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Outline of Supplementary Material. In Section 7, we provide a connection between the proposed
method and semidefinite programming-based methods. In Section 8, additional simulation results are
provided. All technical proofs are presented in Section 9 - Section 14. Finally, the computational
issues of semidefinite programming are discussed in Section 15.

7 Connection to Semidefinite Programming

For completeness, in this section, we provide discussions on semidefinite programming (SDP)
method [34, 18, 40], which is usually well suited to solve regularization problems. It may relax
the non-convex problem to a convex problem and can result in faster convergence. There exist a
few literature on solving the eigenvector estimation problems via SDP. For example, [35, 36] study
properties of SDP estimators in the SPCA setting. [9] proposes an efficient SDP method for estimating
sparse canonical coefficients.

For SGEP, instead of directly penalizing the eigenvector, we can also recast the original problem into
a semidefinite programming problem. We write X = u1u

T
1 . Then uT

1 Au1 is equal to tr(AX). For
estimation, we consider the following SDP problem,

(P2) min
X∈Rp×p

−tr(AX) + pλ(X),

s.t. ‖B1/2XB1/2‖2 ≤ 1, ‖B1/2XB1/2‖∗ ≤ r. (17)

Here pλ(X) =
∑
i,j pλ(X[i, j]) and r is taken to be 1. In the literature, the convex constraint

Cfan := {X | ‖B1/2XB1/2‖2 ≤ 1, ‖B1/2XB1/2‖∗ ≤ r} is also known as a Fantope [8, 35]. Under
this relaxed problem, we also provide the corresponding estimation error bound.

Theorem 7 SupposeA andB satisfyA = BU1Λ1U
T
1 B+AE . Let X̂ be the optimizer of (P2). Then,

as long as λ ≥
√
|S|λ1‖B−1/2‖‖B1/2‖(‖B‖∞ + ‖B̃‖∞)‖B̃ − B‖∞ + ‖Ã − A‖∞ + ‖AE‖∞ +

eapprox, then we have the following result.

‖X̂ − u1u
T
1 ‖F ≤ C(B)

|S|λ
λr

, (18)

whereU1 is the matrix of top r eigenvector for (A,B) and satisfiesUT
1 BU1 = I; λr is the r-th largest

singular value; C(B) is some constant depending on B and e2
approx := maxX∈Cfan tr(ÃX) −

maxX∈Cfan,‖X‖0≤|S|2 tr(ÃX).

In particular, ifA andB are matrices with bounded entries and Ã and B̃ are the corresponding sample

version, then we know ‖Ã−A‖∞ ≤
√

log p
n and ‖B̃ −B‖∞ ≤

√
log p
n hold with high probability.

Term eapprox is the price we need to pay since pλ puts the light penalization compared to usual `1
norm especially when B̃ is singular. When A admits a low rank structure and (Ã, B̃) admits a nearly
sparse leading vector, we have the following corollary.
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Corollary 1 Suppose we have two bounded matrices A and B satisfy A = BU1Λ1U
T
1 B. Let Ã, B̃

be the empirical estimates of A and B and eapprox ≤ C‖Ã−A‖∞. Then it holds that

‖X̂ − u1u
T
1 ‖F ≤ C(B)

|S|λ
λr

, (19)

as long as λ ≥ Cλ1

√
log p
n .

In Corollary 1, we only require λ ≥ Cλ1

√
log p
n instead of λ ≥ Cλ1

√
|S|
√

log p
n (There is an extra√

|S| in Theorem 7). This is because Theorem 7 considers the worst case when noise terms cannot
be cancelled out.

The detailed estimation procedure of (P2) is provided in Section 15. Although the SDP method
is stable and can find the global optimal very well, it suffers from high computational burden and
expensive storage cost. The numerical comparison between the semidefinite programming methods
and the proposed NC-SGEP method is given in the main context. It shows that our method is
competitive compared with SDP-type methods in terms of estimation error.

8 Additional Numerical Experiments

We present the additional simulation results to show the non-convex regularized estimator enjoys
merits of sparsity and stability under various settings.

Sparse CCA Let Σx and Σy be two p1 by p1 matrices. Both of them take the form as
2 1
1 2 1

. . .
. . .

. . .
1 2 1

1 2

. We take Σxy = 0.9Σxu1u
T
1 Σy and unit vector u1 only has two non-

zero entries. We set n = 100 and let p = 2p1 vary from 50− 400. We compare the performance of
proposed estimator with Truncated Rayleigh Flow Method (Rifle, [30]), truncated version of Gener-
alized Eigenvector via Linear System Solver (GenELin, [11]). For fair comparison, we randomly
choose the starting values. The estimation errors are reported in Table 3. Additionally, we also report
the probability of successfully finding the global solution for each method in Table 3. The results
show that our method has better performance in estimating the leading eigenvector. In addition,
NC-SGEP is more easily to find the optimal solution and is thus more stable and accurate.

Table 3: Estimation accuracy for sparse canonical correlation analysis. "Err": ‖x̂ − u1‖ with
standard error in parenthesis. "Opt": the percentage of finding global optimum. Each setting is
replicated for 100 times.

p 100 200 300 400

Err
NC-SGEP 0.116 (0.127) 0.137 (0.153) 0.128 (0.118) 0.241 (0.288)

Rifle 0.203 (0.121) 0.368 (0.256) 0.542 (0.278) 0.662 (0.240)
GenELin 0.222 (0.127) 0.485 (0.333) 0.466 (0.325) 0.719 (0.278)

Opt
NC-SGEP 96 % 94 % 93 % 82 %

Rifle 94 % 67 % 40 % 24 %
GenELin 96 % 60 % 54 % 30 %

Sparse FDA Given two classes, the data from the first class follows N(µ1, Ip) and the data from
the second class follows N(µ2, Ip). The mean vector µ1 satisfies µ1[j] = 1 for j = 1, . . . , 4 and
µ1[j] = 0 for j > 4; µ2 satisfies µ2[j] = −1 for j = 1, . . . , 4 and µ2[j] = 0 for j > 4. We sample
100 data points from each class and split them into test sets and training sets into two equal half.
Thus, n = ntrain = 100 and ntest = 100. We let p vary from 50 to 250 and let sparsity level vary
from 10 to 50 for methods, NC-SGEP, Rifle and GenELin. Due to the penalization, our method does
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Table 4: Classification accuracy for sparse Fisher’s discriminant analysis problem.

p 50 100 150 200 250

sn = 10
NC-SGEP 0.973 (0.013) 0.976 (0.016) 0.971 (0.016) 0.974 (0.014) 0.972 (0.018)

Rifle 0.963 (0.019) 0.959 (0.027) 0.958 (0.020) 0.954 (0.023) 0.953 (0.020)
GenELin 0.962 (0.020) 0.961 (0.241) 0.959 (0.205) 0.960 (0.020) 0.959 (0.020)

sn = 20
NC-SGEP 0.969 (0.016) 0.972 (0.019) 0.970 (0.013) 0.971 (0.019) 0.975 (0.016)

Rifle 0.942 (0.027) 0.940 (0.030) 0.930 (0.028) 0.935 (0.029) 0.932 (0.029)
GenELin 0.941 (0.026) 0.937 (0.024) 0.927 (0.024) 0.928 (0.032) 0.931 (0.026)

sn = 50
NC-SGEP 0.959 (0.024) 0.946 (0.028) 0.951 (0.027) 0.954 (0.025) 0.958 (0.027)

Rifle 0.910 (0.036) 0.867 (0.037) 0.860 (0.048) 0.869 (0.041) 0.859 (0.037)
GenELin 0.907 (0.039) 0.850 (0.034) 0.839 (0.041) 0.846 (0.047) 0.848 (0.041)

not over-select the features. Thus the proposed method is better and more stable compare with other
existing methods in this task.

