Fair Sparse Regression with Clustering: An Invex
Relaxation for a Combinatorial Problem

Adarsh Barik Jean Honorio
Department of Computer Science Department of Computer Science
Purdue University Purdue University
West Lafayette, Indiana, USA West Lafayette, Indiana, USA
abarik@purdue.edu jhonorio@purdue.edu

Abstract

In this paper, we study the problem of fair sparse regression on a biased dataset
where bias depends upon a hidden binary attribute. The presence of a hidden
attribute adds an extra layer of complexity to the problem by combining sparse
regression and clustering with unknown binary labels. The corresponding opti-
mization problem is combinatorial, but we propose a novel relaxation of it as an
invex optimization problem. To the best of our knowledge, this is the first invex
relaxation for a combinatorial problem. We show that the inclusion of the debi-
asing/fairness constraint in our model has no adverse effect on the performance.
Rather, it enables the recovery of the hidden attribute. The support of our re-
covered regression parameter vector matches exactly with the true parameter vec-
tor. Moreover, we simultaneously solve the clustering problem by recovering the
exact value of the hidden attribute for each sample. Our method uses carefully
constructed primal dual witnesses to provide theoretical guarantees for the combi-
natorial problem. To that end, we show that the sample complexity of our method
is logarithmic in terms of the dimension of the regression parameter vector.

1 Introduction

In modern times, machine learning algorithms are used in a wide variety of applications, many of
which are decision making processes such as hiring (Hoftman ef all, DITX), predicting human behav-
ior (Subrahmanian & Kumai, 20T7), COMPAS (Correctional Offender Management Profiling for
Alternative Sanctions) risk assessment (Brennan ef all, 2009), among others. These decisions have
large impacts on society (Klemnberg et all], Z0T8). Consequently, researchers have shown interest
in developing methods that can mitigate unfair decisions and avoid bias amplification. Several fair
algorithms have been proposed for machine learning problems such as regression (Agarwal, P(TY;
Berkl, POT7; Calderd, P0T173), classification (Agarwal et all, ZOT8; Donini_ef all, POTR; Dwork ef all,
20172; Eeldman_ef all, POTS; Hardf ef all, '},()Iﬁi Huang & Vishnoi, 2019; Pedreshi et all, PO0OX; Zatar
ef-all, DOT9; Zemel ef all, POT3) and clustering (Rackurs ef all, DUTY; Bera ef all, Z0TY; Chen ef all,
20719; Chiericheffief all, Z0T7; Huang et all, P0T9). A common thread in the above literature is that
performance is only viewed in terms of risks, e.g., misclassification rate, false positive rate, false
negative rate, mean squared error.

In the literature, fairness is discussed in the context of discrimination based on membership to a
particular group (e.g. race, religion, gender) which is considered a sensitive attribute. Fairness is
generally modeled explicitly by adding a fairness constraint or implicitly by incorporating it in the
model itself. There have been several notions of fairness studied in linear regression. Berkl (P017)
proposed notions of individual fairness and group fairness, and modeled them as penalty functions.
Calderd (20T3) proposed the fairness notions of equal means and balanced residuals by modeling
them as explicit constraints. Agarwal (2019), Fifzsimons (201Y9) and Chzhen ef-all (2020) studied
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Table 1: Comparison to prior work. Notation: s is the number of non-zero entries in the regression
parameter vector and d is its dimension. The terms independent of s and d are not shown in the
order notation.

Paper Hidden sensitive attribute  Modeling type Sample complexity
Calders (2013); [Agarwal No Explicit con- Not provided
(2019); Fifzsimons (2Z019) straint

Berk (Z017) No Penalty function Not provided
Chzhen ef all (P020) No Implicit Not provided
Our paper Yes Implicit Q(s3log d)

demographic parity. While Agarwal (2019), Fifzsimond (Z019) modeled it as an explicit constraint,
Chzhen ef all (2020) included it implicitly in their proposed model.

