The following is the supplementary Appendix for the paper; Probabilistic Entity Representation Model for Reasoning over Knowledge Graphs. All the references given in the following sections are made in context of the main paper.

A Derivation for Product of Multivariate Gaussians

The following sections provide the proof for the product of Gaussians for both the univariate case and multivariate case (used in Eqs. (6) and (10)).

A. 1 Univariate Case

$$
\begin{aligned}
\mathcal{N}(\mu, \sigma) & =\exp \left(\left(\frac{x-\mu}{\sigma}\right)^{2}\right) \\
P(\theta) & =P\left(\theta_{1}\right) P\left(\theta_{2}\right)=\exp \left(\left(\frac{x-\mu_{1}}{\sigma_{1}}\right)^{2}\right) \cdot \exp \left(\left(\frac{x-\mu_{2}}{\sigma_{2}}\right)^{2}\right) \\
\log P(\theta) & =\left(\frac{x-\mu_{1}}{\sigma_{1}}\right)^{2}+\left(\frac{x-\mu_{2}}{\sigma_{2}}\right)^{2} \\
& =\frac{\left(\sigma_{2}^{2}+\sigma_{1}^{2}\right) x^{2}-2\left(\sigma_{1}^{2} \mu_{2}+\sigma_{2}^{2} \mu_{1}\right) x+\left(\mu_{1}^{2} \sigma_{2}^{2}+\mu_{2}^{2} \sigma_{1}^{2}\right)}{\sigma_{1}^{2} \sigma_{2}^{2}} \\
& =\frac{x^{2}-2 \frac{\left(\sigma_{1}^{2} \mu_{2}+\sigma_{2}^{2} \mu_{1}\right)}{\sigma_{2}^{2}+\sigma_{1}^{2}} x+\frac{\mu_{1}^{2} \sigma_{2}^{2}+\mu_{2}^{2} \sigma_{1}^{2}}{\sigma_{2}^{2}+\sigma_{1}^{2}}}{\frac{1}{\sigma_{1}^{2}}+\frac{1}{\sigma_{2}^{2}}} \\
& =\left(\frac{x-\frac{\left(\sigma_{1}^{2} \mu_{2}+\sigma_{2}^{2} \mu_{1}\right)}{\sigma_{2}^{2}+\sigma_{1}^{2}}}{\left(\frac{1}{\sigma_{1}^{2}}+\frac{1}{\sigma_{2}^{2}}\right)^{-2}}\right)^{2}+K, \text { where } K=\frac{\mu_{1}^{2} \sigma_{2}^{2}+\mu_{2}^{2} \sigma_{1}^{2}}{\sigma_{1}^{2} \sigma_{2}^{2}}-\left(\frac{\sigma_{1}^{2} \mu_{2}+\sigma_{2}^{2} \mu_{1}}{\sigma_{1}^{2} \sigma_{2}^{2}}\right)^{2} \\
P(\theta) & \propto \exp \left(\left(\frac{x-\frac{\left(\sigma_{1}^{2} \mu_{2}+\sigma_{2}^{2} \mu_{1}\right)}{\sigma_{2}^{2}+\sigma_{1}^{2}}}{\left(\frac{1}{\sigma_{1}^{2}}+\frac{1}{\sigma_{2}^{2}}\right)^{-2}}\right)^{2}\right) \approx \mathcal{N}\left(\frac{\left(\sigma_{1}^{2} \mu_{2}+\sigma_{2}^{2} \mu_{1}\right)}{\sigma_{2}^{2}+\sigma_{1}^{2}},\left(\frac{1}{\sigma_{1}^{2}}+\frac{1}{\sigma_{2}^{2}}\right)^{-2}\right)
\end{aligned}
$$