9 Proofs of Upper and Lower Perturbation Bounds

Proof of Lemma 2 Let U = [û1,u2, . . . ,up], Λ = diag(λ1, λ2, . . . , λp) be such that

UTAU = Λ, UTBU = Ip, (20)

where û1 = u1√
uT

1 Bu1

. Denote U1 = [û1,u2], U2 = [u3, . . . ,up], Λ1 = diag(λ1, λ2) and Λ2 =

diag(λ3, . . . , λp).

Now let

E = BU1 [ 0 ε
ε 0 ]UT

1 B, F = −E, (21)

where |ε| � 1 is a parameter. Let the eigenpairs of
( [

λ1 ε
ε λ2

]
,
[

1 −ε
−ε 1

] )
be (µ1, [ 1

α ]), (µ2,
[
β
1

]
),

where µ1 ≥ µ2, α, β ∈ R. Denote Ũ1 = [ũ1, ũ2] = U1

[
1 β
α 1

]
. It follows that

ÃŨ1 = (A+ E)U1

[
1 β
α 1

]
= BU1

[
λ1 ε
ε λ2

] [
1 β
α 1

]
= BU1

[
1 −ε
−ε 1

] [
1 β
α 1

]
diag(µ1, µ2)

= (B + F )U1

[
1 β
α 1

]
diag(µ1, µ2)

= B̃Ũ1 diag(µ1, µ2)

and

ÃU2 = (A+ E)U2 = AU2

= BU2Λ2 = (B + F )U2Λ2 = B̃U2Λ2.

In other words, the eigenpairs of (Ã, B̃) are (µ1, ũ1), (µ2, ũ2), (λ3,u3), . . . , (λp,up).

On one hand, using (21) and û1 = u1√
uT

1 Bu1

, by calculations, we have 2

√
‖Eu1‖2 + ‖Fu1‖2 ≤

√
2ε‖B‖. (22)

On the other hand, using [ 1
α ] is the leading eigenvector of

( [
λ1 ε
ε λ2

]
,
[

1 −ε
−ε 1

] )
, by calculations, we

get

α =
λ1 + 1

λ1 − λ2
ε+O(ε3). (23)

2For simplicity, we may use ‖ · ‖ instead of ‖ · ‖2 in the proof.
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Using (20), we have

‖ũ1‖ ≤ ‖U1‖
√

1 + α2 ≤ ‖B− 1
2 ‖‖B 1

2U1‖
√

1 + α2 ≤ ‖B− 1
2 ‖
√

1 + α2. (24)

Denote U3 = [u2, . . . ,up] and Λ3 = diag(λ2, . . . , λp). By calculations, we have

| sin θ(u1, ũ1)| (a)
=

1

‖ũ1‖
‖(UT

3 B
2U3)−

1
2UT

3 Bũ1‖ ≥
‖UT

3 Bũ1‖
‖ũ1‖‖B‖

1
2

(b)

≥ |α|
‖ũ1‖‖B‖

1
2

(c)

≥ |α|√
(1 + α2)κ

,

(25)

where (a) uses (20) and (5), (b) uses (20), (c) uses (24).

Now using (22), (23) and (25), we get

| sin θ(u1, ũ1)| ≥ 1√
κ

λ1 + 1

λ1 − λ2
ε+O(ε2) ≥ (λ1 + 1) cosφ1 cosφ2√

2κ‖B‖

√
‖Eu1‖2 + ‖Fu1‖2

sin(φ1 − φ2)
+O(ε2).

(26)

Simple calculations give rise to

(1 + λ1) cosφ1 =
√

2 sin(φ1 +
π

4
) ≥ 1,

cosφ2

σmin(B)
=

1

σmin(B)
√

1 + λ2
2

≥ 1

σmin(B)
√

1 + λ2
1

≥ 1√
‖A‖2 + ‖B‖2

.

Substituting them into (26), we get

| sin θ(u1, ũ1)| ≥ Cl ξ

sin(φ1 − φ2)
+O(ε2).

The conclusion follows immediately.

Proof of Theorem 1 In this proof, we use [x]K to denote the subvector of x with entries in set K and
XK is the submatrix of X with both row and column indices in K. Let K be a superset of S with
|K| = ` ≤ s+ k, denote the eigenpairs of (AK, BK) and (ÃK, B̃K) by (µ1, w1), . . . , (µ`, w`), and
(µ̃1, w̃1), . . . , (µ̃`, w̃`), respectively, and µ1 ≥ · · · ≥ µ`, µ̃1 ≥ · · · ≥ µ̃`. We consider case = ∅ and
6= ∅ in order.

Case = ∅ In such case, K = J . Consider (AK, BK) and (ÃK, B̃K). Obviously, [u1]K and [x∗]K
are leading eigenvectors of (AK, BK) and (ÃK, B̃K), respectively. Without loss of generality, let
‖u1‖ = 1. By Assumption A1), we have√

‖EK[u1]K‖2 + ‖FK[u1]K‖2 ≤
√
‖EK‖2 + ‖FK‖2 ≤ εcK.

Then it follows that

ξK =

√
‖EK[u1]K‖2 + ‖FK[u1]K‖2

c̃K
≤ εcK

c̃K
. (27)

By Lemma 1, we have

| sin θ([u1]K, [x∗]K)| ≤ Cu,K ξK

sin(φ1 − φ̃2)
, (28)

where Cu,K =

√
2(‖AK‖2+‖BK‖2)

cK
, tan φ̃2 is the second largest eigenvalue of (ÃK, B̃K). Combining

(27) and (28), we have

| sin θ(u1,x∗)| = | sin θ([u1]K, [x∗]K)| ≤
ε
√

2(‖AK‖2 + ‖BK‖2)

c̃K sin(φ1 − φ̃2)
.

Case 6= ∅ First, similar to Case = ∅, we have

| sin θ([u1]K, w̃1)| ≤
ε
√

2(‖AK‖2 + ‖BK‖2)

c̃K sin(φ1 − φ̃2)
. (29)
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Second, without loss of generality, let ‖x∗‖ = 1. Taking [x∗]K as an approximate eigenvector of
(ÃK, B̃K), we are able to give upper bound for | sin θ([x∗]K, w̃1)| as follows. Let

r = ÃK[x∗]K − ρ∗B̃K[x∗]K, (30)

it is easy to see that

[x∗]
T
Kr = 0. (31)

Now let

G = r[x∗]
T
K + [x∗]Kr

T, Ê = − G

1 + ρ2
∗
, F̂ =

ρ∗G

1 + ρ2
∗
. (32)

Direct calculations give

(ÃK + Ê)[x∗]K
(a)
= ÃK[x∗]K −

r

1 + ρ2
∗

(b)
= ρ∗B̃K[x∗]K + r − r

1 + ρ2
∗

= ρ∗(B̃K[x∗]K +
ρ∗r

1 + ρ2
∗

)

(c)
=ρ∗(B̃K + F̂ )[x∗]K, (33)

where (a) and (c) use (31) and (32), (b) uses (30). In other words, (ρ∗, [x∗]K) is an eigenpair of
(ÂK, B̂K) = (ÃK + Ê, B̃K + F̂ ). Next, we show that (ρ∗, [x∗]K) is the leading eigenpair.