All the above work assume access to the sensitive attribute in the training samples and provide a
framework which are inherently fair. Our work fundamentally differs from these work as we do
not assume access to the sensitive attribute. Without knowing the sensitive attribute, it becomes
difficult to ascertain bias, even for linear regression. In this work, we focus on identifying unfairly
treated members/samples. This adds an extra layer of complexity to linear regression. We solve the
linear regression problem while simultaneously solving a clustering problem where we identify two
clusters — one which is positively biased and the other which is negatively biased. Table [ shows a
consolidated comparison of our work with the existing literature.

Once one identifies bias (positive or negative) for each sample, one could perform debiasing which
would lead to the fairness notion of equal means (Calders, 20T3) among the two groups (See Figure
). It should be noted that identifying groups with positive or negative bias may not be same as
identifying the sensitive attribute. The reason is that there may be multiple attributes that are highly
correlated with the sensitive attribute. In such a situation, these correlated attributes can facilitate
indirect discrimination even if the sensitive attribute is identified and removed. This is called the
red-lining effect (Calders, PZO0T0). Our model avoids this by directly identifying biased groups.
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(a) Biased data without hidden sensi{b) Biased data after identifying hid-

tive attribute den sensitive attribute (c) Data after debiasing

Figure 1: Data before debiasing and after debiasing. Notice how means for two groups (shown as
horizontal lines) become almost equal after debiasing.

While the standard algorithms solving the sparse/LASSO problem in this setting do provide an esti-
mate of the regression parameter vector, they do not fit the model accurately as they fail to consider
any fairness criteria in their formulations. It is natural then to think about including the hidden at-
tribute in LASSO itself. However, this breaks the convexity of the loss function which makes the
problem intractable by the standard LASSO algorithms. The resulting problem is a combinatorial
version of sparse linear regression with added clustering according to the hidden attribute. In this
work, we propose a novel technique to tackle the combinatorial LASSO problem with a hidden at-
tribute and provide theoretical guarantees about the quality of the solution given a sufficient number
of samples. Our method provably detects unfairness in the system. It should be noted that observing
unfairness does not always imply that the designer of the system intended for such inequalities to
arise. In such cases, our method acts as a check to detect and remove such unintended discrimination.
While the current belief is that there is a trade-off between fairness and performance (Corbeff-Davies
et all, POTZ; Klemberg et all, POT17/4; Pleiss ef all, POIT7/; Zhiobaite, POTY; IZhao & (Gordon, 7.()]9), our



theoretical and experimental results show evidence on the contrary. Our theoretical results allow for
a new understanding of fairness, as an “enabler” instead of as a “constraint”.

Contribution. Broadly, we can categorize our contribution in the following points:

e Defining the problem: We formulate a novel combinatorial version of sparse linear regres-
sion which takes fairness/bias into the consideration. The addition of clustering comes at
no extra cost in terms of the performance.

o Invex relaxation: Most of the current methods solve convex optimization problems as it
makes the solution tractable. We propose a novel relaxation of the combinatorial problem
and formally show that it is invex. To the best of our knowledge, this is the first invex
relaxation for a combinatorial problem.

e Theoretical Guarantees: Our method can detect bias in the system. In particular, our
method recovers the exact hidden attributes for each sample and thus provides an exact
measure of bias between two different groups. Our method solves linear regression and
clustering simultaneously with theoretical guarantees. To that end, we recover the true
clusters (hidden attributes) and a regression parameter vector which is correct up to the
sign of entries with respect to the true parameter vector. On a more technical side, we
provide a primal-dual witness construction for our invex problem and provide theoretical
guarantees for recovery. The sample complexity of our method varies logarithmically with
respect to dimension of the regression parameter vector.

