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Abstract

Mainstream approaches for unsupervised domain adaptation (UDA) learn domain-
invariant representations to narrow the domain shift, which are empirically effective
but theoretically challenged by the hardness or impossibility theorems. Recently,
self-training has been gaining momentum in UDA, which exploits unlabeled target
data by training with target pseudo-labels. However, as corroborated in this work,
under distributional shift, the pseudo-labels can be unreliable in terms of their large
discrepancy from target ground truth. In this paper, we propose Cycle Self-Training
(CST), a principled self-training algorithm that explicitly enforces pseudo-labels to
generalize across domains. CST cycles between a forward step and a reverse step
until convergence. In the forward step, CST generates target pseudo-labels with
a source-trained classifier. In the reverse step, CST trains a target classifier using
target pseudo-labels, and then updates the shared representations to make the target
classifier perform well on the source data. We introduce the Tsallis entropy as a
confidence-friendly regularization to improve the quality of target pseudo-labels.
We analyze CST theoretically under realistic assumptions, and provide hard cases
where CST recovers target ground truth, while both invariant feature learning and
vanilla self-training fail. Empirical results indicate that CST significantly improves
over the state-of-the-arts on visual recognition and sentiment analysis benchmarks.

1 Introduction

Transferring knowledge from a source domain with rich supervision to an unlabeled target domain is
an important yet challenging problem. Since deep neural networks are known to be sensitive to subtle
change in underlying distributions [70], models trained on one labeled dataset often fail to generalize
to another unlabeled dataset [58, 1]. Unsupervised domain adaptation (UDA) addresses the challenge
of distributional shift by adapting the source model to the unlabeled target data [50, 43].

The mainstream paradigm for UDA is feature adaptation, a.k.a. domain alignment. By reducing the
distance of the source and target feature distributions, these methods learn invariant representations to
facilitate knowledge transfer between domains [34, 22, 36, 54, 37, 73], with successful applications in
various areas such as computer vision [63, 27, 77] and natural language processing [75, 49]. Despite
their popularity, the impossibility theories [6] uncovered intrinsic limitations of learning invariant
representations when it comes to label shift [74, 32] and shift in the support of domains [29].

Recently, self-training (a.k.a. pseudo-labeling) [21, 78, 30, 32, 47, 68] has been gaining momentum
as a promising alternative to feature adaptation. Originally tailored to semi-supervised learning,
self-training generates pseudo-labels of unlabeled data, and jointly trains the model with source labels
and target pseudo-labels [31, 39, 30]. However, the distributional shift in UDA makes pseudo-labeling
more difficult. Directly using all pseudo-labels is risky due to accumulated error and even trivial
solution [14]. Thus previous works tailor self-training to UDA by selecting trustworthy pseudo-labels.
Using confidence threshold or reweighting, recent works try to alleviate the negative effect of domain

*Corresponding author: Mingsheng Long (mingsheng@tsinghua.edu. cn)

35th Conference on Neural Information Processing Systems (NeurIPS 2021).



Standard Self-Training Cycle Self-Training

Target
Loss

oot

V)

Target Classifier }’;\t’_, l(y

|
|
|
AN |
|
|

Cycle
~ Py
Q=&xH Y =L, T Tirést 0={x) Ys' (Vs Lesr (60 ¢) SEurce
et 0SS
- S0 LS
P ={x},y7) Vs> Lp(8,¢) Seurce | [P =y} Vel y'
__________ i Loss | N
Features Classifier | Shared  Source Y Vs Ys = Lp(6s, p) Source
| Features Classifier SS====z----co=F Loss
LS LS
— Forward «--Update ¢ and 6 — Label | — Forward Inner loop:  «-- Outer loop: — Label

Sharpening | update 6, update ¢ and 6 Sharpening

Figure 1: Standard self-training vs. cycle self-training. In standard self-training, we generate target pseudo-
labels with a source model, and then train the model with both source ground-truths and target pseudo-labels. In
cycle self-training, we train a target classifier with target pseudo-labels in the inner loop, and make the target
classifier perform well on the source domain by updating the shared representations in the outer loop.

shift in standard self-training [78, 47], but they can be brittle and require expensive tweaking of the
threshold or weight for different tasks, and their performance gain is still inconsistent.

In this work, we first analyze the quality of pseudo-labels with or without domain shift to delve
deeper into the difficulty of standard self-training in UDA. On popular benchmark datasets, when
the source and target are the same, our analysis indicates that the pseudo-label distribution is almost
identical to the ground-truth distribution. However, with distributional shift, their discrepancy can be
very large with examples of several classes mostly misclassified into other classes. We also study
the difficulty of selecting correct pseudo-labels with popular criteria under domain shift. Although
entropy and confidence are reasonable selection criteria for correct pseudo-labels without domain
shift, the domain shift makes their accuracy decrease sharply.

