Analysis of Sensing Spectral for Signal Recovery Under a Generalized Linear Model

Junjie Ma
Academy of Mathematics and Systems Science
Chinese Academy of Sciences
majunjie@lsec.cc.ac.cn

Ji Xu
Department of Computer Science
Columbia University
jixu@cs.columbia.edu

Arian Maleki
Department of Statistics
Columbia University
arian@stat.columbia.edu

Abstract

We consider a nonlinear inverse problem $\boldsymbol{y}=f(\boldsymbol{A} \boldsymbol{x})$, where observations $\boldsymbol{y} \in \mathbb{R}^{m}$ are the componentwise nonlinear transformation of $\boldsymbol{A x} \in \mathbb{R}^{m}, \boldsymbol{x} \in \mathbb{R}^{n}$ is the signal of interest and \boldsymbol{A} is a known linear mapping. By properly specifying the nonlinear processing function, this model can be particularized to many signal processing problems, including compressed sensing and phase retrieval. Our main goal in this paper is to understand the impact of sensing matrices, or more specifically the spectrum of sensing matrices, on the difficulty of recovering \boldsymbol{x} from \boldsymbol{y}. Towards this goal, we study the performance of one of the most successful recovery methods, i.e. the expectation propagation algorithm (EP). We define a notion for the spikiness of the spectrum of \boldsymbol{A} and show the importance of this measure in the performance of the EP. Whether the spikiness of the spectrum can hurt or help the recovery performance of EP depends on f. We define certain quantities based on the function f that enables us to describe the impact of the spikiness of the spectrum on EP recovery. Based on our framework, we are able to show that for instance, in phase-retrieval problems, matrices with spikier spectrums are better for EP, while in 1-bit compressed sensing problems, less spiky (flatter) spectrums offer better recoveries. Our results unify and substantially generalize the existing results that compare sub-Gaussian and orthogonal matrices, and provide a platform toward designing optimal sensing systems.

1 Introduction

1.1 Problem statement and contributions

Consider the problem of estimating a signal $\boldsymbol{x} \in \mathbb{R}^{n}$ from the nonlinear measurements:

$$
\begin{equation*}
\boldsymbol{y}=f(\boldsymbol{A} \boldsymbol{x}) \tag{1}
\end{equation*}
$$

where $\boldsymbol{A} \in \mathbb{R}^{m \times n}$ is a measurement (or sensing) matrix and $f: \mathbb{R} \mapsto \mathcal{Y}$ is a function accounting for possible nonlinear effect of the measuring process. Here, the function $f(\cdot)$ is applied to $\boldsymbol{A} \boldsymbol{x}$ in a component-wise manner. The above model arises in many applications of signal processing [13, 10, 45], communications [61, 9, 27], and machine learning [52, 44]. For instance, the phase retrieval problem, which is a special case of (1) with $f(z)=|z|$, has received significant interest in recent years [13, 12, $15,59,66,26,28,4,50,35,5]$. In this paper, we assume that the signal is generic and prior information such as sparsity is not explored.

The main goal of our work is to understand the impact of the sensing matrix, or more specifically the spectrum of the sensing matrix, on the difficulty of recovering the signal \boldsymbol{x} from its measurements \boldsymbol{y}. In many applications, one has certain level of freedom in designing the sensing matrix (e.g., transmitter design in communications or the masks used in phase retrieval application) and hence understanding the impact of the sensing matrix on the recovery algorithms is the first step toward the optimal design of such systems. Rather than studying the information theoretic limits, where the computational complexity of the recovery algorithm is ignored, we would like to study the impact of the spectrum of the sensing matrix on efficient algorithms that are used in applications. For this reason, we consider one of the most successful recovery algorithms that has received substantial attention in the last few years, i.e. expectation propagation (EP) [39, 41] (referred to as GLM-EP in this paper ${ }^{11}$, and study the impact of the spectrum of the sensing matrix on the performance of this algorithm. The EP algorithm studied here is an instance of the algorithm introduced in [23, 31] and is closely related to the orthogonal AMP (OAMP) [33] and vector AMP (VAMP) [46] algorithms (in that all these algorithms use divergence-free denoising functions [33]).

Similar to the approximate message passing (AMP) algorithm [17], GLM-EP has two distinguishing features: (i) Its asymptotic performance could be characterized exactly by a simple dynamical system (with very few states) called the state evolution (SE). (ii) It is conjectured that AMP or GLM-EP achieve the optimal performance among polynomial time algorithms [2, 14]. Based on the SE framework, we investigate the impact of the spectrum of the sensing matrix \boldsymbol{A} on the performance of GLM-EP. It turns out that the "spikiness" (or conversely "flatness") of the spectrum of the sensing matrix spectrum has a major impact on the performance of GLM-EP. To formalize this statement, we first define a measure of "spikiness" of the spectrum based on Lorenz partial order [1]. We show that whether the spikiness of the spectrum benefits or hurts GLM-EP depends on the choice of the nonlinear mapping f (as well as the sampling ratio). For instance, spikier spectrums help the performance of phase retrieval problem (where $f(x)=|x|$) but hurt the performance of 1-bit compressed sensing (where $f(x)=\operatorname{sign}(x)$). We will characterize the classes of functions on which spikiness hurts or helps GLM-EP based on the monotonicity of a function (which is related to the scalar minimum mean square error) that will be defined in this paper. As a byproduct of our studies, we will also show that when the spectrum is spiky enough, the number of measurements required by GLM-EP to achieve perfect recovery approaches the information theoretical lower bound.

1.2 Related Work.

Message passing algorithms [17, 7, 8, 45, 6, 49, 53, 11, 21, 22, 39, 41, 34, 33, 23, 51, 46, 55, 31, 56, 24, 54 have been used extensively for solving the estimation problems similar to the one we have in (11. As a result of such studies, it is known that partial orthogonal matrix is better than iid Gaussian matrix for noisy compressed sensing [34], and the spectral methods for phase retrieval perform better with iid Gaussian sensing matrices than coded diffraction pattern matrices [32, 40, 36, 19]. However, studying the impact of spectrum of the sensing matrix in the generality of our paper has not been done to the best of our knowledge. Recently, [38] considered the phase retrieval problem and a sensing matrix which can be written as the product of Gaussian and another matrix. They reached the conclusion that the weak recovery threshold with this type of matrices can be made arbitrarily close to zero. As a special case of our results, we will also show that if we make the spectrum of the sensing matrix spiky GLM-EP can reach the information theoretic lower bounds in the phase retrieval problem. Aubin et al. [3] considered the phase retrieval problem with generative priors in the form of deep neural networks with random weight matrices, and showed that it yields smaller statistical-to-algorithmic gap than sparse priors.
Another venue of research that is also related to our work is the derivation of the information theoretic limits for analog compression schemes. Analog compression framework was first introduced in Wu and Verdú [63, 65] for compressed sensing. It was shown in Wu and Verdú [63, 65] that the minimum number of measurements required for successful signal reconstruction in an information theoretic framework is related to the Rényi information dimension of the signal distribution. Riegler and Tauböck [48] studied the phase retrieval problem using the analog compression framework and proved that (real-valued) phase retrieval has the same fundamental limit as that of compressed sensing. In order to compare the performance of GLM-EP on matrices with different spectrums we generalize the work of [63, 65] and [48] and obtain information theoretic limit for our sensing model. Note that

[^0]while we are using such information theoretic tools, the problem we are studying in this paper is fundamentally different from the one studied in [63, 65, 48]. Here we are interested in the impact of the spectrum of the sensing matrix on the performance of GLM-EP, and information theoretic limits are mainly derived for comparison purposes (and evaluating the optimality of GLM-EP).

1.3 Definitions

In this section, we mention some definitions that will be frequently used throughout this paper. We first start with the Rényi information dimension of a random variable.
Definition 1 (Information dimension [47, 63]). Let X be a real-valued random variable, and $\langle X\rangle_{M}=\lfloor M X\rfloor / M$ be a quantization operator ${ }^{2}$ Suppose the following limit exists

$$
d(X)=\lim _{M \rightarrow \infty} \frac{H\left(\langle X\rangle_{M}\right)}{\log M},
$$

where $H(\cdot)$ is the entropy of a discrete random variable. The limit $d(X)$ is called the information dimension of X. Further, if $H(\lfloor X\rfloor)<\infty$, then $0 \leq d(X) \leq 1$.

As will be discussed later, $d(X)$ plays a critical role in the information theoretic lower bounds we derive for the recovery algorithms. The next lemma shows how $d(X)$ can be calculated for the simple distributions we observe in our applications.

Lemma 1 (Information dimension of mixed distribution [47, 63|). Let X be a random variable such that $H(\lfloor X\rfloor)$ is finite. Suppose the distribution of X can be represented as

$$
P_{X}=(1-\rho) P_{d}+\rho P_{c}
$$

where P_{d} is a discrete measure and P_{c} is an absolutely continuous measure with respect to Lebesgue, and $0 \leq \rho \leq 1$. Then,

$$
d(X)=\rho
$$

The minimum mean squared error (MMSE) defined below is an important notion in our analysis of GLM-EP.
Definition 2 (MMSE for AWGN channel [30]). Let (Z, U) be a pair of random variables. The MMSE mmse (Z, snr) and the conditional MMSE $\mathrm{mmse}(Z, \mathrm{snr} \mid U)$ given U are defined as

$$
\begin{align*}
\operatorname{mmse}(Z, \mathrm{snr}) & =\mathbb{E}\left[(Z-\mathbb{E}[Z \mid \sqrt{\mathrm{snr}} Z+N])^{2}\right] \\
\operatorname{mmse}(Z, \operatorname{snr} \mid U) & =\mathbb{E}\left[(Z-\mathbb{E}[Z \mid \sqrt{\mathrm{snr}} Z+N, U])^{2}\right], \tag{2}
\end{align*}
$$

where $N \sim \mathcal{N}(0,1)$ is independent of (Z, U), and the outer expectation is taken over all random variables involved.

2 Information-theoretic limit for signal recovery

Our main objective is to evaluate the impact of the spectrum of the sensing matrices on the performance of GLM-EP. Before that, it is useful to compare what GLM-EP achieves with the information theoretic lower bounds, which we derive in this section.

2.1 Assumptions

Before we proceed to the technical part of the paper, let us review and discuss some of the assumptions we will be making throughout the paper.
(A.1) The elements of \boldsymbol{x} are independently drawn from P_{X}, which is an absolutely continuous distribution with respect to the Lebesgue measure. We assume $\mathbb{E}\left[X^{2}\right]=1$.

[^1](A.2) Let the SVD of \boldsymbol{A} be $\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\top} . \boldsymbol{U} \in \mathbb{R}^{m \times m}$ and $\boldsymbol{V} \in \mathbb{R}^{n \times n}$ are independent Haar matrices, which are further independent of $\boldsymbol{\Sigma}$. Let $\left\{\sigma_{i}\right\}_{i=1}^{n}$ be the diagonal entries of $\boldsymbol{\Sigma}$ and define $\lambda_{i} \triangleq \sigma_{i}^{2}$. We assume that the empirical distribution of $\left\{\lambda_{i}\right\}_{i=1}^{n}$ converges almost surely to a deterministic limit P_{λ} with a compact support $[a, b]$ where $a>0$. Further, we assume that $n^{-1} \sum_{i=1}^{n} \lambda_{i} \xrightarrow{\text { a.s. }} \mathbb{E}[\lambda]=m / n>1$, where the expectation is with respect to P_{λ}.
(A.3) $f: \mathbb{R} \mapsto \mathcal{Y}$ is a piecewise smooth function. Specifically, the domain \mathbb{R} can be decomposed into $K \in \mathbb{N}_{+}$non-overlapping intervals, and on each sub-interval, f is continuously differentiable and either strictly monotonic or constant. Furthermore, we assume $H(\lfloor f(Z)\rfloor)<\infty$ where $Z \sim \mathcal{N}(0,1)$.

Note that Assumption (A.2) is a standard assumption in the theoretical analysis of GLM-EP [46, 55 , 21]. Furthermore, all the nonlinearities that we observe in applications satisfy Assumption (A.3). We consider generic signal and do not impose any structural assumption. Finally, the independence assumption we have made in the prior of \boldsymbol{x} is again standard in the literature of approximate message passing and expectation propagation [45, 23, 7, 62, 60]. One can weaken this assumption at the expense of making assumptions about the recovery algorithm.

2.2 Perfect reconstruction in a noiseless setting

In this section, we derive the information theoretic lower bound on the number of measurements required by Lipschitz recovery scheme to achieve vanishing error probability. Note that the computational complexity of the recovery algorithm is not of any concern in these lower bounds. We will later compare our results for GLM-EP with these information theoretic lower bounds.
Theorem 1 (Perfect reconstruction under Lipschitz decoding). Suppose Assumptions (A.1)-(A.3) hold. Suppose that there exists an $\boldsymbol{A} \in \mathbb{R}^{m \times n}$ and a Lipschitz continuous decoder $g: \mathcal{Y}^{m} \mapsto \mathbb{R}^{n}$ such that $\mathbb{P}\{\boldsymbol{x} \neq g(f(\boldsymbol{A} \boldsymbol{x}))\} \rightarrow 0$ as $m, n \rightarrow \infty$ and $m / n \rightarrow \delta \in(1, \infty)$, then necessarily we have

$$
\begin{equation*}
\delta>\delta_{\mathrm{opt}}^{p} \triangleq \frac{1}{d(f(Z))} \tag{3}
\end{equation*}
$$

where $d(f(Z))$ is the information dimension of $f(Z)$, where $Z \sim \mathcal{N}(0,1)$. Here, the error probability is taken with respect to both \boldsymbol{x} and \boldsymbol{A}.

The proof of this result can be found in Appendix A. Intuitively speaking, $d(f(Z)) \in[0,1]$ may be interpreted as a measurement discount factor and the total number of effective measurements is $m \cdot d(f(Z))$.
Remark 1 (1-bit CS). For the 1-bit compressed sensing (CS) problem, we have $f(z)=\operatorname{sign}(z)$ and $d(f(Z))=0$. In this case, the condition $\delta>\delta_{\mathrm{opt}}^{p}=+\infty$ implies that perfect recovery is impossible in the regime $m, n \rightarrow \infty$ and $m / n \rightarrow \delta \in(1, \infty)$. Notice that our result does not contradict with existing 1-bit CS results [16, 44]. For instance, Dirksen et al. [16] analyzes the number of random measurements required by a convex minimization algorithm to achieve a non-zero target distortion ρ, and the bound blows up to infinity as $\rho \rightarrow 0$.

2.3 Stable reconstruction in the noisy setting

Theorem 1 focuses on signal reconstruction for model (1) without any noise. For practical considerations, it is desirable to make sure that a small amount of measurement noise does not cause major performance degradation. In this paper, we consider the following noisy mode ${ }^{3}$

$$
\begin{equation*}
\boldsymbol{y}=f(\boldsymbol{A} \boldsymbol{x}+\boldsymbol{w}) \tag{4}
\end{equation*}
$$

where $\boldsymbol{w} \sim \mathcal{N}\left(\mathbf{0}, \sigma_{w}^{2} \boldsymbol{I}\right)$ is independent of \boldsymbol{A} and \boldsymbol{x}. Define the noise sensitivity [18, 65] of the minimum mean square error (MMSE) estimator by

$$
\begin{equation*}
M^{*}(X, f, \delta) \triangleq \sup _{\sigma_{w}} \limsup _{n \rightarrow \infty} \frac{\frac{1}{n} \mathrm{mmse}(\boldsymbol{x} \mid \boldsymbol{y}, \boldsymbol{A})}{\sigma_{w}^{2}} \tag{5}
\end{equation*}
$$

[^2]where $\operatorname{mmse}(\boldsymbol{x} \mid \boldsymbol{y}, \boldsymbol{A}) \triangleq \mathbb{E}\left[(\boldsymbol{x}-\mathbb{E}[\boldsymbol{x} \mid \boldsymbol{y}, \boldsymbol{A}])^{2}\right]$ is the MMSE of estimating \boldsymbol{x} from \boldsymbol{y}, and in the above limit $n \rightarrow \infty$ is understood as $n \rightarrow \infty$ and $m / n \rightarrow \delta$. Theorem 2 below shows that to achieve bounded noise sensitivity, one needs $\delta>1 / d(f(Z))$, the same necessary condition for achieving vanishing error probability in the noiseless setting. Its proof can be found in Appendix B

Theorem 2 (Noise sensitivity). Suppose Assumptions (A.1)-(A.3) hold. Additionally, assume $\boldsymbol{x} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{I})$. For any P_{λ}, a necessary condition for achieving bounded noise sensitivity, namely $M^{*}(X, f, \delta)<\infty$, is $\delta>\delta_{\mathrm{opt}}^{p}$, where $\delta_{\mathrm{opt}}^{p}$ is defined in (3).

Note that Theorem 2 is different from Theorem 1 in that it holds for any eigenvalue value distribution P_{λ} satisfying Assumption (A.2). Further, we may calculate the MMSE (and hence the noise sensitivity) using the replica method [37]. However, since the correctness of the replica predictions has not been proved for the current setting, we do not pursue it in this paper and leave it as possible future work.

2.4 Discussion of Theorems 1 and 2

Theorems 1 and 2 show that that the quantity $d(f(Z))$ determines the fundamental limit for signal recovery from the nonlinear model (1). Notice that $f(Z)$ is a mixed discrete-continuous distribution (by Assumption (A.3)), where the discrete component in $f(Z)$ corresponds to "flat" sections of f; see Figure 1 for illustration. According to Lemma $1, d(f(Z))$ is simply the weight in the continuous component of the distribution of $f(Z)$, which is the probability of $Z \sim \mathcal{N}(0,1)$ falling into the non-flat sections of f. For illustration, Figure 1 shows three representative examples of f.

Type I: f is a piece-wise monotone function without flat sections; see the left panel of Figure 1 for illustration. This type of functions includes the absolute value function $f=|z|$, which appears in phase retrieval problems. For such functions, $f(Z)$ has an absolutely continuous distribution when $Z \sim \mathcal{N}(0,1)$, and hence $d(f(Z))=1$ according to Lemma 1 .

Type II: f consists of purely flat sections. A special case is the quantization function. Clearly, $f(Z)$ has a discrete distribution and $d(f(Z))=0$.

Type III: f consists of both flat and non-flat sections, e.g., the function shown on the right panel of Figure 1] Note that such scenarios happen when sensors saturate for instance in the phase retrieval application. In this case, $f(Z)$ has a mixed discrete-continuous distribution and $0<d(f(Z))<1$.

Figure 1: Three types of f. Left: $d(f(Z))=1$. Center: $d(f(Z))=0$. Right: $0<d(f(Z))<1$.

3 GLM-EP algorithm and performance analysis

In this section, we introduce an expectation propagation (EP) [39, 41] type algorithm, referred to as GLM-EP, for solving our nonlinear inverse problem and derive its state evolution (SE). We then study the impact of the spectrum of the sensing matrix on the performance of this algorithm.

