

F.4 Out-of-distribution noise and image

We evaluated the ability of GainTuning to adapt to test images which have different characteristics from those in
the training set, and are additionally corrupted with a noise distribution that is different from the noise in the
training set. Figure 11 shows that GainTuning is successful in this setting. The CNN was pre-trained on natural
images corrupted with Gaussian white noise of standard deviation � 2 [0, 55]. We used GainTuning to adapt
this CNN to a test set of images taken in urban setting (see Section B for a discussion on how it is different
from natural images), corrupted with Gaussian noise of standard deviation � = 70 (which is outside the training
range of [0, 55]).

F.5 Application to Electron Microscopy

Comparison to pre-trained CNN. As discussed in Section 5.4, a CNN [29] pre-trained on the simulated data
fails to reconstruct the pattern of atoms faithfully. We show an additional example (Figure 15) to support this.
GainTuning applied to the pre-trained CNN using the blind-spot loss correctly recovers this pattern (green
box in Figure 15 (d), (e)) reconstructing the small oxygen atoms in the CeO2 support. GainTuning with noise

24

In-distribution
Natural images (� 2 [0, 55]) ! Set12 � = 30

Out-of-distribution noise
Natural images (� 2 [0, 55]) ! Set12 � = 70

Out-of-distribution image
Natural images (� 2 [0, 55]) ! Urban100 � = 30

Out-of-distribution image and noise
Natural images (� 2 [0, 55]) ! Urban100 � = 70

Figure 12: GainTuning does not require early stopping. We plot the improvement in performance
achieved by GainTuning with the number of iterations. Each iteration step is a pass through 10000
random 50 ⇥ 50 patch extracted from the image. The performance achieved by optimizing only
the gain parameters remains constant or monotonically increases with iteration, while training all
parameters often overfits (see Figure 10)

resampling failed to reproduce the support pattern, probably because it is absent from the initial denoised
estimate (see Figure 16).

Comparison to baselines. Since no ground-truth images are available for this dataset (see Section 5.4), we
average 40 different acquisitions of the same underlying image to obtain an estimated reference for visual
reference. We also compare GainTuning to state-of-the-art dataset based unsupervised methods, which are
trained on these 40 images.

• Blind-spot net [29] is a CNN which is constrained to predict the intensity of a pixel as a function
of the noisy pixels in its neighbourhood, without using the pixel itself. This method is competitive
with the current supervised state-of-the-art CNN on photographic images. However, when applied
to this dataset it produces denoised images with visible artefacts (see Figure 16). Ref. [52] shows
that this may be because of the limited amount of data (40 noisy images): They trained a blind-spot
net on simulated training sets of different sizes, observing that the performance on held-out data is
indeed poor when the training set is small, but improves to the level of supervised approaches for large
training sets.

• Unsupervised Deep Video Denoising (UDVD) [52] is an unsupervised method for denoising video
data based on the blind-spot approach. It estimates a denoised frame using 5 consecutive noisy frames
around it. Our real data consists of 40 frames acquired sequentially. UDVD produces better results
than blind-spot net, but still contains visible artefacts, including missing atoms (see Figure 16). Note
that UDVD uses 5 noisy images as input, and thus has more context to perform denoising than the
other methods (including GainTuning).

• Blind-spot net with early stopping. In Ref. [52] it is shown that early stopping based on noisy
held-out data can boost the performance of blind-spot nets. Here we used 35 images for training the
blind-spot net and the remaining 5 images as a held-out validation set. We chose the model parameters
that minimized the mean squared error between the noisy validation images and the corresponding
denoised estimates. The results (shown in Figure 16) are significantly better than those of the standard

25

Gradient
Steps All parameters Gain parameters

0

1.5K

2.5K

5K

10K

25K

50K

Figure 13: GainTuning prevents overfitting in TEM data. We compare training all parameters
and only the gain parameters while adapting a CNN pre-trained on simulated TEM data to real TEM
data. Training all parameters clearly overfits to the noisy image. Each gradient step is updated over
two random patches of size 400⇥ 400.