A. 2 Multivariate Case

$$
\begin{aligned}
\mathcal{N}(\mu, \Sigma) & =\exp \left((x-\mu)^{T} \Sigma^{-1}(x-\mu)\right) \\
P(\theta) & =P\left(\theta_{1}\right) P\left(\theta_{2}\right)=\exp \left(\left(x-\mu_{1}\right)^{T} \Sigma_{1}^{-1}\left(x-\mu_{1}\right)\right) \cdot \exp \left(\left(x-\mu_{2}\right)^{T} \Sigma_{2}^{-1}\left(x-\mu_{2}\right)\right) \\
\log (P(\theta)) & =\left(x-\mu_{1}\right)^{T} \Sigma_{1}^{-1}\left(x-\mu_{1}\right)+\left(x-\mu_{2}\right)^{T} \Sigma_{2}^{-1}\left(x-\mu_{2}\right) \\
& =x^{T} \Sigma_{1}^{-1} x-\mu_{1}^{T} \Sigma_{1}^{-1} x-x^{T} \Sigma_{1}^{-1} \mu_{1}-\mu_{1}^{T} \Sigma_{1}^{-1} \mu_{1}+x^{T} \Sigma_{2}^{-1} x-\mu_{2}^{T} \Sigma_{2}^{-1} x-x^{T} \Sigma_{2}^{-1} \mu_{2}-\mu_{2}^{T} \Sigma_{2}^{-1} \mu_{2} \\
& =x^{T}\left(\Sigma_{1}^{-1}+\Sigma_{2}^{-1}\right) x-\left(\mu_{1}^{T} \Sigma_{1}^{-1}+\mu_{2}^{T} \Sigma_{2}^{-1}\right) x-x^{T}\left(\Sigma_{1}^{-1} \mu_{1}+\Sigma_{2}^{-1} \mu_{2}\right)-\left(\mu_{1}^{T} \Sigma_{1}^{-1} \mu_{1}+\mu_{2}^{T} \Sigma_{2}^{-1} \mu_{2}\right)
\end{aligned}
$$

Let's assume $P(\theta) \propto \mathcal{N}\left(\mu_{3}, \Sigma_{3}\right)$, then,

$$
\begin{aligned}
\log (P(\theta)) & =\left(x-\mu_{3}\right)^{T} \Sigma_{3}^{-1}\left(x-\mu_{3}\right)+K \\
& =x^{T} \Sigma_{3}^{-1} x-x^{T} \Sigma_{3}^{-1} \mu_{3}-\mu_{3}^{T} \Sigma_{3}^{-1} x+\mu_{3}^{T} \Sigma_{3}^{-1} \mu_{3}+K
\end{aligned}
$$

Comparing coefficients,

$$
\begin{aligned}
\Sigma_{3}^{-1} & =\Sigma_{1}^{-1}+\Sigma_{2}^{-1} \\
\Sigma_{3}^{-1} \mu_{3} & =\Sigma_{1}^{-1} \mu_{1}+\Sigma_{2}^{-1} \mu_{2} \\
\Longrightarrow \mu_{3} & =\Sigma_{3}\left(\Sigma_{1}^{-1} \mu_{1}+\Sigma_{2}^{-1} \mu_{2}\right) \\
\mu_{3} & =\left(\Sigma_{1}^{-1}+\Sigma_{2}^{-1}\right)^{-1}\left(\Sigma_{1}^{-1} \mu_{1}+\Sigma_{2}^{-1} \mu_{2}\right)
\end{aligned}
$$

Notice that we need Σ_{3} while calculation μ_{3}. However, to save computational memory, we only store the inverses of covariances, i.e., $\Sigma_{1}^{-1}, \Sigma_{2}^{-1}$ and Σ_{3}^{-1}. So, to solve for μ_{3} and avoid the computationally
expensive process of matrix inversion, we use the linear solver torch. solve on the equation $\Sigma_{3}^{-1} \mu_{3}=\Sigma_{1}^{-1} \mu_{1}+\Sigma_{2}^{-1} \mu_{2}$.