2 Notation and Problem Definition

In this section, we collect all the notations used throughout the paper. We also formally introduce
our novel problem. We consider a problem where we have a binary hidden attribute, and where
fairness depends upon the hidden attribute. Let y € R be the response variable and X € R? be the
observed attributes. Let z* € {—1, 1} be the hidden attribute and v € R o be the amount of bias due
to the hidden attribute. The response y is generated using the following mechanism:

y=XTw* +~z%* +e (1)

where e is an independent noise term. For example, y could represent the market salary of a new
candidate, X could represent the candidate’s skills and z could represent the population group the
candidate belongs to (e.g., majority or minority). While the group of the candidate is not public
knowledge, a bias associated with the candidate’s group may be present in the underlying data. For
our problem, we will assume that an estimate of the bias v € R~ is available. In practice, even a
rough estimate (£25%) of y also works well (See Appendix ).

Let [d] denote the set {1,2,--- ,d}. We assume X € R to be a zero mean sub-Gaussian random
vector (Hsu ef all, POT7) with covariance X € S? | i.e., there exists a p > 0, such that for all o € R4
the following holds: E(exp(aTX)) < exp(%). By simply taking a;; = 7 and o, = 0, Vk # 1,
it follows that each entry of X is sub-Gaussian with parameter p. In particular, we will assume that
Vi € [d], \/);7 is a sub-Gaussian random variable with parameter o > 0. It follows trivially that

max;e[q) v 20 < p. We will further assume that e is zero mean independent sub-Gaussian noise
with variance o.. We assume that as the number of samples increases, the noise in the model gently

decreases. We model this by taking o, = \/klfﬂ for some k& > 0. Our setting works with a variety

of random variables as the class of sub-Gaussian random variable includes for instance Gaussian
variables, any bounded random variable (e.g., Bernoulli, multinomial, uniform), any random vari-
able with strictly log-concave density, and any finite mixture of sub-Gaussian variables. Notice that
for the group with 2 = +1, E(y) = v and for the group with 2 = —1, E(y) = —+. This means
that after correctly identifying groups, one could perform debiasing by subtracting or adding ~ for
z = +1 and —1 respectively. After debiasing, the expected value of both groups would match (and
be equal to 0). This complies with the notion of equal mean fairness proposed by Calders (2013).

The parameter vector w* € RY is s-sparse, i.e., at most s entries of w* are non-zero. We receive n
i.i.d. samples of X € R? and y € R and collect them in X € R"*? and y € R" respectively. Thus,
in the finite-sample setting,

y = Xw* +vyz* + e, (2)



where z* € {—1,1}" and e € R" both collect n independent realizations of z* € {—1,1} and e € R.
Our goal is to recover w* and z* using the samples (X, y).

We denote a matrix A € RP*? restricted to the columns and rows in P < [p] and Q < [q] re-
spectively as Apg. Similarly, a vector v € RP restricted to entries in P is denoted as vp. We use
eig;(A) to denote the i-th eigenvalue (1st being the smallest) of matrix A. Similarly, eig, .. (A)
denotes the maximum eigenvalue of matrix A. We use diag(A) to denote a vector containing
the diagonal element of matrix A. By overriding the same notation, we use diag(v) to denote a
diagonal matrix with its diagonal being the entries in vector v. We denote the inner product be-
tween two matrices A and B by (A, B), i.e., (A, B) = trace(ATB), where trace denotes the
trace of a matrix. The notation A > B denotes that A — B is a positive semidefinite matrix.
Similarly, A > B denotes that A — B is a positive definite matrix. For vectors, ||v, denotes

the ¢,-vector norm of vector v € R, ie., |v], = (Zle \vi|p)%. If p = oo, then we define
[v]oo = max?_; |v;]. For matrices, || A], denotes the induced ¢,-matrix norm for matrix 4 € RP*4.
In particular, | A, denotes the spectral norm of A and || Af,; £ maxiepy) 257, |Aij|- A function
f(z) is of order Q(g(x)) and denoted by f(z) = Q(g(x)), if there exists a constant C' > 0 such
that for big enough xq, f(z) = Cg(x),Vx > xo. Similarly, a function f(z) is of order O(g(z))
and denoted by f(x) = O(g(z)), if there exists a constant C' > 0 such that for big enough x¢,
f(x) < Cg(x),Vx = x. For brevity in our notations, we treat any quantity independent of d, s and
n as constant. Detailed proofs for lemmas and theorems are available in the supplementary material.