3.1 Summary of GLM-EP

The GLM-EP algorithm is summarized below. We use superscripts to represent iteration indices, and subscripts ' l ' and ' r ' to distinguish different variables.
Initialization: $\boldsymbol{z}_{r}^{-1}=\mathbf{0}, v_{r}^{-1}=1$. For $t=0, \ldots$, excute the following steps iteratively:

$$
\begin{align*}
& \boldsymbol{z}_{l}^{t}=\frac{1}{1-\left\langle\eta_{z}^{\prime}\left(\boldsymbol{z}_{r}^{t-1}, \boldsymbol{y}, v_{r}^{t-1}\right)\right\rangle} \cdot\left(\eta_{z}\left(\boldsymbol{z}_{r}^{t-1}, \boldsymbol{y}, v_{r}^{t-1}\right)-\left\langle\eta_{z}^{\prime}\left(\boldsymbol{z}_{r}^{t-1}, \boldsymbol{y}, v_{r}^{t-1}\right)\right\rangle \cdot \boldsymbol{z}_{r}^{t-1}\right) \tag{6a}\\
& v_{l}^{t}=v_{r}^{t-1} \cdot \frac{\left\langle\eta_{z}^{\prime}\left(\boldsymbol{z}_{r}^{t-1}, \boldsymbol{y}, v_{r}^{t-1}\right)\right\rangle}{1-\left\langle\eta_{z}^{\prime}\left(\boldsymbol{z}_{r}^{t-1}, \boldsymbol{y}, v_{r}^{t-1}\right)\right\rangle} \tag{6b}\\
& \boldsymbol{R}^{t} \triangleq \boldsymbol{A}\left(v_{l}^{t} \boldsymbol{I}+\boldsymbol{A}^{\top} \boldsymbol{A}\right)^{-1} \boldsymbol{A}^{\top} \tag{6c}\\
& \boldsymbol{z}_{r}^{t}=\frac{1}{1-\frac{1}{m} \operatorname{Tr}\left(\boldsymbol{R}^{t}\right)} \cdot\left(\boldsymbol{R}^{t}-\frac{1}{m} \operatorname{Tr}\left(\boldsymbol{R}^{t}\right) \cdot \boldsymbol{I}\right) \cdot \boldsymbol{z}_{l}^{t} \tag{6d}\\
& v_{r}^{t}=v_{l}^{t} \cdot \frac{\frac{1}{m} \operatorname{Tr}\left(\boldsymbol{R}^{t}\right)}{1-\frac{1}{m} \operatorname{Tr}\left(\boldsymbol{R}^{t}\right)} \tag{6e}
\end{align*}
$$

where η_{z} is defined by

$$
\begin{equation*}
\eta_{z}\left(z_{r}, y, v\right) \triangleq \frac{\int_{f^{-1}(y)} u \cdot \mathcal{N}\left(u ; z_{r}, v\right) d u}{\int_{f^{-1}(y)} \mathcal{N}\left(u ; z_{r}, v\right) d u} \tag{6f}
\end{equation*}
$$

and η_{z}^{\prime} denotes the derivative of η_{z} with respect to the first argument. When $f^{-1}(y)$ is a discrete set, the integration in the above formula is simply replaced by a summation.
Output: $\hat{\boldsymbol{x}}_{\text {out }}^{t}=v_{l}^{t}\left(\boldsymbol{I}+v_{l}^{t} \boldsymbol{A}^{\top} \boldsymbol{A}\right)^{-1} \boldsymbol{A}^{\top} \boldsymbol{z}_{l}^{t}$.
In the above descriptions of the algorithm, we adopted the convention commonly used in the AMP literature: $\eta_{z}\left(\boldsymbol{z}_{r}, \boldsymbol{y}, v\right)$ denotes a vector with elements obtained by applying the scalar function η_{z} to the corresponding elements of \boldsymbol{z}_{r} and \boldsymbol{y}, and $\langle\cdot\rangle$ denotes the empirical mean of a vector.

3.2 Asymptotic analysis

The asymptotic performance of GLM-EP could be described by two scalar sequences $\left\{V_{l}^{t}, V_{r}^{t}\right\}_{t \geq 0}$, defined recursively by

$$
\begin{align*}
V_{l}^{t} & =\left(\frac{1}{\operatorname{mmse}_{z}\left(V_{r}^{t-1}\right)}-\frac{1}{V_{r}^{t-1}}\right)^{-1} \triangleq \phi\left(V_{r}^{t-1}\right) \tag{7a}\\
V_{r}^{t} & =\left(\frac{1}{\frac{1}{\delta} \cdot \mathbb{E}\left[\frac{V_{t}^{t} \lambda}{V_{l}^{t}+\lambda}\right]}-\frac{1}{V_{l}^{t}}\right)^{-1} \triangleq \Phi\left(V_{l}^{t}\right) \tag{7b}
\end{align*}
$$

where $\left.V_{r}^{t-1}\right|_{t=0}=1, \operatorname{mmse}_{z}\left(V_{r}\right) \triangleq \operatorname{mmse}\left(Z, V_{r}^{-1}-1 \mid f(Z)\right)$, and the expectation in 7b is w.r.t. the limiting eigenvalue distribution of $\boldsymbol{A}^{\top} \boldsymbol{A}$. (Recall that mmse $(Z, \mathrm{snr} \mid U)$ denotes a conditional MMSE; see (2). Equations (7a) and (7b) are known as the state evolution (SE) for the GLM-EP.
Roughly speaking, the deterministic sequences $\left\{V_{l}^{t}, V_{r}^{t}\right\}_{t \geq 0}$ are expected to be accurate predictions of $\left\{v_{l}^{t}, v_{r}^{t}\right\}_{t \geq 0}$ (which are generated by GLM-EP) asymptotically. We will formalize this claim below. Further, we will show that the per coordinate MSE of $\boldsymbol{x}_{\text {out }}^{t}$ (see Lemma 2 below) is characterized by

$$
\begin{equation*}
\operatorname{MSE}_{\lambda}\left(V_{l}^{t}\right) \triangleq \mathbb{E}\left[\frac{V_{l}^{t}}{V_{l}^{t}+\lambda}\right] \tag{7c}
\end{equation*}
$$

The subscript emphasizes the fact that the MSE depends on the limiting eigenvalue distribution P_{λ}.
Lemma 2 below gives a formal statement of the accuracy of SE, and its proof is mainly based on that of [24, Theorem 1]. Note that [24] requires the continuity of f and η_{z}. While this assumption holds for some problems, e.g. phase retrieval problem, it is violated for some other problems, e.g. one-bit quantization. Hence, we construct a new algorithm, called GLM-EP-app hereafter, which satisfies the requirements of [24]. This allows us to use SE for predicting the performance of this algorithm. Please note that if f and η_{z} are Lipschitz continuous, then we can use GLM-EP as well. GLM-EP-app uses the following iterations:

$$
\begin{align*}
\boldsymbol{z}_{l}^{t} & =C_{t} \cdot\left(\tilde{\eta}_{z}\left(\boldsymbol{z}_{r}^{t-1}, \boldsymbol{y}, V_{r}^{t-1}\right)-\mathbb{E}\left[\tilde{\eta}_{z}^{\prime}\left(Z_{r}^{t-1}, Y, V_{r}^{t-1}\right)\right] \cdot \boldsymbol{z}_{r}^{t-1}\right) \tag{8a}\\
\boldsymbol{z}_{r}^{t} & =\frac{1}{1-\frac{1}{m} \operatorname{Tr}\left(\boldsymbol{R}^{t}\right)} \cdot\left(\boldsymbol{R}^{t}-\frac{1}{m} \operatorname{Tr}\left(\boldsymbol{R}^{t}\right) \cdot \boldsymbol{I}\right) \cdot \boldsymbol{z}_{l}^{t} \tag{8b}
\end{align*}
$$

where $\tilde{\eta}$ is a function for which $\mathbb{E}\left[\tilde{\eta}_{z}^{\prime}\left(Z_{r}^{t-1}, Y, V_{r}^{t-1}\right)\right]$ exists, $\boldsymbol{R}^{t} \triangleq \boldsymbol{A}\left(V_{l}^{t} \boldsymbol{I}+\boldsymbol{A}^{\top} \boldsymbol{A}\right)^{-1} \boldsymbol{A}^{\top}$, and C_{t} is a sequence of fixed numbers. The choices we choose for $\tilde{\eta}$ and C_{t} (to make them close enough to GLM-EP) is discussed in the proof of Lemma 2, Finally, similar to GLM-EP the output of GLM-EP-app is given by

$$
\hat{\boldsymbol{x}}_{\mathrm{out}}^{t}=V_{l}^{t}\left(\boldsymbol{I}+V_{l}^{t} \boldsymbol{A}^{\top} \boldsymbol{A}\right)^{-1} \boldsymbol{A}^{\top} \boldsymbol{z}_{l}^{t} .
$$

Lemma 2 shows that the performance of GLM-EP-app could be arbitrarily close to the SE prediction. The details of the proof can be found in Appendix C
Lemma 2. Suppose Assumptions (A.1)-(A.3) hold. Additionally, assume $f: \mathbb{R} \mapsto \mathcal{Y}$ to be Lipschitz continuous. Let $\left\{V_{l}^{t}, V_{r}^{t}\right\}_{t \geq 0}$ be generated according to (7). There exists $\tilde{\eta}_{z}$ and $\left\{C_{t}\right\}_{t \geq 0}$ such that $\hat{\boldsymbol{x}}_{\text {out }}^{t}$ of GLM-EP-app satisfies

$$
\begin{equation*}
\operatorname{MSE}_{\lambda}\left(V_{l}^{t}\right)-\epsilon \leq \frac{1}{m}\left\|\hat{\boldsymbol{x}}_{\mathrm{out}}^{t}-\boldsymbol{x}\right\|^{2}<\operatorname{MSE}_{\lambda}\left(V_{l}^{t}\right)+\epsilon, \quad \forall \epsilon>0 \tag{9}
\end{equation*}
$$

almost surely as $m, n \rightarrow \infty$ with $m / n \rightarrow \delta \in(1, \infty)$, where MSE_{λ} is defined in 7c).
According to Lemma 2 , the asymptotic MSE of GLM-EP-app in the large system limit as $t \rightarrow \infty$ can be obtained from the limiting value of V_{r}^{t} (or V_{l}^{t}). Because this quantity is of particular importance to us we will characterize it in the following lemma.
Lemma 3 (MSE performance). Suppose $\delta>1$. Define V_{r}^{\star} by

$$
\begin{equation*}
V_{r}^{\star} \triangleq \inf \left\{v \in[0,1]: P\left(v_{r}\right)>0, \forall v_{r} \in[v, 1]\right\} . \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
P\left(v_{r}\right) \triangleq \mathbb{E}\left[\frac{\phi\left(v_{r}\right)}{\phi\left(v_{r}\right)+\lambda}\right]-\underbrace{\left[1-\delta\left(1-\frac{\mathrm{mmse}_{z}\left(v_{r}\right)}{v_{r}}\right)\right]}_{g\left(v_{r}\right)} \tag{11}
\end{equation*}
$$

Let $\left\{V_{l}^{t}, V_{r}^{t}\right\}_{t \geq 0}$ be sequences generated according to (7) with $V_{r}^{-1}=1$. We have

$$
\lim _{t \rightarrow \infty} V_{r}^{t}=V_{r}^{\star}
$$

Further, the final MSE is given by $\mathrm{MSE}_{\lambda}^{\star} \triangleq \mathrm{MSE}_{\lambda}\left(\phi\left(V_{r}^{\star}\right)\right)$, where ϕ is defined in 7a).
The proof of this lemma can be found in Appendix D.1. A direct consequence of Lemma 3 is the perfect reconstruction condition stated in Lemma 4 below.
Lemma 4 (Perfect reconstruction condition). Let $\left\{V_{l}^{t}, V_{r}^{t}\right\}_{t \geq 0}$ be a sequence generated through (7) with $\left.V_{r}^{t-1}\right|_{t=0}=1$. Then, the predicted final MSE MSE ${ }_{\lambda}^{\star}$ is zero if and only if

$$
\begin{equation*}
P\left(v_{r}\right)>0, \quad \forall v_{r} \in(0,1] \tag{12}
\end{equation*}
$$

where $P\left(v_{r}\right)$ is defined in (11). Furthermore, a necessary condition for (12) is $\delta>\delta_{\mathrm{opt}}^{p}$ where $\delta_{\mathrm{opt}}^{p}$ is defined in (3).

The proofs of Lemma 4 can be found in Appendix D.2.

4 Impact of sensing matrix spectrum

In this section, we use Lemmas 3 and 4 to study the impact of the sensing matrix on the MSE performance of GLM-EP-app. Before presenting our detailed analysis, we first discuss the so-called Lorenz order that compares the "spikiness" of different distributions.

4.1 A measure of spikiness of distributions

A natural tool to compare the spikiness of the distributions of two non-negative random variables is Lorenz partial order [1]. (Since it is a partial order, there exist distributions that are incomparable in the Lorenz sense.) Lorenz order is well-known in economics to characterize the wealth inequality of different populations. Lorenz order is closely related to majorization, a tool that has been extensively studied for transceiver design in communication systems [42].

Definition 3 (Lorenz partial order [1]). Consider a nonnegative random variable with cumulative density function $F(x)$. Let $F^{-1}(y)$ be the quantile function defined by

$$
\begin{equation*}
F^{-1}(y)=\sup \{x: F(x) \leq y\}, \quad 0<y<1 \tag{13}
\end{equation*}
$$

The Lorenz curve corresponding to $F(x)$ is defined by

$$
L(u)=\frac{\int_{0}^{u} F^{-1}(y) d y}{\int_{0}^{1} F^{-1}(y) d y}, 0 \leq u \leq 1
$$

Let X and Y be two nonnegative random variables, and $L_{X}(u)$ and $L_{Y}(u)$ be the corresponding Lorenz curves. We say that X is less spiky than Y in the Lorenz sense, denoted as $X \preceq_{L} Y$, if $L_{X}(u) \geq L_{Y}(u)$ for every $u \in[0,1]$. Conversely, $X \succeq_{L} Y$ if $L_{X}(u) \leq L_{Y}(u)$ for every $u \in[0,1]$.

An important property of Lorenz partial ordering is the following.
Lemma 5 ([1]). Suppose $X \geq 0, Y \geq 0$ and $\mathbb{E}[X]=\mathbb{E}[Y]$. We have $X \preceq_{L} Y$ if and only if $\mathbb{E}[h(X)] \leq \mathbb{E}[h(Y)]$ for every continuous convex function $h: \mathbb{R}_{+} \rightarrow \mathbb{R}$.

4.2 Impact on MSE

Let $\lambda_{1} \sim P_{\lambda_{1}}$ and $\lambda_{2} \sim P_{\lambda_{2}}$ be two limiting eigenvalue distributions of $\boldsymbol{A}^{\top} \boldsymbol{A}$. Let $V_{\lambda_{1}}^{\star}$ and $V_{\lambda_{2}}^{\star}$ denote the corresponding limiting values of $V_{r}^{t}($ as $t \rightarrow \infty)$ in (7) (proving that the iterations (7) converge to a fixed point is straightforward). The associated MSEs, denoted as MSE ${ }_{\lambda_{1}}^{\star}$ and $\mathrm{MSE}_{\lambda_{2}}^{\star}$, can be compared according to the following lemma. See Appendix Efor its proof.

Lemma 6. Let $\delta>1$. Suppose $P_{\lambda_{1}}$ is more spiky than $P_{\lambda_{2}}$ in the Lorenz sense, i.e., $\lambda_{1} \succeq_{L} \lambda_{2}$. Define

$$
\begin{equation*}
G\left(v_{r}\right) \triangleq \max \left(g\left(v_{r}\right), 0\right), \quad \forall v_{r} \in[0,1] \tag{14}
\end{equation*}
$$

where $g(\cdot)$ is defined in (11). We have

- If $G\left(v_{r}\right)$ is increasing on $v_{r} \in[0,1]$, then $\mathrm{MSE}_{\lambda_{1}}^{\star} \leq \mathrm{MSE}_{\lambda_{2}}^{\star}$;
- If $G\left(v_{r}\right)$ is decreasing on $v_{r} \in[0,1]$, then $\operatorname{MSE}_{\lambda_{1}}^{\star} \geq \operatorname{MSE}_{\lambda_{2}}^{\star}$;
- If $G\left(v_{r}\right)$ is not monotonic, then the comparison of $\mathrm{MSE}_{\lambda_{1}}^{\star}$ and $\mathrm{MSE}_{\lambda_{2}}^{\star}$ is not definite.

Figure 2: Illustration of $G\left(v_{r}\right)$ for three choices of f. Left: $f(z)=|z|$. Middle: $f(z)=\operatorname{sign}(z)$. Right: $f(z)=|z| \mathbf{1}_{|z|<1}+(|z|-1) \mathbf{1}_{|z| \geq 1} . \delta=1.1$.

Remark 2. Notice that the function $G\left(v_{r}\right)$ also depends on the sampling ratio δ, as can be seen from the definitions in (14) and (11). (To keep notation light, we do not make such dependency explicit.) Hence, for a given f, the monotonicity of $G\left(v_{r}\right)$ could change as δ varies.

Lemma 6 shows that the impact of the spectrum on the final MSE performance of GLM-EP-app depends on the monotonicity of the function $G\left(v_{r}\right)$ (which further depends on f) and the sampling ratio δ. For a given f and δ, the function $G\left(v_{r}\right)$ can be numerically computed and its monotonicity
can be easily checked. Below are three examples of f, corresponding to each of the cases discussed in Lemma 6.

Example 1: It can be shown that that $G\left(v_{r}\right)$ of the following f is monotonically increasing for all $\delta>1$:

$$
f(z)=|z| .
$$

See left panel of Figure 2. Hence, spiky spectrums are beneficial for MSE performance.
Example 2: The $G\left(v_{r}\right)$ of the following function is decreasing for all $\delta>1$:

$$
f(z)=\operatorname{sign}(z)
$$

See the middle panel of Figure 2 In this case, flatter spectrums are better.
Example 3: Consider the following function

$$
f(z)= \begin{cases}|z|, & \text { if }|z|<1 \tag{15}\\ |z|-1, & \text { if }|z| \geq 1\end{cases}
$$

In this case, $G\left(v_{r}\right)$ is not monotonic (See right panel of Figure 2, and other features of the spectrum affect the performance of GLM-EP-app.

4.3 Impact of spectrum on perfect recovery threshold

We have shown that the impact of the spikiness of the spectrum on the MSE performance is related to the monotonicity of the function $G\left(v_{r}\right)$ which depends on the nonlinear function f and the sampling ratio δ. In this section, we will show that if our goal is to minimize the number of measurements required for perfect reconstruction, then more spiky spectrum benefit GLM-EP-app for all f. Furthermore, the information theoretic lower bound $\delta_{\mathrm{opt}}^{\mathrm{p}}$ can be reached (as close as we wish) if the spectrum of \boldsymbol{A} is spiky enough. Theorem 3 , whose proof can be found in Appendix F summarizes the above discussions.
Theorem 3. For a given nonlinearity f and eigenvalue distribution P_{λ}, let $\delta_{\lambda}^{\mathrm{p}}$ be the minimum δ required for perfectly recovering the signal, i.e.,

$$
\begin{equation*}
\delta_{\lambda}^{\mathrm{p}} \triangleq \inf \left\{\delta: \mathrm{MSE}_{\lambda}^{\star}=0\right\} \tag{16}
\end{equation*}
$$

where $\mathrm{MSE}_{\lambda}^{\star}$ is defined in Lemma 3 Let λ_{1} and λ_{2} represent two limiting eigenvalue distributions and $\delta_{\lambda_{1}}^{\mathrm{p}}$ and $\delta_{\lambda_{2}}^{\mathrm{p}}$ the corresponding thresholds for perfect reconstruction. We have
(i) If $\lambda_{1} \succeq_{L} \lambda_{2}$, then $\delta_{\lambda_{1}}^{\mathrm{p}} \leq \delta_{\lambda_{2}}^{\mathrm{p}}$;
(ii) For any f satisfying $\operatorname{mmse}_{z}(1)<1$ and $\delta_{\mathrm{opt}}^{\mathrm{p}}<\infty$, there exists a distribution of λ for which $\delta_{\lambda}^{\mathrm{p}}$ is arbitrarily close to $\delta_{\mathrm{opt}}^{\mathrm{p}} \triangleq 1 / d(f(Z))$, where $Z \sim \mathcal{N}(0,1)$.