Our analysis shows that domain shift makes pseudo-labels unreliable and that self-training on selected
target instances with accurate pseudo-labels is less successful. Thereby, more principled improvement
of standard self-training should be tailored to UDA and address the domain shift explicitly. In this
work, we propose Cycle Self-Training (CST), a principled self-training approach to UDA, which
overcomes the limitations of standard self-training (see Figure 1). Different from previous works to
select target pseudo-labels with hard-to-tweak protocols, CST learns to generalize the pseudo-labels
across domains. Specifically, CST cycles between the use of target pseudo-labels to train a target
classifier, and the update of shared representations to make the target classifier perform well on the
source data. In contrast to the standard Gibbs entropy that makes the target predictions over-confident,
we propose a confidence-friendly uncertainty measure based on the Tsallis entropy in information
theory, which adaptively minimizes the uncertainty without manually tuning or setting thresholds.
Our method is simple and generally applicable to vision and language tasks with various backbones.

We empirically evaluate our method on a series of standard UDA benchmarks. Results indicate that
CST outperforms previous state-of-the-art methods in 21 out of 25 tasks for object recognition and
sentiment classification. Theoretically, we prove that the minimizer of CST objective is endowed with
general guarantees of target performance. We also study hard cases on specific distributions, showing
that CST recovers target ground-truths while both feature adaptation and standard self-training fail.

2 Preliminaries

We study unsupervised domain adaptation (UDA). Consider a source distribution P and a target
distribution ) over the input-label space X x ). We have access to ng labeled i.i.d. samples

P = {x$,y5}", from P and n, unlabeled i.i.d. samples Q = {x!}™, from Q. The model f
comprises a feature extractor hg parametrized by ¢ and a head (linear classifier) go parametrized by 0,

ie. fo,4(x) = go(hg(x)). The loss function is £(-, -). Denote by Lp(0,®) := E(, )~ pl(fo,6(x),v)

~

the expected error on P. Similarly, we use L (6, ¢) to denote the empirical error on dataset P.

We discuss two mainstream UDA methods and their formulations: feature adaptation and self-training.

Feature Adaptation trains the model f on the source dataset ]3, and simultaneously matches the
source and target distributions in the representation space Z = h(X):

%nLﬁ(e,@ + d(hy P, h;Q). (1)
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Figure 2: Analysis of pseudo-labels under domain shift on VisDA-2017. Left: Pseudo-label distributions
with and without domain shift. Middle: Changes of pseudo-label distributions throughout training. Right:
Quality of pseudo-labels under different pseudo-label selection criteria.

Here, hﬁl3 denotes the pushforward distribution of P, and d(-,-) is some distribution distance. For
instance, Long et al. [34] used maximum mean discrepancy dynp, and Ganin et al. [22] approximated
the HAH-distance dy a3 [7] with adversarial training. Despite its pervasiveness, recent works have
shown the intrinsic limitations of feature adaptation under real-world situations [6, 74, 33, 32, 29].

Self-Training is considered a promising alternative to feature adaptation. In this work we mainly
focus on pseudo-labeling [31, 30]. Stemming from semi-supervised learning, standard self-training

trains a source model f; on the source dataset P: ming, 4, L5(0s, ¢s). The target pseudo-labels are

then generated by f, on the target dataset @ To leverage unlabeled target data, self-training trains the
model on the source and target datasets together with source ground-truths and target pseudo-labels:

min Lp(0,9) +E, 50(fo.6(x), argmax{ fo, . ()[})- 2)

Self-training also uses label-sharpening as a standard protocol [31, 57]. Another popular variant
of pseudo-labeling is the teacher-student model [4, 61], which iteratively improves the quality of
pseudo-labels via alternatively replacing 6, and ¢, with 6 and ¢ of the previous iteration.

2.1 Limitations of Standard Self-Training

Standard self-training with pseudo-labels uses unlabeled data efficiently for semi-supervised learn-
ing [31, 39, 57]. Here we carry out exploratory studies on the popular VisDA-2017 [45] dataset using
ResNet-50 backbones. We find that domain shift makes the pseudo-labels biased towards several
classes and thereby unreliable in UDA. See Appendix C.1 for details and results on more datasets.

Pseudo-label distributions with or without domain shift. We resample the original VisDA-2017
to simulate different relationship between source and target domains: 1) i.i.d., 2) covariate shift, and
3) label shift. We train the model on the three variants of source dataset and use it to generate target
pseudo-labels. We show the distributions of target ground-truths and pseudo-labels in Figure 2 (Left).
When the source and target distributions are identical, the distribution of pseudo-labels is almost
the same as ground-truths, indicating the reliability of pseudo-labels. In contrast, when exposed to
label shift or covariate shift, the distribution of pseudo-labels is significantly different from target
ground-truths. Note that classes 2, 7, 8 and 12 appear rarely in the target pseudo-labels in the covariate
shift setting, indicating that the pseudo-labels are biased towards several classes due to domain shift.
Self-training with these pseudo-labels is risky since it may lead to misalignment of distributions and
misclassify many examples of classes 2, 7, 8 and 12.