Using (31), we know that
[
r
‖r‖ , [x∗]K

]
is orthonormal, then it follows that

‖G‖ = ‖r‖
∥∥∥[ r

‖r‖
, [x∗]K

][
[x∗]K,

r

‖r‖

]T∥∥∥ = ‖r‖. (34)

Using (30), by calculations, we have

‖r‖ =

∥∥∥∥[ ÃJ [x∗]J − ρ∗B̃J [x∗]J
Ã(,J )[x∗]J − ρ∗B̃(,J )[x∗]J

]∥∥∥∥ =

∥∥∥∥[ 0

Ã(,J )[x∗]J − ρ∗B̃(,J )[x∗]J

]∥∥∥∥ = δc̃K. (35)

Now using (32), (34) and (35), we get√
‖Ê‖2 + ‖F̂‖2 =

‖G‖√
1 + ρ2

∗
=

δc̃K√
1 + ρ2

∗
. (36)

Since arctan ρ∗ > arctanµ2 + arctan ε+ arctan δ√
1+ρ2∗

, we have

arctan ρ∗ > arctan µ̃2 + arctan
δ√

1 + ρ2
∗
≥ arctan µ̂2. (37)

i.e., (ρ∗, [x∗]K) is the leading eigenpair of (ÂK, B̂K). Then using Lemma 1 and (36), we get

| sin θ([x∗]K, w̃1)| ≤

√
2(‖ÂK‖2 + ‖B̂K‖2) δ

ĉK sin(φ∗ − φ̃2)
√

1 + ρ2
∗
. (38)

where ĉK = c(ÂK, B̂K). Recall the following fact [25].

Let (A,B), (Ã, B̃) be two symmetric matrix pairs, then it holds

|c(A,B)− c(Ã, B̃)| ≤
√
‖Ã−A‖22 + ‖B̃ −B‖22.

Thus we have

ĉK − c̃K ≥ −
√
‖Ê‖2 + ‖F̂‖2 (a)

= − δc̃K√
1 + ρ2

∗
,

where (a) uses (36). Substituting it into (38), we get

| sin θ([x∗]K, w̃1)| ≤

√
2(‖ÂK‖2 + ‖B̂K‖2) δ

c̃K(
√

1 + ρ2
∗ − δ) sin(φ∗ − φ̃2)

. (39)

18



Finally, by calculations, we get
| sin θ(u1,x∗)| = | sin θ([u1]K, [x∗]K)|

≤ | sin θ([u1]K, w̃1)|+ | sin θ([x∗]K, w̃1)|,√
2(‖ÂK‖2 + ‖B̂K‖2)

(b)

≤ 2

√
‖ÃK‖2 + ‖B̃K‖2 +

δ2c̃2K
1 + ρ2

∗
,

where (b) uses (36). Combining them with (29) and (39), we arrive at the conclusion.

10 Characterization of Penalty Function

By a closer look at family Pλ, it is not hard to see that any function pλ ∈ Pλ satisfies the following
properties:

1 pλ is locally equivalent to L1 norm around 0;
2 pλ is increasing and satisfies the uni-variate triangle inequality;
3 pλ(x) is a constant function when x is large enough.

We first show the local equivalence between pλ and L1 norm. For each pλ ∈ Pλ, it holds that there
exist constants c1, c2 and δ0 := c0λ (constants may depend on pλ) such that

c1p
2
λ(x) ≤ λ2x2 for all x; (40)

λ2x2 ≤ c2p2
λ(x) for |x| < δ0. (41)

For particular penalty function, we can easily obtain c1, c2 and δ0:

SCAD: c1 = 1; c2 = 1 with δ0 = λ.
MCP: c1 = 1; c2 = 4 with δ0 = aλ.

Proof of (40) and (41). First, (40) is obvious. This is because

pλ(x) =

∫ x

0

p
′

λ(t)dt ≤
∫ x

0

λdt = λx

for any positive x. As a results, we can easily take c1 = 1. Next we prove (41),

pλ(x) =

∫ x

0

p
′

λ(t)dt ≥
∫ x

0

(λ− κt)dt = λx− κ

2
x2 ≥ λx− λ

2
x =

1

2
λx

for any 0 ≤ x ≤ λ/κ. Thus, we can take c2 = 4 and δ0 = λ/κ.

Next we show that pλ(x) satisfies univariate triangle inequality, i.e.,
pλ(x+ y) ≤ pλ(x) + pλ(y) (42)

holds for any x, y ∈ R.

Proof of (42) First notice that |x+ y| ≤ |x|+ |y|. Thus pλ(x+ y) ≤ pλ(|x|+ |y|). So it suffices to
show that pλ(|x|+ |y|) ≤ pλ(|x|) + pλ(|y|) = pλ(x) + pλ(y).

By integration, we have that

pλ(|x|+ |y|) =

∫ |x|+|y|
0

p
′

λ(t)dt

=

∫ |x|
0

p
′

λ(t)dt+

∫ |x|+|y|
|x|

p
′

λ(t)dt

≤
∫ |x|

0

p
′

λ(t)dt+

∫ |y|
0

p
′

λ(t)dt

= pλ(|x|) + pλ(|y|)
= pλ(x) + pλ(y),

where we use the monotonicity of p
′

λ(x) and symmetry of pλ(x).
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11 Proof for Estimation Bounds

Difference between eigenvalues. We first give the bound between λ̂i and λi. By Theorem 3.2
in [25], we know that

| tan−1(λ̂i)− tan−1(λi)| ≤ sin−1(
ε

c(A,B)
), (43)

with ε =
√
‖E‖22 + ‖F‖22. Thus, we get

λ̂i − λi = (1 + tan2(θ̃i)) sin−1(
ε

c(A,B)
), (44)

where θ̃i is some angle between tan−1(λ̂i) and tan−1(λi).

Difference between eigenvectors. The bound of sin θ(ûi,ui) can be obtained from Theorem 2.1
in [28]. We know that

| sin θ(ûi,ui)| ≤
√

2
√
‖A2 +B2‖2

c(A,B)c(Ã, B̃)

√
‖Eui‖22 + ‖Fui‖22

δi
, (45)

where δi is the minj 6=i{dc(λi, λj)} with chord distance dc(x, y) defined as |x−y|√
(1+x2)(1+y2)

.