B Algorithm for KG Reasoning with PERM

Algorithm 1 provides an outline of PERM's overall framework to learn representations of entities $e \in E$ and relations $r \in R$. The algorithm describes the training from FOE operations of translation (lines 4.7), intersection (lines 8 11), and union (lines 12, 15).

```
Algorithm 1: PERM training algorithm
Input: Training data \(D_{t}, D_{\cap}, D_{\cup}\), which are set of all (query \((Q)\), result \((V)\) ) for translation,
        intersection, and union, respectively;
Output: Entity \(E\) and Relation \(R\) gaussian density functions;
Randomly initialize \(e=\mathcal{N}\left(\mu_{e}, \Sigma_{e}\right) \in E\) and \(\left.r=\mathcal{N}\left(\mu_{r}, \Sigma_{r}\right) \in R\right)\);
for number of epochs; until convergence do
    \(l=0\); \# Initialize loss
    for \(\left\{\left(e, r, V_{t}\right) \in D_{t}\right\}\) do
        \(q_{t}=\mathcal{N}\left(\mu_{e}+\mu_{r},\left(\Sigma_{e}^{-1}+\Sigma_{r}^{-1}\right)^{-1}\right)\) from Eq. (5)
        \# Update loss for translation queries
        \(l=l+\sum_{v_{t} \in V_{t}} d_{\mathcal{N}}\left(v_{t}, q_{t}\right)\)
    end
    for \(\left\{\left(Q_{\cap}, V_{\cap}\right) \in D_{\cap}\right\}\) do
        \(q_{\cap}=\mathcal{N}\left(\mu_{3}, \Sigma_{3}\right)\), from Eq. (6)
        \# Update loss for intersection queries
        \(l=l+\sum_{v_{\cap} \in V_{\cap}} d_{\mathcal{N}}\left(v_{\cap}, q_{\cap}\right)\)
    end
    for \(\left\{\left(Q_{\cup}, V_{\cup}\right) \in D_{\cup}\right\}\) do
        \(q_{\cup}=\sum_{i=1}^{n} \phi_{i} \mathcal{N}\left(\mu_{e_{i}}, \Sigma_{e_{i}}\right)\) from Eq. (7)
        \# Update loss for union queries
        \(l=l+\sum_{v_{\cup} \in V_{\cup}} \sum_{i=1}^{n} \phi_{i} d_{\mathcal{N}}\left(v_{\cup}, \mathcal{N}\left(\mu_{e_{i}}, \Sigma_{e_{i}}\right)\right)\)
    end
    \# Update E and R with backpropagation
    \(E \leftarrow E-\Delta_{E} l\)
    \(R \leftarrow R-\Delta_{R} l\)
end
return \(E, R\)
```


C MRR metrics for Reasoning over KGs

Table 6 provides the Mean Reciprocal Rank (MRR) results for the reasoning over KGs experiment, given in section 5

D Finer Evaluation of Ablation Study

Table 7 provides finer results of our ablation study.

Table 6: Performance comparison of PERM against the baselines to study the efficacy of the query representations. The columns present the different query structures and the overall average performance. The last two rows presents the Average Relative Improvement (\%) of PERM compared to Q2B and CQD over all datasets across query types. Best results for each dataset are shown in bold.