3 Our New Optimization Problem and Invexity

In this section, we introduce our novel combinatorial problem and propose an invex relaxation. To
the best of our knowledge, this is the first invex relaxation for a combinatorial problem. Without any
information about the hidden attribute z* in Equation (&), the following LASSO formulation could
be incorrectly and unsuccessfully used to estimate the parameter w*.

Definition 1 (Standard LASSO).
min,, %(Xw —y)T(Xw —y) + A |wl 3)

However, without including z*, standard LASSO does not provide accurate estimation of w™* in
Equation (B). We provide the following novel formulation of LASSO which fits our goals of esti-
mating both w™* and z*:

Definition 2 (Combinatorial Fair LASSO).
min,, L(Xw+yz—y)"(Xw+7z—y)+ Apfw|1, suchthatz; € {—1,1}, Vie [n], (4)

where A\, > 0 is the regularization level which depends on n.

In its current form, optimization problem (#) is a non-convex mixed integer quadratic program
(MIQP). Solving MIQP is NP-hard (See Appendix B). Next, we will provide a continuous but still
non-convex relaxation of (#). For ease of notation, we define the following quantities:

)= oo —yrixe ). 22 [ ] o <[ Y

)

(&)

where I is an n x n identity matrix. We provide the following invex relaxation to the optimization
problem (B).

Definition 3 (Invex Fair LASSO).
min, z (M(w),Z) + A\|lw|1, suchthat diag(Z) =1, Z > 0pt1xn+1 - (6)

Note that optimization problem (B) is continuous and convex with respect to w and Z separately but
it is not jointly convex (See Appendix N for details). Specifically, for a fixed w, the matrix M (w)
becomes a constant and problem (B) resembles a semidefinite program. For a fixed Z, problem (B)
resembles a standard LASSO. Unfortunately, problem (B) is not jointly convex on w and Z, and
thus, it might still remain difficult to solve. Next, we will provide arguments that despite being
non-convex, optimization problem (B) belongs to a particular class of non-convex functions namely
“invex” functions. We define “invexity” of functions, as a generalization of convexity (Hansom,
[9%).



Definition 4 (Invex function). Let ¢(t) be a function defined on a set C. Let 1) be a vector valued
Sfunction defined in C' x C such that n(t1,12)TV(t2), is well defined Vt1,t2 € C. Then, ¢(t) is a
n-invex function if $(t1) — d(tz2) = n(t,t2)TVo(ta), Vti,t2 € C.

Note that convex functions are n-invex for 7(t1,t3) = t; — to. Hanson (I981) showed that if the
objective function and constraints are both 7-invex with respect to same 7 defined in C' x C, then
Karush-Kuhn-Tucker (KKT) conditions are sufficient for optimality, while it is well-known that
KKT conditions are necessary. Ben-Israel & Mond (T9XH) showed a function is invex if and only if
each of its stationarity point is a global minimum.

In the next lemma, we show that the relaxed optimization problem (B) is indeed n-invex for a par-
ticular 7 defined in C' x C and a well defined set C. Before that, we will reformulate it into an
equivalent optimization problem. Note that in the optimization problem (B), diag(Z) = 1. Thus,
(1,Z) is a constant equal to n + 1. Using this, we can rewrite the optimization problem as:

min, z M(w),Z)+ M\|lw|1 + A, Z), suchthat diag(Z) =1, Z > O0pq1xn+1, (7)

Let C = {(w,Z) | w e R, diag(Z) = 1,Z > 0,4 1xns1}. We take M'(w) = M(w) + I and the
corresponding optimization problem becomes: min ., zjec{M’'(w), Z) + An|wl|;. We will show
thatV(w, Z) € C, (M'(w), Z)+ A\ ||w|; is an invex function. Note that by definition of the ¢; -norm,
|wl1 = supy,,, —1{a, w). Thus, it suffices to show that Va € R?, (M’ (w), Z) and {a,w) are invex
for the same n(w, w, Z, Z).

