
Supplementary Material: Fair Sparse Regression with
Clustering: An Invex Relaxation for a Combinatorial Problem

A Proof of Lemma 1

Lemma 1 For pw,Zq P C, the functions fpw,Zq “ xM1pwq,Zy and gpw,Zq “ xa,wy are η-

invex for ηpw, w̄,Z, Z̄q fi

„

w ´ w̄
M1pw̄q´1M1pwqpZ ´ Z̄q

ȷ

, where we abuse the vector/matrix notation

for clarity of presentation, and avoid the vectorization of matrices.

Proof. We need to prove the following two inequalities.

fpw,Zq ´ fpw̄, Z̄q ´ x∇w̄,Z̄fpw,Zq, ηpw, w̄,Z, Z̄qy ě 0 , (18)

gpw,Zq ´ gpw̄, Z̄q ´ x∇w̄,Z̄gpw,Zq, ηpw, w̄,Z, Z̄qy ě 0 . (19)

First, we observe that function gpw,Zq only depends on w and moreover, @a P Rd, gpw,Zq is
convex in w. Thus, the inequality (19) holds trivially. Note that fpw,Zq “ xM1pwq,Zy “
ř

ij M
1
ijpwqZij . Then,

Bfpw̄, Z̄q

Bw
“

ÿ

ij

Z̄ij

BM1
ijpw̄q

Bw
,

Bfpw̄, Z̄q

BZ
“ M1pw̄q

We further note that the diagonal elements of M1pwq are convex with respect to w and the off
diagonal elements are linear. Therefore, we can write the following:

M1
iipwq ´ M1

iipw̄q ě x
BM1

iipw̄q

Bw
,w ´ w̄y,@i P rn ` 1s

M1
ijpwq ´ M1

ijpw̄q “ x
BM1

ijpw̄q

Bw
,w ´ w̄y,@i, j P rn ` 1s, i ‰ j

Since Z̄ii ě 0, it follows that

Z̄ijx
BM1

ijpw̄q

Bw
,w ´ w̄y ď Z̄ijpM1

ijpwq ´ M1
ijpw̄qq .

Now, we prove that fpw,Zq is indeed η-invex, that is

fpw,Zq ´ fpw̄, Z̄q ´ x∇w̄,Z̄fpw,Zq, ηpw, w̄,Z, Z̄qy

“ xM1pwq,Zy ´ xM1pw̄q, Z̄y ´ x
ÿ

ij

Z̄ij

BM1
ijpw̄q

Bw
,w ´ w̄y ´ xM1pw̄q,M1pw̄q´1M1pwqpZ ´ Z̄qy

ě xM1pwq,Zy ´ xM1pw̄q, Z̄y ´
ÿ

ij

Z̄ijpM1
ijpwq ´ M1

ijpw̄qq ´ xM1pwq,Zy ` xM1pwq, Z̄y

“ 0

This proves that fpw,Zq is η-invex in pw,Zq P C.

B Mixed Integer Quadratic Program (MIQP) (4) is NP-Hard

In this section, we will show that the MIQP presented in (4) is at least as hard to solve as a 0 ´ 1
Quadratic Program. It should be noted that MIQP (4) is stated for a fixed X. However, since the
entries in X are drawn from a sub-Gaussian distribution, matrix X can potentially realize any real
matrix in Rnˆd.
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Lemma 9. The Mixed Integer Quadratic Program (MIQP) (4) is NP-hard.

Proof. We will consider the case when λn “ 0. Other cases will be at least as difficult as this case.
First, we write optimization problem (4) in the following form:

min
wPRd,zPt´1,1un

1

2
w⊺p

2

n
X⊺Xqw ` z⊺

2

n
γXw `

1

2
z⊺

2

n
γ2Iz ´

2

n
y⊺Xw ´

2

n
γy⊺z

“ min
zPt´1,1un

ˆ

1

2
z⊺

2

n
γ2Iz ´

2

n
γy⊺z `

ˆ

min
wPRd

1

2
w⊺p

2

n
X⊺Xqw ` pz⊺

2

n
γX ´

2

n
y⊺Xqw

˙˙ (20)

We observe that w “ pX⊺Xq:X⊺p´γz ` yq solves the nested optimization problem, where p¨q:

denotes the pseudo-inverse. Thus, substituting the optimal value of w, we get the following opti-
mization problem:

min
zPt´1,1un

γ2

n
z⊺pI ´ XpX⊺Xq:X⊺qz ´

2γ

n
y⊺pI ´ XpX⊺Xq:X⊺qz (21)

Observe that I ´ XpX⊺Xq:X⊺ can potentially be any fixed real matrix in Rnˆn. By simply sub-
stituting z1 “ z`1

2 , we get a 0 ´ 1 Quadratic Program which is known to be NP-Hard (Billionnet,
2010).

C Proof of Lemma 2

Lemma 2 If Assumption 1 holds and n “ Ωp
s`log d
C2

min
q, then eigminpĤSSq ě Cmin

2 with probability

at least 1 ´ Op 1
d q.