Therefore, the bound between ũ1 and u1:

‖ũ1 − u1‖22 = (ũ1 − u1)T(ũ1 − u1)

= 2− cos θ(ũ1,u1)

≤ 2− cos2 θ(ũ1,u1) ≤ 2 sin2 θ(ũ1,u1). (46)

Difference between the re-scaled eigenvectors. We recall the re-scaled vector u1s =

u1(uT
1 Bu1)−1/2 and define the corresponding perturbed version ǔ1 = ũ1(ũT

1 B̃ũ1)−1/2 We can
bound the difference between u1s and ǔ1 as follows.

‖u1s − ǔ1‖2
= ‖u1(uT

1 Bu1)−1/2 − ũ1(ũ1B̃ũ1)−1/2‖2 (47)

= (uT
1 Bu1)−1/2(ũ1B̃ũ1)−1/2‖u1(ũ1B̃ũ1)1/2 − ũ1(uT

1 Bu1)1/2‖2
≤ (uT

1 Bu1)−1/2(ũ1B̃ũ1)−1/2(‖u1 − ũ1‖2(uT
1 Bu1)1/2

+
|ũT

1 B̃ũ1 − uT
1 B̃u1|

(ũT
1 B̃ũ1)1/2 + (uT

1 B̃u1)1/2
+

|uT
1 B̃u1 − uT

1 Bu1|
(uT

1 B̃u1)1/2 + (uT
1 Bu1)1/2

)

≤ (uT
1 Bu1)−1/2(ũ1B̃ũ1)−1/2(‖u1 − ũ1‖2(uT

1 Bu1)1/2

+
2‖B̃‖2‖ũ1 − u1‖2

(ũT
1 B̃ũ1)1/2 + (uT

1 B̃u1)1/2
+

‖B̃ −B‖2
(uT

1 B̃u1)1/2 + (uT
1 Bu1)1/2

)

≤ C1(B)‖ũ1 − u1‖2 + C2(B)‖B̃ −B‖2, (48)

where

C1(B) = (uT
1 Bu1)−1/2(ũ1B̃ũ1)−1/2((uT

1 Bu1)1/2 +
2‖B̃‖2

(ũT
1 B̃ũ1)1/2 + (uT

1 B̃u1)1/2
)

and
C2(B) = (uT

1 Bu1)−1/2(ũ1B̃ũ1)−1/2/((uT
1 B̃u1)1/2 + (uT

1 Bu1)1/2).

Remark: C1(B) ≡ 1 if B̃ = B = I .

Characterization of û1 By recalling the definition of û1 that

û1 = arg max
x∈Rp,‖x‖0≤sn

xTÃx; subject to xTB̃x = 1. (49)

20



Next, we show that S ⊂ supp(û1). We prove this via using contradiction method.

Denote ρ̃ := û1Ãû1 and denote ρ̃S := maxx∈Rp,supp(x)=S,xTB̃x=1 x
TÃx. By the definition of û1,

we have ρ̃ ≥ ρ̃S . Denote Su := supp(û1). Then by the perturbation results, we have that

ρ̃ ≤ λ1(Su) +O(‖E[Su,Su]‖2 + F [Su,Su]‖2), (50)

where λ1(Su) is the leading eigenvalue of matrix pair (A[Su,Su], B[Su,Su]). We also have

ρ̃S ≥ λ1 +O(‖E[S,S]‖2 + F [S,S]‖2). (51)

By Condition that λ1 > λ(Su) when S 6⊂ Su and the fact ‖E[S,S]‖2 +F [S,S]‖2 +‖E[Su,Su]‖2 +
F [Su,Su]‖2 � 1, thus ρ̃ < ρ̃S . This contradicts with the definition of û1. Hence we conclude that
S ⊂ supp(û1).

Proof of Theorem 3 Similar to the notations in the previous section, we define the truncated vector
ûK such that ûK [S] = û1[S] and ûK [−S] = 0 and let û−K = û1 − ûK . We also define some
constants b1 := maxK:‖K‖0≤sn ‖BK‖2 and b2 := maxK:‖K‖0≤sn ‖(BK)−1‖2 which are related to
underlying matrix B.

We first construct an auxiliary vector ûr such that

ûr := αûK , α =

√
ûT
KB̃ûK + 2ûT

KB̃û−K

ûT
KB̃ûK

. (52)

We can similarly verify that

ûT
r B̃ûr = ûT

KB̃ûK + 2ûT
KB̃û−K

≤ ûT
1 B̃û1 ≤ 1.

We also know that

‖û−K‖2 = ‖û1[−Su]‖2 ≤
√

2b
1/2
2 sin θ(û1,u1).

Additionally, we can also compute that

ûT
r Ãûr = û1Ãû1 − ε̃Tû−K

= ρ̃− ε̃Tû−K , (53)

where ε̃ := Ãû−K + ε̃AB − 2
ε̃TAB

ûT
KB̃ûK

B̃ûK and ε̃AB = ÃûK − ρ̃B̃ûK .

For ε̃AB , we know that

‖ε̃AB [Su]‖2 = ‖Ã[Su, :]ûK − ρ̃B̃[Su, :]ûK‖2
= ‖Ã[Su, :]ûK − Ã[Su, :]û1‖2 + ‖ρ̃B̃[Su, :]û1 − ρ̃B̃[Su, :]ûK‖2
≤ (‖ÃSu‖2 + ρ̃‖B̃Su‖2)‖ûK − ũ1‖2
≤ 2ρ̃b1b

1/2
2 ‖ũ1 − u1‖2.

Therefore,

‖ε̃[Su]‖2 = ‖Ã[Su, :]û−K + ε̃AB [Su]− 2
ε̃TABûK [Su]

ûT
KB̃ûK

B̃ûK‖2

≤ ‖ÃSu‖2‖û−K‖2 + ‖ε̃AB [Su]‖2 + 2(b1b2)1/2‖ε̃AB [Su]‖2
≤ (1 + 2(1 + 2(b1b2)1/2))ρ̃b1b

1/2
2 ‖ũ1 − u1‖2

:= C ′1(b1, b2)‖ũ1 − u1‖2, (54)

which is O(ε). Therefore, together with (53), we have

ûT
r Ãûr = ρ̃− ε̃Tû−K

≥ ρ̃− C ′1(b1, b2)b
1/2
2 ‖ũ1 − u1‖22

≥ ρ̃− C ′3(b1, b2)‖ũ1 − u1‖22 (55)
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with C ′3(b1, b2) := (1 + 2(1 + 2(b1b2)1/2))ρ̃b1b2.

We know that x̂ can be represented as α̃1û1 + . . .+ α̃sn ûsn , where [û1, . . . , ûsn ] = [ũ1, . . . , ũsn ] ·
(ŨTB̃Ũ)−1/2 are the eigenvectors for (ÃSu , B̃Su) corresponding to eigenvalues λ̃1, . . . , λ̃sn . By the
optimality of x̂ and the fact that ûT

r B̃ûr ≤ 1, it must hold that

−x̂TÃx̂ + pλ(x̂) ≤ −ûT
r Ãûr + pλ(ûr). (56)

This gives us that

−α̃2
1λ̃1 − . . .− α̃2

sn λ̃sn ≤ −ûT
r Ãûr + pλ(ũr)

(1− α̃2
1)(λ̃1 − λ̃2) ≤ ‖ε̃Tû−K‖2 + pλ(ûr),

where we use the fact that λ̃1 = ρ.