Change of pseudo-label distributions throughout training. To further study the change of pseudo-
labels in standard self-training, we compute the total variation (TV) distance between target ground-
truths and target pseudo-labels: dry(c,c’) = 33, [|c; — }||, where ¢; is the ratio of class i. We plot
its change during training in Figure 2 (Middle). Although the error rate of pseudo-labels continues
to decrease, dry remains almost unchanged at 0.26 throughout training. Note that drv is the lower
bound of the error rate of the pseudo-labels (shown in Appendix C.1). If dry converges to 0.26, then
the accuracy of pseudo-labels is upper-bounded by 0.74. This indicates that the important denoising
ability [66] of pseudo-labels in standard self-training is hindered by domain shift.

Difficulty of selecting reliable pseudo-labels under domain shift. To mitigate the negative effect
of false pseudo-labels, recent works proposed to select correct pseudo-labels based on thresholding the
entropy or confidence criteria [35, 21, 37, 57]. However, it remains unclear whether these strategies
are still effective under domain shift. Here we compare the quality of pseudo-labels selected by



different strategies with or without domain shift. For each strategy, we compute False Positive Rate
and True Positive Rate for different thresholds and plot its ROC curve in Figure 2 (Right). When the
source and target distributions are identical, both entropy and confidence are reasonable strategies for
selecting correct pseudo-labels (AUC=0.89). However, when the target pseudo-labels are generated
by the source model, the quality of pseudo-labels decreases sharply under domain shift (AUC=0.78).

3 Approach

We present Cycle Self-Training (CST) to improve pseudo-labels under domain shift. An overview of
our method is given in Figure 1. Cycle Self-Training iterates between a forward step and a reverse
step to make self-trained classifiers generalize well on both target and source domains.

3.1 Cycle Self-Training

Forward Step. Similar to standard self-training, we have a source classifier 6, trained on top of the
shared representations ¢ on the labeled source domain, and use it to generate target pseudo-labels as

y' = argmax{fg, ()}, 3)

for each z in the target dataset ). Traditional self-training methods use confidence thresholding or
reweighting to select reliable pseudo-labels. For example, Sohn et al. [57] select pseudo-labels with
softmax value and Long et al. [37] add entropy reweighting to rely on examples with more confidence
prediction. However, the output of deep networks is usually miscalibrated [25], and is not necessarily
related to the ground-truth confidence even on the same distribution. In domain adaptation, as shown
in Section 2.1, the discrepancy between the source and target domains makes pseudo-labels even
more unreliable, and the performance of commonly used selection strategies is also unsatisfactory.
Another drawback is the expensive tweaking in order to find the optimal confidence threshold for
new tasks. To better apply self-training to domain adaptation, we expect that the model can gradually
refine the pseudo-labels by itself without the cumbersome selection or thresholding.

Reverse Step. We design a complementary step with the following insights to improve self-training.
Intuitively, the labels on the source domain contain both useful information that can transfer to the
target domain and harmful information that can make pseudo-labels incorrect. Similarly, reliable
pseudo-labels on the target domain can transfer to the source domain in turn, while models trained
with incorrect pseudo-labels on the target domain cannot transfer to the source domain. In this sense,
if we explicitly train the model to make target pseudo-labels informative of the source domain, we
can gradually make the pseudo-labels more accurate and learn to generalize to the target domain.

Specifically, with the pseudo-labels 3’ generated by the source classifier 6, at hand as in equation 3,
we train a target head 0;(¢) on top of the representation ¢ with pseudo-labels on the target domain @),

0,(¢) = argminE,_5¢(fo.s(2), y). (4)

We wish to make the target pseudo-labels informative of the source domain and gradually refine them.
To this end, we update the shared feature extractor ¢ to predict accurately on the source domain and
jointly enforce the target classifier 0,(¢) to perform well on the source domain. This naturally leads
to the objective of Cycle Self-Training:

migin;ize Leyete(0s,0) = Lp(0s, ) + L5(0:(¢), 6). (5)

Bi-level Optimization. The objective in equation 5 relies on the solution ét(gt) to the objective in
equation 4. Thus, CST formulates a bi-level optimization problem. In the inner loop we generate
target pseudo-labels with the source classifier (equation 3), and train a target classifier with target
pseudo-labels (equation 4). After each inner loop, we update the feature extractor ¢ for one step in
the outer loop (equation 5), and start a new inner loop again. However, since the inner loop of the
optimization in equation 4 only involves the light-weight linear head 6;, we propose to calculate the
analytical form of ét (¢) and directly back-propagate to the feature extractor ¢ instead of calculating
the second-order derivatives as in MAML [18]. The resulting framework is as fast as training two
heads jointly. Also note that the solution ét(¢) relies on 6, implicitly through 3. However, both
standard self-training and our implementation use label sharpening, making v’ not differentiable.
Thus we follow vanilla self-training and do not consider the gradient of 0, (¢) w.r.t. ¢ in the outer loop
optimization. We defer the derivation and implementation of bi-level optimization to Appendix B.2.
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3.2 Tsallis Entropy Minimization