26

� DnCNN UNet

30

Max Min Num. of �PSNR < 0
0.364 0.004 0

Max Min Num. of �PSNR < 0
0.346 0.020 0

40

Max Min Num. of �PSNR < 0
0.360 -0.004 1

Max Min Num. of �PSNR < 0
0.332 0.002 0

50

Max Min Num. of �PSNR < 0
0.294 -0.022 1

Max Min Num. of �PSNR < 0
0.309 -0.011 1

Figure 14: Distribution of PSNR improvement on in-distribution test set. Distribution of im-
provement on BSD68 dataset at noise levels � = {30, 40, 50} (in-distribution). When the network
is well optimized, and the test image is in-distribution, GainTuning can sometimes degrade the
performance of the network. This degradation is atypical (in this figure, there are only 3 occurrences
of degradation out of 408 experiments), and very small (in this figure, the maximum degradation is
0.022)

27

(a) ⇣ CNN trained on Gauss. � 2 [0, 55] (d) Bias-free CNN trained
on Gauss. � 2 [0, 55]

Improvement after GainTuning

(b) Pre-trained (c) GainTuning (e) Maximum (f) Minimum

1 17.58 21.07 17.91 4.79 2.25
0.5 20.19 22.50 20.12 3.43 1.11
0.1 25.28 25.99 24.88 1.16 0.34

Table 5: CNN trained on Gaussian noise generalizes to Poisson noise. Results on applying
GainTuning to a CNN pre-trained on additive Gaussian noise (which has spatially uniform variance)
to test data corrupted by Poisson noise (where the variance depends on the underlying pixel values
and is hence spatially variant). We evaluate on Poisson noise with three different scaling ⇣ values (a),
where a larger value of ⇣ implies that the image is more noisy (if x is a clean image, the noisy image
y is sampled from ⇣Pois(x/⇣) where Pois(�) is the PMF of Poisson distribution with parameter
�). Applying GainTuning on the CNN improves its performance (b) by a significant margin (c).
GainTuning on the pre-trained CNN also outpeforms its bias-free counterpart (d), which is designed
to generalize well to Gaussian noise outside the training range. The maximum improvement in PSNR
(e) obtained by applying GainTuning to the pre-trained CNN (b) is substantial, and the minimum
improvement in PSNR (f) is non-trivial. The CNN used here is [47] and was pre-trained on BSD400
dataset. GainTuning was performed to adapt to Set12 with Poisson noise.

Training
Data

Test
Data

DnCNN [66] Baselines

LIDIA [59] S2S [46]
Pre-trained GainTuning Pre-trained Adapted

(a) Piecewise
constant

Natural
images 27.31 28.60 - - 29.21

(b) Natural
images

Urban
images 28.35 28.79 28.54 28.71 29.08

(c) Natural
images

Scanned
documents 30.02 30.73 30.05 30.23 30.86

Table 6: GainTuning for out-of-distribution images. GainTuning generalizes robustly when the test
image has different characteristics than the training data. We demonstrate this through three different
experiments. (a) GainTuning provides an average of 1.3 dB in performance while adapting a CNN
trained on simulated piecewise constant dataset to natural images. This controlled setting demonstrates
the capability of GainTuning to adapt from a simple simulated training set to a significantly more
complex real dataset. (b) GainTuning provides an average of 0.45 dB improvement in performance
when a CNN trained on natural images is adapted to a dataset of images taken in urban settings. These
images display a lot of repeating structure (see Section B) and hence has different characters than
generic natural images. Similarly, (c) GainTuning provides an average of 0.70 dB improvement in
performance when a CNN pre-trained on natural images is adapted to images of scanned documents.
While GainTuning outperforms LIDIA [59], a specialized architecture designed for adapting, it
does not match the performance of Self2Self (see Section 7 for a discussion on this). As noted in
Section 5.3, we did not train LIDIA for (a).

blind-spot network. However, there are still noticeable artefacts, which include missing atoms. This
method is similar in spirit to GainTuning - but uses a different strategy to prevent overfitting.