Metrics		Mean Reciprocal Rank									
Dataset	Model	$\mathbf{1 t}$	$\mathbf{2 t}$	$\mathbf{3 t}$	$\mathbf{2 \cap}$	$\mathbf{3} \cap$	$\mathbf{2} \cup$	$\cap \boldsymbol{t}$	$\boldsymbol{t} \cap$	$\cup \boldsymbol{t}$	Avg
FB15k-237	GQE	.346	.191	.144	.258	.361	.144	.087	.164	.149	.205
	BQE	.390	.109	.100	.228	$\mathbf{. 4 2 5}$.124	.224	.126	.097	.203
	Q2B	.400	.225	.173	.275	.378	.198	.105	.180	.178	.235
	CQD	.439	$\mathbf{. 2 7 0}$	$\mathbf{. 2 0 6}$.299	.381	.235	$\mathbf{. 2 7 1}$	$\mathbf{. 4 1 5}$.112	.292
	PERM	$\mathbf{. 4 4 5}$.268	.201	$\mathbf{. 3 0 6}$.409	$\mathbf{. 2 5 3}$.269	.353	$\mathbf{. 2 2 0}$	$\mathbf{. 3 0 3}$
NELL995	GQE	.311	.193	.175	.273	.399	.159	.078	.168	.130	.210
	BQE	$\mathbf{. 5 3 0}$.130	.114	$\mathbf{. 3 7 6}$	$\mathbf{. 4 7 5}$.122	$\mathbf{. 2 4 1}$.143	.085	.246
	Q2B	.413	.227	.208	.288	.414	.266	.125	.193	.155	.254
	CQD	.442	$\mathbf{. 2 5 1}$	$\mathbf{. 2 2 6}$.304	.441	$\mathbf{. 3 4 8}$.124	$\mathbf{. 2 1 2}$.104	$\mathbf{. 2 7 3}$
	PERM	.432	.244	.217	.296	.438	.332	.122	.178	$\mathbf{. 1 9 0}$.272
DBPedia	GQE	.502	.005	N.A.	.749	.773	.320	.154	.597	0.00	.388
	BQE	.657	$\mathbf{. 0 0 6}$	N.A.	$\mathbf{. 9 6 4}$	$\mathbf{. 9 6 6}$.306	$\mathbf{. 4 1 9}$.527	0.00	.481
	Q2B	.619	$\mathbf{. 0 0 6}$	N.A.	.840	.863	.468	.212	.779	0.00	.473
	CQD	.648	$\mathbf{. 0 0 6}$	N.A.	.840	.863	.485	.206	.716	0.00	.471
	PERM	$\mathbf{. 7 0 6}$	$\mathbf{. 0 0 6}$	N.A.	.841	.862	$\mathbf{. 5 6 4}$.219	$\mathbf{8 6 9}$	0.00	$\mathbf{. 5 0 8}$
DRKG	GQE	.313	.182	.132	.232	.360	.144	.097	.166	.163	.199
	BQE	.413	.118	.106	.298	.451	.147	$\mathbf{. 2 7 0}$.154	.116	.230
	Q2B	.371	.225	.178	.283	.422	.205	.064	.122	.223	.233
	CQD	.413	$\mathbf{. 2 7 7}$	$\mathbf{. 2 1 3}$.310	.427	.246	.174	$\mathbf{. 2 8 2}$.143	.276
	PERM	$\mathbf{. 4 2 0}$.276	.211	$\mathbf{. 3 2 5}$	$\mathbf{. 4 6 5}$	$\mathbf{. 2 7 1}$.179	.249	$\mathbf{. 2 8 2}$	$\mathbf{. 2 9 8}$
PERM vs Q2B(\%)	11.1	16.3	12.5	4.90	4.70	24.9	55.9	29.4	24.5	20.5	
PERM vs CQD (\%)	4.20	-1.2	-2.5	1.40	4.40	10.6	1.80	1.50	92.8	12.6	

Table 7: Performance comparison of (final) PERM model against its variants to study the contributions of its components. The columns present the query structures and the overall average performance.