Gibbs entropy is widely used by existing semi-supervised learning methods to regularize the model
output and minimize the uncertainty of predictions on unlabeled data [24]. In this work, we generalize
Gibbs entropy to Tsallis entropy [62] in information theory. Suppose the softmax output of a model
is y € RE, then the a-Tsallis entropy is defined as

Sal) = ——= (1= 2 uf) ©

where a > 0 is the entropic-index. Note that lim, 1 Sa(y) = >_; —¥ypjlog(yp)) which exactly
recovers the Gibbs entropy. When o = 2, S, (y) becomes the Gini impurity 1 — 3. yﬁ.].

We propose to control the uncertainty of target pseudo-labels based on Tsallis entropy minimization:
L@,Tsallis,a(9’¢) = Ezr\,@sa(f@@(x)) (9)

Figure 3 shows the change of Tsallis entropy with differ- o7
ent entropic-indices « for binary problems. Intuitively, ¢
smaller « exerts more penalization on uncertain pre-
dictions and larger « allows several scores y;’s to be
similar. This is critical in self-training since an overly
small « (as in Gibbs entropy) will make the incorrect di-
mension of pseudo-labels close to 1 and have no chance ~ °°
to be corrected throughout training. In Section 5.4, we
further verify this property with experiments.
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Figure 3: Tsallis entropy vs. entropic-index a.

An important improvement of the Tsallis entropy over Gibbs entropy is that it can choose the suitable
measure of uncertainty for different systems to avoid over-confidence caused by overly penalizing
the uncertain pseudo-labels. To automatically find the suitable o, we adopt a similar strategy as
Section 3.1. The intuition is that if we use the suitable entropic-index « to train the source classifier
05, the target pseudo-labels generated by 6, ,, will contain desirable knowledge of the source dataset,
i.e. a target classifier §; ,, trained with these pseudo-labels will perform well on the source domain.
Therefore, we semi-supervisedly train a classifier 65 ., on the source domain with the a-Tsallis entropy
regularization Lg 1,y , o0 the target domain as: 65 o = argming L (6, ¢)+Lg 1o o (05 @), from
which we obtain the target pseudo-labels. Then we train another head ét@ with target pseudo-labels.
We automatically find « by minimizing the loss of ; o on the source data:

a= argminLﬁ(ét7Q,¢) (10)

a€ll,2]

To solve equation 10, we discretize the feasible region [1, 2] of « and use discrete optimization to
lower computational cost. We also update « at the start of each epoch, since we found more frequent

Algorithm 1 Cycle Self-Training (CST)

1: Input: source dataset P and target dataset @

2: for epoch = 0 to MaxEpoch do

3:  Select & as equation 10 at the start of each epoch.

4: fort =0 toMaxIter do

5 Forward Step

6: Generate pseudo-labels on the target domain with ¢ and 0,: 3 = argmax,{ fo,,¢(7)[; }-
7‘

8

Reverse Step
Train a target head 0;(¢) with target pseudo-labels ¢’ on the feature extractor ¢:

0:(¢) = argemin B, g(fo,6(2), ).

9: Update the feature extractor ¢ and the source head 65 to make ét(qﬁ) perform well on the
source dataset and minimize the &-Tsallis entropy on the target dataset:

¢ < ¢ —nVo[Lp(0s,8) + Lp(0:(9), 6) + L ez (05> 0)]- 9
10: end for 93 — 95 - Tlves [Lﬁ(esa (b) + L@;rsanis,@(esv ¢)] (8)
11: end for




update leads to no performance gain. Details are deferred to Appendix B.3. Finally, with the optimal

& found, we add the &-Tsallis entropy minimization term L O Tsallis, & 1© the overall objective:

migirgize LCyCle(esa ¢) + L@,Tsal]is,«i (057 (b) (11)

EX)

In summary, Algorithm 1 depicts the complete training procedure of Cycle Self-Training (CST).

4 Theoretical Analysis

We analyze the properties of CST theoretically. First, we prove that the minimizer of the CST loss
Lest(fs, fi) will lead to small target loss Errg ( fs) under a simple but realistic expansion assumption.
Then, we further demonstrate a concrete instantiation where cycle self-training provably recovers the
target ground truth, but both feature adaptation and standard self-training fail. Due fo space limit, we
state the main results here and defer all proof details to Appendix A.

4.1 CST Provably Works under the Expansion Assumption

We start from a K -way classification model, f : X — [0,1]¥ € F and f(z) := arg max; f(@)p
denotes the prediction. Denote by P; the conditional distribution of P given y = ¢. Assume the
supports of P; and P; are disjoint for ¢ # j. The definition is similar for ¢);. We further Assume
P(y =1i) = Q(y =1). Forany z € X, N(z) is defined as the neighboring set of = with a proper
metric d(-,-), N(z) = {2’ : d(z,2') < }. N(A) := UpeaN (). Denote the expected error on the
target domain by Errq (f) := E4 )~ol(f(z) # y).