Proof. By the Courant-Fischer variational representation (Horn & Johnson, 2012):

eigminpEpXX⊺qSSq “ min
}y}2“1

y⊺EpXX⊺qSSy “ min
}y}2“1

y⊺pEpXX⊺qSS ´
1

n
X⊺

SXS `
1

n
X⊺

SXSqy

ď y⊺pEpXX⊺qSS ´
1

n
X⊺

SXS `
1

n
X⊺

SXSqy

“ y⊺pEpXX⊺qSS ´
1

n
X⊺

SXSqy ` y⊺
1

n
X⊺

SXSy

(22)

It follows that

eigminp
1

n
X⊺

SXSq ě Cmin ´ }EpXX⊺qSS ´
1

n
X⊺

SXS}2 (23)

The term }EpXX⊺qSS ´ 1
nX

⊺
SXS}2 can be bounded using Proposition 2.1 in Vershynin (2012) for

sub-Gaussian random variables. In particular,

Pp}EpXX⊺qSS ´
1

n
X⊺

SXS}2 ě ϵq ď 2 expp´cϵ2n ` sq (24)

for some constant c ą 0. Taking ϵ “ Cmin

2 , we show that eigminp 1
nX

⊺
SXSq ě Cmin

2 with probability

at least 1 ´ 2 expp´
cC2

minn
4 ` sq.

D Proof of Lemma 3

Lemma 3 If Assumption 2 holds and n “ Ωp
s3plog s`log dq

τpCmin,α,σ,Σq
q, then }ĤScSĤ

´1
SS}8 ď 1 ´ α

2 with
probability at least 1 ´ Op 1

d q where τpCmin, α, σ,Σq is a constant independent of n, d and s.

Proof. Before we prove the result of Lemma 3, we will prove a helper lemma.
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Lemma 10. If Assumption 2 holds then for some δ ą 0, the following inequalities hold:

Pp}ĤScS ´ HScS}8 ě δq ď 4pd ´ sqs expp´
nδ2

128s2p1 ` 4σ2qmaxl Σ2
ll

q

Pp}ĤSS ´ HSS}8 ě δq ď 4s2 expp´
nδ2

128s2p1 ` 4σ2qmaxl Σ2
ll

q

Pp}pĤSSq´1 ´ pHSSq´1}8 ě δq ď 2 expp´
cδ2C4

minn

4s
` sq ` 2 expp´

cC2
minn

4
` sq

(25)

Proof. Let Aij be pi, jq-th entry of ĤScS ´ HScS . Clearly, EpAijq “ 0. By using the definition of
the } ¨ }8 norm, we can write:

Pp}ĤScS ´ HScS}8 ě δq “ Ppmax
iPSc

ÿ

jPS

|Aij | ě δq

ď pd ´ sqPp
ÿ

jPS

|Aij | ě δq

ď pd ´ sqsPp|Aij | ě
δ

s
q

(26)

where the second last inequality comes as a result of the union bound across entries in Sc and the last
inequality is due to the union bound across entries in S. Recall that Xi, i P rds are zero mean random
variables with covariance Σ and each Xi?

Σii
is a sub-Gaussian random variable with parameter σ.

Using the results from Lemma 1 of Ravikumar et al. (2011), for some δ P p0, smaxl Σll8p1`4σ2qq,
we can write:

Pp|Aij | ě
δ

s
q ď 4 expp´

nδ2

128s2p1 ` 4σ2qmaxl Σ2
ll

q (27)

Therefore,

Pp}ĤScS ´ HScS}8 ě δq ď 4pd ´ sqs expp´
nδ2

128s2p1 ` 4σ2qmaxl Σ2
ll

q (28)

Similarly, we can show that

Pp}ĤSS ´ HSS}8 ě δq ď 4s2 expp´
nδ2

128s2p1 ` 4σ2qmaxl Σ2
ll

q (29)

Next, we will show that the third inequality in (25) holds. Note that

}pĤScSq´1 ´ pHScSq´1}8 “ }pHSSq´1pHSS ´ ĤSSqpĤSSq´1}8

ď
?
s}pHSSq´1pHSS ´ ĤSSqpĤSSq´1}2

ď
?
s}pHSSq´1}2}pHSS ´ ĤSSq}2}pĤSSq´1}2

(30)

Note that }HSS}2 ě Cmin, thus }pHSSq´1}2 ď 1
Cmin

. Similarly, }HSS}2 ě Cmin

2 with probability

at least 1 ´ 2 expp´
cC2

minn
4 ` sq. We also have }pHSS ´ ĤSSq}2 ď ϵ with probability at least

1 ´ 2 expp´cϵ2n ` sq. Taking ϵ “ δ
C2

min

2
?
s

, we get

Pp}pHSS ´ ĤSSq}2 ě δ
C2

min

2
?
s

q ď 2 expp´
cδ2C4

minn

4s
` sq (31)

It follows that }pĤSSq´1 ´ pHSSq´1}8 ď δ with probability at least 1 ´ 2 expp´
cδ2C4

minn
4s ` sq ´

2 expp´
cC2

minn
4 ` sq.

Now we are ready to show that the statement of Lemma 3 holds using the results from Lemma 10.
We will rewrite ĤScSpĤSSq´1 as the sum of four different terms:

ĤScSpĤSSq´1 “ T1 ` T2 ` T3 ` T4, (32)
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where

T1 fi ĤScSppĤSSq´1 ´ pHSSq´1q

T2 fi pĤScS ´ HScSqpHSSq´1

T3 fi pĤScS ´ HScSqppĤSSq´1 ´ pHSSq´1q

T4 fi HScSpHSSq´1 .