• Unsupervised Deep Video Denoising (UDVD) with early stopping. Similar to blind-spot net,
performing early stopping on UDVD using 5 held-out frames greatly improves its performance [52]
(Figure 16)). However, there are still noticeable artefacts in the denoised output.

F.6 Different loss functions

GainTuning can be used in conjunction with any unsupervised denoising cost function. We explore three different
choices - SURE, noise resampling, and blind-spot cost functions (see Section 4), and summarize our finding in
Table 7.

28

(a) Noisy image
(b) Unsupervised training

only on (a) [46]
(c) Supervised training
on simulated data [38]

(d) GainTuning on CNN
trained on sim. data (c)

(e) Estimated reference
image

Figure 15: Denoising results for real-world data. (a) An experimentally-acquired atomic-resolution
transmission electron microscope image of a CeO2-supported Pt nanoparticle. The image has a
very low signal to noise ratio (PSNR of ⇡ 3dB). (b) Denoised image obtained using Self2Self [46],
which contains significant artefacts. (c) Denoised image obtained via a CNN trained on a simulated
dataset, where the pattern of the supporting atoms is not recovered faithfully (third row). (d) Denoised
image obtained by adapting the CNN in (c) to the noisy test image in (a) using GainTuning. Both
the nanoparticle and the support are recovered without artefacts. (e) Reference image, estimated by
averaging 40 different noisy images of the same nanoparticle. See Figure 2 for an additional example.

SURE loss outperforms other choices in most experiments. Noise resampling has comparable performance to
SURE when the test data is in-distribution, or when it is corrupted with out-of-distribution noise. However,
noise resampling generally under-performs SURE when the test images have different features from the training
images. A possible explanation for this is that noise resampling relies on the initial denoised image to fine-tune
and, therefore, it may not be able to exploit features which are not present in the initial estimate. In contrast, the
SURE cost function is computed on the noisy test image itself, thereby enabling it to adapt to features that the
pre-trained network may be agnostic to.

Finally, adapting using blind-spot cost function often under-performs both SURE and noise resampling. The
difference in performance is reduced at higher noise levels (see also Section 5.4 where we use blind-spot cost
function for experiments with real TEM data with very high noise). The reason for this could be that at higher
noise levels, the information contained in a single pixel becomes less relevant for computing the corresponding
denoised estimate (in fact, the regularization penalty on “self pixel‘ for SURE cost function (Section 4) increases
as the noise level increases). Therefore, the loss of performance incurred by the blind-spot cost function is
diminished. At lower noise levels (particularly when the images are in-distribution), adapting using blind-spot
cost function will force the pre-trained network to give up using the “self pixel“, which results in a degraded
performance. An alternative to adapting a generic pre-trained network using blind-spot architecture is to use
a CNN that is architecturally constrained to include a blind-spot. In Table 8, we show that adapting such a
CNN using blind-spot loss improves the performance its performance. However, the overall performance of this
architecture is in general lower than the networks which also use the “self pixel“. We refer interested readers to
Ref. [29, 28, 62] for approaches to incorporate the noisy pixel into the denoised estimate.

G Analysis

G.1 What kind of images benefit the most from adaptive denoising?

We sort images by the improvement in performance (PSNR) achieved with GainTuning. We observe that
the ordering of images is similar for different models and cost functions (See Figure 17), implying that the
improvement in performance is mostly dependent on the image content. The images with largest improvement
typically contain repeated patterns and are more structured. Repetition of patterns effectively provides multiple
samples from which the unsupervised refinement can benefit.