Notice that λ̃1 ≥ λ1 − ε and λ̃2 ≤ λ2(ASu , BSu) + ε ≤ λ2 + ε. It leads to λ̃1 − λ̃2 ≥ (λ1 − λ2)/2.
Therefore, α̃2

1 ≥ 1 − 2
λ1−λ2

{‖ε̃Tû−K‖2 + pλ(ûr)}. In other words, α̃2
1 ≥ 1 − O(|S|λ2). This

implies that

‖x̂− u1s‖2
≤ ‖x̂− û1‖2 + ‖û1 − u1s‖2

≤ b
1/2
2 (

√
(1− α̃1)2 + α̃2

2 + . . . , α̃2
p + ‖û1 − u1s‖2)

≤ b
1/2
2 (

√
2(1− α̃2

1)/(1 + α̃1) + ‖û1 − u1s‖2)

= O(
√
|S|λ). (57)

Thus the estimator is consistent.

By the condition that min{u1[j] : j ∈ S} �
√
|S|λ, it implies that

pλ(x̂) = pλ(u1s) = |S|pλ(γλ), (58)

since u1s[S] �
√
|S|λ element-wisely. In addition, we observe that pλ(ũr) is no greater than

|S|pλ(γλ) since ũr has at most |S| non-zero elements. By these facts, we can improve the error
bound of ‖x̂− u1r‖2. Again, by the definition of x̂, we have

−x̂TÃx̂ + pλ(x̂) ≤ −ũT
r Ãũr + pλ(ũr). (59)

It gives us that

−α̃2
1λ̃1 − . . .− α̃2

sn λ̃sn ≤ −ûT
r Ãûr

(1− α̃2
1)(λ̃1 − λ̃2) ≤ ‖ε̃Tû−K‖2.

Therefore, α̃2
1 ≥ 1− 1

λ̃1−λ̃2
‖ε̃Tû−K‖2. This implies that

‖x̂− u1s‖2
≤ ‖x̂− û1‖2 + ‖û1 − u1s‖2

≤ b
1/2
2

√
(1− α̃1)2 + α̃2

2 + . . . , α̃2
p + ‖û1 − u1s‖2

= b
1/2
2

√
1

λ̃1 − λ̃2

√
‖ε̃Tû−K‖2 + ‖û1 − u1s‖2

≤ C(
√

(1 + 2(1 + 2(b1b2)1/2))ρ̃b1b2/(λ1 − λ2) + b1b2 + (b1b2)1/2)b
1/2
2 ‖ũ1 − u1‖2 + b

3/2
2 ‖B̃ −B‖2,

where the last inequality uses (48) by treating û1 as ǔ1. (This is valid since supp(u1) ⊂ supp(û1)

and ûT
1 B̃û1 = 1.) This concludes the error bound.
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Proof of Theorem 4 Next, we show that x̂ satisfies the oracle property. We abuse the notation of
ûK and u−K by letting ûK be the vector such that ûK [S] = x̂[S] and ûK [S] = 0, where S is the
support of u1. Let û−K = x̂− ûK . Define ε̂AB := ÃûK − λ̃1B̃ûK .

Consider a candidate solution û0 = αûK , where coefficient α will be determined later. We aim to
find a û0 such that

ûT
0 Ãû0 ≥ x̂TÃx̂− ‖û−K‖2 ·O(ε) (60)

and

ûT
0 Ãû0 ≤ 1. (61)

We consider to take α2 = 1 +
2ûT
KB̃û−K

ûT
KB̃ûK

. Then we can compute that

ûT
0 B̃û0 = α2ûT

KB̃ûK

= (1 +
2ûT

KB̃û−K

ûT
KB̃ûK

)ûT
KB̃ûK

= ûT
KB̃ûK + 2ûT

KB̃û−K

≤ x̂TB̃x̂ ≤ 1.

We can also compute that

ûT
0 Ãû0 = α2ûT

KÃûK

= α2(λ̃B̃ûK + ε̂AB)TûK

= α2λ̃ûT
KB̃ûK + α2ε̂TABûK

= λ̃ûT
KB̃ûK + λ̃ûT

KB̃û−K + α2ε̂TABûK

= (λ̃ûT
KB̃ + ε̂TAB)ûK + (λ̃ûT

KB̃ + ε̂TAB)û−K

−ε̂TABûK − ε̂TABû−K + α2ε̂TABûK

= x̂TÃx̂− ûT
−KÃû−K − ε̂TABûK − ε̂TABû−K + α2ε̂TABûK

= x̂TÃx̂− ûT
−KÃû−K − εTABû−K +

2ûT
KB̃û−K

ûT
KB̃ûK

ε̂TABûK

= x̂TÃx̂− ε̃Tû−K .

Here ε̂ := Ãû−K + ε̂AB − 2
εTABûK

ûT
KB̂ûK

B̃ûK .

For ε̂AB , we know that

‖ε̂AB‖2 = ‖ÃûK − λ̃1B̃ûK‖2
= ‖ÃûK − Ãũ1 + λ̃1B̃ũ1 − λ̃1B̃ûK‖2
= ‖ÃûK − Ãũ1‖2 + ‖λ̃1B̃ũ1 − λ̃1B̃ûK‖2
≤ (‖Ã‖2 + λ̃‖B̃‖2)‖ûK − ũ1‖2.

We can further bound ‖ûK − ũ1‖2 by ‖ûK − x̂‖2 +‖x̂−u1r‖2 +‖u1r− ũ1‖2 which is O(ε). Thus,

‖ε̂‖2 = ‖Ãû−K + ε̂AB − 2
ε̂TABûK

ûT
KB̂ûK

B̃ûK‖2

≤ ‖Ã‖2‖û−K‖2 + ‖ε̂AB‖2 + 2‖B̃1/2‖2‖ûK‖2‖ε̂AB‖2
≤ ‖Ã‖2‖û−K‖2 + (1 + 2‖B̃‖2‖B̃−1‖2)‖ε̂AB‖2, (62)

which is O(ε). Therefore, vector û0 satisfies both (60) and (61).
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Observe that

−x̂TÃx̂ + pλ(x̂)

≥ −ûT
0 Ãû0 − C

√
ε‖û−K‖2 + pλ(x̂)

= −ûT
0 Ãû0 − C

√
ε‖û−K‖2 + pλ(û0) + pλ(û−K) (63)

≥ −ûT
0 Ãû0 − C

√
ε‖û−K‖2 + pλ(û0) + cλ‖û−K‖1 (64)

≥ −ûT
0 Ãû0 + pλ(û0), (65)

where (63) uses the fact that pλ(û0[S]) = pλ(x̂[S]); (64) uses the local equivalence between pλ and
L1 norm; (65) holds when λ�

√
ε. The strict equality holds as long as û−K ≡ 0. In other words, x̂

should have the same support as u1. This completes the proof.