Lemma 1. For (w,Z) € C, the functions f(w,Z) = (M'(w),Z) and g(w,Z) = {a,w) are n-
. _ 7\ & w — w B . . .
invex for n(w,w,Z,Z) = M/ (@)~ M (w)(Z — Z) | where we abuse the vector/matrix notation

for clarity of presentation, and avoid the vectorization of matrices.

Now that we have established that optimization problem (B) is invex, we are ready to discuss our
main results in the next section.

4 Our Theoretical Analysis

In this section, we show that our Invex Fair Lasso formulation correctly recovers the hidden attributes
and the regression parameter vector. More formally, we want to achieve the two goals by solving
optimization problem (B) efficiently. First, we want to correctly and uniquely determine the hidden
sensitive attribute for each data point, i.e., z* € {—1,1}". Second, we want to recover regression

parameter vector which is close to the true parameter vector w* € R% in £5-norm. Let @ and Z be
the solution to optimization problem (B). Then, we will prove that @ and w™* have the same support
and z constructed from Z is exactly equal to z*. We define A = (& — w*).

4.1 KKT conditions

We start by writing the KKT conditions for optimization problem (B). Let x4 € R"*! and
A > 0,,41xn+1 be the dual variables for optimization problem (B). For a fixed A, the Lagrangian
L(w, Z; u, A) can be written as L(w, Z; u, A) = (M(w),Z) + \p|w|1 + {diag(n),Z) — 1Tp —
(A, Z). Using this Lagrangian, the KKT conditions at the optimum can be written as:

1. Stationarity conditions:

KMW),Z) o0, )
ow

where g is an element of the subgradient set of |w||;, i.e., g € % and g < 1.
M(w) + diag(,u') -A= 071+1><n+1 (9)
2. Complementary Slackness condition:

(AZ)=0 (10)



3. Dual Feasibility condition:
A>0pq1xnt1 (1T)
4. Primal Feasibility conditions:
weR?, diag(Z) =1, Z > Oy 1xnt1 (12)

Next, we will provide a setting for primal and dual variables which satisfies all the KKT conditions.
But before that, we will describe a set of technical assumptions which will help us in our analysis.

4.2 Assumptions

Let S denote the support of w*, i.e., S = {i|w} # 0, i € [d]}. Similarly, we define the complement
of support S as S = {i|wf =0, i € [d]}. Let |S| = s and |S°| = d — s. For ease of notation, we
define H = E(X XT) and H = %XTX. As the first assumption, we need the minimum eigenvalue
of the population covariance matrix of X restricted to rows and columns in S to be greater than
zero. Later, we will show that this assumption is needed to uniquely recover w in the optimization
problem (B).

Assumption 1 (Positive Definiteness of Hessian). Hgs > 0,45 or equivalently eig, ;,(Hgs) =
Cmin > O

In practice, we only deal with finite samples and not populations. In the next lemma, we will
show that with a sufficient number of samples, a condition similar to Assumption [ holds with high
probability in the finite-sample setting.

Lemma 2. [f Assumption @ holds and n = Q(S’*Clzﬂ), then eig,;,(Hgs) = Cuin yith probability
at least 1 — O(%).

min

As the second assumption, we will need to ensure that the variates outside the support of w* do not
exert lot of influence on the variates in the support of w*. This sort of technical condition, known as
the mutual incoherence condition, has been previously used in many problems related to regularized
regression such as compressed sensing (Wainwright, 2009), Markov random fields (Ravikinmar efall,
2010), non-parametric regression (Raviknmar ef all, 2007), diffusion networks (Daneshmand et all,
20714), among others. We formally present this technical condition in what follows.

Assumption 2 (Mutual Incoherence). |Hge SHE;HDO < 1— a for some o € (0,1].

Again, we will show that with a sufficient number of samples, a condition similar to Assumption [
holds in the finite-sample setting with high probability.

Lemma 3. [f Assumption B holds and n = Q(%), then |HgesHgt|ow < 1— < with

probability at least 1 — (’)(%) where T(Cinin, o, 0, X) is a constant independent of n, d and s.