Metrics		HITS@3									
Dataset	Variants	1t	2 t	3t	$2 \cap$	3п	$2 \cup$	$\cap t$	$t \cap$	$\cup t$	Avg
FB15k-237	1ttranslationssingleaverageMLP(final)	. 516	. 179	. 119	. 282	. 360	. 302	. 071	. 134	. 133	$\begin{aligned} & .233 \\ & .266 \\ & .302 \\ & .296 \\ & .302 \\ & .306 \end{aligned}$
		. 516	. 231	. 167	. 318	. 413	. 304	. 096	. 160	. 185	
		. 511	. 282	. 212	. 359	. 486	. 296	. 126	. 207	. 235	
		. 499	. 282	. 209	. 360	. 482	. 282	. 119	. 201	. 234	
		. 510	. 285	. 212	. 363	. 488	. 293	. 125	. 208	. 238	
		. 520	. 286	. 216	. 361	. 490	. 305	. 128	. 212	. 239	
NELL995	1t translations single average MLP (final)	. 576	. 179	. 134	. 275	. 373	. 456	. 072	. 123	. 111	. 255
		. 576	. 231	. 188	. 310	. 428	. 458	. 097	. 147	. 155	. 288
		. 571	. 282	. 239	. 350	. 504	. 446	. 127	. 190	. 197	. 323
		. 558	. 282	. 235	. 351	. 500	. 425	. 120	. 185	. 196	. 317
		. 570	. 285	. 239	. 354	. 506	. 442	. 126	. 191	. 199	. 324
		. 581	. 286	. 243	. 352	. 508	. 460	. 129	. 195	. 200	. 328
DBPedia	1 t translations single average MLP (final)	$\begin{aligned} & .942 \\ & .942 \\ & .934 \\ & .912 \\ & .932 \\ & .950 \end{aligned}$. 004	N.A.	. 781	. 734	. 775	. 129	. 600	0.00	
			. 006	N.A.	. 881	. 843	. 779	. 174	. 718	0.00	. 543
			. 007	N.A.	1.00	1.00	. 758	. 228	. 928	0.00	. 607
			. 007	N.A.	. 997	. 984	. 723	. 216	. 903	0.00	. 593
			. 007	N.A.	. 996	. 992	. 751	. 227	. 932	0.00	. 605
			. 007	N.A.	1.00	1.00	. 782	. 232	. 952	0.00	. 615
DRKG	1t translations single average MLP (final)	$\begin{aligned} & .560 \\ & .560 \\ & .555 \\ & .543 \\ & .554 \\ & .565 \end{aligned}$	$\begin{aligned} & .202 \\ & .260 \\ & .317 \\ & .317 \\ & .321 \\ & .322 \end{aligned}$	$\begin{aligned} & .130 \\ & .183 \\ & .232 \\ & .228 \\ & .232 \\ & .236 \end{aligned}$	$\begin{aligned} & .302 \\ & .341 \\ & .385 \\ & .386 \\ & .389 \\ & .387 \end{aligned}$. 396	. 373	. 106	. 172	. 165	. 267
						. 455	. 374	. 143	. 206	. 230	. 306
						. 536	. 365	. 187	. 266	. 293	. 348
						. 531	. 347	. 177	. 259	. 291	. 342
						. 538	. 361	. 186	. 267	. 296	. 349
						. 540	. 376	. 190	. 273	. 297	. 354
Metrics		Mean Reciprocal Rank									
Dataset	Variants	1t	2 t	3t	2п	$3 \cap$	$2 \cup$	$\cap t$	$t \cap$	$\cup t$	Avg
FB15k-237	PERM-1t translations single average MLP (final)	. 410	. 180	. 122	. 217	. 274	. 209	. 085	. 127	. 145	. 197
		. 410	. 232	. 171	. 245	. 314	. 210	$.115$. 152	. 202	$.228$
		. 406	. 283	. 217	. 277	. 370	. 204	$\text { . } 151$. 197	. 257	. 262
		$\begin{aligned} & .396 \\ & .405 \end{aligned}$. 283	$\begin{aligned} & .214 \\ & .217 \end{aligned}$. 278	. 367	. 194		. 191	. 256	. 258