(33)

Then it follows that }ĤScSpĤSSq´1}8 ď }T1}8 ` }T2}8 ` }T3}8 ` }T4}8. Now, we will bound
each term separately. First, recall that Assumption 2 ensures that }T4}8 ď 1 ´ α.

Controlling T1. We can rewrite T1 as,

T1 “ ´HScSpHSSq´1pĤSS ´ HSSqpĤSSq´1 (34)

then,

}T1}8 “ }HScSpHSSq´1pĤSS ´ HSSqpĤSSq´1}8

ď }HScSpHSSq´1}8}pĤSS ´ HSSq}8}pĤSSq´1}8

ď p1 ´ αq}pĤSS ´ HSSq}8

?
s}pĤSSq´1}2

ď p1 ´ αq}pĤSS ´ HSSq}8

2
?
s

Cmin

ď
α

6

(35)

The last inequality holds with probability at least 1 ´ 2 expp´
cC2

minn
4 ` sq ´

4s2 expp´
nC2

minα
2

18432p1´αq2s3p1`4σ2q maxl Σ2
ll

q by taking δ “ Cminα
12p1´αq

?
s
.

Controlling T2. Recall that T2 “ pĤScS ´ HScSqpHSSq´1. Thus,

}T2}8 ď
?
s}pHSSq´1}2}pĤScS ´ HScSq}8

ď

?
s

Cmin
}pĤScS ´ HScSq}8

ď
α

6

(36)

The last inequality holds with probability at least 1 ´ 4pd ´ sqs expp´
nC2

minα
2

4608s3p1`4σ2q maxl Σ2
ll

q by

choosing δ “ Cminα
6

?
s

.

Controlling T3. Note that,

}T3}8 ď }pĤScS ´ HScSq}8}ppĤSSq´1 ´ pHSSq´1q}8

ď
α

6

(37)

The last inequality holds with probability at least 1 ´ 4pd ´ sqs expp´ nα
768s2p1`4σ2q maxl Σll2

q ´

2 expp´
cαC4

minn
24s ` sq ´ 2 expp´

cC2
minn
4 ` sq by choosing δ “

a

α
6 in the first and third inequality

of equation (25). By combining all the above results, we prove Lemma 3.

E Proof of Lemma 4

Lemma 4 If Assumptions 1 and 2 hold, λn ě
128ρk

α

?
log d
n and n “ Ωp

s3 log d
τ1pCmin,α,σ,Σ,ρq

q, then the
setting of w and Z from equation (13) satisfies the stationarity condition (8) with probability at least
1 ´ Op 1

d q, where τ1pCmin, α, σ,Σ, ρq is a constant independent of d, s or n.
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Proof. Consider the following optimization problem:
minw

1
n pXw ` γz˚ ´ yq⊺pXw ` γz˚ ´ yq ` λn}w}1 (38)

Observe that the above problem is a transformation of optimization problem (6) by fixing Z “
Z˚. With infinite samples (i.e., n Ñ 8, λn Ñ 0), optimization problem (38) is equivalent to the
following population version:

minw EppXw ` γz˚ ´ yq⊺pXw ` γz˚ ´ yqq . (39)
Clearly, due to Assumption 1, w˚ is the unique optimal solution to (39). Let w̃ be the solution to
the optimization problem (38). Notice that after replacing Z with Z˚ the stationarity condition (8)
is same as the stationarity condition for optimization problem (38):

BLpw,Z;µ,Λq

Bw
“ 0dˆ1 (40)

The above simplifies into the following:
2

n
X⊺Xw̃ ´

2

n
X⊺y `

2γ

n
X⊺z˚ ` λng “ 0dˆ1

Substituting y from equation (2), we get:
2

n
X⊺X∆ ´

2

n
X⊺e ` λng “ 0dˆ1 , (41)

where ∆ is a short form notation for w̃ ´ w˚. To prove our claim, it suffices to show that w̃ “
pw̃S ,0d´sˆ1q satisfies the stationarity condition (41). This will be true iff gS P t´1, 1us and
gSc P r´1, 1sd´s. In particular, if we start with w “ rwS ,0d´sˆ1s and show that }gSc}8 ă 1, then
our claim holds. To show this, we replace w with rwS ,0d´sˆ1s and rewrite equation (41) in two
parts:

1

n
X⊺

SXS∆S ´
1

n
X⊺

Se `
λn

2
gS “ 0sˆ1 , (42)

and
1

n
X⊺

ScXS∆S ´
1

n
X⊺

Sce `
λn

2
gSc “ 0d´sˆ1 , (43)

where ∆S “ wS ´ w˚
S . From equation (42):

∆S “ p
1

n
X⊺

SXSq´1 1

n
X⊺

Se ´ p
1

n
X⊺

SXSq´1λn

2
gS

By substituting ∆S in equation (43), we get:

ĤScSpĤ´1
SS

1

n
X⊺

Se ´ Ĥ´1
SS

λn

2
gSq ´

1

n
X⊺

Sce `
λn

2
gSc “ 0d´sˆ1

By rearranging terms and using the triangle inequality, we get the following:

}
λn

2
gSc}8 ď }ĤScSĤ

´1
SS

1

n
X⊺

Se}8 ` }ĤScSĤ
´1
SS

λn

2
gS}8 ` }

1

n
X⊺

Sce}8

Using the norm inequality }Ab}8 ď }A}8}b}8 and noticing that }gS}8 ď 1, it follows that:

}
λn

2
gSc}8 ď }ĤScSĤ

´1
SS}8p}

1

n
X⊺

Se}8 `
λn

2
q ` }

1

n
X⊺

Sce}8

Furthermore, using Lemma 3, }ĤScSĤ
´1
SS}8 ď 1 ´ α

2 with probability at least 1 ´

expp´
nτpCmin,α,σ,Σq

s2 ` log sq:

}gSc}8 ď p1 ´
α

2
qp}

2

λn

1

n
X⊺

Se}8 ` 1q ` }
2

λn

1

n
X⊺

Sce}8

Next, we will need to bound } 1
nX

⊺
Se}8 and } 1

nX
⊺
Sce}8 which we do in the following lemma:

Lemma 11. Let λn ě
128ρk

α

?
log d
n and n ě

log d
p1´ α

2 q2
. Then the following holds true:

Pp}
2

λn

1

n
X⊺

Se}8 ě
α

8 ´ 4α
q ď Op

1

d
q, Pp}

2

λn

1

n
X⊺

Sce}8 ě
α

8
q ď Op

1

d
q

Using results from Lemma 11, we show that }gSc}8 ď 1 ´ α
4 with probability at least 1 ´ Op 1

d q.
This ensures that w̃ “ pw̃S ,0d´sˆ1q indeed satisfies the stationarity condition (8).
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F Proof of Lemma 11

Lemma 11 Let λn ě
128ρk

α

?
log d
n and n ě

log d
p1´ α

2 q2
. Then the following holds true:

Pp}
2

λn

1

n
X⊺

Se}8 ě
α

8 ´ 4α
q ď Op

1

d
q

Pp}
2

λn

1

n
X⊺

Sce}8 ě
α

8
q ď Op

1

d
q

(44)

Proof. We will start with 1
nX

⊺
Se. We take the i-th entry of 1

nX
⊺
Se for some i P S. Note that

|
1

n
X⊺

i.e| “ |
1

n

n
ÿ

j“1

Xjiej | (45)

Recall that Xji is a sub-Gaussian random variable with parameter ρ2 and ej is a sub-Gaussian
random variable with parameter σ2

e . Then, Xji

ρ
ej

σe
is a sub-exponential random variable with param-

eters p4
?
2, 2q. Using the concentration bounds for the sum of independent sub-exponential random

variables (Wainwright, 2019), we can write:

Pp|
1

n

n
ÿ

j“1

Xji

ρ

ej
σe

| ě tq ď 2 expp´
nt2

64
q, 0 ď t ď 8 (46)

Taking a union bound across i P S:

PpDi P S | |
1

n

n
ÿ

j“1

Xji

ρ

ej
σe

| ě tq ď 2s expp´
nt2

64
q

0 ď t ď 8

(47)

Taking t “ λnt
2ρσe

, we get:

PpDi P S | |
2

λn

1

n

n
ÿ

j“1

Xjiej | ě tq ď 2s expp´
nλ2

nt
2

256ρ2σ2
e

q

0 ď t ď 16
ρσe

λn

(48)

It follows that } 2
λ

1
nX

⊺
Se}8 ď t with probability at least 1 ´ 2s expp´

nλ2
nt

2

256ρ2σ2
e

q.

Using a similar argument, we can show that } 2
λ

1
nX

⊺
Sce}8 ď t with probability at least 1 ´ 2pd ´

sq expp´
nλ2

nt
2

256ρ2σ2
e

q. Taking t “ α
8´4α and α

8 in the first and second inequality of Lemma 11 and
choosing the provided setting of λn and n completes our proof.

G Proof of Lemma 8

Lemma 8 If Assumptions 1 and 2 hold, λn ě
128ρk

?
log d

αn and n “ Ωp
s3 log d

τ2pCmin,ρ,kq
q, then }∆S}2 ď

2λn
?
s

Cmin
with probability at least 1 ´ Op 1

d q where τ2pCmin, ρ, kq is a constant independent of s, d or
n.

Proof. Using results from Lemma 4, we can write:

}∆S}2 ď }Ĥ´1
SS

1

n
X⊺

Se}2 ` }Ĥ´1
SS

λn

2
gS}2

Using the norm inequality }Ab}2 ď }A}2}b}2 and noticing that }gS}2 ď
?
s, we can rewrite the

above equation as:

}∆S}2 ď }Ĥ´1
SS}2p}

1

n
X⊺

Se}2 `
λn

2

?
sq
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Using Assumption 1 and results from Lemma 2 and substituting }Ĥ´1
SS}2 ď 2

Cmin
in the above

inequality, we get:

}∆S}2 ď
2

Cmin
p}
1

n
X⊺

Se}2 `
λn

2

?
sq

We present the next lemma to bound the term } 1
nX

⊺
Se}2.

Lemma 12. If λn ě
128ρk

α

?
log d
n and n “ Ωp

s3 log d
τ2pCmin,ρ,kq

q, then } 1
nX

⊺
Se}2 ď

?
sλn

2 with probabil-
ity at least 1 ´ Op 1

d q.

We take t “ λn

2 in the above lemma and get }∆}2 ď
2λn

?
s

Cmin
with probability at least 1 ´ Op 1

d q.

H Proof of Lemma 12

Lemma 12 If λn ě
128ρk

α

?
log d
n and n “ Ωp

s3 log d
τ2pCmin,ρ,kq

q, then } 1
nX

⊺
Se}2 ď

?
sλn

2 with probabil-
ity at least 1 ´ Op 1

d q.