In Appendix O, we experimentally show that Assumption [ is easier to hold (i.e., n € Q(s + log d))
than Assumption B (i.e., n € Q(s®logd)). Eventually, both assumptions hold as the number of
samples increases.

4.3 Construction of Primal and Dual Witnesses

In this subsection, we will provide a construction of primal and dual variables which satisfies the
KKT conditions for optimization problem (B). To that end, we provide our first main result.
Theorem 1 (Primal Dual Witness Construction). If Assumptions @l and B hold, \,, > %Lfﬁd

andn = TO(Cmiijalf’f’g’p’ e ), then the following setting of primal and dual variables

Primal Variables: 1 = (0g,04—sx1)

- .1
where, g = arg min E(X'Sws +yz* —y) T (X sws +72* —y) + M\ |wslh
ws

1 z*T
Z_Z*A[* **T]

Z VA

13)

Dual Variables: = —diag(M(w)Z*), A= M(w) — diag(M (w)Z*)



satisfies all the KKT conditions for optimization problem (B) with probability at least 1 — (’)(%),
where 7o(Ciin, @, 0,5, p, k, ) is a constant independent of s,d and n and thus, the primal vari-
ables are a globally optimal solution for (B). Furthermore, the above solution is also unique.

Proof Sketch. The main idea behind our proofs is to verify that the setting of primal and dual
variables in Theorem [ satisfies all the KKT conditions described in subsection E-l. We do this by
proving multiple lemmas in subsequent subsections. The outline of the proof is as follows:

e It can be trivially verified that the primal feasibility condition (I2) holds. Similarly, the
second stationarity condition () holds by construction of A.

e In subsection B4, we use Lemmas @ and [ to verify that the stationarity condition (8)
holds.

o In subsection B9, we use Lemma B to verify the complementary slackness condition (I).

e In subsection B8, we show that the dual feasibility condition (I) is satisfied using results
from Lemmas B, [, R and 2.

e Finally, in subsection B2, we show that our proposed solution is also unique.

4.4 Verifying the Stationarity Condition (B)

In this subsection, we will show that the setting of w and Z* satisfies the first stationarity condition
(B) by proving the following lemma.

Lemma 4. If Assumptions @ and B hold, )\,, > 128pk Viogd gy = Q(%) then the
@ n Tl(cmm,a-ﬁ'vzaﬁ)
setting of w and Z from equation (I3) satisfies the stationarity condition (B) with probability at least

1— O(é), where 11 (Cmin, @, 0, 3, p) is a constant independent of d, s or n.

4.5 Verifying the Complementary Slackness (I[0)

Next, we will show that the setting of A and Z in (I3) satisfies the complementary slackness condi-
tion (). To this end, we will show the following:

Lemma 5. Let A be defined as in equation (I3), then * = [Zl*] is an eigenvector of A correspond-

ing to the eigenvalue 0. Furthermore, (A, Z*) = 0.

Proof. We will show that AC* = 0,,,1x1. Note that,

| A(Xw—y)Te H(Xw—y)T
A = M(w) — diag(M (w)Z*) = | 7 n
(o)~ aiar()z) = | LT e e
Multiplying the above matrix with ¢* gives us O,11x1. Now (A, Z*) = trace(ATZ*) =
trace(AC*C*T) = 0as AC* = 0,4 1x1- O

4.6 Verifying the Dual Feasibility ()

We have already shown that A has 0 as one of its eigenvalues. To verify that it satisfies the dual
feasibility condition (), we show that second minimum eigenvalue of A is greater than zero with
high probability. At this point, it might not be clear why strict positivity is necessary, but this will
be argued later in subsection EZ1. Now, note that:

P(eigy(A) > 0) = P(eigy(A) > 0, [Allz < h(n)) = Pleigy(A) > Of[ Al < 2(n))P(|A2 < f(q(z)))

where h(n) is a function of n. We bound P(eig,(A) > 0) in two parts. First, we bound P(eig,(A) >
0) given that ||A]2 < h(n) and then we bound the probability of [|A|2 < h(n).