We study the CST algorithm under the expansion assumption of the mixture distribution [66, 11].
Intuitively, this assumption indicates that the conditional distributions P; and @; are closely located
and regularly shaped, enabling knowledge transfer from the source domain to the target domain.

Definition 1 ((g, ¢)-constant expansion [66]). We say P and Q) satisfy (q, €)-constant expansion for
some constant q, € € (0,1), if for any set A € X and any i € [K| with % > P%(Pi+Qi)(A) > q, we
have P%(PZ—&-Ql)(N(A)\A) > HliIl{E7 P%(Pz"er)(A)}

Based on this expansion assumption, we consider a robustness-constrained version of CST. Later
we will show that the robustness is closely related to the uncertainty. Denote by f; the source
model and f; the model trained on the target with pseudo-labels. Let R(f;) := P1(p,q)({z : 32’ €
N(x), fi(x) # fi(z')}) represent the robustness [66] of f; on P and Q. Suppose E(Ly)NQ]I(fs(a:) +
fi(z)) < cand R(f;) < p. The following theorem states that when f and f;, behave similarly on
the target domain () and f; is robust to local changes in input, the minimizer of the cycle source error
Errp(f;) will guarantee low error of f; on the target domain Q).

Theorem 1. Suppose Definition 1 holds for P and Q. For any fs, f; satisfying E(z’y)NQH(fS (x) #
ft(x)) < cand R(f:) < p, the expected error of fs on the target domain Q) is bounded,

p

Errg(fs) < Errp(fi) +c+2¢ + min{e, g}’

(12)

To further relate the expected error with the CST training objective and obtain finite-sample guar-
antee, we use the multi-class margin loss: I, (f(z),y) = ¥, (=M(f(x),y)), where M(v,y) =
Vjy] — MaxXy 4, v,y and 9, is the ramp function. We then extend the margin loss: M(v) =
max, (vp,] — max, -, vy,) (The difference between the largest and the second largest scores in

v), and I, (f;(z), fs(x)) := by (= M(fi(z), fs(x))). Further suppose Jfri is Ly-Lipschitz w.r.t. the
metric d(-,-) and 7 := 1 — 2L { min{e, ¢} > 0. Consider the following training objective for
CST, denoted by Lest(/fs, fi), where Ly (fi) = E (s pply (fi(x),y) corresponds to the cycle

source loss in equation 5, L _ (fi, fs) := E. y)Néln,(ft(as), fs(x)) is consistent with the target loss
in equation 4, and M ( f;(x)) is closely related to the uncertainty of predictions in equation 11.

L=E(, o1 prgM(fel))
T

min Lest(fs, fi) == Lp  (fe) + L, (fe, fs) + (13)

The following theorem shows that the minimizer of the training objective L¢st(fs, fi) guarantees
low population error of f, on the target domain Q).



Theorem 2. ﬁ(f |p) denotes the empirical Rademacher complexity of function class F on dataset
P. For any solution of equation 13 and v > 0, with probability larger than 1 — §,

Brrg(f.) < Lest(f £+ 20+ - [R(Flp) + RIF x Flg)] + = [R(FIp) + R(Flg)] + ¢

where { = O (\/log(l/é)/nS + \/log(l/é)/nt) is a low-order term. F x F refers to the function
class {x — f(a:)[f/(z)] cffleF)

Main insights. Theorem 2 justifies CST under the expansion assumption. The generalization error
of the classifier f; on the target domain is bounded with the CST loss objective Lcst(fs, ft), the
intrinsic property of the data distribution ¢, and the complexity of the function classes. In our
algorithm, Lcst(fs, f¢) is minimized by the neural networks and ¢ is a constant. The complexity of
the function class can be controlled with proper regularization.

4.2 Hard Case for Feature Adaptation and Standard Self-Training

To gain more insight, we study UDA in a quadratic neural network fy »(x) = 0" (¢ "2)2, where ©®
is element-wise power. In UDA, the source can have multiple solutions but we aim to learn the one
working on the target [34]. We design the underlying distributions p and g in Table 6 to reflect this.
Consider the following P and Q. z[1] and x5 are sampled i.i.d. from distribution p on P, and from

qon Q. Fori € [3,d], ;) = 0;x[3) on P and x[;) = oyxp) on Q. Table 1: The design of p and g.
o; € {£1} are i.i.d. and uniform. We also assume realizability: Distribution | =1 +1] 0
y = @y — afy for both source and target. Note that y = a7, — 27,

[i]  Sourcep [0.05]0.05]0.90
for all ¢ € [2, d] are solutions to P but only y = :v[21] — :v[22] works on  Target ¢ 0.25]0.25 | 0.50
Q. We visualize this specialized setting in Figure 4.
Source Source Target Target
= EX e ° ° x EX
£ b ammy wn i
3, Xi2] .\.Q\ 3 X21 -\-Q\

@) b © @
Figure 4: The hard case where d = 3. Green dots for y = 1, red dots for y = 0, and blue dots for y = —1.
The grey curve is the classification boundary of different features. The good feature a:[21] - 1'[22] works on the
target domain (shown in (a) and (c)), whereas the spurious feature x[zl] — m[23] only works on the source domain
(shown in (b) and (d)). In Section 4.2, we show that feature adaptation and standard self-training learn Lt[21] — a:[23],
while CST learns m[zl] — 1[22].