4.4 Noise Sensitivity Analysis

Up to now, we only studied the performance of GLM-EP-app in the noiseless setting. In practice, it is also important to guarantee that the reconstruction performance does not significantly worsen due to the presence of a small amount of measurement noise. We consider the noisy model in (4). GLM-EP-app remains unchanged except that η_{z} is replaced by a posterior mean estimator that takes the noise effect into consideration.

The following lemma analyzes the MSE performance of GLM-EP-app in the high SNR regime, and shows that its reconstruction is stable. The proof of Lemma 7 and other details about GLM-EP-app in the noisy setting are provided in Section G.
Lemma 7. Assume $d(f(Z)) \neq 0$. Let $\delta>\delta_{\lambda}^{\mathrm{p}}$, where $\delta_{\lambda}^{\mathrm{p}}$ is defined in Theorem 3 Let $\mathrm{MSE}_{\lambda}^{\star}\left(\sigma_{w}^{2}\right) \triangleq$ $\lim _{t \rightarrow \infty} \operatorname{MSE}_{\lambda}\left(V_{l}^{t}\right)$ be the MSE in the noisy setting. As $\sigma_{w}^{2} \rightarrow 0$, we have

$$
\operatorname{MSE}_{\lambda}^{\star}\left(\sigma_{w}^{2}\right)=C(\delta, f) \mathbb{E}\left[\lambda^{-1}\right] \sigma_{w}^{2} \cdot(1+o(1))
$$

where $0<C(\delta, f)<\infty$ is a constant depending only on δ and f.
This lemma confirms that as long as $\delta>\delta_{\lambda}^{\mathrm{p}}$, GLM-EP-app can offer stable recovery. However, the minimum mean square error in this case depends on another feature of the spectrum, namely $\mathbb{E}\left[\lambda^{-1}\right]$. The optimal sensing mechanism should be designed by considering both features based on the expected noise level in the system.

5 Numerical examples

Let $\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\top}$. In our experiments, we approximate the random orthogonal matrix \boldsymbol{U} in the following way: $\boldsymbol{U}=\boldsymbol{P}_{1} \boldsymbol{U}_{\mathrm{d}} \boldsymbol{P}_{2} \boldsymbol{U}_{\mathrm{d}}^{\top} \boldsymbol{P}_{3}$ where $\boldsymbol{P}_{1}, \boldsymbol{P}_{2}, \boldsymbol{P}_{3}$ are three diagonal matrices with entries independently chosen from ± 1 with equal probability, and $\boldsymbol{U}_{\mathrm{d}}$ is a discrete cosine transform (DCT) matrix. Note that all matrices are square. The hope is that by injecting enough randomness in these matrices, we can make them look like Haar orthogonal matrices for GLM-EP-app. In addition, such constructions allow fast implementation of GLM-EP-app using the DCT. Following [57], we consider a geometric distribution for the limiting empirical distribution of $\operatorname{diag}\left(\boldsymbol{\Sigma}^{\top} \boldsymbol{\Sigma}\right)$:

$$
P_{\lambda}(\alpha, \beta)= \begin{cases}\frac{1}{\beta \lambda}, & \text { if } \lambda \in\left(\alpha A(\beta) e^{-\beta}, \alpha A(\beta)\right] \tag{17}\\ 0, & \text { otherwise }\end{cases}
$$

where $\alpha>0$ is the mean, $\beta \geq 0$ controls the spikeness of the distribution (with $\beta=0$ corresponding to a flat spectrum), and $A(\beta)=\frac{\beta}{1-e^{-\beta}}$. In all of our numerical experiments, the eigenvalues of $\boldsymbol{A}^{\top} \boldsymbol{A}$ are independently drawn from $P_{\lambda}(\alpha, \beta)$.

5.1 Accuracy of state evolution

Figure 3 demonstrates the mean-square error (MSE) performances of GLM-EP for $f(z)=|z|$ and the function defined in (15). Clearly, $d(f(Z))=1$ for both functions. As Theorem 3, shows, the GLM-EP algorithm could achieve perfect reconstruction as soon as $\delta>1$ with a very spiky sensing matrix. Here, we considered the geometric eigenvalue setup with $\beta=20$. From Fig. 3, we see that GLM-EP recovers the signal accurately when δ is only slightly larger than the lower bound ($\delta=1.01$). In our experiments, to get rid of the uninformative fixed point we set $\boldsymbol{z}_{r}^{-1}=(1+V)^{-1}(\boldsymbol{z}+\sqrt{V} \boldsymbol{n})$ where \boldsymbol{n} is standard Gaussian and V is a large constant (here we set $V=20$).

Figure 3: MSE performance of GLM-EP in the noiseless setting. Left: $f(z)=|z|$. Right: $f(z)$ defined in (15). $n=2 \times 10^{5} . m=\lceil 1.01 \cdot n\rceil . \beta=20.1000$ independent runs. The markers labeled 'SE' are predictions obtained from state evolution.

5.2 Performance for medium-sized systems

Fig. 4 shows the performance of GLM-EP for very medium-sized sensing matrices ($n=2000$). Other settings are the same as Fig. 3. In this case, we can observe a mismatch between the performance of GLM-EP and its theoretical predictions. Nevertheless, GLM-EP still achieve very good reconstruction result considering the fact that $\delta \approx 1.01$ is very close to the information theoretical lower bound.

Figure 4: MSE performance of GLM-EP for medium-size systems. Left: $f(z)=|z|$. Right: $f(z)$ defined in (15). $n=2000$. MSE are averaged over 1000 independent runs. Other settings are the same as those of Fig. 3 .

5.3 1-bit CS performance

For the 1-bit compressed sensing (CS) problem, it is impossible to recover the signal accurately (namely, achieve zero MSE) at finite δ. Tab. 1 lists the MSE of GLM-EP for 1-bit CS under different values of δ. As expected, its performance improves as δ increases.

δ	1.5	2	2.5	3	3.5	4	4.5	5
MSE	0.2771	0.2091	0.1622	0.1286	0.1042	0.0846	0.0714	0.0607

Table 1: MSE of GLM-EP for the 1-bit CS problem. $n=10^{5} . \beta=0$ (i.e., \boldsymbol{A} is column-orthogonal). The MSE is averaged over 100 independent runs. The number of iterations is 20.

5.4 Noisy measurements

Lemma 7 analyzes the stability of the GLM-EP reconstruction for the noisy model $\boldsymbol{y}=f(\boldsymbol{A} \boldsymbol{x}+\boldsymbol{w})$. Tab. 2 shows that the performance of GLM-EP for noisy phase retrieval. Here, the signal-to-noise ratio (SNR) is defined by

$$
\mathrm{SNR} \triangleq \frac{\mathbb{E}\left[\|\boldsymbol{A} \boldsymbol{x}\|^{2}\right]}{\mathbb{E}\left[\|\boldsymbol{w}\|^{2}\right]}
$$

Results in Tab. 2 suggests that the performance of GLM-EP degrades gracefully as the noise variance increases.

SNR	30 dB	35 dB	40 dB	45 dB	50 dB
MSE	$1.28 \mathrm{e}-01$	$5.92 \mathrm{e}-02$	$2.18 \mathrm{e}-02$	$6.94 \mathrm{e}-03$	$2.14 \mathrm{e}-03$

Table 2: MSE of GLM-EP for noisy phase retrieval. $\delta=1.1 . n=10^{5} . \beta=10$. The MSE is averaged over 100 independent runs. The number of iterations is 10 .

5.5 Phase transition

To test the impact of the sensing spectral on the performance of GLM-EP, we carry out phase transition study of GLM-EP in Fig. 5 under various values of β. We consider two instances of f, the absolute value function and that defined in $\mathbf{1 5]}$. We see that for both functions, the empirical perfect recovery threshold of δ improves as β increases (corresponding to spikier spectrum), which is consistent with the claim of Theorem 3

Figure 5: Phase transition of GLM-EP under various sensing matrix spectral. Left: $f(z)=|z|$. Right: $f(z)$ defined in $\boxed{15}$. $n=2 \times 10^{5}$. MSE are averaged over 100 independent runs.

6 Conclusion and future work

We studied the impact of the spectrum of the sensing matrix on the performance of the expectation propagation (EP) algorithm in recovering signals from the nonlinear model $\boldsymbol{y}=f(\boldsymbol{A} \boldsymbol{x})$. We defined a notion of spikiness of the distributions and showed that depending on $f(\cdot)$, the spikiness of the distribution can help or hurt the performance of EP. We also showed that spiky sensing matrices can always reduce the number of observations required for the exact recovery of \boldsymbol{x} from \boldsymbol{y}.
The results in this paper can serve as the first step toward the optimal design of sensing matrices. However, there are several directions that require further investigation before one can apply our results to real-world applications: (i) Because the structure of the signal is often used in recovery algorithms, the role of the structure should be studied more carefully when we deal with spiky sensing matrices. (ii) While we discussed the high-signal-to-noise ratio regime in the paper, some applications have low signal-to-noise ratios. The impact of the spectrum of the sensing matrix in such cases requires more careful considerations.

Acknowledgments and Disclosure of Funding

J. Ma was partially supported by National Natural Science Foundation of China (Grant NO. 12101592) and the Key Research Program of the Chinese Academy of Sciences (Grant NO. XDPB15). A. Maleki was partially supported by a Google Faculty Research Award.

References

[1] Barry C Arnold and José María Sarabia. Majorization and the Lorenz order with applications in applied mathematics and economics. Springer, 2018.
[2] Benjamin Aubin, Antoine Maillard, Jean Barbier, Florent Krzakala, Nicolas Macris, and Lenka Zdeborová. The committee machine: Computational to statistical gaps in learning a two-layers neural network. Journal of Statistical Mechanics: Theory and Experiment, 2019(12):124023, 2019.
[3] Benjamin Aubin, Bruno Loureiro, Antoine Baker, Florent Krzakala, and Lenka Zdeborová. Exact asymptotics for phase retrieval and compressed sensing with random generative priors. In Mathematical and Scientific Machine Learning, pages 55-73. PMLR, 2020.
[4] Sohail Bahmani and Justin Romberg. Phase retrieval meets statistical learning theory: A flexible convex relaxation. In Artificial Intelligence and Statistics, pages 252-260, 2017.
[5] Milad Bakhshizadeh, Arian Maleki, and Shirin Jalali. Using black-box compression algorithms for phase retrieval. IEEE Transactions on Information Theory, 66(12):7978-8001, 2020. doi: 10.1109/TIT.2020. 3016183.
[6] Jean Barbier, Florent Krzakala, Nicolas Macris, Léo Miolane, and Lenka Zdeborová. Optimal errors and phase transitions in high-dimensional generalized linear models. Proceedings of the National Academy of Sciences, 116(12):5451-5460, 2019.
[7] M. Bayati and A. Montanari. The dynamics of message passing on dense graphs, with applications to compressed sensing. IEEE Transactions on Information Theory, 57(2):764-785, Feb. 2011.
[8] M. Bayati and A. Montanari. The LASSO risk for Gaussian matrices. IEEE Transactions on Information Theory, 58(4):1997-2017, April 2012.
[9] Ali Bereyhi, Saba Asaad, Ralf R Müller, and Symeon Chatzinotas. RLS precoding for massive MIMO systems with nonlinear front-end. arXiv preprint arXiv:1905.05227, 2019.
[10] Petros T Boufounos and Richard G Baraniuk. 1-bit compressive sensing. In 2008 42nd Annual Conference on Information Sciences and Systems, pages 16-21. IEEE, 2008.
[11] Zhiqi Bu, Jason M Klusowski, Cynthia Rush, and Weijie J Su. Algorithmic analysis and statistical estimation of SLOPE via approximate message passing. IEEE Transactions on Information Theory, 67(1): 506-537, 2020.
[12] E. J. Candes, X. Li, and M. Soltanolkotabi. Phase retrieval via wirtinger flow: Theory and algorithms. IEEE Transactions on Information Theory, 61(4):1985-2007, April 2015.
[13] Emmanuel J Candes, Thomas Strohmer, and Vladislav Voroninski. Phaselift: Exact and stable signal recovery from magnitude measurements via convex programming. Communications on Pure and Applied Mathematics, 66(8):1241-1274, Nov. 2013.
[14] Michael Celentano, Andrea Montanari, and Yuchen Wu. The estimation error of general first order methods. In Conference on Learning Theory, pages 1078-1141. PMLR, 2020.
[15] Yuxin Chen and E. J. Candes. Solving random quadratic systems of equations is nearly as easy as solving linear systems. Communications on Pure and Applied Mathematics, 70:822-883, May 2017.
[16] Sjoerd Dirksen, Hans Christian Jung, and Holger Rauhut. One-bit compressed sensing with partial gaussian circulant matrices. arXiv preprint arXiv:1710.03287, 2017.
[17] David L. Donoho, Arian Maleki, and Andrea Montanari. Message-passing algorithms for compressed sensing. Proceedings of the National Academy of Sciences, 106(45):18914-18919, 2009.
[18] David L Donoho, Arian Maleki, and Andrea Montanari. The noise-sensitivity phase transition in compressed sensing. IEEE Transactions on Information Theory, 57(10):6920-6941, 2011.
[19] Rishabh Dudeja, Milad Bakhshizadeh, Junjie Ma, and Arian Maleki. Analysis of spectral methods for phase retrieval with random orthogonal matrices. IEEE Transactions on Information Theory, 66(8):5182-5203, 2020.
[20] Kenneth Falconer. Fractal geometry: mathematical foundations and applications. John Wiley \& Sons, 3 edition, 2014.
[21] Zhou Fan. Approximate message passing algorithms for rotationally invariant matrices. arXiv preprint arXiv:2008.11892, 2020.
[22] Oliver Y Feng, Ramji Venkataramanan, Cynthia Rush, and Richard J Samworth. A unifying tutorial on approximate message passing. arXiv preprint arXiv:2105.02180, 2021.
[23] Alyson Fletcher, Mojtaba Sahraee-Ardakan, Sundeep Rangan, and Philip Schniter. Expectation consistent approximate inference: Generalizations and convergence. In Information Theory (ISIT), 2016 IEEE International Symposium on, pages 190-194. IEEE, 2016.
[24] Alyson K Fletcher and Sundeep Rangan. Inference in deep networks in high dimensions. arXiv preprint arXiv:1706.06549, 2017.
[25] Robert G Gallager. Information theory and reliable communication, volume 2. Springer, 1968.
[26] Bing Gao, Xinwei Sun, Yang Wang, and Zhiqiang Xu. Perturbed amplitude flow for phase retrieval. IEEE Transaction on Signal Processing, 68:5427-5440, 2020.
[27] Martin Genzel and Peter Jung. Recovering structured data from superimposed non-linear measurements. IEEE Transactions on Information Theory, 66(1):453-477, 2020. doi: 10.1109/TIT.2019.2932426.
[28] T. Goldstein and C. Studer. Phasemax: Convex phase retrieval via basis pursuit. IEEE Transactions on Information Theory, 64(4):2675-2689, April 2018.
[29] D. Guo, Y. Wu, S. S. Shitz, and S. Verdu. Estimation in gaussian noise: Properties of the minimum mean-square error. 57(4):2371-2385, April 2011.
[30] Dongning Guo, Shlomo Shamai, and Sergio Verdú. Mutual information and minimum mean-square error in gaussian channels. 51(4):1261-1282, 2005.
[31] Hengtao He, Chao-Kai Wen, and Shi Jin. Generalized expectation consistent signal recovery for nonlinear measurements. In Information Theory (ISIT), 2017 IEEE International Symposium on, pages 2333-2337. IEEE, 2017.
[32] Yue M Lu and Gen Li. Phase transitions of spectral initialization for high-dimensional non-convex estimation. Information and Inference: A Journal of the IMA, 9(3):507-541, 2020.
[33] Junjie Ma and Li Ping. Orthogonal AMP. IEEE Access, 5:2020-2033, 2017.
[34] Junjie Ma, Xiaojun Yuan, and Li Ping. On the performance of turbo signal recovery with partial DFT sensing matrices. IEEE Signal Processing Letters, 22(10):1580-1584, 2015.
[35] Junjie Ma, Ji Xu, and Arian Maleki. Optimization-based AMP for phase retrieval: The impact of initialization and ℓ_{2} regularization. IEEE Transactions on Information Theory, 65(6), June 2019.
[36] Junjie Ma, Rishabh Dudeja, Ji Xu, Arian Maleki, and Xiaodong Wang. Spectral method for phase retrieval: an expectation propagation perspective. IEEE Transactions on Information Theory, 67(2):1332-1355, 2021.
[37] Antoine Maillard, Laura Foini, Alejandro Lage Castellanos, Florent Krzakala, Marc Mézard, and Lenka Zdeborová. High-temperature expansions and message passing algorithms. Journal of Statistical Mechanics: Theory and Experiment, 2019(11):113301, 2019.
[38] Antoine Maillard, Bruno Loureiro, Florent Krzakala, and Lenka Zdeborová. Phase retrieval in high dimensions: Statistical and computational phase transitions. Advances in Neural Information Processing Systems, 33, 2020.
[39] Thomas P Minka. Expectation propagation for approximate bayesian inference. In Proceedings of the Seventeenth conference on Uncertainty in artificial intelligence, pages 362-369. Morgan Kaufmann Publishers Inc., 2001.
[40] Marco Mondelli and Andrea Montanari. Fundamental limits of weak recovery with applications to phase retrieval. arXiv preprint arXiv:1708.05932, 2017.
[41] Manfred Opper and Ole Winther. Expectation consistent approximate inference. Journal of Machine Learning Research, 6(Dec):2177-2204, 2005.
[42] D. P. Palomar, J. M. Cioffi, and M. A. Lagunas. Joint Tx-Rx beamforming design for multicarrier MIMO channels: a unified framework for convex optimization. IEEE Transactions on Signal Processing, 51(9): 2381-2401, Sep. 2003.
[43] Yakov B Pesin. Dimension theory in dynamical systems: contemporary views and applications. University of Chicago Press, 2008.
[44] Yaniv Plan and Roman Vershynin. The generalized lasso with non-linear observations. IEEE Transactions on information theory, 62(3):1528-1537, 2016.
[45] S. Rangan. Generalized approximate message passing for estimation with random linear mixing. In IEEE International Symposium on Information Theory Proceedings, pages 2168-2172, July 2011.
[46] S. Rangan, P. Schniter, and A. K. Fletcher. Vector approximate message passing. IEEE Transactions on Information Theory, 65(10):6664-6684, Oct 2019.
[47] Alfréd Rényi. On the dimension and entropy of probability distributions. Acta Mathematica Academiae Scientiarum Hungarica, 10(1-2):193-215, 1959.
[48] E. Riegler and G. Tauböck. Almost lossless analog compression without phase information. In 2015 IEEE International Symposium on Information Theory (ISIT), pages 999-1003, June 2015.
[49] Cynthia Rush and Ramji Venkataramanan. Finite sample analysis of approximate message passing algorithms. IEEE Transactions on Information Theory, 64(11):7264-7286, 2018.
[50] Philip Schniter and Sundeep Rangan. Compressive phase retrieval via generalized approximate message passing. IEEE Transactions on Signal Processing, 63(4):1043-1055, 2015.
[51] Philip Schniter, Sundeep Rangan, and Alyson K Fletcher. Vector approximate message passing for the generalized linear model. In 2016 50th Asilomar Conference on Signals, Systems and Computers, pages 1525-1529. IEEE, 2016.
[52] Takashi Shinzato and Yoshiyuki Kabashima. Perceptron capacity revisited: classification ability for correlated patterns. Journal of Physics A: Mathematical and Theoretical, 41(32):324013, 2008.
[53] Pragya Sur and Emmanuel J Candès. A modern maximum-likelihood theory for high-dimensional logistic regression. Proceedings of the National Academy of Sciences, 116(29):14516-14525, 2019.
[54] Takashi Takahashi and Yoshiyuki Kabashima. Macroscopic analysis of vector approximate message passing in a model mismatch setting. In 2020 IEEE International Symposium on Information Theory (ISIT), pages 1403-1408. IEEE, 2020.
[55] K. Takeuchi. Rigorous dynamics of expectation-propagation-based signal recovery from unitarily invariant measurements. IEEE Transactions on Information Theory, pages 1-1, 2019.
[56] Keigo Takeuchi. A unified framework of state evolution for message-passing algorithms. In 2019 IEEE International Symposium on Information Theory (ISIT), pages 151-155. IEEE, 2019.
[57] M. Vehkaperä, Y. Kabashima, and S. Chatterjee. Analysis of regularized LS reconstruction and random matrix ensembles in compressed sensing. IEEE Transactions on Information Theory, 62(4):2100-2124, April 2016.
[58] Cédric Villani. Optimal transport: old and new, volume 338. Springer Science \& Business Media, 2008.
[59] G. Wang, G. B. Giannakis, and Y. C. Eldar. Solving systems of random quadratic equations via truncated amplitude flow. IEEE Transactions on Information Theory, 64(2):773-794, Feb 2018.
[60] Shuaiwen Wang, Haolei Weng, Arian Maleki, et al. Which bridge estimator is the best for variable selection? Annals of Statistics, 48(5):2791-2823, 2020.
[61] Y-C Wang and Z-Q Luo. Optimized iterative clipping and filtering for PAPR reduction of OFDM signals. IEEE Transactions on Communications, 59(1):33-37, 2010.
[62] Haolei Weng, Arian Maleki, Le Zheng, et al. Overcoming the limitations of phase transition by higher order analysis of regularization techniques. Annals of Statistics, 46(6A):3099-3129, 2018.
[63] Y. Wu and S. Verdú. Réenyi information dimension: Fundamental limits of almost lossless analog compression. IEEE Transactions on Information Theory, 56(8):3721-3748, Aug 2010.
[64] Y. Wu and S. Verdú. MMSE dimension. IEEE Transactions on Information Theory, 57(8):4857-4879, Aug 2011.
[65] Y. Wu and S. Verdú. Optimal phase transitions in compressed sensing. IEEE Transactions on Information Theory, 58(10):6241-6263, Oct 2012.
[66] Huishuai Zhang and Yingbin Liang. Reshaped wirtinger flow for solving quadratic system of equations. In Advances in Neural Information Processing Systems, pages 2622-2630, 2016.
[67] L. Zheng, A. Maleki, H. Weng, X. Wang, and T. Long. Does ℓ_{p}-minimization outperform ℓ_{1}-minimization? 63(11):6896-6935, Nov. 2017.