Lemma 6. Given that |A]s < h(n), the second minimum eigenvalue of A as defined in equation

(I3) is strictly greater than 0 with probability at least 1 — exp(—Wjuﬁ) + logn).

Proof. As the first step, we invoke Haynesworth’s inertia additivity formula (Haynsworth, T968) to

prove our claim. Let R be a block matrix of the form R = [ ;T g], then inertia of matrix R,



denoted by In(R), is defined as the tuple (7(R),v(R),d(R)) where 7(R) is the number of positive
eigenvalues, v(R) is the number of negative eigenvalues and §( R) is the number of zero eigenvalues
of matrix R. Haynesworth’s inertia additivity formula is given as:

In(R) = In(C) + In(A — BTC™'B) (15)
Note that,

Then the following holds true by applying equation (I3):
In(A) =In(— dlag( (Xw —y)z*T)) + In(—l(Xw —y)Tz* — Z(X’w —-y)7
n n

(~diag(L(Xw - y)z*T) " L (Xw - y))

Notice that the term — 2 (Xw — y)Tz* — 2(Xw — y)T(—diag(Z(Xw — y)z*T) "' 1 (Xw — y))
evaluates to 0. Thus, it has 0 positive eigenvalue, 0 negative elgenvalue and 1 zero eigenvalue. We
have also shown in Lemma B that A has at least 1 zero eigenvalue. It follows that

7T(A):W(—diag(g(Xw y)z*T)), v(A) = (dlag( (Xw —y)z*"))

~y (16)
d(A) = 5(—diag(ﬁ(Xw —-y)z*T)) +1

Next, we will show that —diag(Z(Xw — y)z*T) has all of its eigenvalues being positive.

Lemma 7. Fora given |A|2 < h(n), all elgenvalues of —diag(L(Xw —y)z*T) are strictly greater
than O with probability at least 1 — exp(—m + logn).

Proof. Usmg equatlon (W), we can expand the term —diag(L(Xw — y)z*T) as —diag(X (X (w —
w*) —yz* —e)z*T). Since eigenvalues of a diagonal matrix are its diagonal elements, we focus on
the i-th diagonal element of —diag(X (XA — yz* — e)z*T) which is 72 -1 *(XTA + ;). Note
that (X]T A + e;) is a sub-Gaussian random variable with parameter p HAH2 + o2. Using the tail
inequality for sub-Gaussian random variables, for some ¢ > 0, we can write:

2
2PTAR +o7)
We take union bound across all the diagonal elements and replace ¢ = 7 and |A[y < h(n) to
complete the proof, i.e.,

P((X;.A +e;) >t) < exp(—

2

) 2l
O
The result of Lemma B follows directly from Lemma [ and equation (I[6). O

Now, we are ready to bound ||A|2. Due to our primal dual construction, |Alz is simply equal to
[As|2. We provide a bound on Ag in the following lemma:

Lemma 8. If Assumptions @ and Q hold, )\,, > 128”1“ o2d gnd n = Q(%), then |Ag|2 <
22,:7\5 with probability at least 1 — (’)(é) where TQ(Cmin, p, k) is a constant independent of s, d or

By taking h(n) = Qén{ in (@), we get the following: P(eigy(A) > 0) = 1 — O(3), as long as

(%), where 73(Chyin, p, k, ,7) is a constant independent of s, d and n. The
above results combined with the property that optimization problem (B) is invex ensure that the
setting of primal and dual variables in Theorem [ is indeed the globally optimal solution to the
problem (B). It remains to show that this solution is also unique.

n =



4.7 Uniqueness of the Solution

First, we prove that Z* is a unique solution. Suppose there is another solution Z which satisfies all
KKT conditions and is optimal. Then, Z > 0,,11xn+1 and (A, Z) = 0. Since, A > 0y, 41xn+1 and
eigy(A) > 0, ¢* spans all of its null space. This enforces that Z is a multiple of Z*. But primal
feasibility dictates that diag(Z) = 1. It follows that Z = Z*. To show that @ is unique, it suffices
to show that wg is unique. After substituting Z = Z*, we observe that the Hessian of optimization
problem (B) with respect to w and restricted to rows and columns in S, i.e., Hgg is positive definite.
This ensures that w is a unique solution.