Proof of Theorem 5 By Theorem 4, we know that the support of x̂ is exactly equal to S . In addition,
by Theorem 3, we know that the estimator is consistent. It implies that pλ(x̂) ≡ pλ(u1). Therefore,
x̂ is equal to arg minx:x[−S]=0 x

TÃx subject to xTB̃x ≤ 1. In other words, x̂[S] is the leading
eigenvector of submatrix pair (ÃS , B̃S). By applying Theorem 1, we conclude the proof.

12 Proof of Results in Section 7

The following lemma from [35] characterizes the curvature of objective function.

Lemma 3 Suppose matrix A has the following spectral decomposition U1Λ1U
T
1 + U2Λ2U

T
2 with

U1 ∈ O(p, r) and U2 ∈ O(p, p − r). (Here O(p, d) is the space of p by d orthonormal matrices.)
Let δ := minj Λ1[j, j]−maxj Λ2[j, j]. Then it holds that

tr(AT(U1U
T
1 −X)) ≥ 1

2
δ‖U1U

T
1 −X‖2F , (66)

where X is any matrix satisfying ‖X‖2 ≤ 1 and ‖X‖∗ ≤ r.

Proof of Theorem 7 We first define a few more auxiliary quantities, Ū1 = U1(UT
1 B̃U1)−1/2,

X̄ = Ū1Ū
T
1 . and Λ̄1 = (UT

1 B̃U1)1/2Λ1(UT
1 B̃U1)1/2. Next we give the upper bound for ‖Ū1−U1‖2,

‖X̄ −X‖2 and ‖Λ̄1 − Λ1‖2. Specifically, we have

‖Ū1 − U1‖2 = ‖U1(UT
1 B̃U1)−1/2 − U1‖2

≤ ‖U1‖2‖(UT
1 B̃U1)1/2 − I‖2‖(UT

1 B̃U1)−1/2‖2
≤ C‖U1‖2‖UT

1 B̃U1 − I‖2‖(UT
1 B̃U1)−1/2‖2,

‖X̄ −X‖2 = ‖Ū1Ū
T
1 − U1U

T
1 ‖

= ‖Ū1‖2‖Ū1 − U1‖2 + ‖U1‖2‖Ū1 − U1‖2,

and

‖Λ̄1 − Λ1‖2 = ‖(UT
1 B̃U1)1/2Λ1(UT

1 B̃U1)1/2 − Λ1‖2
≤ ‖(UT

1 B̃U1)1/2 − I‖2‖Λ1(UT
1 B̃U1)1/2‖2 + ‖Λ1‖2‖(UT

1 B̃U1)1/2 − I‖2
≤ C((UT

1 B̃U1)1/2‖2 + 1)‖Λ1‖2‖(UT
1 B̃U1)− I‖2.

We construct Ā = B̃U1Λ1U
T
1 B̃. Then the infinity norm ‖Ā− Ã‖∞ can be bounded by

‖Ā− Ã‖∞ ≤ ‖Ā−A‖∞ + ‖Ã−A‖∞
= ‖B̃U1Λ1U

T
1 B̃ −BU1Λ1U

T
1 B‖∞ + ‖Ã−A‖∞

≤ ‖(B̃ −B)U1Λ1U
T
1 B̃‖∞ + ‖BU1Λ1U

T
1 (B̃ −B)‖∞ + ‖Ã−A‖∞

≤ λ1‖B−1/2‖‖B1/2‖(‖B‖∞ + ‖B̃‖∞)
√
|S|‖B̃ −B‖∞ + ‖Ã−A‖∞, (67)
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where the last inequality uses ‖BU1Λ1U
T
1 (B̃−B)‖∞ ≤ λ1‖B−1/2‖‖B1/2‖‖B‖∞

√
|S|‖B̃−B‖∞

depending on the fact that ‖U1Λ1U
T
1 B[:, j]‖2 are bounded for each j. This is because that ‖UT

1 B‖2 ≤
‖B1/2‖. Thus ‖(UT

1 B)ej‖2 ≤ ‖B1/2‖‖ej‖2, where ej is an one-hot vector with jth entry being 1.
Additionally, it is easy to see that Λ1 is bounded by λ1 and ‖U1‖1 is bounded by ‖B−1/2‖2. Thus
‖U1Λ1U

T
1 B[:, j]‖2 is bounded for each j.

By the optimality of X̂ , we have

tr(ÃX̂)− pλ(X̂) ≥ tr(ÃX̄)− pλ(X̄).

Let ∆ = X̂ − X̄ and make the rearrangement. The above equation can be written as

−tr(Ā,∆) ≤ pλ(X̄)− pλ(X̄ + ∆) + tr((Ã− Ā)∆). (68)

Define the support set T = S × S ∈ [p]× [p]. For the first term of (68),

pλ(X̄)− pλ(X̄ + ∆) = pλ(X̄[T ])− pλ(X̄[T ] + ∆[T ])− pλ(∆[T c])
≤ pλ(∆[T ])− pλ(∆[T ]c).

For the second term of (68), we have tr((Ã− Ā)∆) ≤ ‖Ã− Ā‖∞‖∆‖1. Putting together, we have

−tr(Ā,∆) ≤ pλ(∆[T ])− pλ(∆[T c]) + ‖Ã− Ā‖∞‖∆‖1. (69)

By the local equivalence between pλ and λ|x|, we have

−tr(Ā,∆) ≤ c2λ‖∆[T0]‖1 − c1λ‖∆[T c0 ]‖1 + ‖Ã− Ā‖∞‖∆‖1, (70)

where T0 = T ∪ Tlarge with Tlarge = {(i, j) : |∆[i, j]| > γλ}. We can observe that

|Tlarge| ≤ C|S|2, (71)

for some constant C. This fact will be proved later.

Next, by Lemma 3, observe that

−tr(Ã,∆) = tr(Ã, X̄ − X̂)

= tr(B̃U1Λ1U
T
1 B̃, Ū1Ū

T
1 − X̂)

= tr(B̃1/2U1Λ1U
T
1 B̃

1/2, B̃1/2Ū1Ū
T
1 B̃

1/2 − B̃1/2X̂B̃1/2)

≥ λ̄r
2
‖B̃1/2∆B̃1/2‖2F

≥ λr
4
‖B̃1/2∆B̃1/2‖2F . (72)

The last inequality holds since λ̄ and λ are close. The right hand side of (70) is bounded by
2c2λ‖∆[T0]‖1 which is further bounded by 2c2|S|λ‖∆[T0]‖F . By these facts, we have that

λr‖B̃1/2∆B̃1/2‖2F ≤ 8c2|S|λ‖∆[T0]‖F . (73)

Additionally, (70) further gives the cone constraint.

‖∆[T c0 ]‖1 ≤ 4c2/c1‖∆[T0]‖1. (74)

Following the proof technique in the compress sensing [4], define the index set T1 ⊂ ([p]× [p]\T0)
which correspond to the entries with the largest absolute values in ∆. Similarly, we define Tk (k ≥ 2)
sequentially such that Tk is the set of indices corresponding to t largest absolute values in ∆ outside⋃
l<k Tl. By triangle inequality, we have

‖B̃1/2∆B̃1/2‖F ≥ ‖B̃1/2∆[T01]B̃1/2‖F −
∑
k≥2

‖B̃1/2∆[Tk]B̃1/2‖F

≥ φB̃min(2su + t)‖∆[T01]‖F − φB̃max(t)
∑
k≥2

‖∆[Tk]‖F .
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In above, we use the following quantities

φBmax(k) := max
‖u‖0≤k,u 6=0

uTBu

uTu
, φBmin(k) := min

‖u‖0≤k,u 6=0

uTBu

uTu
, (75)

which are known as the restricted eigenvalues for positive definite matrix B.