Proof. We take the i-th entry of 1
nX

⊺
Se for some i P S. Note that

|
1

n
X⊺

i.e| “ |
1

n

n
ÿ

j“1

Xjiej | (49)

Recall that Xji is a sub-Gaussian random variable with parameter ρ and ej is a sub-Gaussian ran-
dom variable with parameter σ2

eq. Then, Xji

ρ
ej

σe
is a sub-exponential random variable with parame-

ters p4
?
2, 2q. Using the concentration bounds for the sum of independent sub-exponential random

variables (Wainwright, 2019), we can write:

Pp|
1

n

n
ÿ

j“1

Xji

ρ

ej
σe

| ě tq ď 2 expp´
nt2

64
q, 0 ď t ď 8 (50)

Taking a union bound across i P S, we get

PpDi P S | |
1

n

n
ÿ

j“1

Xji

ρ

ej
σe

| ě tq ď 2s expp´
nt2

64
q,

0 ď t ď 8

(51)

It follows that } 1
nX

⊺
Se}2 ď

?
st with probability at least 1 ´ 2s expp´ nt2

64ρ2σ2
e

q for some 0 ď t ď

8ρσe.

I Proof of Corollary 1

Corollary 1 If Assumptions 1 and 2 hold, λn ě
128ρk

α

?
log d
n and n “ Ωp

s3 log d
τ1pCmin,α,σ,Σ,ρq

q, then
the following statements are true with probability at least 1 ´ Op 1

n q:

1. The solution Z correctly recovers hidden attribute for each sample, i.e., Z “ Z˚ “ ζ˚ζ˚⊺.

2. The support of recovered regression parameter w̃ matches exactly with the support of w˚.

3. If miniPS |w˚
i | ě

4λn
?
s

Cmin
then for all i P rds, w̃i and w˚

i match up to their sign.

Proof. Since Z “ Z˚, the hidden attributes of each sample can be read by simply looking at the first
row or column of Z and skipping the first entry. The supports of w̃ and w˚ match exactly through
construction (and subsequent proofs). Observe that }∆}8 ď }∆}2 ď

2λn
?
s

Cmin
. Thus, it follows that

if miniPS |w˚
i | ě

4λn
?
s

Cmin
then for all i P rds, w̃i and w˚

i will have the same sign.
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(a) Recovery of S versus γ (b) Recovery of Z˚ versus γ

Figure 3: Left: Exact support recovery of w˚ across 30 runs. Right: Exact hidden attribute recovery
of Z˚ across 30 runs. The true value of γ is 2.

J Quality of Solution with bias parameter γ

Our method requires a known value of bias parameter γ in our analysis. However, in practice, we
observe that even a rough estimate (up to ˘25%) works pretty well. We conducted computational
experiments with a range of values of γ and the reported results are averaged across 30 independent
runs. The performance measures used here are the same as in Section 5 (See Appendix M for details).
Figure 3a shows the quality of support recovery for different values of γ and Figure 3b shows the
quality of recovering the hidden attributes for different values of γ. Note how both the curves show
100% correct recovery for a wide range of γ. These experiments show that prior knowledge of the
exact value of γ is not necessary for our method.

K Alternate Optimization Algorithm for Solving Optimization Problem (6)

We use the following alternate optimization algorithm to solve optimization problem (6) in our
computational experiments.

Input: Data samples pX,yq, amount of bias γ
Output: w̃,Z
Z0 Ð In`1ˆn`1

z0 Ð Z0p2 : n ` 1, 1q
for t “ 1, 2, ¨ ¨ ¨ until Zt´1 “ Zt do
w̃t Ð argminw

1
n pXw ` γzt´1 ´ yq⊺pXw ` γzt´1 ´ yq ` λn}w}1

Mpw̃tq Ð

„ 1
n}Xw̃t ´ y}22

γ
n pXw̃t ´ yq⊺

γ
n pXw̃t ´ yq⊺ γ2

n Inˆn

ȷ

Zt Ð argminZ tracepMpw̃tqZq, such that diagpZq “ 1, Z ľ 0n`1ˆn`1

zt Ð Ztp2 : n ` 1, 1q
end for
w̃ Ð w̃t, Z Ð Zt

Algorithm 1: Alternate Optimization Algorithm for our problem

Recall from equation (5) that

Z fi

„

1 z⊺

z zz⊺

ȷ

. (52)

Thus, we can read z from Z by considering its first column and skipping the first entry. We denote
this as z “ Zp2 : n ` 1, 1q. We use a similar notation in Algorithm 1 to assign values to vectors z0
and zt from matrices Z0 and Zt respectively.
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We will show that if Algorithm 1 converges then it converges to the optimal solution of optimization
problem (6). To do this, consider

f1pw,Zq “
1

n
pXw ` γzt´1 ´ yq⊺pXw ` γzt´1 ´ yq

f2pwq “ λn}w}1 .
(53)

Note that f2pwq is not differentiable. Let gpZq fi ´eigminpZq and hipZq fi Zii ´ 1,@i P rn ` 1s.
Observe that gpZq ď 0 and hipZq “ 0,@i P rn ` 1s denote the constraints Z ľ 0n`1ˆn`1 and
diagpZq “ 1 respectively. We define Bf2pwq