A Proof of Theorem 11

We first recall a few definitions and useful lemmas from [63, 65] in Section A.1. Then, we introduce our main technical lemma in Section A.2, and finally prove Theorem 1 in Section A. 3 .

A. 1 Minkowski dimension

In the almost lossless analog signal compression framework developed in [63, 65], the description complexity of bounded sets is gauged via their Minkowski dimension. Minkowski dimension is also called box-counting dimension [43] (hence the subscript B in the notation $\overline{\operatorname{dim}}_{B}$).
Definition 4 (Minkowski Dimension). Let \mathcal{S} be a nonempty bounded subset of a metric space. The upper Minkowski dimension of \mathcal{S} is defined as

$$
\begin{equation*}
\overline{\operatorname{dim}}_{B}(\mathcal{S})=\limsup _{\epsilon \rightarrow 0} \frac{\log N_{S}(\epsilon)}{\log \frac{1}{\epsilon}} \tag{18}
\end{equation*}
$$

where $N_{S}(\epsilon)$ is the ϵ-covering number of \mathcal{S}, that is

$$
N_{S}(\epsilon) \triangleq \min \left\{k: \mathcal{S} \subset \bigcup_{i=1}^{k} B\left(x_{i}, \epsilon\right), X_{i} \in \mathcal{S}\right\}
$$

where $B\left(x_{i}, \epsilon\right)$ denotes a ball centered at x_{i} with radius ϵ.

For a probability measure, we define its ϵ-Minkowski dimension [65] as the smallest Minkowski dimension among all sets with measure at least $1-\epsilon$.
Definition 5 (ϵ-Minkowski Dimension). Let μ be a probability measure on \mathbb{R}^{n}. Define the ϵ Minkowski dimension of μ as

$$
\begin{equation*}
\overline{\operatorname{dim}}_{B}^{\epsilon}(\mu)=\inf \left\{\overline{\operatorname{dim}}_{B}(\mathcal{S}): \mu(\mathcal{S}) \geq 1-\epsilon\right\} . \tag{19}
\end{equation*}
$$

An asymptotic version of the ϵ-Minkowski dimension (called the Minkowski dimension compression rate) was introduced in [63]. Wu and Verdú [63] proved that the probability measure of an i.i.d. source concentrates on sets with Minkowski dimension approximately equal to the Rényi information dimension of the measure.

We will use the following lemma from [63] in the proof of the auxiliary lemma in Section A. 2
Lemma 8 (Minkowski dimension in Euclidean spaces). Let \mathcal{S} be a bounded subset in $\left(\mathbb{R}^{n},\|\cdot\|_{2}\right)$. The Minkowski dimension satisfies

$$
\begin{equation*}
\overline{\operatorname{dim}}_{B}(\mathcal{S})=\limsup _{q \rightarrow \infty} \frac{\log \left|\langle\mathcal{S}\rangle_{2^{q}}\right|}{q} \tag{20}
\end{equation*}
$$

where $\langle x\rangle_{p} \triangleq\lfloor p x\rfloor / p$, and $\langle\mathcal{S}\rangle_{p} \triangleq\left\{\langle x\rangle_{p}: x \in \mathcal{S}\right\}$, and the logarithm uses base 2.
Lemma 8 shows that in Euclidean spaces, we could replace ϵ-balls by mesh cubes in defining covering number for Minkowski dimension. The similar forms of 20 and Definition 1 suggest the close relationship between Minkowski dimension and information dimension. Roughly speaking, Minkowski dimension counts the number of small pieces needed to cover the set while the information dimension also takes into account the probability of each piece and replaces the $\log N_{S}(\epsilon)$ term in (18) by an entropy term.

A. 2 An Auxiliary Lemma

We introduce a few definitions. First, recall the definition

$$
\mathcal{Q}_{f} \triangleq\left\{y: f^{-1}(y) \text { contains an interval }\right\}
$$

where $f^{-1}(y) \triangleq\{z: f(z)=y\}$. We assumed \mathcal{Q}_{f} to be a finite set. For $\boldsymbol{y} \in \mathbb{R}^{m}$, let

$$
\begin{equation*}
\operatorname{Spt}(\boldsymbol{y}) \triangleq\left\{i=1, \ldots, m: y_{i} \in \mathbb{R} \backslash \mathcal{Q}_{f}\right\} \tag{21}
\end{equation*}
$$

be a kind of generalized support of \boldsymbol{y} [63] (i.e., locations of the components of \boldsymbol{y} that do not fall into the "flat" sections of f).

For convenience, we introduce the following definitions:

$$
\begin{align*}
\mathcal{A}_{\alpha} \triangleq & \left\{\boldsymbol{s} \in \mathbb{R}^{n}: \boldsymbol{y}=f(\boldsymbol{A}(\boldsymbol{s})), \frac{|\operatorname{Spt}(\boldsymbol{y})|}{m} \leq \alpha\right\} \quad \text { and } \quad \mathcal{B}_{\alpha} \triangleq\left\{\boldsymbol{y} \in \mathbb{R}^{m}: \frac{|\operatorname{Spt}(\boldsymbol{y})|}{m} \leq \alpha\right\} \\
& \mathcal{A}_{r} \triangleq\left\{\boldsymbol{s} \in \mathbb{R}^{n}: \boldsymbol{y}=f(\boldsymbol{A}(\boldsymbol{s})),\|\boldsymbol{y}\| \leq r\right\} \quad \text { and } \quad \mathcal{B}_{r} \triangleq\left\{\boldsymbol{y} \in \mathbb{R}^{m}:\|\boldsymbol{y}\| \leq r\right\} \tag{22}
\end{align*}
$$

Further, let \mathcal{A} and \mathcal{B} be the set of signals and measurements that can be perfectly reconstructed under decoder g. More specifically,

$$
\mathcal{A} \triangleq\left\{\boldsymbol{s} \in \mathbb{R}^{n}: g(f(\boldsymbol{A} \boldsymbol{s}))=\boldsymbol{s}\right\} \quad \text { and } \quad \mathcal{B} \triangleq\{f(\boldsymbol{A} \boldsymbol{s}): \boldsymbol{s} \in \mathcal{A}\} .
$$

Clearly, the composite function $f \circ \boldsymbol{A}$ is invertible (with g being the inverse function) if we restrict its domain and co-domain to \mathcal{A} and \mathcal{B} respectively. With the above definitions, we have

$$
\mathcal{B} \cap \mathcal{B}_{\alpha} \cap \mathcal{B}_{r}=\left\{\boldsymbol{y}: \boldsymbol{y} \in \mathcal{B}, \frac{|\operatorname{Spt}(\boldsymbol{y})|}{m} \leq \alpha,\|\boldsymbol{y}\| \leq r\right\}
$$

and

$$
\begin{aligned}
g\left(\mathcal{B} \cap \mathcal{B}_{\alpha} \cap \mathcal{B}_{r}\right) & =\left\{g(\boldsymbol{y}): \boldsymbol{y} \in \mathcal{B}, \frac{|\operatorname{Spt}(\boldsymbol{y})|}{m} \leq \alpha,\|\boldsymbol{y}\| \leq r\right\} \\
& =\left\{\boldsymbol{s}: \boldsymbol{s} \in \mathcal{A}, \frac{\left|\operatorname{Spt}\left(g^{-1}(\boldsymbol{s})\right)\right|}{m} \leq \alpha,\left\|g^{-1}(\boldsymbol{s})\right\| \leq r\right\} \\
& =\left\{\boldsymbol{s}: \boldsymbol{s} \in \mathcal{A}, \frac{|\operatorname{Spt}(f(\boldsymbol{A} \boldsymbol{s}))|}{m} \leq \alpha,\|f(\boldsymbol{A} \boldsymbol{s})\| \leq r\right\} \\
& =\mathcal{A} \cap \mathcal{A}_{\alpha} \cap \mathcal{A}_{r} .
\end{aligned}
$$

Lemma 9, which is a variation of [65, Theorem 5], is key to our proof of Theorem 1, Notice that Lemma 9 is a non-asymptotic result. Also, the radius r of the boundedness constraint does not appear in (24).
Lemma 9. Let P_{X} be an arbitrary absolutely continuous distribution with respect to the Lebesgue measure and $\boldsymbol{x} \sim \prod_{i=1}^{n} P_{X}\left(x_{i}\right)$ a random vector. Suppose that for some $\alpha \in(0,1], r>0$ and $\epsilon \in(0,1)$, there exists a matrix $\boldsymbol{A} \in \mathbb{R}^{m \times n}$ and a Lipschitz continuous decoder $g: \mathcal{Y}^{m} \mapsto \mathbb{R}^{n}$ such that

$$
\begin{equation*}
\mathbb{P}\left\{\boldsymbol{x} \in \mathcal{A} \cap \mathcal{A}_{\alpha} \cap \mathcal{A}_{r}\right\} \geq 1-\epsilon \tag{23}
\end{equation*}
$$

Then, necessarily we have

$$
\begin{equation*}
\frac{m}{n} \geq \frac{1-\epsilon}{\alpha} \tag{24}
\end{equation*}
$$

Proof. Our proof follows from the following chain of inequalities:

$$
\begin{aligned}
\alpha \cdot m & \stackrel{(a)}{\geq} \overline{\operatorname{dim}}_{B}\left(\mathcal{B}_{\alpha} \cap \mathcal{B}_{r}\right) \\
& \geq \overline{\operatorname{dim}}_{B}\left(\mathcal{B}_{\alpha} \cap \mathcal{B}_{r} \cap \mathcal{B}\right) \\
& \stackrel{(b)}{\geq \overline{\operatorname{dim}}_{B}\left(g\left(\mathcal{B}_{\alpha} \cap \mathcal{B}_{r} \cap \mathcal{B}\right)\right)} \\
& =\overline{\operatorname{dim}}_{B}\left(\mathcal{A}_{\alpha} \cap \mathcal{A}_{r} \cap \mathcal{A}\right) \\
& \stackrel{(c)}{\geq} \overline{\operatorname{dim}}_{B}^{\epsilon}\left(P_{\boldsymbol{x}}\right) \\
& \stackrel{(d)}{\geq} \bar{d}(\boldsymbol{x})-\epsilon n \\
& \stackrel{(e)}{=}(1-\epsilon) n
\end{aligned}
$$

where step (b) is from the fact that Minkowski dimension does not increase under Lipschitz mapping [20, Proposition 2.5], and step (c) is from the definition of ϵ-Minkowski dimension (see Definition 5) and $\mathbb{P}\left\{\boldsymbol{x} \in g\left(\mathcal{B} \cap \mathcal{B}_{\alpha, r}\right)\right\} \geq 1-\epsilon$, step (d) is proved in [65, Theorem 5], and step (e) is from the fact that $d(\boldsymbol{x})=n \cdot d(X)=n$ when $\boldsymbol{x} \sim \prod_{i}^{n} P_{X}\left(x_{i}\right)$ and P_{X} is absolutely continuous.

It remains to prove step (a). Now, we use Lemma 8 .

$$
\overline{\operatorname{dim}}_{B}\left(\mathcal{B}_{\alpha} \cap \mathcal{B}_{r}\right)=\limsup _{M \rightarrow \infty} \frac{\log \left|\left\langle\mathcal{B}_{\alpha} \cap \mathcal{B}_{r}\right\rangle_{M}\right|}{\log M}
$$

where $\left\langle\mathcal{B}_{\alpha} \cap \mathcal{B}_{r}\right\rangle_{M}$ is a set obtained by applying the discretization operator $\langle y\rangle_{M}=\lfloor M y\rfloor / M$ (which has $2 r M$ quantization levels in $y \in[-r, r]$) component-wisely to all of the elements in $\mathcal{B}_{\alpha} \cap \mathcal{B}_{r}$. From our definition of $\mathcal{B}_{\alpha} \cap \mathcal{B}_{r}$, we have

$$
\begin{aligned}
\left|\left\langle\mathcal{B}_{\alpha} \cap \mathcal{B}_{r}\right\rangle_{M}\right| & =\left|\left\{\langle\boldsymbol{y}\rangle_{M}: \boldsymbol{y} \in \mathbb{R}^{m}, \frac{\operatorname{Spt}(\boldsymbol{y})}{m} \leq \alpha,\|\boldsymbol{y}\| \leq r\right\}\right| \\
& \leq\left|\left\{\langle\boldsymbol{y}\rangle_{M}: \frac{\operatorname{Spt}(\boldsymbol{y})}{m} \leq \alpha, \boldsymbol{y} \in[-r, r]^{m}\right\}\right| \\
& \leq \sum_{i=0}^{\alpha m} C_{m}^{i}(2 r M)^{i}\left|\mathcal{Q}_{f}\right|^{m-i} \\
& \leq \sum_{i=0}^{\alpha m} C_{m}^{i}(2 r M)^{\alpha m}\left|\mathcal{Q}_{f}\right|^{(1-\alpha) m} \quad \text { for } M>\left|\mathcal{Q}_{f}\right| /(2 r) \\
& \leq 2^{m}(2 r M)^{\alpha m}\left|\mathcal{Q}_{f}\right|^{(1-\alpha) m}
\end{aligned}
$$

where $\mathcal{Q}_{f} \triangleq\left\{y: f^{-1}(y)\right.$ contains an interval $\}$, and we assumed $\left|\mathcal{Q}_{f}\right|<\infty$. Hence,

$$
\limsup _{M \rightarrow \infty} \frac{\log \left|\left\langle\mathcal{B}_{\alpha} \cap \mathcal{B}_{r}\right\rangle_{M}\right|}{\log M} \leq \alpha \cdot m
$$

Combining all the above arguments yields

$$
\alpha \cdot m \geq(1-\epsilon) n,
$$

and hence the claimed lower bound on m / n.

In view of Lemma 9 , we can now prove the converse result in Theorem 1

A. 3 Proof of Theorem 1

Proof. From Lemma 10 below, as $m, n \rightarrow \infty$ with $m, n \rightarrow \delta \in(1, \infty)$, the empirical distribution of $\boldsymbol{z}=\boldsymbol{A} \boldsymbol{x}$ converges to standard Gaussian in probability

$$
\frac{1}{m} \sum_{i=1}^{m} \mathbb{I}\left(z_{i} \leq t\right) \xrightarrow{P} \Phi(t), \quad \forall t \in \mathbb{R}
$$

Consequently,

$$
\frac{\mid\left\{i=1, \ldots, m: z_{i} \in \mathbb{R} \backslash f^{-1}\left(\mathcal{Q}_{f}\right) \mid\right.}{m} \xrightarrow{P} 1-\mathbb{P}\left\{Z \in f^{-1}\left(\mathcal{Q}_{f}\right)\right\} \triangleq d(Y),
$$

where $Z \sim \mathcal{N}(0,1)$ and $\mathcal{Q}_{f} \triangleq\left\{y: f^{-1}(y)\right.$ contains an interval $\}$. This is equivalent to (see 21)

$$
\begin{equation*}
\frac{|\operatorname{Spt}(f(\boldsymbol{A} \boldsymbol{x}))|}{m}=\frac{|\operatorname{Spt}(f(\boldsymbol{z}))|}{m}=\frac{\mid\left\{i=1, \ldots, m: f\left(z_{i}\right) \in \mathbb{R} \backslash \mathcal{Q}_{f} \mid\right.}{m} \xrightarrow{P} d(Y) . \tag{25}
\end{equation*}
$$

Hence, for any $\kappa>0$,

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left\{\left|\frac{|\operatorname{Spt}(f(\boldsymbol{A} \boldsymbol{x}))|}{m}-d(Y)\right|<\kappa\right\}=1
$$

It is understood that in the above limit m and n tend to infinity with $m / n \rightarrow \delta$. In view of the definition of \mathcal{A}_{α} in 22), we have

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left\{\boldsymbol{x} \in \mathcal{A}_{\alpha}\right\}=1, \quad \text { for } \alpha=d(Y)+\kappa
$$

Hence, for any $\epsilon>0$ and $\alpha=d(Y)+\kappa$, there exists sufficiently large n, m such that

$$
\mathbb{P}\left\{\boldsymbol{x} \in \mathcal{A}_{\alpha}\right\} \geq 1-\frac{\epsilon}{3}
$$

Further, since $\lim _{r \rightarrow \infty} \mathbb{P}\left\{\boldsymbol{x} \in \mathcal{A}_{\alpha} \cap \mathcal{A}_{r}\right\}=\mathbb{P}\left\{\boldsymbol{x} \in \mathcal{A}_{\alpha}\right\}$, there exists sufficiently large r such that

$$
\begin{equation*}
\mathbb{P}\left\{\boldsymbol{x} \in \mathcal{A}_{\alpha} \cap \mathcal{A}_{r}\right\} \geq \mathbb{P}\left\{\boldsymbol{x} \in \mathcal{A}_{\alpha}\right\}-\frac{\epsilon}{3} \geq 1-\frac{2 \epsilon}{3} \tag{26}
\end{equation*}
$$