			$\begin{aligned} & .286 \\ & .268 \end{aligned}$		$\begin{aligned} & .280 \\ & .306 \end{aligned}$	$\begin{aligned} & .372 \\ & .409 \end{aligned}$	$\begin{aligned} & .202 \\ & .253 \end{aligned}$	$\begin{aligned} & .150 \\ & .269 \end{aligned}$	$\begin{array}{r} .198 \\ .353 \\ \hline \end{array}$	$\begin{aligned} & .260 \\ & .220 \end{aligned}$	$\begin{aligned} & .263 \\ & .303 \end{aligned}$
		$\begin{aligned} & .405 \\ & .445 \end{aligned}$		$\begin{aligned} & .217 \\ & .201 \end{aligned}$							
NELL995	1 t translations single average MLP (final)	$\begin{aligned} & .432 \\ & .428 \\ & .425 \\ & .415 \\ & .424 \\ & .432 \end{aligned}$. 191	. 160	. 234	. 275	. 332	. 094	. 162	. 125	. 223
			. 197	. 168	. 261	. 369	. 331	. 092	. 134	. 147	. 236
			. 241	. 213	. 294	. 435	. 322	. 120	. 173	. 187	. 268
			. 241	. 210	. 295	. 431	. 307	. 113	. 169	. 186	. 263
			. 243	. 213	. 298	. 436	. 319	. 119	. 174	. 189	. 268
			. 244	. 217	. 296	. 438	. 332	. 122	. 178	. 190	. 272
DBPedia	1t translations single average MLP (final)	. 706	. 005	$\begin{aligned} & \text { N.A. } \\ & \text { N.A. } \end{aligned}$	$\begin{aligned} & .665 \\ & .741 \end{aligned}$	$\begin{aligned} & .541 \\ & .727 \end{aligned}$. 564	. 169	. 791	0.00	. 430
		. 700	. 005				. 562	164	. 655	0.00	. 444
		. 694	$\begin{aligned} & .006 \\ & .006 \end{aligned}$	$\begin{aligned} & \text { N.A. } \\ & \text { N.A. } \end{aligned}$	$\begin{aligned} & .741 \\ & .841 \end{aligned}$	$\begin{aligned} & .727 \\ & .862 \end{aligned}$. 547	215	$\begin{aligned} & .847 \\ & .824 \end{aligned}$	0.000.00	. 502
					$\begin{array}{r} .838 \\ .838 \\ .841 \\ \hline \end{array}$	$\begin{aligned} & .848 \\ & .855 \\ & .862 \end{aligned}$					
		$\begin{aligned} & .678 \\ & .693 \end{aligned}$	$\begin{aligned} & .006 \\ & .006 \end{aligned}$	N.A. N.A. N.A.			$\begin{aligned} & .542 \\ & .564 \end{aligned}$	$\begin{aligned} & .214 \\ & .219 \end{aligned}$	$\begin{aligned} & .851 \\ & .869 \end{aligned}$	$\begin{aligned} & 0.00 \\ & 0.00 \end{aligned}$	$.500$
		. 706	. 006								$.452$
DRKG	1ttranslationssingleaverageMLP(final)	$\begin{aligned} & .416 \\ & .416 \\ & .413 \\ & .404 \\ & .412 \\ & .420 \end{aligned}$	$\begin{aligned} & .173 \\ & .223 \\ & .272 \\ & .272 \\ & .275 \\ & .276 \end{aligned}$	$\begin{aligned} & .116 \\ & .164 \\ & .207 \\ & .204 \\ & .207 \\ & .211 \end{aligned}$	$\begin{aligned} & \hline .254 \\ & .286 \\ & .323 \\ & .324 \\ & .327 \\ & .325 \end{aligned}$. 341	. 269	. 100	. 157	. 157	. 220
							. 270	. 135	. 188	. 218	. 255
						. 462	. 263	. 176	. 243	. 278	. 293
						. 457	. 250	. 167	. 236	. 276	. 288
						. 463	. 260	. 175	. 244	. 281	. 294
						. 465	. 271	. 179	. 249	. 282	. 298