Bw as the sub-differential set for f2pwq and f 1
2pwq P

Bf2pwq

Bw

is an element of the sub-differential set Bf2pwq

Bw . Observe that f1pw,Zq ` f2pwq, gpZq and hipZq are
convex with respect to w and Z separately but they are not jointly convex. Consider the following
optimization problem:

w̃,Z˚ “

argminw,Z f1pw,Zq ` f2pwq
such that gpZq ď 0

hipZq “ 0 @i P rn ` 1s
(54)

We have already shown that the solution w̃,Z˚ is the unique solution to (54). We propose the
following alternate optimization algorithm to solve this problem:

Output: w,Z
Z0 Ð In`1ˆn`1

for t “ 1, 2 ¨ ¨ ¨ until Zt´1 “ Zt do

wt Ð argmin
w

f1pw,Zt´1q ` f2pwq (55)

Zt Ð

argminZ f1pwt,Zq
such that gpZq ď 0

hipZq “ 0 @i P rn ` 1s
(56)

end for
w Ð wt, Z Ð Zt

Algorithm 2: Alternate Optimization Algorithm

We will prove the following proposition:
Proposition 1. If Algorithm 2 converges, then w “ w̃ and Z “ Z˚.

Proof. We start by writing the KKT conditions for optimization problem (54).

1. Stationarity conditions: Bf1pw̃,Z˚q

Bw ` f 1
2pw̃q “ 0 and Bf1pw̃,Z˚q

BZ ` r BgpZ˚q

BZ `
řn`1

i“1 si
BhipZ˚q

BZ “ 0.

2. Complementary slackness condition: rgpZ˚q “ 0.

3. Primal feasibility condition: gpZ˚q ď 0 and hipZ
˚q “ 0,@i P rn ` 1s.

4. Dual feasibility condition: r ě 0.

Any optimal solution to optimization problem (54) must satisfy the above KKT conditions. Next,
we write the KKT conditions for (55) at convergence, i.e., at Zt “ Zt´1:

1. Stationarity condition: Bfpwt,Ztq

Bw ` f 1
2pwtq “ 0

Similarly, we write the KKT conditions for (56) at convergence, i.e., at Zt “ Zt´1:

1. Stationarity conditions: Bf1pwt,Ztq

BZ ` t BgpZtq

BZ `
řn`1

i“1 ui
BhipZtq

BZ “ 0.
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2. Complementary slackness condition: tgpZtq “ 0.

3. Primal feasibility condition: gpZtq ď 0 and hipZtq “ 0,@i P rn ` 1s.

4. Dual feasibility condition: t ě 0.

Combining the KKT conditions at wt,Zt for (55) and (56) and taking r “ t and si “ ui,@i P rn`1s,
we see that all KKT conditions of (54) are satisfied by wt,Zt. Since the solution to (54) is unique,
it follows that w “ w̃ and Z “ Z˚.

L Our Assumptions Hold for Finite Samples

(a) Positive Definiteness against number of sam-
ples

(b) Mutual Incoherence against number of sam-
ples

Figure 4: Left: Positive Definiteness Assumption 1 with varying number of samples for d “
100, 200 and 500, Right: Mutual Incoherence Assumption 2 with varying number of samples for
d “ 100, 200 and d “ 500.

Figure 4 shows how our assumptions hold (averaged across 30 independent runs) in the finite sample
regime with varying number of samples when X is drawn from a standard normal distribution. We
notice that for a fixed s, Assumption 1 is easier to hold (i.e., n “ Ωps ` log dq) than Assumption 2
(i.e., n “ Ωps3 log dq). Eventually, both assumptions hold as the number of samples increases.

M Details of Experimental Validation

In this section, we validate our theoretical results by conducting computational experiments on syn-
thetic data. We will show that for a fixed s, we need n “ 10β log d samples for recovering the exact
support of w˚ and exact hidden attributes Z˚, where β ” βps, Cmin, α, σ,Σ, ρ, γ, kq is a control
parameter which is independent of d.

Data Generation. For d “ 100, 200 and 500, we draw X P Rnˆd from a standard Gaussian
distribution by varying n as 10β log d for a control parameter β. The s “ 10 non-zero entries of true
parameter w˚ P Rd are chosen uniformly at random between r´1, 1s. Every non-zero entry in w˚

is changed to at least 0.75 to make sure that it is not too close to 0. The independent noise e P Rn

is drawn from a zero mean Gaussian distribution with standard deviation k?
logn

for k “ 0.15. The
estimate of the bias γ P Rą0 is kept at 2. Regarding the hidden attribute z˚ P t´1, 1un, we set n

2
entries as `1 and the rest as ´1. The response y P Rn is generated according to (1). This process
is repeated 30 times and the reported results are averaged across these 30 independent runs.