Suppose that the decoding error probability does not exceed $\epsilon / 3$, namely,

$$
\begin{equation*}
\mathbb{P}\{\boldsymbol{x} \in \mathcal{A}\} \geq 1-\frac{\epsilon}{3} \tag{27}
\end{equation*}
$$

For $\alpha=d(Y)+\kappa$, and sufficiently large r and m, n, we have

$$
\begin{aligned}
\mathbb{P}\left\{\boldsymbol{x} \in \mathcal{A} \cap \mathcal{A}_{\alpha} \cap \mathcal{A}_{r}\right\} & \geq \mathbb{P}\{\boldsymbol{x} \in \mathcal{A}\}+\mathbb{P}\left\{\boldsymbol{x} \in \mathcal{A}_{\alpha} \cap \mathcal{A}_{r}\right\}-1 \\
& \geq 1-\epsilon,
\end{aligned}
$$

where the second step is form 26. Now, using Lemma 9 , we must have

$$
\frac{m}{n} \geq \frac{1-\epsilon / 3}{\alpha}=\frac{1-\epsilon / 3}{d(Y)+\kappa}
$$

Since $\kappa>0$ is arbitrary, $m / n>\frac{1-\epsilon / 3}{d(Y)}$. Hence, a necessary condition for achieving vanishing decoding error as $m, n \rightarrow \infty$ with $m / n \rightarrow \delta$ is

$$
\delta \geq \frac{1}{d(Y)}
$$

Lemma 10. Let $\boldsymbol{z} \triangleq \boldsymbol{A x}$. Under Assumptions (A.1)-(A.3), the following holds almost surely as $m, n \rightarrow \infty$ and $m / n \rightarrow \delta \in(1, \infty)$:

$$
\boldsymbol{z} \xrightarrow{W_{2}} Z \sim \mathcal{N}(0,1)
$$

where $\xrightarrow{W_{2}}$ denotes convergence in Wasserstein space of order two. In particular, this implies

$$
\begin{equation*}
\frac{1}{m} \sum_{i=1}^{m} \mathbb{I}\left(z_{i} \leq t\right) \xrightarrow{\text { a.s. }} \Phi(t), \quad \forall t \in \mathbb{R} \tag{28}
\end{equation*}
$$

Proof. Let $\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\top}$. We first prove the following convergence result

$$
\lim _{n \rightarrow \infty} \frac{1}{n}\left\|\boldsymbol{\Sigma} \boldsymbol{V}^{\top} \boldsymbol{x}\right\| \stackrel{\text { a.s. }}{=} 1
$$

Since \boldsymbol{V} is Haar distributed, we have $\boldsymbol{V}^{\top} \boldsymbol{x} \stackrel{d}{=}\|\boldsymbol{x}\| /\|\boldsymbol{g}\| \cdot \boldsymbol{g}$ where $\boldsymbol{g} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{I})$, and $\stackrel{d}{=}$ means that the random vectors on the left and right hand sides have the same distribution [46]. Hence,

$$
\boldsymbol{\Sigma} \boldsymbol{V}^{\top} \boldsymbol{x} \stackrel{d}{=} \frac{\|\boldsymbol{x}\|}{\|\boldsymbol{g}\|} \cdot \boldsymbol{\Sigma} \boldsymbol{g}, \quad \boldsymbol{g} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{I})
$$

As \boldsymbol{x} has i.i.d. entries with unit variance, by the law of large numbers, we have $\lim _{n \rightarrow \infty}\|\boldsymbol{x}\| /\|\boldsymbol{g}\| \stackrel{\text { a.s. }}{=}$ 1. By Assumption (A.2), the empirical distribution of $\left\{\sigma_{i}\right\}_{i=1}^{n}$ converges to P_{λ} almost surely, and further $n^{-1} \sum_{i=1}^{n} \sigma_{i}^{2} \xrightarrow{\text { a.s. }} 1$. In other words, the empirical distribution of $\left\{\sigma_{i}\right\}_{i=1}^{n}$ converges, almost surely, in Wasserstein distance of order two; see [58, Definition 6.7]. Further, $\boldsymbol{g} \xrightarrow{W_{2}} Z \sim \mathcal{N}(0,1)$. Then, by Fan [21] Proposition B.4], $\boldsymbol{\Sigma} \boldsymbol{g} \xrightarrow[\rightarrow]{W_{2}} \Lambda Z$ almost surely, where $\Lambda \sim P_{\lambda}$ and $Z \sim \mathcal{N}(0,1)$. Let $F(v)=v^{2}$. Convergence in W_{2} implies [58, Definition 6.7]

$$
\frac{1}{n} \sum_{i=1}^{n} F\left((\boldsymbol{\Sigma} \boldsymbol{g})_{i}\right) \xrightarrow{\text { a.s. }} \mathbb{E}[F(\Lambda Z)]=1
$$

where the equality follows the normalization $\mathbb{E}\left[\Lambda^{2}\right]=1$. We then have $\|\boldsymbol{\Sigma} \boldsymbol{g}\| / \sqrt{n} \xrightarrow{\text { a.s. }} 1$. Combining these arguments yields the following result

$$
\frac{1}{\sqrt{n}}\left\|\boldsymbol{\Sigma} \boldsymbol{V}^{\top} \boldsymbol{x}\right\| \xrightarrow{\text { a.s. }} 1 .
$$

Then, by [21, Proposition C.1], almost surely we have

$$
\boldsymbol{z} \triangleq \boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T} \boldsymbol{x} \xrightarrow{W_{2}} Z, \quad Z \sim \mathcal{N}(0,1)
$$

which further implies the weak convergence of (28); see [58, Definition 6.7] for details about convergence of probability measure in Wasserstein distance.

B Proof of Theorem [2]

The proof is analogous to [65], Theorem 9]. Notice that we assumed $\boldsymbol{x} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{I})$ in Theorem 2
Let $R_{X}(D)$ be the rate distortion functions of P_{X} with mean square error distortion:

$$
R_{X}(D)=\inf _{\mathbb{E}[d(X, \hat{S})] \leq D, X \sim P_{X}} I(X ; \hat{S})
$$

where $d(X, \hat{S}):=(X-\hat{S})^{2}, I(X ; \hat{S})$ denotes the mutual information between X and \hat{S}, and the infimum in the above definition is over the transition probability $P_{\hat{S} \mid X}$ subject to average distortion constraint. Notice that $R_{X}(D)$ can be equivalently defined as [25, Theorem 9.6.1]

$$
R_{X}(D)=\inf _{\mathbb{E}\left[d_{n}(\boldsymbol{x}, \hat{\boldsymbol{s}})\right] \leq D,\left\{x_{i}\right\} \stackrel{i . i d .}{\sim} \cdot P_{X}} \frac{1}{n} I(\boldsymbol{x} ; \hat{\boldsymbol{s}}),
$$

where $d_{n}(\boldsymbol{x}, \hat{\boldsymbol{s}}):=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\hat{s}_{i}\right)^{2}$.
Consider the MMSE estimator $\hat{\boldsymbol{x}}=\mathbb{E}[\boldsymbol{x} \mid \boldsymbol{y}, \boldsymbol{A}]$ with mean square distortion

$$
D_{n}\left(\sigma_{w}\right) \triangleq \frac{1}{n} \operatorname{mmse}(\boldsymbol{x} \mid \boldsymbol{y}, \boldsymbol{A})=\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left(x_{i}-\hat{x}_{i}\right)^{2}
$$

where the expectation is over the joint distribution of \boldsymbol{x} and $\hat{\boldsymbol{x}}$. In what follows, we will sometimes write $D_{n}\left(\sigma_{w}\right)$ as D_{n} for notational convenience. By the definition of rate distortion functions,

$$
\begin{equation*}
n \cdot R_{X}\left(D_{n}\right) \leq I(\boldsymbol{x}, \hat{\boldsymbol{x}}) \tag{29}
\end{equation*}
$$

Denote by $I(\hat{\boldsymbol{x}} ; \boldsymbol{A}, \boldsymbol{x})$ the mutual information between $\hat{\boldsymbol{x}}$ and $(\boldsymbol{A}, \boldsymbol{x})$. We have

$$
\begin{aligned}
I(\boldsymbol{x} ; \hat{\boldsymbol{x}}) & \leq I(\boldsymbol{x} ; \boldsymbol{A}, \hat{\boldsymbol{x}}) \\
& =\underbrace{I(\boldsymbol{x} ; \boldsymbol{A})}_{0}+I(\boldsymbol{x} ; \hat{\boldsymbol{x}} \mid \boldsymbol{A}) .
\end{aligned}
$$

Hence,

$$
\begin{equation*}
n \cdot R_{X}\left(D_{n}\right) \leq I(\boldsymbol{x} ; \hat{\boldsymbol{x}} \mid \boldsymbol{A}) \tag{30}
\end{equation*}
$$

Denote $\boldsymbol{z} \triangleq \boldsymbol{A} \boldsymbol{x}$ and $\boldsymbol{y}=f(\boldsymbol{z}+\boldsymbol{w})$. For every realization of \boldsymbol{A}, we have the following Markov chain:

$$
\boldsymbol{x} \rightarrow \boldsymbol{z}_{A} \rightarrow \boldsymbol{y}_{A} \rightarrow \hat{\boldsymbol{x}}_{A}
$$

where the subscript " A " is added to emphasize the fact that \boldsymbol{A} is fixed. From data processing inequality [25], Theorem 4.3.3], we have $I\left(\boldsymbol{x} ; \hat{\boldsymbol{x}}_{A}\right) \leq I\left(\boldsymbol{z}_{A} ; \boldsymbol{y}_{A}\right)$. Further averaging over \boldsymbol{A} yields

$$
\begin{align*}
I(\boldsymbol{x} ; \hat{\boldsymbol{x}} \mid \boldsymbol{A}) & \leq I(\boldsymbol{z} ; \boldsymbol{y} \mid \boldsymbol{A}) \\
& \leq \sum_{i=1}^{m} I\left(z_{i} ; y_{i} \mid \boldsymbol{A}\right) \tag{31}\\
& =\sum_{i=1}^{m} I\left(z_{i} ; y_{i} \mid \boldsymbol{a}_{i}\right) \\
& =m \cdot I(z ; y \mid \boldsymbol{a}),
\end{align*}
$$

where \boldsymbol{a}_{i} denotes the i-th row of \boldsymbol{A}, the second inequality is follows from [25], Eq. (7.2.19)] (note that $\left\{y_{i}\right\}$ are conditionally independent given \boldsymbol{z}), and in the last inequality we dropped the subscripts as the joint distributions of $\left\{\left(\boldsymbol{z}_{i}, \boldsymbol{y}_{i}, \boldsymbol{a}_{i}\right)\right\}$ are identical due to the rotationally-invariance of \boldsymbol{A}. Combining (30) and (31) gives us the following lower bound on m / n :

$$
\begin{equation*}
\frac{m}{n} \geq \frac{R_{X}\left(D_{n}\right)}{I(z ; y \mid \boldsymbol{a})} \tag{32}
\end{equation*}
$$

Now, suppose that

$$
M^{*}(X, f, \delta)=\sup _{\sigma_{w}} \limsup _{n \rightarrow \infty} \frac{\frac{1}{n} \mathrm{mmse}(\boldsymbol{x} \mid \boldsymbol{y}, \boldsymbol{A})}{\sigma_{w}^{2}}<\infty
$$

Then, there exits $C>0$ such that the following holds for sufficiently large n

$$
D_{n}=\frac{1}{n} \operatorname{mmse}(\boldsymbol{x} \mid \boldsymbol{y}, \boldsymbol{A}) \leq C \cdot \sigma_{w}^{2}, \quad \forall \sigma_{w}>0
$$

The following arguments are similar to the proof of [65], Theorem 9]. Let R_{X}^{-1} be the inverse function of R_{X}. (Since R_{X} is a monotonically decreasing function, its inverse exists.) We have

$$
R_{X}\left(D_{n}\right) \geq R_{X}\left(C \cdot \sigma_{w}^{2}\right), \quad \forall \sigma_{w}>0
$$

Hence, the following holds for any $\sigma_{w}>0$,

$$
\begin{align*}
\frac{n}{m} & \leq \frac{I(z ; y \mid \boldsymbol{a})}{R_{X}\left(C \cdot \sigma_{w}^{2}\right)} \\
& =\frac{I(z ; y \mid \boldsymbol{a})}{\frac{1}{2} \log \frac{1}{C \cdot \sigma_{w}^{2}}} \cdot \frac{\frac{1}{2} \log \frac{1}{\sigma_{w}^{2}}}{R_{X}\left(C \cdot \sigma_{w}^{2}\right)} \tag{33}
\end{align*}
$$

When $X \sim \mathcal{N}(0,1)$, we have [63]

$$
\begin{equation*}
\lim _{\sigma_{w} \rightarrow 0} \frac{R_{X}\left(C \cdot \sigma_{w}^{2}\right)}{\frac{1}{2} \log \frac{1}{C \cdot \sigma_{w}^{2}}}=1 \tag{34}
\end{equation*}
$$

Further, from Lemma 11, we have

$$
\begin{equation*}
\limsup _{\sigma_{w} \rightarrow 0} \frac{I(z ; y \mid \boldsymbol{a})}{\frac{1}{2} \log \frac{1}{\sigma_{w}^{2}}} \leq 1-\mathbb{E}_{\boldsymbol{a}}\left[\mathbb{P}\left\{z_{a} \in f^{-1}\left(\mathcal{Q}_{f}\right)\right\}\right], \tag{35}
\end{equation*}
$$

where $z_{a} \sim \mathcal{N}\left(0,\|\boldsymbol{a}\|^{2}\right)$, and \boldsymbol{a} has the same distribution as the first row of \boldsymbol{A}. Note that the proof of Lemma 10 shows that $\|\boldsymbol{A} \boldsymbol{s}\| \xrightarrow{\text { a.s. }} 1$ as $m, n \rightarrow \infty$ with $m / n \rightarrow \delta$, whenever $\|\boldsymbol{s}\| \rightarrow 1$. Hence, $\|\boldsymbol{a}\| \xrightarrow{\text { a.s. }} 1$ where \boldsymbol{a} is an arbitrary row of \boldsymbol{A}. Recall that $\boldsymbol{z} \sim \mathcal{N}\left(0,\|\boldsymbol{a}\|^{2}\right)$. It is easy to show that $\mathbb{P}\left\{z_{a} \in f^{-1}\left(\mathcal{Q}_{f}\right)\right\}$ is a continuous function of $\|\boldsymbol{a}\|^{2}$, and by continuous mapping theorem we have $\mathbb{P}\left\{z_{a} \in f^{-1}\left(\mathcal{Q}_{f}\right)\right\} \xrightarrow{\text { a.s. }} \mathbb{P}\left\{Z \in \mathcal{Q}_{f}\right\}$ where $Z \sim \mathcal{N}(0,1)$. Then by dominated convergence theorem, the following holds as $m, n \rightarrow \infty$ with $m / n \rightarrow \delta$,

$$
\begin{equation*}
\mathbb{E}_{\boldsymbol{a}}\left[\mathbb{P}\left\{z_{a} \in f^{-1}\left(\mathcal{Q}_{f}\right)\right\}\right] \rightarrow \mathbb{P}\left\{Z \in \mathcal{Q}_{f}\right\} \tag{36}
\end{equation*}
$$

Combining (33)-36) and passing to the limit yields our desired result.
Lemma 11. Let \boldsymbol{a} be the first row of \boldsymbol{A}, and $z=(\boldsymbol{A x})_{1}, y=f(z+w)$, where $w \sim \mathcal{N}\left(0, \sigma_{w}^{2}\right)$ and $\boldsymbol{w} \Perp(\boldsymbol{A}, \boldsymbol{x})$. We have

$$
\limsup _{\sigma_{w} \rightarrow 0} \frac{I(z ; y \mid \boldsymbol{a})}{\log \left(\sigma_{w}^{-2}\right)} \leq 1-\mathbb{E}\left[\mathbb{P}\left\{z_{a} \in f^{-1}\left(Q_{f}\right)\right\}\right]
$$

where $z_{a} \sim \mathcal{N}\left(0,\|\boldsymbol{a}\|^{2}\right)$.
Proof. We use z_{a} to denote a random variable with distribution $P_{z \mid a}, y_{a}=f\left(z_{a}+w\right)$ and $z_{a} \Perp w$. Note that $z=\boldsymbol{a}^{\top} \boldsymbol{x}$, and so $z_{a} \sim \mathcal{N}\left(\mathbf{0},\|\boldsymbol{a}\|^{2}\right)$. Then, by the reverse Fatou lemma, we have

$$
\limsup _{\sigma_{w} \rightarrow 0} \frac{I(z ; y \mid \boldsymbol{a})}{\frac{1}{2} \log \sigma_{w}^{-2}}=\limsup _{\sigma_{w} \rightarrow 0} \mathbb{E}\left[\frac{I\left(z_{a} ; y_{a}\right)}{\frac{1}{2} \log \sigma_{w}^{-2}}\right] \leq \mathbb{E}\left[\limsup _{\sigma_{w} \rightarrow 0} \frac{I\left(z_{a} ; y_{a}\right)}{\frac{1}{2} \log \sigma_{w}^{-2}}\right] .
$$

In what follows, we prove

$$
\begin{equation*}
\limsup _{\sigma_{w} \rightarrow 0} \frac{I\left(z_{a} ; y_{a}\right)}{\frac{1}{2} \log \sigma_{w}^{-2}}=\mathbb{P}\left\{z_{a} \in \mathbb{R} \backslash \mathcal{Q}_{f}\right\}, \tag{37}
\end{equation*}
$$

where $z_{a} \in \mathcal{N}\left(0,\|\boldsymbol{a}\|^{2}\right)$. For convenience, define

$$
\begin{equation*}
p_{a} \triangleq z_{a}+w \tag{38}
\end{equation*}
$$

Using this notation, $y_{a}=f\left(p_{a}\right)$. We introduce an auxiliary random variable

$$
Q \triangleq \mathbb{I}\left(p_{a} \in f^{-1}\left(\mathcal{Q}_{f}\right)\right)
$$

Then,

$$
\begin{align*}
I\left(z_{a} ; f\left(z_{a}+w\right)\right) & \leq I\left(z_{a} ; f\left(z_{a}+w\right), Q\right) \\
& =I\left(z_{a} ; Q\right)+I\left(z_{a} ; f\left(z_{a}+w\right) \mid Q\right) \\
& =I\left(z_{a} ; Q\right)+\mathbb{P}\{Q=1\} \cdot I\left(z_{a} ; f\left(z_{a}+w\right) \mid Q=1\right)+\mathbb{P}\{Q=0\} \cdot I\left(z_{a} ; f\left(z_{a}+w\right) \mid Q=0\right) \\
& \leq 1+\log \left(\left|\mathcal{Q}_{f}\right|\right)+\mathbb{P}\{Q=0\} \cdot I\left(z_{a} ; f\left(z_{a}+w\right) \mid Q=0\right) \tag{39}
\end{align*}
$$

where the last inequality follows from the fact that $I\left(z_{a} ; Q\right) \leq 1$ for the binary random variable Q, and $I\left(z_{a} ; f\left(z_{a}+w\right) \mid Q=1\right) \leq \log \left(\left|\mathcal{Q}_{f}\right|\right)$ since $f\left(z_{a}+w\right)$ takes at most $\left|\mathcal{Q}_{f}\right|$ different values conditional on $Q=1$.
Since $z_{a} \in \mathcal{N}\left(0,\|\boldsymbol{a}\|^{2}\right)$ and $w \sim \mathcal{N}\left(0, \sigma_{w}^{2}\right)$, we can represent $p_{a}=z_{a}+w$ as

$$
z_{a} \stackrel{d}{=} \underbrace{\frac{\|\boldsymbol{a}\|^{2}}{\|\boldsymbol{a}\|^{2}+\sigma_{w}^{2}}}_{\alpha} \cdot p_{a}+\underbrace{\sqrt{\frac{\|\boldsymbol{a}\|^{2} \sigma_{w}^{2}}{\|\boldsymbol{a}\|^{2}+\sigma_{w}^{2}}}}_{\beta} \cdot N
$$

where N is standard Gaussian and independent of p_{a}. Hence, N is still independent of p_{a} conditioned on $Q=\mathbb{I}\left(p_{a} \in f^{-1}\left(\mathcal{Q}_{f}\right)\right)=0$. Hence, the conditional distribution of $\left(z_{a}, p_{a}\right)$ is characterized by

$$
\tilde{z}_{a}=\alpha \cdot \tilde{p}_{a}+\beta N,
$$

where $\tilde{p}_{a} \sim P_{p_{a} \mid Q=0}=P_{p_{a} \mid p_{a} \in \mathbb{R} \backslash f^{-1}\left(\mathcal{Q}_{f}\right)}$. Since $f\left(\tilde{p}_{a}\right) \rightarrow \tilde{p}_{a} \rightarrow z_{a}$ forms a Markov chain, by data processing inequality, we have

$$
\begin{aligned}
I\left(z_{a} ; f\left(z_{a}+w\right) \mid Q=0\right) & =I\left(\tilde{z}_{a} ; f\left(\tilde{p}_{a}\right)\right) \leq I\left(\tilde{z}_{a} ; \tilde{p}_{a}\right) \\
& =\frac{1}{2} \log \left(1+\frac{\alpha^{2}}{\beta^{2}} \mathbb{E}\left[\tilde{p}_{a}^{2}\right]\right) \\
& =\frac{1}{2} \log \left(1+\frac{\|\boldsymbol{a}\|^{2}}{\|\boldsymbol{a}\|^{2}+\sigma_{w}^{2}} \frac{\mathbb{E}\left[\tilde{p}_{a}^{2}\right]}{\sigma_{w}^{2}}\right) .
\end{aligned}
$$

It is easy to show that $\mathbb{E}\left[\tilde{p}_{a}^{2}\right]$ converges to a positive constant as $\sigma_{w} \rightarrow 0$, and

$$
\begin{equation*}
\limsup _{\sigma_{w} \rightarrow 0} \frac{I\left(z_{a} ; f\left(z_{a}+w\right) \mid Q=0\right)}{\frac{1}{2} \log \left(\sigma_{w}^{-2}\right)} \leq 1 \tag{40a}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{\sigma_{w} \rightarrow 0} \mathbb{P}\{Q=0\}=\mathbb{P}\left\{z_{a} \in \mathbb{R} \backslash \mathcal{Q}_{f}\right\} \tag{40b}
\end{equation*}
$$

Combining (39) and (40) proves Lemma 11 .