To make the features more tractable, we study the norm-constrained version of the algorithms (details
are deferred to Section A.3.2). We compare the features learned by feature adaptation, standard self-
training, and CST. Intuitively, feature adaptation fails because the ideal target solution y = 1’[21] - x[22]

has larger distance in the feature space than other spurious solutions y = x[gl] — a:[Qi]. Standard self-

training also fails since it will choose randomly among all solutions. In comparison, CST can recover
the ground truth, because it can distinguish the spurious solution resulting in bad pseudo-labels. A
classifier trained with those pseudo-labels cannot work on the source domain in turn. This intuition is
rigorously justified in the following two theorems.

Theorem 3. For ¢ € (0,0.5), the following statements hold for feature adaptation and self-training:
o For failure rate £ > 0, and target dataset size ny > O(log %) with probability at least 1 — £ over
the sampling of target data, the solution (éFA, ¢EFA) found by feature adaptation satisfies

Errq (Oa, ora) > . (14)
o With probability at least 1 — ﬁ, the solution (égp (;ASST) of standard self-training satisfies

Errg(Ost, ¢st) > €. (15)



Theorem 4. For failure rate £ > 0, and target dataset size ny > O(log %), with probability at least
1 — &, the solution of CST ( QASCST, éCST) recovers the ground truth of the target dataset:

Errg (fcst, ¢est) = 0. (16)

S Experiments

We test the performance of the proposed method on both vision and language datasets. Cycle Self-
Training (CST) consistently outperforms state-of-the-art feature adaptation and self-training methods.
Code is available at https://github.com/Liuhong99/CST.

5.1 Setup

Datasets. We experiment on visual object recognition and linguistic sentiment classification tasks:
Office-Home [64] has 65 classes from four kinds of environment with large domain gap: Artistic (Ar),
Clip Art (Cl), Product (Pr), and Real-World (Rw); VisDA-2017 [45] is a large-scale UDA dataset
with two domains named Synthetic and Real. The datasets consist of over 200k images from 12
categories of objects; Amazon Review [10] is a linguistic sentiment classification dataset of product
reviews in four products: Books (B), DVDs (D), Electronics (E), and Kitchen (K).

Implementation. We use ResNet-50 [26] (pretrained on ImageNet [53]) as feature extractors for
vision tasks, and BERT [16] for linguistic tasks. On VisDA-2017, we also provide results of ResNet-
101 to include more baselines. We use cross-entropy loss for classification on the source domain.
When training the target head 6, and updating the feature extractor with CST, we use squared loss
to get the analytical solution of 6, directly and avoid calculating second order derivatives as meta-
learning [18]. Details on adapting squared loss to multi-class classification are deferred to Appendix B.
We adopt SGD with initial learning rate 770 = 2e — 3 for image classification and 79 = 5e — 4 for
sentiment classification. Following standard protocol in [26], we decay the learning rate by 0.1
each 50 epochs until 150 epochs. We run all the tasks 3 times and report mean and deviation in
top-1 accuracy. For VisDA-2017, we report the mean class accuracy. Following Theorem 2, we
also enhance CST with sharpness-aware regularization [19] (CST+SAM), which help regularize the
Lipschitzness of the function class. Due to space limit, we report mean accuracies in Tables 2 and 3
and defer standard deviation to Appendix C.

5.2 Baselines

We compare with two lines of works in domain adaptation: feature adaptation and self-training. We
also compare with more complex state-of-the-arts and create stronger baselines by combining feature
adaptation and self-training.

Feature Adaptation: DANN [22], MCD [54], CDAN [37] (which improves DANN with pseudo-
label conditioning), MDD [73] (which improves previous domain adaptation with margin theory),
Implicit Alignment (IA) [28] (which improves MDD to deal with label shift).

Self-Training. We include VAT [40], MixMatch [8] and FixMatch [57] in the semi-supervised
learning literature as self-training methods. We also compare with self-training methods for UDA:
CBST [77], which considers class imbalance in standard self-training, and KLD [78], which improves
CBST with label regularization. However, these methods involve tricks specified for convolutional
networks. Thus, in sentiment classification tasks where we use BERT backbones, we compare with
other consistency regularization baselines: VAT [40], VAT+Entropy Minimization.