Choice of Regularizer and Solution. According to Theorem 1, the regularizer λn is chosen to
be equal to 128ρk

α

?
log d
n . We solve optimization problem (6) by using an alternate optimization

algorithm that converges to the optimal solution (See Appendix K for details).
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Measure of Performance. The performance is measured by comparing the recovered solutions w̃
and Z with the true parameters w˚ and Z˚. The quality of w̃ is measured by comparing its support
to the support S of the true parameter w˚ by computing the Jaccard index JpS, Ŝq, where Ŝ is the
support of w̃, i.e., Ŝ “ ti|w̃i ‰ 0, i P rdsu. The average of JpS, Ŝq across 30 independent runs is
plotted against the number of samples n (See Figure 2a, 2b). Similarly, the quality of Z is measured
by the indicator variable IpZ,Z˚q. The average of IpZ,Z˚q across 30 independent runs is plotted
against the number of samples n (See Figure 2c, 2d). The Jaccard index JpS, Ŝq and indicator
variable IpZ,Z˚q are defined as follows:

JpS, Ŝq fi
|S X Ŝ|

|S Y Ŝ|
, IpZ,Z˚q fi

"

0, if Z ‰ Z˚

1 if Z “ Z˚

Observation. Figure 2a shows the Jaccard index of support recovery with varying number of
samples. We see that our method recovers the true support for all three values of d as we increase
number of samples. Also, notice how all three curves line up perfectly in Figure 2b when we plot the
support recovery with respect to the control parameter β “ log n

log d . This validates our theoretical
results. Similarly, Figure 2c shows exact recovery of the hidden attribute with varying number of
samples. We again see that as the number of samples increase, our recovered hidden attributes are
100% correct. Again, the three different curves for different values of d line up nicely when plotted
against β. Interestingly, a small percentage of our experiments recover the hidden attributes exactly
for small number of samples (ă 20). We believe that this can be ascribed to Z˚ having small
dimensions and thus becoming relatively easier to recover. On a more practical point of view, once
hidden attributes are identified for each sample point, the associated bias (for and against) can be
duly removed from the model.

N Optimization Problem (6) is Non-Convex

Before we begin the proof of non-convexity of (6), we note that optimization (6) is stated for a
fixed X. However, since the entries in X are drawn from a sub-Gaussian distribution, matrix X
can potentially realize any real matrix in Rnˆd. In particular, we are interested in a problem where
Di, k P rds such that

řn
l“1 X

2
li ´ Xki is non-zero. Since X can be any real matrix in Rnˆd, this is

not a strong assumption. With this assumption in mind, we present the following lemma.
Lemma 13. The optimization problem (6) defined on a convex set C, is non-convex.

Proof. As defined in (6), we define the domain for optimization problem on a convex set C “
tpw,Zq | w P Rd,diagpZq “ 1,Z ľ 0n`1ˆn`1u. It should be noted that C is a convex set and we
will show that the non-convexity of the problem comes from the objective function. We are solving
the following optimization problem:

minpw,ZqPC xMpwq,Zy ` λn}w}1 , (57)

It suffices to show that fpw,Zq “ xMpwq,Zy is non-convex function. To that end, we will construct
a setting of pw,Zq P C and pw̄, Z̄q P C such that the first order condition for convexity fails to hold,
i.e,

fpw,Zq ´ fpw̄, Z̄q ă x
Bfpw̄, Z̄q

Bw
, pw ´ w̄qy ` x

Bfpw̄, Z̄q

BZ
,Z ´ Z̄y. (58)

First notice that,

Bfpw̄, Z̄q

Bw
“

ÿ

ij

Z̄ij
BMijpw̄q

Bw
,

Bfpw̄, Z̄q

BZ
“ Mpw̄q

Recall from equation (5) that,

lpwq fi
1

n
pXw ´ yq⊺pXw ´ yq, Mpwq fi

„

lpwq
γ
n pXw ´ yq⊺

γ
n pXw ´ yq

γ2

n Inˆn

ȷ

, (59)
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Then Bfpw̄,Z̄q

Bw can be simplified as:

Bfpw̄, Z̄q

Bw
“

2

n
pX⊺Xw̄ ´ X⊺y ` X⊺z̄q, (60)

where z̄ P Rn denotes the first column of Z̄ after skipping the first entry.

We provide the following construction for pw,Zq P C and pw̄, Z̄q P C. We take w P t0, βud such
that wk “ 0,@k ‰ i and wi “ β where β P R. Similarly, w̄ P t0, βud such that w̄k “ 0,@k ‰ i
and w̄i “ ´β. Since w P Rd, such a setting exists for a non-zero β. Furthermore, we take Z “
In`1ˆn`1 and Z̄ P t0, 1un`1ˆn`1 such that Z̄ii “ 1,@i P rn ` 1s and Z̄1pk`1q “ 1, Z̄pk`1q1 “ 1.
Now, we can compute the following quantities:

xMpwq,Zy “ lpwq ` γ2 “
1

n

n
ÿ

l“1

pXliwi ´ ylq
2 ` γ2

xMpw̄q, Z̄y “ lpw̄q ` γ2 ´
2γ

n
pXkiw̄i ´ ykq “

1

n

n
ÿ

l“1

pXliw̄i ´ ylq
2 ` γ2 `

2γ

n
pXkiw̄i ´ ykq

xMpw̄q,Z ´ Z̄y “ ´
2γ

n
pXkiw̄i ´ ykq

x
Bfpw̄, Z̄q

Bw
,w ´ w̄y “

2

n
ppwiw̄i ´ w̄2

i q

n
ÿ

l“1

X2
li ` p´wi ` w̄iq

n
ÿ

l“1

Xliyl ` pwi ´ w̄iqXkiq

(61)

Substituting wi “ β and w̄i “ ´β, we get

lpwq ´ lpw̄q “ ´
4β

n

n
ÿ

l“1

Xliyl

x
Bfpw̄, Z̄q

Bw
,w ´ w̄y “ ´

4β

n

n
ÿ

l“1

X2
li ´

4β

n

n
ÿ

l“1

Xliyl `
4β

n
Xki

(62)