C Proof of Lemma 2

We use the smoothing argument of Zheng et al. [67, Theorem 1]. Roughly speaking, we construct a sequence of smoothed functions $\tilde{\eta}_{z}$ (indexed by ξ, M, σ; see (43)), and show that the performance of the corresponding GLM-EP-app algorithm tends to the predicted performance of GLM-EP as ξ, M, σ approaches a certain limit. This implies the performance of GLM-EP-app could be made arbitrarily close to the predicted one with proper choice of ξ, M, σ.
Remark 3. We emphasize that the GLM-EP-app algorithm is introduced mainly for performance analysis purposes. In practice, GLM-EP is preferable. Our simulations suggest that the asymptotic prediction is accurate even for the original GLM-EP under wide choices of f (including the quantization function).

As many steps of the proof are the same as [67, Theorem 1], we only sketch the main idea here.

C. 1 Constructions of $\tilde{\eta}_{z}$ and C_{t}

Let $\mathcal{Q}_{f} \triangleq\left\{y_{q}: 1 \leq q \leq Q\right\}$ (where $Q<\infty$) be the set for which f^{-1} contains an interval. Let $\xi<\frac{1}{2} \min \left\{y_{p}-y_{q}, p \neq q\right\}$ and define

$$
\eta_{z}^{\xi}\left(z_{r}, y\right) \triangleq \begin{cases}\eta_{q}\left(z_{r}\right) & \text { for } z_{r} \in \mathbb{R}, y \in\left(y_{q}-\xi, y_{q}+\xi\right), \forall q=1, \ldots, Q \tag{41a}\\ \eta_{z}\left(z_{r}, y\right) & \text { for } z_{r} \in \mathbb{R}, y \in \mathcal{Y} \backslash \bigcup_{q=1}^{Q}\left(y_{q}-\xi, y_{q}+\xi\right) \\ 0 & \text { for } z_{r} \in \mathbb{R}, y \in \mathbb{R} \backslash \mathcal{Y}\end{cases}
$$

where we denoted

$$
\begin{equation*}
\eta_{q}\left(z_{r}\right) \triangleq \eta_{z}\left(z_{r}, y_{q}\right) \tag{41b}
\end{equation*}
$$

Here, we extended the definition of η_{z} at the isolated points $\left\{y_{1}, \ldots, y_{Q}\right\}$ to their neighborhoods. This treatment ensures $\eta_{z}^{\xi}\left(z_{r}, y\right)$ to be continuous at $\left(z_{r}, y_{q}\right)$, which is a useful property for our analysis. We apply an additional truncation to $\eta_{z}^{\xi}\left(z_{r}, y\right)$ (where $M>\max \left\{\left|y_{1}\right|, \ldots,\left|y_{Q}\right|\right\}$):

$$
\begin{equation*}
\eta_{z}^{\xi, M}\left(z_{r}, y\right) \triangleq \eta_{z}^{\xi}\left(z_{r}, y\right) \cdot \mathbb{I}_{[-M, M]^{2}}\left(z_{r}, y\right) \tag{42}
\end{equation*}
$$

where $\mathbb{I}_{[-M, M]^{2}}\left(z_{r}, y\right)$ is an indicator function that equals one when $\left(z_{r}, y\right) \in[-M, M]^{2}$ and zero elsewhere. Finally, we smooth $\eta_{z}^{\xi, M}\left(z_{r}, y\right)$ by convolving it with a Gaussian kerne $\left.\right|^{4}$.

$$
\begin{align*}
\eta_{z}^{\sigma, \xi, M}\left(z_{r}, y\right) & \triangleq \eta_{z}^{\xi, M}\left(z_{r}, y\right) \star \phi_{\sigma}\left(z_{r}, y\right) \\
& =\iint_{\mathbb{R}^{2}} \eta^{\xi, M}(s, t) \cdot \frac{1}{2 \pi \sigma^{2}} \exp \left(-\frac{\left(s-z_{r}\right)^{2}+(t-y)^{2}}{2 \sigma^{2}}\right) d s d t \tag{43}
\end{align*}
$$

Some useful properties of $\eta_{z}^{\sigma, \xi, M}\left(z_{r}, y\right)$ and η_{z} are given in Section C.3 (see Lemma 12 and Lemma 13).

In the GLM-EP-app algorithm (see (8), the function $\tilde{\eta}_{z}$ and the constant C_{t} are given by

$$
\begin{equation*}
\tilde{\eta}_{z}\left(z_{r}, y, v_{r}\right)=\eta_{z}^{\sigma, \xi, M}\left(z_{r}, y, v_{r}\right) \tag{44a}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{t}=\frac{1}{1-\mathbb{E}\left[\eta_{z}^{\prime}\left(Z_{r}^{t-1}\right), Y, V_{r}^{-1}\right]} \tag{44b}
\end{equation*}
$$

where the expectation in 44 b are taken with respect to $Z_{r}^{t-1} \sim \mathcal{N}\left(0,1-V_{r}^{t-1}\right), Z=Z_{r}+$ $\mathcal{N}\left(0, V_{r}^{t-1}\right)$ and $Y=f(Z)$. Notice that C_{t} depends on the the original function η_{z}, not the smoothed and truncated function $\eta_{z}^{\sigma, \xi, M}$. This choice is for the purpose for simplifying our analysis.

C. 2 Proof sketch for Lemma 2

Our proof for Lemma 2 follows the approach proposed in Zheng et al. [67, Theorem 1]. As many steps are similar to Lemma 2, we will not provide the full details of the proof, and only sketch the main idea. The proof has two main steps:
(Step 1) As the smoothed function $\eta_{z}^{\sigma, \xi, M}$ is Lipschitz continuous, the asymptotic MSE of GLM-EPapp could be characterized by a state evolution (SE) recursion;
(Step 2) Using the SE platform, we show that the asymptotic MSE of GLM-EP-app converges to the (expected) MSE of GLM-EP, as $\sigma \rightarrow 0$, and $\xi \rightarrow 0, M \rightarrow \infty$ sequentially. This implies that, with proper choice of σ, ξ, M, the asymptotic performance of GLM-EP-app is arbitrarily close to that of GLM-EP.

Step 1 is a consequence of [24, Theorem 1]. Note that the model considered in this paper is a special case of that adopted in [24, Theorem 1]. Also, here we assumed f to be Lipschitz continuous, as required by [24, Theorem 1]. The crucial assumption of [24, Theorem 1] is the Lipschitz continuity of $\eta_{z}^{\sigma, \xi, M}$, which we prove in Lemma 12 (see Section C.3).

[^3]A caveat is that [24, Theorem 1] assumes $\eta_{z}^{\sigma, \xi, M}\left(z_{r}, y, v_{r}\right)$ to be uniform Lipschitz (see definition in [24]) w.r.t. to $\left(z_{r}, y\right)$ and v_{r}. However, since GLM-EP-app uses the deterministic sequences $\left\{V_{r}^{t}, V_{l}^{t}\right\}_{t \geq 0}$ instead of their empirical counterparts $\left\{v_{r}^{t}, v_{l}^{t}\right\}$, this additional uniform continuity assumption is not required here.

Step 2 follows the same argument as in [67, Theorem 1]. First, the state evolution of GLM-EP-app is slightly more complicated than that of GLM-EP, and involve four sequences $\left\{\alpha_{l}^{t}, \tau_{l}^{t}, \alpha_{r}^{t}, \tau_{r}^{t}\right\}_{t \geq 0}$. (The SE of GLM-EP can be viewed as a special case of this more general SE.) Note that these sequences all depend on the parameters σ, ξ, M, but to keep notation light we do not make such dependency explicit. Intuitively speaking, $\left(\alpha_{l}^{t}, \tau_{l}^{t}\right)$ describes the correlation matrix of the components of $\left(\boldsymbol{z}, \boldsymbol{z}_{l}^{t}\right)$ (where $\boldsymbol{z} \triangleq \boldsymbol{A} \boldsymbol{x}$):

$$
\operatorname{Cov}\left(Z, Z_{l}^{t}\right) \triangleq\left[\begin{array}{cc}
\mathbb{E}\left[Z^{2}\right] & \mathbb{E}\left[Z Z_{l}^{t}\right] \\
\mathbb{E}\left[Z Z_{l}^{t}\right] & \mathbb{E}\left[\left(Z_{l}^{t}\right)^{2}\right]
\end{array}\right]=\left[\begin{array}{cc}
1 & \alpha_{l}^{t} \\
\alpha_{l}^{t} & \tau_{l}^{t}
\end{array}\right] .
$$

Similarly, $\left(\alpha_{r}^{t}, \tau_{r}^{t}\right)$ describes the correlation of the components of $\left(\boldsymbol{z}, \boldsymbol{z}_{r}^{t}\right)$ The SE describing the recursive relationship of $\left\{\alpha_{l}^{t}, \tau_{l}^{t}, \alpha_{r}^{t}, \tau_{r}^{t}\right\}_{t \geq 0}$ is given by

$$
\begin{aligned}
\alpha_{l}^{t}=\phi_{1}^{\sigma, \xi, M}\left(\alpha_{r}^{t}, \sigma_{r}^{t}\right), & \text { and } \quad \tau_{l}^{t}=\phi_{2}^{\sigma, \xi, M}\left(\alpha_{r}^{t}, \sigma_{r}^{t}\right), \\
\alpha_{r}^{t}=\Phi_{1}\left(\alpha_{r}^{t}, \sigma_{r}^{t}\right), & \text { and } \quad \tau_{r}^{t}=\Phi_{2}\left(\alpha_{r}^{t}, \sigma_{r}^{t}\right),
\end{aligned}
$$

where GLM-EP and GLM-EP-app start from the same initializations, i.e., $\alpha_{r}^{-1}=\tau_{r}^{-1}=V_{r}^{-1}$. A formal definition of these functions may be found in, e.g., [24].

Our goal is to show that the limit the covariance $\operatorname{Cov}\left(Z, Z_{l}^{t}\right)$ for GLM-EP and GLM-EP-app for all $t \geq 0$. Note that if $\operatorname{Cov}\left(Z, Z_{l}^{t}\right)$ for GLM-EP and GLM-EP-app are the same, then $\operatorname{Cov}\left(Z, Z_{r}^{t}\right)$ would also be the same, as the second steps of the two algorithms are identical (cf. (6) and (8b)).
As in [67, Theorem 1], the argument proceeds inductively on t. Because the steps are straightforward, we do not provide the full details and only consider the first iteration. Basically, we need to prove the following:

$$
\begin{align*}
\lim _{\xi \rightarrow 0, M \rightarrow \infty} \lim _{\sigma \rightarrow 0} \mathbb{E}\left[Z \cdot \eta_{z}^{\sigma, \xi, M}\left(Z_{r}, Y\right)\right] & =\mathbb{E}\left[Z \cdot \eta_{z}\left(Z_{r}, Y\right)\right] \tag{45a}\\
\lim _{\xi \rightarrow 0, M \rightarrow \infty} \lim _{\sigma \rightarrow 0} \mathbb{E}\left[Z_{r} \cdot \eta_{z}^{\sigma, \xi, M}\left(Z_{r}, Y\right)\right] & =\mathbb{E}\left[Z_{r} \cdot \eta_{z}\left(Z_{r}, Y\right)\right] \tag{45b}\\
\lim _{\xi \rightarrow 0, M \rightarrow \infty} \lim _{\sigma \rightarrow 0} \mathbb{E}\left[\left(\eta_{z}^{\sigma, \xi, M}\left(Z_{r}, Y\right)\right)^{2}\right] & =\mathbb{E}\left[\left(\eta_{z}\left(Z_{r}, Y\right)\right)^{2}\right] \tag{45c}
\end{align*}
$$

where $Z \sim \mathcal{N}(0,1), Y=f(Z)$. Note that these results hold for any Z_{r} as long as it is joint Gaussian with Z (non-degenerate).
We next prove (45a). Other results can be proved in the same way. We first calculate its limit of $\mathbb{E}\left[Z \cdot \eta_{z}^{\sigma, \xi, M}\left(Z_{r}, Y\right)\right]$ as $\sigma \rightarrow 0$. From Lemma 12, the function $\eta_{z}^{\sigma, \xi, M}$ is bounded, and using DCT we get

$$
\begin{aligned}
\lim _{\sigma \rightarrow 0} \mathbb{E}\left[Z \cdot \eta_{z}^{\sigma, \xi, M}\left(Z_{r}, Y\right)\right] & =\mathbb{E}\left[Z \cdot \lim _{\sigma \rightarrow 0} \eta_{z}^{\sigma, \xi, M}\left(Z_{r}, Y\right)\right] \\
& =\mathbb{E}\left[Z \cdot \eta_{z}^{\xi, M}\left(Z_{r}, Y\right)\right],
\end{aligned}
$$

where the last step follows from

$$
\begin{equation*}
\lim _{\sigma \rightarrow 0} \eta_{z}^{\sigma, \xi, M}\left(Z_{r}, Y\right)=\eta_{z}^{\xi, M}\left(Z_{r}, Y\right) \quad \text { a.s. } \tag{46}
\end{equation*}
$$

To see (46), note that Lemma 12 shows $\lim _{\sigma \rightarrow 0} \eta_{z}^{\sigma, \xi, M}\left(z_{r}, y\right)=\eta_{z}^{\xi, M}\left(z_{r}, y\right)$ whenever $\eta_{z}^{\xi, M}$ is continuous at $\left(z_{r}, y\right)$. In particular, our construction of $\eta_{z}^{\xi, M}$ (see 41a) guarantees that $\eta_{z}^{\xi, M}$ at $\left(z_{r}, y\right) \in \mathbb{R} \times\left\{y_{1}, \ldots, y_{Q}\right\}$. Similar to the proof of Lemma 12 -(P.1), it can be shown that the set of points at which $\eta_{z}^{\xi, M}$ is discontinuous has zero probability (with respect to the distribution of $\left(Z_{r}, Y\right)$).

It remains to prove

$$
\lim _{\xi \rightarrow 0, M \rightarrow \infty} \mathbb{E}\left[Z \cdot\left(\eta_{z}^{\xi, M}\left(Z_{r}, Y\right)-\eta_{z}\left(Z_{r}, Y\right)\right)\right]=0
$$

Similar to 12 (P.1), it can be shown that $\eta_{z}^{\xi, M}\left(Z_{r}, Y\right)$ is almost surely bounded w.r.t, the distribution of Z_{r}, Y. Also, by Lemma 13, $\eta_{z}\left(Z_{r}, Y\right)=\eta_{z}\left(Z_{r}, f(Z)\right) \leq C \cdot\left(1+\left\|\left(Z_{r}, Z\right)\right\|\right)$. Hence, we could apply DCT to show

$$
\begin{aligned}
& \lim _{\xi \rightarrow 0, M \rightarrow \infty} \mathbb{E}\left[Z \cdot\left(\eta_{z}^{\xi, M}\left(Z_{r}, Y\right)-\eta_{z}\left(Z_{r}, Y\right)\right)\right] \\
& =\mathbb{E}\left[\lim _{\xi \rightarrow 0, M \rightarrow \infty} Z \cdot\left(\eta_{z}^{\xi, M}\left(Z_{r}, Y\right)-\eta_{z}\left(Z_{r}, Y\right)\right)\right] \\
& =0
\end{aligned}
$$

C. 3 Auxiliary results

Lemma 12. Let $v_{r}, \xi, M, \sigma>0$. The following hold
(P.1) $\eta_{z}^{\xi}\left(z_{r}, y\right)$ is continuous a.e. with respect to the Lebesgue measure. Further, $\eta_{z}^{\xi, M}\left(z_{r}, y\right)$ is a.e. bounded;
(P.2) $\eta_{z}^{\sigma, \xi, M}\left(z_{r}, y\right)$ is Lipschitz continuous and bounded on \mathbb{R}^{2};
(P.3) $\lim _{\sigma \rightarrow 0} \eta_{z}^{\sigma, \xi, M}\left(z_{r}, y\right)=\eta_{z}^{\xi, M}\left(z_{r}, y\right)$ whenever $\eta_{z}^{\xi, M}$ is continuous at $\left(z_{r}, y\right)$.