By the definition of Tk and cone constraint, we have∑
k≥2

‖∆[Tk]‖F ≤
√
t
∑
k≥2

‖∆[Tk]‖∞

≤ 1√
t

∑
k≥1

‖∆[T1]‖1

≤ (4c2)/(
√
tc1)‖∆[T0]‖1

≤ (4Cc2)/(
√
tc1)|S|‖∆[T01]‖F . (76)

Hence, ‖B̃1/2∆B̃1/2‖F is lower bounded by κ‖∆[T01]‖F with

κ = φB̃min(C|S|+ t)− (4Cc2|S|)/(
√
tc1)φB̃max(t). (77)

Here κ is a strictly positive constant when perturbation error ε is small enough. Together with (70),
we have

‖∆[T01]‖F ≤ C
|S|λ
κ2λr

. (78)

Together with (76), we have

‖∆‖F ≤ C‖∆[T01]‖F ≤ C
|S|λ
κ2λr

(79)

by choosing large t and adjusting the constant C.

Now we go back to show the fact that |T0| is bounded by C|S|2. We consider the following two
situations.

1. When B̃ is not singular, then ‖B̃−1‖ are bounded by some constant cb. Therefore, by (69) and
(72), we have

λr
4cb
‖∆‖2F ≤

1

2
|S|2γλ2 − pλ(∆[T c]) + ‖Ã− Ā‖∞‖∆‖1

Since pλ(x) > ‖Ã− Ā‖∞ |x| when |x| ≥ γλ, then we have
λr
4cb
‖∆[T0]‖2F ≤

1

2
|S|2γλ2 + ‖Ã− Ā‖∞‖∆[T0]‖1.

Notice that each element of |∆[T0]| is at least γλ. Then λr
4cb
‖∆[T0]‖2F − ‖Ã − Ā‖∞‖∆[T0]‖1 is

lower bounded by |T0| · γ2λ2 times some constant. Then we must have |T0| · γ2λ2 ≤ 1
2 |S|

2γλ2. It
implies that |Tlarge| ≤ C|S|2. So is |T0|.

2. When B̃ is singular, by using condition that eapprox ≤ λ, we have

pλ(X̂) ≤ e2
approx +

1

2
C|S|2λ2. (80)

Thus we know there are at most C|S|2 entries in |X̂| are larger than γλ. It indicates |Tlarge| ≤ C|S|2.
Therefore, we have proved (71).

Byproduct: space perturbation We know σr+1(X̄) = 0 and

σ(X̂) ≥ σ(UUT )− ‖X̂ − X̄‖2 − ‖Ū ŪT − UUT ‖2.

Thus σ(X̂) is lower bounded by some positive constant. By Wedin sinθ theorem, we then have

‖PÛ1
− PU1

‖F = ‖PÛ1
− PŪ1

‖F ≤
2‖X̂ − X̄‖F

σr(X̂)− σr+1(X̄)
≤ C‖X̂ − X̄‖F , (81)

by adjusting the constant C. Here PX is the projection matrix on the column space spanned by X .
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13 Proofs of Propositions 1 and 2

We provide the proofs of Propositions 1 and 2 in this section.

Proposition 1 Let y̌ be the projection of y on to the ellipsoid {x | xTBx = 1}. Then y̌ has the
following form

y̌ = (βB + I)−1y,

where β is a scalar which is the solution to the equation 1 =
∑
j
dj(ỹ[j])2

(βdj+1)2 , where ỹ = UTy;
B = UDUT and D = diag(d1, . . . , dp).

Proof of Proposition 1 Since y̌ is the projection of y is onto the ellipsoid, then we must have that
y̌ − y is orthogonal to the tangent space of ellipsoid at y̌. By straightforward calculation, we know
the normal direction of the tangent space at y̌ is By̌. Thus, we must have that

y − y̌ ∝ By̌.

In other words,

y = (βB + I)y̌

holds for some constant β. Notice that y̌ is on the surface of the ellipsoid. Then

1 = yT (βB + I)−1B(βB + I)−1y

= yTU(βD + I)−1D(βD + I)−1UTy,

where B has eigen-decomposition B = UDUT . Therefore, we have

1 =
∑
j

dj(ỹ[j])2

(βdj + 1)2
,

with ỹ = UTy. This concludes the proof.

Proposition 2 The limiting point returned by (16) is the stationary point of sub-problem (15).

Proof of Proposition 2 Notice that the objective

arg min
x∈D

η

2
‖x− z(t)‖22 + (y(t))T (x− z(t))− xT Ãx (82)

can be rewritten as

arg min
x∈D,v∈V

η

2
‖x− z(t)‖22 + (y(t))T (x− z(t))− vTXhx (83)

where XT
hXh = Ã and V = {v : ‖v‖ ≤ ‖Xhx‖}. If x̌ is the solution to (82), then (x̌, v̌) is the

solution to (83) where v̌ = Xhx̌. Therefore, we only need to solve (83). We iteratively optimize
with respect to v and x and get the following update rule,

b(t+1)
m = z(t) −

y(t) −XT
h v

(t+1)
m−1

η
,

x(t+1)
m [Sb] = (β(t+1)

m B̃Sb + I)−1b(t+1)
m [Sb],

v(t+1)
m = Xhx

(t+1)
m . (84)

By simplification, we then obtain (16). This concludes the proof.
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14 Convergence of NC-SGEP

Recall our optimization problem,

min
x,y,v,z

−xT Ãx + pλ(z) + yT (x− z) +
η

2
‖x− z‖22

+∞1{xT B̃x > 1}+∞1{‖x‖0 > sn}, (85)

we can write our Lagrangian function L(x, z,y) as

L(x, z,y) = g(x) + h(z) + yT (x− z) +
η

2
‖x− z‖2, (86)

where g(x) = −xT Ãx is a L-Lipschitz smooth function over domain D = {x : x : ‖x‖0 ≤
sn;xT B̃x = 1} for some constant L, and h(z) = pλ(z) is a non-smooth function with a convex
domain. Here constant L can be bounded by norm ‖(B̃[S,S])−1/2Ã[S,S](B̃[S,S])−1/2‖2 for any
subset S with |S| ≤ sn.

Furthermore, we know that both g(x) + κ0

2 ‖x‖
2 and h(x) + κ0

2 ‖x‖
2 are strongly convex for a large

constant κ0. By the initial condition, we have that y0 = 0, x0 = z0, and supp(x0) = S1 contains
the true support set. By solving x1, we can see that supp(x1) = supp(x0) = supp(z(0)). Then, z1

is again a sparse solution with supp(u1) ⊂ supp(z1) ⊂ supp(z0). By repeating this procedure, we
know that supp(St) = supp(St−1) = supp(S1). Thus in the following, we only need to work on the
restricted space {x : xT B̃x = 1,x[−S1] = 0}. Then it becomes fixed-support ADMM algorithm
without worrying about the changing support issue.