29

GainTuning with

Pre-training SURE Noise
resampling

Blind-spot
(Noise2Self [3])

in distribution Set12 29.52 29.62 29.63 29.50
BSD68 28.39 28.46 28.40 28.36

out-of-distribution
noise

Set12 18.48 24.57 24.11 22.93
BSD68 18.72 24.14 23.65 22.50

out-of-distribution
image

Piecewise constant !
Natural images 27.31 28.60 28.29 27.39

Natural images !
Urban100 28.35 28.79 28.79 28.29

Natural images !
Scanned documents 30.02 30.73 30.57 29.23

Table 7: Different loss functions for GainTuning. Comparison of the performance of GainTuning
when used in conjunction with three different loss functions. SURE loss outperforms other choices
in most experiments. Noise resampling has comparable performance to SURE when the test data is
in-distribution, or when it is corrupted with out-of-distribution noise. However, noise resampling
generally under-performs SURE when the test images have different features from the training images.
This maybe because such features are absent from the initial denoised estimate (see Section 4 for a
description of the different loss functions). Finally, optimizing using blind-spot cost functions often
under-performs both SURE and noise resampling, but the difference in performance is reduced as the
test noise increases (see also Section 5.4 where we use blind-spot cost function for experiments with
real TEM data with very high noise). This may be because, at lower noise levels, the information
contained in a pixel is often crucially important to compute its denoised estimate, and blind-spot cost
function ignores this information (see Section 4). Here, we implemented blind-spot cost function
through masking [3], see Table 8 for results where the implemented blind-spot cost function as an
architectural constraint [29].

in-distribution out-of-distribution image

Set12 BSD68 Urban100
(urban scenes)

IUPR
(scanned documents)

Pre-trained 27.92 26.47 26.59 28.25

GainTuning 27.92 26.61 26.85 28.40

Table 8: GainTuning using architecturally constrained blind-spot cost function. We perform
GainTuning using blindspot network [29] which is architecturally constrained to estimate a denoised
pixel exclusively from its neighbouring pixels (excluding the pixel itself). The network was pre-
trained on generic natural images corrupted with Gaussian noise of standard deviation � 2 [0, 55].
Performing GainTuning on this always increases its performance, unlike GainTuning on a generic
architecture trained with supervision and adapted using blind-spot loss implemented via masking.
However, note the overall performance of this architecture is in general lower than the networks
which also use the “self pixel“. We refer interested readers to Ref. [29, 28, 62] for approaches to
incorporate the information in noisy pixel back into the denoised output, thus potentially improving
the performance. Our blind-spot architecture generalizes robustly to out-of-distribution noise (since
it is bias-free [37]), and therefore we do not include an out-of-distribution noise comparison in this
table.

30

Noisy image Blind-spot [29] Blind-spot
Early Stopping [52] UDVD [52] UDVD

Early stopping [52]

Self2Self [46] Pre-trained [38, 60] GainTuning
Noise resampling

GainTuning
blind-spot

Estimated
reference

Figure 16: Comparison with baselines for electron microscopy. GainTuning clearly outperforms
Self2Self, which is trained exclusively on the real data. The denoised image from Self2Self shows
missing atoms and substantial artefacts (see Figure 15 for another example). We also compare
GainTuning dataset to blind-spot methods using the 40 test frames [29, 52]. GainTuning clearly
outperforms these methods.

G.2 Generalization via GainTuning

We investigate the generalization capability of GainTuning. We observe that a CNN adapted to a particular
image via GainTuning generalizes effectively to other similar images. Figure 18 shows that GainTuning can
achieve generalization to images that are similar to the test image used for adaptation on two examples: (1)
adapting a network to an image of a scanned document generalizes to other scanned documents, and (2) adapting
a a network to an image with out-of-distribution noise generalizes to other images with similar noise statistics.

G.3 How does GainTuning adapt to out-of-distribution noise?

Let y 2 RN be a noisy image processed by a CNN. Using the first-order Taylor approximation, the function
f : RN ! RN computed by a denoising CNN may be expressed as an affine function

f(z) = f(y) +Ay(z � y) = Ayz + by, (10)

where Ay 2 RN⇥N is the Jacobian of f(·) evaluated at input y, and by 2 RN represents the net bias. In [37],
it was shown that the bias tends to be small for CNNs trained to denoise natural images corrupted by additive
Gaussian noise, but is a primary cause of failures to generalize to noise levels not encountered during training.
Figure 18 shows that GainTuning reduces the net bias of CNN, facilitating the generalization to new noise levels.