Proof. Proof of (P.1): We note that $\eta_{q}\left(z_{r}\right)(q=1, \ldots, Q)$ is a continuous function of $z_{r} \in \mathbb{R}$:

$$
\eta_{q}\left(z_{r}\right) \triangleq \eta_{z}\left(z_{r}, y_{q}\right)=\frac{\int_{f^{-1}\left(y_{q}\right)} u \cdot \mathcal{N}\left(u ; z_{r}, v_{r}\right) d u}{\int_{f^{-1}\left(y_{q}\right)} \mathcal{N}\left(u ; z_{r}, v_{r}\right) d u}
$$

By definition of $y_{q}, f^{-1}\left(y_{q}\right)$ contains an interval (could be union of intervals), and it is straightforward to show that $\eta_{q}\left(z_{r}\right)$ is continuous on \mathbb{R}.
When $y \in \mathcal{Y} \backslash \mathcal{Q}_{f}, f^{-1}(y)$ is a finite set and we have (see 6f)

$$
\eta_{z}\left(z_{r}, y\right)=\frac{\sum_{u_{i} \in f^{-1}(y)} u_{i} \cdot \mathcal{N}\left(u_{i} ; z_{r}, v\right)}{\sum_{u_{i} \in f^{-1}(y)} \mathcal{N}\left(u_{i} ; z_{r}, v\right)}
$$

By the piecewise monotone (and continuous) assumption of f, it can be shown that $\mathcal{Y} \backslash \mathcal{Q}_{f}$ can be further decomposed into several non-overlapping intervals, denoted as $\mathcal{Y} \backslash \mathcal{Q}_{f}=\bigcup_{j=1}^{J} \mathcal{Y}_{j}$ (where $J<\infty)$, such that $\eta_{z}\left(z_{r}, y\right)$ is continuous on $\mathbb{R} \times \mathcal{Y}_{j}, \forall j$. This is due to the fact that each point of $f^{-1}(y)$ is a continuous function of y for $y \in \mathcal{Y}_{j}$. Specifically, it is possible to write $f^{-1}(y)$ as

$$
f^{-1}(y)=\left\{F_{j}^{1}(y), \ldots, F_{j}^{K_{j}}(y)\right\}, \quad \forall y \in \mathcal{Y}_{j}
$$

where $K_{j}<\infty$, and each $F_{j}^{k}(y)$ is a continuous function of y (by piecewise continuity of f). Hence,

$$
\eta_{z}\left(z_{r}, y\right)=\frac{\sum_{k=1}^{K_{j}} F_{j}^{k}(y) \cdot \mathcal{N}\left(F_{j}^{k}(y) ; z_{r}, v\right)}{\sum_{k=1}^{K_{j}} \mathcal{N}\left(F_{j}^{k}(y) ; z_{r}, v\right)}, \quad \forall\left(z_{r}, y\right) \in \mathbb{R} \times \mathcal{Y}_{j}
$$

and it is continuous on the interior of $\mathbb{R} \times \mathcal{Y}_{j}$. As an example, consider f given in (15) (see illustration on the left panel of Figure 1). In this case,

$$
f^{-1}(y)= \begin{cases}\{-y-1, y+1\}, & \text { for } y>1 \\ \{-y-1, y+1,-y, y\}, & \text { for } 0 \leq y \leq 1\end{cases}
$$

It can be shown that $\eta_{z}\left(z_{r}, y\right)$ is continuous on $\mathbb{R} \times(1, \infty)$ and $\mathbb{R} \times(0,1)$.
The claimed a.e. continuity of η_{z}^{ξ} (see definition in 41a) follows from the above properties of $\eta_{z}\left(z_{r}, y\right)$.
Since $\eta_{z}^{\xi}\left(z_{r}, y\right)$ is continuous almost everywhere (with respect to the Lebesgue measure), $\eta_{z}^{\xi, M}\left(z_{r}, y\right)=\eta^{\xi}\left(z_{r}, y\right) \cdot \mathbb{I}_{[-M, M]^{2}}\left(z_{r}, y\right)$ is bounded almost everywhere. Let $M^{\prime}<\infty$ denote
this a.e. bound of $\left|\eta_{z}^{\xi, M}\right|$. Then, the smoothed function $\left|\eta_{z}^{\sigma, \xi, M}\left(z_{r}, y\right)\right|$ is upper bounded by M^{\prime} on \mathbb{R}^{2}.

Proof of (P.2): With slight abuse of notations, let $\phi_{\sigma}(s, t)$ denote the bivariate and univariate Gaussian pdf functions respectively. (Namely, $\phi_{\sigma}(s, t)=\phi_{\sigma}(s) \phi_{h}(t)$). To prove Lipschitz continuity, note that

$$
\begin{aligned}
& \left|\eta_{z}^{\sigma, \xi, M}\left(z_{1}, y_{1}\right)-\eta_{z}^{\sigma, \xi, M}\left(z_{2}, y_{2}\right)\right| \\
& \leq \iint \eta_{z}^{\xi, M}(s, t)\left|\phi_{\sigma}\left(z_{1}-s\right) \phi_{\sigma}\left(y_{1}-t\right)-\phi_{\sigma}\left(z_{2}-s\right) \phi_{\sigma}\left(y_{2}-t\right)\right| d s d t \\
& \leq 8 M^{\prime} M^{2}\left\|\phi_{\sigma}\right\|_{\infty}\left\|\phi_{\sigma}^{\prime}\right\|_{\infty} \cdot\left\|\left(y_{1}, z_{1}\right)-\left(y_{2}, z_{2}\right)\right\|
\end{aligned}
$$

where we used

$$
\begin{aligned}
& \left|\phi_{\sigma}\left(z_{1}-s\right) \phi_{\sigma}\left(y_{1}-t\right)-\phi_{\sigma}\left(z_{2}-s\right) \phi_{\sigma}\left(y_{2}-t\right)\right| \\
& \leq\left\|\phi_{\sigma}\right\|_{\infty} \cdot\left(\left|\phi_{\sigma}\left(y_{1}-t\right)-\phi_{\sigma}\left(y_{2}-t\right)\right|+\left|\phi_{\sigma}\left(z_{1}-t\right)-\phi_{\sigma}\left(z_{2}-t\right)\right|\right) \\
& \leq\left\|\phi_{\sigma}\right\|_{\infty}\left\|\phi_{\sigma}^{\prime}\right\|_{\infty} \cdot\left(\left|y_{1}-y_{2}\right|+\left|z_{1}-z_{2}\right|\right) \quad(\text { mean value theorem }) \\
& \leq 2\left\|\phi_{\sigma}\right\|_{\infty}\left\|\phi_{\sigma}^{\prime}\right\|_{\infty} \cdot\left\|\left(y_{1}, z_{1}\right)-\left(y_{2}, z_{2}\right)\right\| .
\end{aligned}
$$

Hence, the function $\eta^{\sigma, \xi, M}$ is Lipschitz continuous.
Proof of (P.3): Let $\left(z_{0}, y_{0}\right)$ be a point at which $\eta^{\xi, M}$ is continuous. Since $\eta^{\xi, M}$ is bounded almost everywhere, we could apply DCT to get

$$
\begin{aligned}
\lim _{\sigma \rightarrow 0} \eta^{\sigma, \xi, M}\left(z_{0}, y_{0}\right) & =\lim _{\sigma \rightarrow 0} \iint_{\mathbb{R}^{2}} \eta^{\xi, M}\left(z_{0}+s, y_{0}+t\right) \cdot \frac{1}{2 \pi h^{2}} \exp \left(-\frac{s^{2}+t^{2}}{2 \sigma^{2}}\right) d s d t \\
& =\lim _{\sigma \rightarrow 0} \iint_{\mathbb{R}^{2}} \eta^{\xi, M}\left(z_{0}+\sigma s, y_{0}+\sigma t\right) \cdot \frac{1}{2 \pi} \exp \left(-\frac{s^{2}+t^{2}}{2}\right) d s d t \\
& =\iint_{\mathbb{R}^{2}} \lim _{\sigma \rightarrow 0} \eta^{\xi, M}\left(z_{0}+\sigma s, y_{0}+\sigma t\right) \cdot \frac{1}{2 \pi} \exp \left(-\frac{s^{2}+t^{2}}{2}\right) d s d t
\end{aligned}
$$

Since $\eta^{\xi, M}$ is continuous at $\left(z_{0}, y_{0}\right)$, we have

$$
\lim _{\sigma \rightarrow 0} \eta^{\xi, M}\left(z_{0}+\sigma s, y_{0}+\sigma t\right)=\eta^{\xi, M}\left(z_{0}, y_{0}\right), \quad \forall(s, t) \in \mathbb{R}^{2}
$$

Combining the two steps completes the proof.

Lemma 13. Let $v_{r}>0$. There exists a constant $C>0$ such that

$$
\begin{equation*}
\eta_{z}\left(z_{r}, f(z), v_{r}\right)<C \cdot\left(1+\left\|\left(z_{r}, z\right)\right\|\right), \quad \forall\left(z_{r}, z\right) \in \mathbb{R}^{2} \tag{47}
\end{equation*}
$$

Proof. We differentiate between two cases: $f(z) \in \mathcal{Q}_{f}$ and $f(z) \in \mathcal{Y} \backslash \mathcal{Q}_{f}$, where $\mathcal{Q}_{f}=$ $\left\{y_{1}, \ldots, y_{Q}\right\}$ correspond to the flat sections of f.

Case 1: $f(z) \in \mathcal{Q}_{f}$. Assume $f(z)=y_{i}$ and denote $\mathcal{I}_{i} \triangleq f^{-1}\left(y_{i}\right)$. In what follows, we will prove

$$
\eta_{z}\left(z_{r}, y_{i}, v_{r}\right)=\frac{\int_{\mathcal{I}_{i}} u \cdot \mathcal{N}\left(u ; z_{r}, v_{r}\right) d u}{\int_{\mathcal{I}_{i}} \mathcal{N}\left(u ; z_{r}, v_{r}\right) d u}<C_{i} \cdot\left(1+\left|z_{r}\right|\right), \quad \forall z_{r} \in \mathbb{R}
$$

Suppose \mathcal{I}_{i} can be written as $\mathcal{I}_{i}=\bigcup_{k=1}^{K}\left(a_{k}, b_{k}\right)$, where a_{k} could be $-\infty$ and b_{k} could be ∞ (we do not index a_{k}, b_{k} by i to simplify notation.) Then,

$$
\begin{aligned}
\eta_{z}\left(z_{r}, y_{i}, v_{r}\right) & =\frac{\int_{\mathcal{I}_{i}} u \cdot \mathcal{N}\left(u ; z_{r}, v_{r}\right) d u}{\int_{\mathcal{I}_{i}} \mathcal{N}\left(u ; z_{r}, v_{r}\right) d u} \\
& =\sum_{k=1}^{K}\left(\frac{\int_{\left(a_{k}, b_{k}\right)} u \cdot \mathcal{N}\left(u ; z_{r}, v_{r}\right) d u}{\sum_{j=1}^{K} \int_{\left(a_{j}, b_{j}\right)} \mathcal{N}\left(u ; z_{r}, v_{r}\right) d u}\right)
\end{aligned}
$$

We have

$$
\begin{align*}
\left|\eta_{z}\left(z_{r}, y_{i}, v_{r}\right)\right| & \leq \sum_{k=1}^{K}\left(\frac{\left|\int_{\left(a_{k}, b_{k}\right)} u \cdot \mathcal{N}\left(u ; z_{r}, v_{r}\right) d u\right|}{\sum_{j=1}^{K} \int_{\left(a_{j}, b_{j}\right)} \mathcal{N}\left(u ; z_{r}, v_{r}\right) d u}\right) \tag{48}\\
& \leq \sum_{k=1}^{K}\left(\frac{\left|\int_{\left(a_{k}, b_{k}\right)} u \cdot \mathcal{N}\left(u ; z_{r}, v_{r}\right) d u\right|}{\int_{\left(a_{k}, b_{k}\right)} \mathcal{N}\left(u ; z_{r}, v_{r}\right) d u}\right)
\end{align*}
$$

We bound the terms inside the summation seperately. First, assume both a_{k} and b_{k} are finite. Then,

$$
\begin{aligned}
\frac{\left|\int_{\left(a_{k}, b_{k}\right)} u \cdot \mathcal{N}\left(u ; z_{r}, v_{r}\right) d u\right|}{\int_{\left(a_{k}, b_{k}\right)} \mathcal{N}\left(u ; z_{r}, v_{r}\right) d u} & =\frac{\left|\int_{\left(a_{k}, b_{k}\right)} u \cdot \mathcal{N}\left(u ; z_{r}, v_{r}\right) d u\right|}{\int_{\left(a_{k}, b_{k}\right)} \mathcal{N}\left(u ; z_{r}, v_{r}\right) d u} \\
& =\left|z_{r}+\frac{\int_{\left(a_{k}, b_{k}\right)-z_{r}} t \cdot \mathcal{N}\left(t ; 0, v_{r}\right) d t}{\int_{\left(a_{k}, b_{k}\right)-z_{r}} \mathcal{N}\left(t ; 0, v_{r}\right) d t}\right| \\
& \leq\left|z_{r}\right|+\max \left\{\left|a_{k}-z_{r}\right|,\left|b_{k}-z_{r}\right|\right\} \\
& \leq C^{\prime}\left(1+\left|z_{r}\right|\right)
\end{aligned}
$$

Now, suppose $a_{k}=-\infty$. (The argument is similar for the case $b_{k}=\infty$.) We have

$$
\left|\frac{\int_{\left(-\infty, b_{k}-z_{r}\right)} t \cdot \mathcal{N}\left(t ; 0, v_{r}\right) d t}{\int_{\left(-\infty, b_{k}-z_{r}\right)} \mathcal{N}\left(t ; 0, v_{r}\right) d t}\right|=\left|\sqrt{v_{r}} \frac{\phi_{1}\left(\frac{b_{k}-z_{r}}{\sqrt{v_{r}}}\right)}{\Phi_{1}\left(\frac{b_{k}-z_{r}}{\sqrt{v_{r}}}\right)}\right| \leq C^{\prime \prime}\left(1+\left|z_{r}\right|\right)
$$

where ϕ_{1} and Φ_{1} denote the pdf and cdf functions of standard Gaussian distribution, respectively, and the last step is from mean value theorem together with the following elementary result

$$
\left|\left(\frac{\phi_{1}(x)}{\Phi_{1}(x)}\right)^{\prime}\right| \leq 1, \quad \forall x \in \mathbb{R}
$$

Case 2: $f(z) \in \mathcal{Y} \backslash \mathcal{Q}_{f}$. In this case, $f^{-1}(f(z))$ is a finite set, and

$$
\begin{equation*}
\eta_{z}\left(z_{r}, f(z), v_{r}\right)=\frac{\sum_{u_{i} \in f^{-1}(f(z))} u_{i} \cdot \exp \left(-E_{i}\right)}{\sum_{u_{i} \in f^{-1}(f(z))} \exp \left(-E_{i}\right)}, \quad E_{i} \triangleq \frac{\left(u_{i}-v_{r}\right)^{2}}{2 v_{r}} \tag{49}
\end{equation*}
$$

Hence,

$$
\begin{align*}
\left|\eta_{z}\left(z_{r}, f(z), v_{r}\right)\right| & \leq \frac{\sum_{u_{i} \in f^{-1}(f(z))}\left|u_{i}\right| \cdot \exp \left(-E_{i}\right)}{\sum_{u_{i} \in f^{-1}(f(z))} \exp \left(-E_{i}\right)} \tag{50}\\
& \leq \sum_{u_{i} \in f^{-1}(f(z))}\left|u_{i}\right| \cdot \exp \left(-E_{i}+E_{\min }\right)
\end{align*}
$$

where

$$
\begin{equation*}
E_{\min }=\min \left\{E_{j}\right\} \tag{51}
\end{equation*}
$$

From the piecewise assumption of f, we have that $\left|f^{-1}(f(z))\right|<K$ for all $f(z) \in \mathcal{Y} \backslash \mathcal{Q}_{f}$. It suffices to prove the following for $1 \leq i \leq\left|f^{-1}(f(z))\right|$:

$$
\left|u_{i}\right| \cdot \exp \left(-E_{i}+E_{\min }\right)<C\left(1+\left\|\left(z, z_{r}\right)\right\|\right) \quad \forall\left(z, z_{r}\right) \in \mathbb{R}^{2}
$$

Denote

$$
t_{i} \triangleq \exp \left(-E_{i}+E_{\min }\right)=\exp \left(-\frac{\left(u_{i}-v_{r}\right)^{2}}{2 v_{r}}+E_{\min }\right)
$$

(As $E_{i} \geq E_{\min }$, we have $0<t_{i} \leq 1$.) From this definition,

$$
\left|u_{i}-z_{r}\right|=\sqrt{2 v_{r} \cdot\left(E_{\min }+\log \frac{1}{t_{i}}\right)} .
$$

Hence,

$$
\left|u_{i}\right| \leq\left|z_{r}\right|+\sqrt{2 v_{r} \cdot\left(E_{\min }+\log \frac{1}{t_{i}}\right)}
$$

Then,

$$
\begin{aligned}
\left|u_{i}\right| \cdot \exp \left(-E_{i}+E_{\min }\right) & =\left|u_{i}\right| \cdot t_{i} \\
& \leq\left|z_{r}\right| \cdot t_{i}+\sqrt{2 v_{r} \cdot\left(t_{i}^{2} \cdot E_{\min }+t_{i}^{2} \cdot \log \frac{1}{t_{i}}\right)} \\
& \stackrel{(a)}{\leq}\left|z_{r}\right| \cdot t_{i}+\sqrt{2 v_{r} \cdot\left(t_{i}^{2} \cdot \frac{\left(z-z_{r}\right)^{2}}{2 v_{r}}+t_{i}^{2} \cdot \log \frac{1}{t_{i}}\right)} \\
& \stackrel{(b)}{\leq}\left|z_{r}\right|+\sqrt{\left(z-z_{r}\right)^{2}+0.4 v_{r}} \\
& <C \cdot\left(1+\left\|\left(z, z_{r}\right)\right\|\right)
\end{aligned}
$$

where step (a) is from the definition of $E_{\min }$ and the fact that $z \in f^{-1}(f(z))$), and step (b) is due to $0<t_{i} \leq 1$ and $t_{i}^{2} \log \left(1 / t_{i}\right)<0.2$.

D Proofs of Lemma 3 and Lemma 4

D. 1 Proof of Lemma 3

From (7), the state evolution recursion for V_{r} reads

$$
V_{r}^{t+1}=\Phi\left(\phi\left(V_{r}^{t}\right)\right)
$$

where $V_{r}^{0}=1$. Lemma 19 in Appendix H implies that the composite function $\Phi\left(\phi\left(V_{r}\right)\right)$) is continuously increasing in 0,1$]$. Further, $\Phi\left(\phi\left(V_{r}\right)\right) \geq 0$ for any $V_{r} \in[0,1]$. An induction argument shows that $\left\{V_{r}^{t}\right\}$ monotonically converges if and only if

$$
\begin{equation*}
\Phi\left(\phi\left(V_{r}^{1}\right)\right) \leq V_{r}^{1} \tag{52}
\end{equation*}
$$

which holds since $V_{r}^{1}=1, \phi(1) \geq 0$ (see Lemma 19) and $\Phi(v) \leq 1$ for all $v \geq 0$. Further, if $\phi(1) \neq \infty$, then the sequence $\left\{V_{r}^{t}\right\}$ converges to V_{r}^{\star}, where V_{r}^{\star} is the smallest v so that the following holds for all $V_{r} \in[v, 1]$, i.e.,

$$
V_{r}^{\star}=\inf \left\{v \in[0,1]: \Phi\left(\phi\left(v_{r}\right)\right)<v_{r}, \forall v_{r} \in[v, 1]\right\}
$$

Substituting in the definitions of ϕ and Φ in (7), it is straightforward to show that the above definition of V_{r}^{\star} is equivalent to that in (10).
For the degenerate case where $\phi(1)=\infty$ (which corresponds to mmse $_{z}(1)=1$ and happens when f is an even function), $P(1)=0$ and so V_{r}^{\star} in (10) is not defined. Lemma 3 holds by defining $V_{r}^{\star}=1$ for this degenerate case.