Feature Adaptation + Self-Training. DIRT-T [56] combines DANN, VAT, and entropy minimiza-
tion. We also create more powerful baselines: CDAN+VAT+Entropy and MDD+Fixmatch.

Other SOTA. AFN [69] boosts transferability by large norm. STAR [38] aligns domains with stochas-
tic classifiers. SENTRY [48] selects confident examples with a committee of random augmentations.

5.3 Results

Results on 12 pairs of Office-Home tasks are shown in Table 2. When domain shift is large, standard
self-training methods such as VAT and FixMatch suffer from the decay in pseudo-label quality. CST
outperforms feature adaptation and self-training methods significantly in 9 out of 12 tasks. Note that
CST does not involve manually setting confidence threshold or reweighting.


https://github.com/Liuhong99/CST

Table 2: Accuracy (%) on Office-Home for unsupervised domain adaptation (ResNet-50).

Method |Ar-Cl Ar-Pr Ar-Rw Cl-Ar CI-Pr CI-Rw Pr-Ar Pr-Cl Pr-Rw Rw-Ar Rw-Cl Rw-Pr|Avg.
DANN [22] 456 593 70.1 470 585 609 46.1 437 685 632 51.8 76.8 |57.6
CDAN [37] 50.7 70.6 76.0 57.6 70.0 70.0 574 509 773 709 56.7 81.6 |65.8
CDAN+VAT+Entropy| 52.2 71.5 764 61.1 70.3 67.8 59.5 544 78.6 732 59.0 827 |67.3
FixMatch [57] 51.8 742 80.1 635 73.8 613 64.7 514 80.0 733 56.8 81.7|67.7
MDD [73] 549 737 778 60.0 714 71.8 61.2 53.6 78.1 725 60.2 82.3 |68.1
MDD+IA [28] 56.2 779 792 644 73.1 744 642 542 799 712 581 83.1(69.5
SENTRY [48] 618 774 80.1 663 71.6 747 66.8 63.0 80.9 740 663 84.1 |72.2
CST ‘ 59.0 79.6 834 684 77.1 76.7 689 564 83.0 753 62.2 85.1 ‘73.0

Table 3: Accuracy (%) on Multi-Domain Sentiment Dataset for domain adaptation with BERT.
Method ‘ B-D B-E B-K D-B D-E D-K E-B ED E-K KB KD K-E ‘ Avg.

Source-only | 89.7 884 909 90.1 885 902 869 885 91.5 87.6 873 912 | 89.2
DANN[22] |902 89.5 909 91.0 90.6 902 87.1 875 92.8 87.8 87.6 93.2 | 89.9
VAT [40] 90.6 91.0 91.7 908 90.8 92.0 872 86.9 92.6 869 87.7 929 | 90.1
VAT+Entropy | 904 91.3 91.5 91.0 91.1 924 87.5 863 924 865 87.5 93.1| 90.1
MDD [73] 904 904 91.8 902 909 91.0 87.5 863 925 89.0 87.9 92.1 | 90.0

CST |91.5 929 92.6 919 926 935 90.2 894 938 879 883 93.5| 915

Table 4 shows the results on VisDA-2017. CST surpasses state-of-the-arts with ResNet-50 and ResNet-
101 backbones. We also combine feature adaptation and self-training (DIRT-T, CDAN+VAT+entropy
and MDD+FixMatch) to test if feature adaptation alleviates the negative effect of domain shift in
standard self-training. Results indicate that CST is a better solution than simple combination.

While most traditional self-training methods include techniques specified for ConvNets such as
Mixup [72], CST is a universal method and can directly work on sentiment classification by simply
replacing the head and training objective of BERT [16]. In Table 3, most feature adaptation baselines
improve over source only marginally, but CST outperforms all baselines on most tasks significantly.

5.4 Analysis

Ablation Study. We study the role of each part of CST Table 5: Ablation on VisDA-2017.
in self-training. CST w/o Tsallis removes the Tsallis en- ~ Method | Accuracy 1 | drv |
tropy LTsalliS,ow CST+Entropy replaces the Tsallis entropy FixMatch [57] 745 4+0.2 0.22

with standard entropy. FixMatch+Tsallis adds Lrsaiis,o to Fixmatch+Tsallis | 76.3 + 0.8 0.15
standard self-training. Observations are shown in Table 5.  CST w/o Tsallis 720+ 04 | 0.16
CST+Entropy performs 3.7% worse than CST, indicating ~ CST+Entropy 762+0.6 | 0.20
that Tsallis entropy is a better regularization for pseudo- ~ g | 799+£05 | 0.12
labels than standard entropy. CST performs 5.4% better
than FixMatch, indicating that CST is better adapted to domain shift than standard self-training. While
FixMatch+Tsallis outperforms FixMatch, it is still 3.6% behind CST, with much larger total variation
distance dry between pseudo-labels and ground-truths, indicating that CST makes pseudo-labels
more reliable than standard self-training under domain shift.