31

DnCNN UNet

In
-d

is
tri

bu
tio

n Top 6

Bottom
6

O
ut

-o
f-

di
st

rib
ut

io
n

im
ag

e Top 6

Bottom
6

Figure 17: What kind of images benefit the most from adaptive denoising? We visualize the
images which achieve the top 6 and bottom 6 (left top to the right bottom of each grid) improvement
in performance (in PSNR) after performing GainTuningİmages with the largest improvement in
performance often have highly repetitive patterns or large regions with constant intensity. Images
with least improvement in performance tend to have more heterogeneous structure. Note that, in
general, the distribution of improvements in performance is often skewed towards the images with
minimal improvement in performance (See Figures 3, 4, and 14).

G.4 How does GainTuning adapt to out-of-distribution images?

In order to understand how GainTuning adapt to out-of-distribution images, we examine the adaptation of a
CNN pre-trained on piecewise constant to natural images. Piecewise constant images have large areas with
constant intensities, therefore, CNNs trained on these images tends to average over large areas. This is true
even when the test image contains detailed structures. We verify this by forming the affine approximation of the
network (eq. 10) and visualizing the equivalent linear filter [37], as explained below:

Let y 2 RN be a noisy image processed by a CNN. We process the test image using a Bias-Free CNN [37] so
that the net bias by is zero in its first-order Taylor decomposition (10). When by = 0, (10) implies that the ith
pixel of the output image is computed as an inner product between the ith row of Ay , denoted ay(i), and the
input image:

f(y)(i) =
NX

j=1

Ay(i, j)y(j) = ay(i)
T y. (11)

The vectors ay(i) can be interpreted as adaptive filters that produce an estimate of the denoised pixel via a
weighted average of noisy pixels. As shown in Figure 5 the denoised output of CNN pre-trained on piece wise
constant images is over-smoothed and the filters average over larger areas. After GainTuning the model learns to
preserve the fine features much better, which is reflected in the equivalent filters.

32

(a) Dataset of
scanned documents

(b) Natural images with
out-of-distribution noise

(c) Equivalent bias before
and after gaintuning

Figure 18: Analysis of GainTuning. GainTuning can achieve generalization to images that are
similar to the test image used for adaptation. We show this through two examples: (a) adapting a
network to an image of a scanned document generalizes to other scanned documents, and (b) adapting
a a network to an image with out-of-distribution noise generalizes to other images with similar noise
statistics. The (i, j)th entry of the matrix in (a) and (b) represents the improvement in performance
(measured in PNSR) when a CNN GainTuned on image j is used to denoise image i. We use 5 images
with the largest improvement in performance across the dataset for (a) and (b). Finally, (c) shows that
generalization to noise levels outside the training range is enabled by reducing the equivalent bias of
the pre-trained CNN (see equation (10)).

33

	Introduction
	Related Work
	Proposed Methodology: GainTuning
	Cost Functions for GainTuning
	Experiments and Results
	GainTuning surpasses state-of-the-art performance for in-distribution data
	GainTuning generalizes to new noise distributions
	GainTuning generalizes to out-of-distribution image content
	Application to Electron microscopy

	Analysis
	Limitations
	Conclusions
	CNN architectures
	DnCNN
	BFCNN
	UNet
	Blind-spot network

	Datasets
	Details of pre-training and GainTuning
	Overview
	Natural images
	Piecewise constant images
	Electron microscope data
	Computational resources used

	Approximation for SURE
	GainTuning prevents overfitting
	Performance of GainTuning
	In-distribution test image
	Out-of-distribution noise
	Out-of-distribution image
	Out-of-distribution noise and image
	Application to Electron Microscopy
	Different loss functions

	Analysis
	What kind of images benefit the most from adaptive denoising?
	Generalization via GainTuning
	How does GainTuning adapt to out-of-distribution noise?
	How does GainTuning adapt to out-of-distribution images?