We then can show that

‖yt+1 − yt‖ ≤ L‖xt+1 − xt‖. (87)

This is because, by the optimality of xt+1, we have

∇g(xt+1) + yt + η(xt+1 − zt+1) = 0.

By noticing the update formula that yt+1 = y(t) + η(xt+1 − zt+1), we get

∇g(xt+1) = −yt+1.

Therefore,

‖yt+1 − yt‖ = ‖∇g(xt+1)−∇g(xt)‖ ≤ L‖xt+1 − xt‖,

and it leads to (87).

Next, we show that

L(xt+1, zt+1,yt+1)− L(xt, zt,yt) ≤ (
L2

η
− γ

2
)‖xt+1 − xt‖2 − γ

2
‖zt+1 − zt‖2, (88)

where γ is a positive constant which will be explained later.

We split the successive difference of Lagrangian function by

L(xt+1, zt+1,yt+1)− L(xt, zt,yt)

= L(xt+1, zt+1,yt+1)− L(xt+1, zt+1,yt) + L(xt+1, zt+1,yt)− L(xt, zt,yt). (89)

The first term of (89) can be bounded by

L(xt+1, zt+1,yt+1)− L(xt+1, zt+1,yt)

= 〈yt+1 − yt,xt+1 − zt+1〉

=
1

η
‖yt+1 − yt‖2

≤ L2

η
‖xt+1 − xt‖2. (90)
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The second term of (89) can be bounded by

L(xt+1, zt+1,yt)− L(xt, zt,yt)

= L(xt+1, zt+1,yt)− L(xt, zt+1,yt) + L(xt, zt+1,yt)− L(xt, zt,yt)

≤ 〈∇L(xt+1, zt+1,yt),xt+1 − xt〉 − γ

2
‖xt+1 − xt‖2

+〈ξt+1, zt+1 − zt〉 − γ

2
‖zt+1 − zt‖2 (91)

≤ −γ
2
‖xt+1 − xt‖2 − γ

2
‖zt+1 − zt‖2, (92)

where (91) holds since the L is a γ-strongly convex function of x1 and x0 by assumption for some
constant γ. (This is true since we can take η large enough to make the lagrangian function strictly
convex. γ may depend on η and γ ≥ η − L.) and (92) holds since that 〈∇L(xt+1, zt+1,yt),xt+1 −
xt〉 = 0 and 〈ξt+1, zt+1 − zt〉 ≤ 0 by the optimality of xt+1

1 , xt0 and convexity of the domain. Here
ξt+1 is the subdifferential of L(xt, z,yt) at zt+1. Summing (90) and (92), we get the desired result,
i.e., (88) holds.

Third, we show that L(xt, zt,yt) is lower bounded by some constant f . By definition of
L(xt+1, zt+1,yt+1), we have

L(xt+1, zt+1,yt+1)

= h(zt+1) + (g(xt+1) + 〈yt+1,xt+1 − zt+1〉) +
η

2
‖xt+1 − zt+1‖2

= h(zt+1) + (g(xt+1) + 〈∇g(xt+1), zt+1 − xt+1〉) +
η

2
‖xt+1 − zt+1‖2 (93)

≥ h(zt+1) + g(zt+1) (94)

= f(zt+1) ≥ f. (95)

Here, (93) uses the fact that yt+1 = −∇g(xt+1) and (94) uses the Lipschitz continuity of g when
η ≥ L. Lastly, (95) holds since f := minx h(x) + g(x) is the lower bound of the objective function.

Therefore, by above results, we know that L(xt, zt,yt) monotonically decreases and converges to
some limit. In fact, we can further show that

lim
t→0
‖xt − zt‖ → 0. (96)

Since we know that
T∑
t=1

{
(
γ

2
− L2

η
)‖xt+1 − xt‖2 +

γ

2
‖zt+1 − zt‖2

}
<∞ (97)

and both γ
2 −

L2

η and γ are positive, then it immediately leads to that

lim
t
‖xt+1 − xt‖ → 0 and lim

t
‖zt+1 − zt‖ → 0.

Since L‖xt+1 − xt‖ ≥ ‖yt+1 − yt‖, it further gives

lim
t
‖yt+1 − yt‖ → 0.

In addition, note that yt+1 − yt = η(xt+1 − zt+1), thus

lim
t
‖xt − zt‖ → 0,

this concludes the proof of (96).

Recall the definition that T (ε) be the minimum t such that ‖xt − zt‖ ≤ ε. Therefore, for any
t ∈ {1, . . . , T (ε)}, we have ‖xt − zt‖ > ε. Hence, we know ‖xt+1 − xt‖ > ηε/L. Thus by (88), it
leads to

L(xt+1, zt+1,yt+1)− L(xt, zt,yt) ≤ (
L2

η
− γ/2)

ηε

L
.
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Therefore, we arrive at

T (ε) ≤
(L(x0, z0,y0)− f)

(γ/(2L)− L/η)ηε
.

By taking γ = η − L, we will have

T (ε) ≤
(L(x0, z0,y0)− f)

(η/(2L)− L/η − 1
2 )ηε

.

This completes the proof.

15 Estimation Procedure for Semidefinite Programming

For computation, (P2) can be equivalently written as

min
X,Y

−tr(AX) + pλ(X) +∞1{‖Y ‖∗ > r}+∞1{‖Y ‖2 > 1},

s.t. B1/2XB1/2 = Y. (98)

Then the corresponding augmented Lagrangian multiplier problem is

min
X,Y

−tr(AX) + pλ(X) +∞1{‖Y ‖∗ > r}+∞1{‖Y ‖2 > 1},

+tr(ZT (B1/2XB1/2 − Y )) +
η

2
‖B1/2XB1/2 − Y ‖2F (99)

The procedure for estimation of X̂ via SDP can be summarized as follows. Based on (99), we aim to
solve X,Y and Z iteratively.

a. Update Y : Compute K(t) := X(t) + (A + Z(t))/η and symmetrize K(t) = 1
2 (K(t) +

(K(t))T ). Do the projection Y (t+1) := ProjCfan(K(t)).

b. Update X: Compute H(t) := Y (t) − Z(t)/η. Solve the regular penalized linear regression
problem

x(t+1) := arg min
x
‖BBx− h(t)‖22 + pλ(x),

where x,h(t) ∈ Rp2 are the vectorized versions of X and H(t), respectively. BB :=
B1/2 ⊗B1/2 is the outer product of two B1/2s. Lastly, transfer x(t+1) to the matrix form
to get X(t+1).

c. Update Z: Z(t+1) = Z(t) + η(X(t) − Y (t)).

According to Lemma 4.1 in [35], for an arbitrary matrix X , we can find that

ProjCfan(X) =

p∑
j=1

γj(θ)vjv
T
j , (100)

where X admits eigen-decomposition X =
∑p
j=1 γjvjv

T
j ; γj(θ) = min{max{γj − θ, 0}, 1} and θ

is the solution to
∑
j γj(θ) = r.
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