Quality of Pseudo-labels. We visualize the error of pseudo-labels during training on VisDA-2017 in
Figure 5 (Left). The error of target classifier 8; on the source domain decreases quickly in training,
when both the error of pseudo-labels (error of 6, on Q) and the total variation (TV) distance between
pseudo-labels and ground-truths continue to decay, indicating that CST gradually refines pseudo-
labels. This forms a clear contrast to standard self-training as visualized in Figure 2 (Middle), where
the distance dyy remains nearly unchanged throughout training.

Comparison of Gibbs entropy and Tsallis entropy. We compare the pseudo-labels learned with
standard Gibbs entropy and Tsallis entropy on Ar—Cl with ResNet-50 at epoch 40. We compute
the difference between the largest and the second largest softmax scores of each target example and
plot the histogram in Figure 5 (Right). Gibbs entropy makes the largest softmax output close to 1,
indicating over-confidence. In this case, if the prediction is wrong, it can be hard to correct it using
self-training. In contrast, Tsallis entropy allows the largest and the second largest scores to be similar.



Table 4: Mean Class Accuracy (%) for unsupervised domain adaptation on VisDA-2017.

Method | ResNet-50 ResNet-101 | Method | ResNet-50 ResNet-101
DANN [22] 69.3 79.5 | CBST [77] - 76.4 + 09
VAT [40] 68.0+0.3 73.4+ 0.5 | KLD [78] - 78.1 +£0.2
DIRT-T [56] 68.2+0.3 772+ 0.5 | MDD [73] 74.6 81.6 £ 0.3
MCD [54] 69.2 77.7 | AFN [69] - 76.1
CDAN [37] 70.0 80.1 | MDD+IA [28] 75.8 -
CDAN+VAT+Entropy 76.5+0.5 80.4 + 0.7 | MDD+FixMatch 77.8+£0.3 82.4 4+ 04
MixMatch 693 +04 77.0 £ 0.5 | STAR [38] - 82.7
FixMatch [57] 7454+ 0.2 79.5+ 0.3 | SENTRY [48] 76.7 -
CST \ 79.9 £0.5 84.8 + 0.6 \ CST+SAM \ 80.6 £ 0.5 86.5+0.7
06 —— Error Rate of of 65 on target Q 5 Gibbs Entropy
05 Error Rate of 6; on source P Tsallis Entropy
© o4 ____ Total Variation Between B’A
= Pseudo-labels and Ground Truth B s
© o3 S
> 8.

1
Epochs . H|||H|||HIIIHI|
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Figure 5: Analysis. Left: Error of pseudo-labels and reverse pseudo-labels. The error of target classifier 6,
on the source domain decreases, indicating the quality of pseudo-labels is refined. Right: Histograms of the
difference between the largest and the second largest softmax scores. Tsallis entropy avoids over-confidence.

6 Related Work

Self-Training. Self-training is a mainstream technique for semi-supervised learning [13]. In this
work, we focus on pseudo-labeling [52, 31, 2], which uses unlabeled data by training on pseudo-labels
generated by a source model. Other lines of work study consistency regularization [4, 51, 55, 40].
Recent works demonstrate the power of such methods [67, 57, 23]. Equipped with proper training
techniques, these methods can achieve comparable results as standard training that uses much more
labeled examples [17]. Zoph et al. [76] compare self-training to pre-training and joint training. Vu
et al. [65], Mukherjee & Awadallah [42] show that task-level self-training works well in few-shot
learning. These methods are tailored to semi-supervised learning or general representation learning
and do not take domain shift into consideration explicitly. Wei et al. [66], Frei et al. [20] provide the
first nice theoretical analysis of self-training based on the expansion assumption.

Domain Adaptation. Inspired by the generalization error bound of Ben-David et al. [7], Long et al.
[34], Zellinger et al. [71] minimize distance measures between source and target distributions to learn
domain-invariant features. Ganin et al. [22] (DANN) proposed to approximate the domain distance
by adversarial learning. Follow-up works proposed various improvement upon DANN [63, 54, 37,
73, 28]. Popular as they are, failure cases exist in situation like label shift [74, 32], shift in support of
domains [29], and large discrepancy between source and target [33]. Another line of works try to
address domain adaptation with self-training. Shu et al. [56] improves DANN with VAT and entropy
minimization. French et al. [21], Zou et al. [78], Li et al. [32] incorporated various semi-supervised
learning techniques to boost domain adaptation performance. Kumar et al. [30], Chen et al. [15] and
Cai et al. [11] showed self-training provably works in domain adaptation under certain assumptions.

7 Conclusion

We propose cycle self-training in place of standard self-training to explicitly address the distribution
shift in domain adaptation. We show that our method provably works under the expansion assumption
and demonstrate hard cases for feature adaptation and standard self-training. Self-training (or pseudo-
labeling) is only one line of works in the semi-supervised learning literature. Future work can delve
into the behaviors of other semi-supervised learning techniques including consistency regularization
and data augmentation under distribution shift, and exploit them extensively for domain adaptation.
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