Clearly,

xMpwq,Zy ´ xMpw̄q, Z̄y “ ´
4β

n

n
ÿ

l“1

Xliyl ´
2γ

n
pXkiw̄i ´ ykq

xMpw̄q,Z ´ Z̄y ` x
Bfpw̄, Z̄q

Bw
,w ´ w̄y “ ´

2γ

n
pXkiw̄i ´ ykq ´

4β

n

n
ÿ

l“1

X2
li ´

4β

n

n
ÿ

l“1

Xliyl `
4β

n
Xki

(63)

It follows that

xMpwq,Zy ´ xMpw̄q, Z̄y ´ xMpw̄q,Z ´ Z̄y ´ x
Bfpw̄, Z̄q

Bw
,w ´ w̄y “ βp

4

n

n
ÿ

l“1

X2
li ´

4

n
Xkiq

(64)

As
řn

l“1 X
2
li ´ Xki is assumed to be non-zero, it is easy to see that LHS of equation (64)can be

made greater than or less than 0 by simply choosing appropriate β P R. Thus, optimization problem
(6) is non-convex.

O Real World Experiment

We show applicability of our method by conducting experiments on Communities and Crime Data
Set (Redmond, 2002) and Student Performance Data Set (Cortez, 2008).

25



O.1 Communities and Crime Data Set

This data set contains 1994 samples with 122 predictors which might have plausible connection to
crime, and the attribute to be predicted (Per Capita Violent Crimes). In the preprocessing step, any
predictors with missing values are removed and all the predictors and the attribute to be predicted
are standardized to have zero mean and unit standard deviation. The preprocessed dataset contains
d “ 100 predictors and n “ 1994 samples.

The optimization problem (6) is solved for λn “ 0.15 and γ is chosen to be maxpyq´minpyq

2 . As
the problem is invex, any algorithm which converges to a stationary point can be used to solve the
problem. We used an alternate optimization algorithm (See Appendix K) which converges to an
optimal solution.

Main results. Based on the support (non-zero entries) in the recovered w, we found that the fol-
lowing are the most important predictors of Per Capita Violent Crimes:

1. PctHousNoPhone: percentage of occupied housing units without phone
2. PctNotHSGrad: percentage of people 25 and over that are not high school graduates
3. PctLess9thGrade: percentage of people 25 and over with less than a 9th grade education
4. RentLowQ: rental housing - lower quartile rent

We also recovered the hidden sensitive attribute with 816 instances of positive bias (z “ `1) with
mean crime rate 0.8002 and 1178 instances of negative bias (z “ ´1) with mean crime rate ´0.5543.
By plotting data with two of the most important predictors (PctHousNoPhone, PctNotHSGrad), we
clearly see the existence of two groups (Figure 5). Our Mean Squared Error (MSE) is 0.0265.
Chzhen et al. (2020) can be checked for comparison with other state-of-the-art methods (12 methods
of 3 different types) where only the Kernel Regularized Least Square method (MSE=0.024˘ 0.003)
and the Random Forests method (MSE=0.020 ˘ 0.002) perform better than our method in terms
of MSE but suffer heavily in terms of fairness. Other methods incur MSE in the range between
0.028 ˘ 0.003 to 0.041 ˘ 0.004.
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Figure 5: Clusters in Communities and Crime Dataset

O.2 Student Performance Data Set

This data set contains 649 samples with 33 demographic, social and school predictors and the at-
tribute to be predicted (grade in the Portuguese Language course). The data set contains some
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categorical variables which are converted to numerical variables using dummy encoding (thus in-
creasing the number of predictors). Two columns containing partial grades were removed from the
data set. In the preprocessing step, all the predictors and the attribute to be predicted are standardized
to have zero mean and unit standard deviation. The preprocessed dataset contains d “ 39 predictors
and n “ 649 samples.

Similar to subsection O.1, the optimization problem (6) is solved for λn “ 0.15 and γ “
maxpyq´minpyq

2 .

Main results. The following are the most important predictors of grades in the Portuguese Lan-
guage course:

1. school: student’s school
2. failures: number of past class failures
3. higher: wants to take higher education

We also recovered the hidden sensitive attribute with 420 instances of positive bias (z “ `1) with
mean grade 0.2305 and 229 instances of negative bias (z “ ´1) with mean grade ´0.4227. Our
Mean Squared Error (MSE) is 0.0494. Chzhen et al. (2020) can be checked for comparison with
other state-of-the-art methods (12 methods of 3 different types) where none of the methods performs
better than our method in terms of MSE (range between 3.59 ˘ 0.39 to 5.62 ˘ 0.52).

O.3 Discussion.

While our analysis identifies two groups with bias in both data sets, it cannot only be attributed to
the most important recovered predictors. Recall the “red-lining” effect (Calders, 2010) where there
might be other correlated predictors which can facilitate indirect discrimination. For example: in
the Communities and Crime data set, annual income could be correlated with PctHousNoPhone and
similarly in the Student Performance data set, parents’ educational qualification could be correlated
with student’s willingness to go for higher education. Our analysis does not ignore such factors. In
fact, even after taking the red-lining effect into the consideration, our method is able to identify two
groups with bias.
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