The setting of primal and dual variables in Theorem [ not only solves the optimization problem (B)
but also gives rise to the following results:
Corollary 1. If Assumptions 0 and @ hold, \,, > @ ngd andn = Q(%) then the
following statements are true with probability at least 1 — (’)(%)
1. The solution Z correctly recovers hidden attribute for each sample, i.e., Z. = Z* = (*(*7.
2. The support of recovered regression parameter W matches exactly with the support of w*.

3. Ifmingeg |wf| = %_\/g then for all i € [d], w; and w} match up to their sign.

5 Experimental Validation

Synthetic Experiments. We validate our theoretical result in Theorem M and Corollary 0 by
conducting experiments on synthetic data. We show that for a fixed s, we need n = 10°logd
samples for recovering the exact support of w* and exact hidden attributes Z*, where § =
B(8, Couin, @, 7, 2, p,7, k) is a control parameter which is independent of d. We draw X € R"*¢
and e € R™ from Gaussian distributions. We randomly generate w* € R¢ with s = 10 non-zero
entries. Regarding the hidden attribute z* € {—1,1}", we set 7 entries as +1 and the rest as —1.
The response y € R” is generated according to (). According to Theorem [, the regularizer \,, is

chosen to be equal to %7%‘@. We solve optimization problem (B) by using an alternate opti-
mization algorithm that converges to the optimal solution (See Appendix Kl for details). Figure 3
shows that our method recovers the true support as we increase the number of samples. Similarly,
Figure d shows that as the number of samples increase, our recovered hidden attributes are 100%
correct. Curves line up perfectly in Figure B and Zd when plotting with respect to the control

parameter $ = log 107; - This validates our theoretical results (Details in Appendix M).

Real World Experiments. We show applicability of our method by identify groups with bias in
the Communities and Crime data set (Redmond, 2007) and the Student Performance data set (Corfez,
2008). In both cases, our method is able to recover groups with bias (Details in Appendix O).
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Figure 2: Left two: Exact support recovery of w™ across 30 runs. Right two: Exact hidden attribute
recovery of Z* across 30 runs.

6 Concluding Remarks

In this paper, we provide a novel formulation of invex fair LASSO which incorporates fairness
constraints into the standard LASSO problem without compromising on the performance. We show
that invexity of our optimization problem allows for a tractable solution. We provide provable



theoretical guarantees for our solution and further validate them by computational experiments. The
sample complexity of our method is polynomial in terms of sparsity and logarithmic in terms of
the dimension of the true parameter. Our method helps to identify and subsequently remove bias in
the sparse regression model. In the future, it will be interesting to study invex relaxations of other
models of fairness. Since set of invex functions subsumes convex functions, invexity will enable us
to tackle a larger set of problems.

Societal Impact And Limitations

Fairness in machine learning is an active field of research. As it has the potential to affect the basic
well being of our society, it should always be used with caution. This is especially important when
one moves away from the theoretical setting and tries to apply fairness algorithms to real world
data where the validity of technical assumptions cannot be easily verified. As with any algorithm in
prior literature (Calderd, POT3; Agarwal, POTY; Fifzsimons, P0TY9; Berk, 2OT7; Chzhen ef all, PO21),
one has to be extra cautious when interpreting the results of our method as well. In particular,
we emphasize that our method does not characterize the nature of the recovered bias — good or
bad. Our proposed hidden attribute could be seen as a proxy for algorithmic bias, but one that
exists outside the features of the data itself. To interpret the meaning of such an attribute, we advise
consulting with a domain expert, and to regress the discovered hidden attribute against some existing
predictors provided by the expert. We also caution practitioners that such a notion of hidden bias
would naturally not extend to every task, and should not be used as a silver bullet to justify fairness
in socially significant contexts.
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