D. 2 Proof of Lemma 4

Clearly, $\mathrm{MSE}_{\lambda}^{\star} \triangleq \operatorname{MSE}_{\lambda}\left(\phi\left(V_{r}^{\star}\right)\right)=0$ (see definition in Lemma 3) if and only if $\phi\left(V_{r}^{\star}\right)=0$. When f is not an invertible function, ϕ is continuous and strictly increasing (see Lemma 19), and so $\phi\left(V_{r}^{\star}\right)=0$ if and only if $\phi(0) \triangleq \lim _{v_{r} \rightarrow 0} \phi\left(v_{r}\right)=0$ and $V_{r}^{\star}=0$. Therefore, to prove the lemma, it remains to prove $\phi(0)=0$ and $V_{r}^{\star}=0$ hold if and only if (12) is satisfied.

Necessity: It is straightforward to see that $V_{r}^{\star}=0$ is equivalent to (12). Hence, (12) is a necessary condition.

Sufficiency: (12) already implies $V_{r}^{\star}=0$. To show the sufficiency of (12), we only need to prove that (12) implies $\phi(0)=0$.

Due to the continuity of ϕ, if $[12$ holds, then we must have

$$
\begin{equation*}
P(0) \triangleq \lim _{v_{r} \rightarrow 0} P\left(v_{r}\right) \geq 0 \tag{53}
\end{equation*}
$$

otherwise there will exist a neighbor of $v_{r}=0$ where 12 is violated. From (11), we have

$$
\begin{aligned}
P(0) & =\mathbb{E}\left[\frac{\phi(0)}{\phi(0)+\lambda}\right]-1+\delta \cdot\left[1-\lim _{v_{r} \rightarrow 0} \frac{\operatorname{mmse}_{z}\left(v_{r}\right)}{v_{r}}\right] \\
& \stackrel{(a)}{=} \mathbb{E}\left[\frac{\phi(0)}{\phi(0)+\lambda}\right]-1+\delta \cdot\left[1-\lim _{v_{r} \rightarrow 0} \frac{\operatorname{mmse}\left(Z, v_{r}^{-1}-1 \mid f(Z)\right)}{v_{r}}\right] \\
& =\mathbb{E}\left[\frac{\phi(0)}{\phi(0)+\lambda}\right]-1+\delta \cdot\left[1-\lim _{\operatorname{snr}_{\mathrm{eff}} \rightarrow \infty}\left(\operatorname{snr}_{\mathrm{eff}}+1\right) \cdot \operatorname{mmse}\left(Z, \mathrm{snr}_{\mathrm{eff}} \mid f(Z)\right)\right] \quad\left(\mathrm{snr}_{\mathrm{eff}}:=v_{r}^{-1}-1\right) \\
& \stackrel{(b)}{=} \mathbb{E}\left[\frac{\phi(0)}{\phi(0)+\lambda}\right]-1+\delta \cdot[1-\mathscr{D}(Z \mid f(Z))],
\end{aligned}
$$

where step (a) is from the definition of mmse ${ }_{z}$ below (7), and step (b) is from definition of $\mathscr{D}(Z \mid f(Z))$ exists and the fact that $\operatorname{mmse}_{z}(0)=0$. Since $0 \leq \mathscr{D}(Z \mid f(Z)) \leq 1$, we consider the cases $\mathscr{D}(Z \mid f(Z))=1$ and $\mathscr{D}(Z \mid f(Z))<1$ separately. When $\mathscr{D}(Z \mid f(Z))=1$, we have

$$
P(0)=\mathbb{E}\left[\frac{\phi(0)}{\phi(0)+\lambda}\right]-1<0
$$

violating (53), which is a necessary condition for (12). Hence, if (12) holds, then we must have $\mathscr{D}(Z \mid f(Z))<1$. Further, when $\mathscr{D}(Z \mid f(Z))<1$, Lemma 19 shows that $\phi(0)=0$. Hence, (12) implies $\phi(0)=0$, and so perfect reconstruction. This completes the proof of the sufficiency of (12).

We have shown that $P(0) \geq 0$ is a necessary condition for perfect reconstruction. It is straightforward to see that $P(0) \geq 0$ is equivalent to

$$
\begin{equation*}
\delta \geq \frac{1}{1-\mathscr{D}(Z \mid f(Z))}=\frac{1}{d(Y)} \tag{54}
\end{equation*}
$$

where the second equality is from Lemma 16.

E Proof of Lemma 6

Lemma 3 shows that the MSE of the GLM-EP algorithm is given by

$$
\begin{equation*}
\mathrm{MSE}_{\lambda}^{\star} \triangleq \mathbb{E}\left[\frac{\phi\left(v_{r}^{\star}\right)}{\phi\left(v_{r}^{\star}\right)+\lambda}\right] \tag{55}
\end{equation*}
$$

where

$$
\begin{equation*}
v_{\lambda}^{\star}=\inf \left\{v \in[0,1]: \mathbb{E}\left[\frac{\phi\left(v_{r}\right)}{\phi\left(v_{r}\right)+\lambda}\right]>g\left(v_{r}\right), \forall v_{r} \in[v, 1]\right\} \tag{56}
\end{equation*}
$$

Since $\mathbb{E}\left[\frac{\phi\left(v_{r}\right)}{\phi\left(v_{r}\right)+\lambda}\right] \geq 0, v_{\lambda}^{\star}$ can be equivalently defined as

$$
\begin{equation*}
v_{\lambda}^{\star}=\inf \left\{v \in[0,1]: \mathbb{E}\left[\frac{\phi\left(v_{r}\right)}{\phi\left(v_{r}\right)+\lambda}\right]>G\left(v_{r}\right), \forall v_{r} \in[v, 1]\right\} \tag{57}
\end{equation*}
$$

where $G\left(v_{r}\right)$ is defined in 14. We next prove that v_{r}^{\star} must satisfy

$$
\begin{equation*}
\mathrm{MSE}_{\lambda}^{\star} \triangleq \mathbb{E}\left[\frac{\phi\left(v_{r}^{\star}\right)}{\phi\left(v_{r}^{\star}\right)+\lambda}\right]=G\left(v_{r}^{\star}\right) \tag{58}
\end{equation*}
$$

Eq. (52) implies $\mathbb{E}\left[\frac{\phi(1)}{\phi(1)+\lambda}\right] \geq g(1)$. Further, $\phi(1) \geq 0$, and thus $\mathbb{E}\left[\frac{\phi(1)}{\phi(1)+\lambda}\right] \geq 0$. Together, we have $\mathbb{E}\left[\frac{\phi(1)}{\phi(1)+\lambda}\right] \geq G(1)$. The only possibility 58 does not hold is when

$$
\begin{equation*}
\mathbb{E}\left[\frac{\phi\left(v_{r}\right)}{\phi\left(v_{r}\right)+\lambda}\right]>G\left(v_{r}\right) \quad \forall v_{r} \in[0,1] . \tag{59}
\end{equation*}
$$

We next show that (59) cannot hold. We only need to prove (59) cannot hold for $v_{r}=0$. We consider two case $\mathscr{D}(Z \mid f(Z))<1$ and $\mathscr{D}(Z \mid f(Z))=1$ separately. When $\mathscr{D}(Z \mid f(Z))<1$, Lemma 19
guarantees $\phi(0)=0$, and thus $\mathbb{E}\left[\frac{\phi(0)}{\phi(0)+\lambda}\right]=0 \leq G(0)$, where the inequality is from the definition of $G(\cdot)$. When $\mathscr{D}(Z \mid f(Z))=1$, we have

$$
\lim _{v_{r} \rightarrow 0} 1-\delta \cdot\left[1-\frac{\operatorname{mmse}_{z}\left(v_{r}\right)}{v_{r}}\right]=1-\delta[1-\mathscr{D}(Z \mid f(Z))]=1
$$

Hence, from (14), we have $G(0)=1$. On the other hand, $\mathbb{E}\left[\frac{\phi(0)}{\phi(0)+\lambda}\right] \leq 1$ since $\phi(0) \geq 0$. Hence, (59) cannot hold at $v_{r}=0$. Combining the previous arguments proves (58).

At this point, we can compare $\mathrm{MSE}_{\lambda_{1}}^{\star}$ and $\mathrm{MSE}_{\lambda_{2}}^{\star}$. Note that $C /(C+\lambda)^{-1}$ is a convex function of λ for every $C>0$. Hence, Lemma 5 implies that the following holds for all $\gamma_{l}>0$:

$$
\lambda_{1} \succeq_{L} \lambda_{2} \quad \Longrightarrow \quad \mathbb{E}\left[\frac{\phi\left(v_{r}\right)}{\phi\left(v_{r}\right)+\lambda_{1}}\right] \geq \mathbb{E}\left[\frac{\phi\left(v_{r}\right)}{\phi\left(v_{r}\right)+\lambda_{2}}\right], \quad \forall \phi\left(v_{r}\right) \geq 0
$$

where \succeq_{L} means spikier in the Lorenz sense (see Definition 3). From the definition of v_{λ}^{\star}, we have

$$
\begin{equation*}
\lambda_{1} \succeq_{L} \lambda_{2} \quad \Longrightarrow \quad v_{\lambda_{1}}^{\star} \leq v_{\lambda_{2}}^{\star} . \tag{60}
\end{equation*}
$$

To compare $\mathrm{MSE}_{\lambda_{1}}^{\star}$ and $\mathrm{MSE}_{\lambda_{2}}^{\star}$, it is not very convenient to directly use (55) since the expectation in (55) itself depends on the distribution of λ. Instead, due to (58), we only need to compare $G\left(v_{\lambda_{1}}^{\star}\right)$ and $G\left(v_{\lambda_{2}}^{\star}\right)$. Since $v_{\lambda_{1}}^{\star} \leq v_{\lambda_{2}}^{\star}$, the claims in the lemma follow directly.

F Proof of Theorem 3

From Lemma3, the GLM-EP algorithm cannot achieve perfect recovery if $\mathscr{D}(Z \mid f(Z))=1$. Therefore, we will only consider the case $\mathscr{D}(Z \mid f(Z))<1$. In this case, we have $\phi(0)=0$ (see Lemma 19.)

Part (i): When $\phi(0)=0$, we have $\mathrm{MSE}_{\lambda}^{\star}=0$ if and only if $V_{\lambda}^{\star}=0$, where V_{λ}^{\star} is defined in (57). Therefore, we can equivalently define $\delta_{\lambda}^{\mathrm{p}}$ as

$$
\begin{equation*}
\delta_{\lambda}^{\mathrm{p}}=\inf \left\{\delta: v_{\lambda}^{\star}=0\right\} \tag{61}
\end{equation*}
$$

We have proved in 60) that if $\lambda_{1} \succeq_{L} \lambda_{2}$, then $V_{\lambda_{1}}^{\star} \leq v_{\lambda_{2}}^{\star}$ and hence $\delta_{\lambda_{1}}^{\mathrm{p}} \leq \delta_{\lambda_{2}}^{\mathrm{p}}$ (from (61)).
Part (ii): We assume f is not an invertible function, otherwise perfect recovery is trivial. Suppose $\delta>\delta_{\star}^{\text {p }}=1 /(1-\mathscr{D}(Z \mid f(Z)))$. Our aim is to show that there exists a eigenvalue distribution under which GLM-EP can achieve perfect recovery. This boils down to proving (see Lemma 4 :

$$
\begin{equation*}
\mathbb{E}\left[\frac{\phi\left(v_{r}\right)}{\phi\left(v_{r}\right)+\lambda}\right]>g\left(v_{r}\right), \quad \forall v_{r} \in(0,1] . \tag{62}
\end{equation*}
$$

We first prove

$$
\begin{equation*}
\sup _{v_{r} \in(0,1]} g\left(v_{r}\right)<1 \tag{63}
\end{equation*}
$$

where $g\left(v_{r}\right)$ is defined by (see 11)

$$
g\left(v_{r}\right) \triangleq 1-\delta\left(1-\frac{\operatorname{mmse}_{z}\left(v_{r}\right)}{v_{r}}\right)
$$

As shown in (106) (Appendix H, mmse $_{z}\left(v_{r}\right) \leq v_{r}$ for all $v_{r} \in(0,1)$. Further, the inequality is strict when $f(Z)$ and Z are not independent. This holds when f is not a constant function, which is guaranteed by the assumption $d(f(Z)) \neq 0$. Therefore,

$$
g\left(v_{r}\right)<1, \quad \forall v_{r} \in(0,1)
$$

Further, when $v_{r}=1, \operatorname{mmse}_{z}(1)<1$ (by assumption) and so $g(1)<1$. When $v_{r} \rightarrow 0$,

$$
\begin{equation*}
g(0) \triangleq \lim _{v_{r} \rightarrow 0_{+}} g\left(v_{r}\right)=\lim _{v_{r} \rightarrow 0} 1-\delta\left(1-\frac{\operatorname{mmse}_{z}\left(v_{r}\right)}{v_{r}}\right)=1-\delta(1-\mathscr{D}(Z \mid f(Z)))<0 \tag{64}
\end{equation*}
$$

where $\delta>\delta_{\star}^{\mathrm{p}}=1 /(1-\mathscr{D}(Z \mid f(Z)))$. Combining the above facts (together with the continuity of g) proves 63).
To prove (62), consider the following two-point distribution parameterized by $P \in(0,1)$ and $a \in(0, \delta)$:

$$
P_{\lambda}= \begin{cases}a & \text { with prob. } P \tag{65}\\ \frac{\delta-a P}{1-P} & \text { with prob. } 1-P .\end{cases}
$$

This distribution satisfies the normalization assumption $\mathbb{E}[\lambda]=\delta$. Under this distribution, the left-hand side of 62) becomes

$$
\begin{align*}
\mathbb{E}\left[\frac{\phi\left(v_{r}\right)}{\phi\left(v_{r}\right)+\lambda}\right] & =P \cdot \frac{\phi\left(v_{r}\right)}{\phi\left(v_{r}\right)+a}+(1-P) \cdot \frac{\phi\left(v_{r}\right)}{\phi\left(v_{r}\right)+b} \quad\left(b \triangleq \frac{\delta-a P}{1-P}\right) \tag{66}\\
& >P \cdot \frac{\phi\left(v_{r}\right)}{\phi\left(v_{r}\right)+a} \quad(b>0)
\end{align*}
$$

We next show that there exists $a \in(0, \delta)$ and $P \in(0,1)$ for which the following holds,

$$
P \cdot \frac{\phi\left(v_{r}\right)}{\phi\left(v_{r}\right)+a}>g\left(v_{r}\right) . \quad \forall v_{r} \in(0,1]
$$

Since $\phi\left(v_{r}\right)$ is non-negative (see Lemma 19), It suffices to prove

$$
\begin{equation*}
a<\phi\left(v_{r}\right) \cdot\left(\frac{P}{g\left(v_{r}\right)}-1\right), \quad \forall v_{r} \in \mathbb{D} \triangleq\left\{v_{r} \in(0,1]: g\left(v_{r}\right) \geq 0\right\} \tag{67}
\end{equation*}
$$

Consider an arbitrary $P \in\left(\sup _{v \in \mathbb{D}} g(v), 1\right)$. Due to 63 , this choice of P is valid.
Let

$$
a_{\min }(P) \triangleq \inf _{v_{r} \in \mathbb{D}} \phi\left(v_{r}\right) \cdot\left(\frac{P}{g\left(v_{r}\right)}-1\right)
$$

We conclude our proof by showing $a_{\min }(P)>0$ for $P \in\left(\sup _{v \in \mathbb{D}} g(v), 1\right)$, and setting $a \in$ $\left(0, \min \left(a_{\min }(P), \delta\right)\right)$. To this end, we note

$$
\begin{equation*}
\inf _{v_{r} \in \mathbb{D}} \phi\left(v_{r}\right)>0 \tag{68a}
\end{equation*}
$$

and

$$
\begin{equation*}
\inf _{v_{r} \in \mathbb{D}}\left(\frac{P}{g\left(v_{r}\right)}-1\right)>0 \tag{68b}
\end{equation*}
$$

Eq. 68a) is due to the following facts: (i) $\phi\left(v_{r}\right)>0$ for all $v_{r} \neq 0$ when f is not invertible (see Lemma 19p; and (ii) $\mathbb{D} \triangleq\left\{v_{r} \in(0,1]: g\left(v_{r}\right) \geq 0\right\} \subset(\hat{v}, 1]$ for some $\hat{v}>0$. (Since $g(0)<0$ and g is continuous.) Eq. 68b) is due to the definition $P \in\left(\sup _{v \in \mathbb{D}} g(v), 1\right)$.

G Proof of Lemma 7

We first present the major part of the proof. Some auxiliary results are postponed to Section G.2. Throughout this appendix, we assume $\delta>\delta_{\lambda}^{\mathrm{p}} \geq \delta_{\mathrm{opt}}^{\mathrm{p}}=1 / d(Y)$, where the second inequality is a consequence of the necessary condition for perfect reconstruction given in Lemma 4

G. 1 Main Proof

Let $g\left(v_{r}, \sigma_{w}^{2}\right)$ and $P\left(v_{r}, \sigma_{w}^{2}\right)$ be the noisy counterparts of $g\left(v_{r}\right)$ and $P\left(v_{r}\right)$, respectively:

$$
\begin{array}{r}
g\left(v_{r}, \sigma_{w}^{2}\right) \triangleq 1-\delta\left(1-\frac{\operatorname{mmse}_{z}\left(v_{r}, \sigma_{w}^{2}\right)}{v_{r}}\right), \\
P\left(v_{r}, \sigma_{w}^{2}\right) \triangleq \mathbb{E}\left[\frac{\phi\left(v_{r}, \sigma_{w}^{2}\right)}{\phi\left(v_{r}, \sigma_{w}^{2}\right)+\lambda}\right]-g\left(v_{r}, \sigma_{w}^{2}\right), \tag{69b}
\end{array}
$$

where $\operatorname{mmse}_{z}\left(v_{r}, \sigma_{w}^{2}\right)$ and $\phi\left(v_{r}, \sigma_{w}^{2}\right)$ are defined in 109) and 110), respectively.

The behaviors of g and P around $v_{r}=0$ are different under the noiseless and noisy settings. Specifically,

$$
\lim _{v_{r} \rightarrow 0} g\left(v_{r}, \sigma_{w}^{2}\right)= \begin{cases}1-\delta(1-\mathscr{D}(Z \mid f(Z)))<0 & \text { if } \sigma_{w}^{2}=0 \\ 1 & \text { if } \sigma_{w}^{2} \neq 0\end{cases}
$$

which is from the definition of conditional MMSE dimension and the fact that the distribution $P_{Z \mid Y_{\sigma}}$ (where $Y_{\sigma} \triangleq f\left(Z+\sigma_{w} W\right)$) is absolutely continuous when $\sigma_{w}^{2} \neq 0$. Further, from Lemma 21 .

$$
0<\lim _{v_{r} \rightarrow 0} \phi\left(v_{r}, \sigma_{w}^{2}\right)<\infty
$$

Hence,

$$
\lim _{v_{r} \rightarrow 0} P\left(v_{r}, \sigma_{w}^{2}\right)= \begin{cases}\delta(1-\mathscr{D}(Z \mid f(Z)))-1>0 & \text { if } \sigma_{w}^{2}=0 \\ \mathbb{E}\left[\frac{\sigma_{w}^{2}}{\sigma_{w}^{2}+\lambda}\right]-1<0 & \text { if } \sigma_{w}^{2} \neq 0\end{cases}
$$

Since $g(0)<0$ (where $g\left(v_{r}\right)$ is a shorthand for $g\left(v_{r}, 0\right)$), there exists a neighbor of $v_{r}=0$ for which $g\left(v_{r}\right)<0$. Define

$$
\begin{equation*}
v^{\diamond} \triangleq \inf \left\{v \in[0,1]: g\left(v_{r}\right)=0\right\} \tag{70}
\end{equation*}
$$

If $g\left(v_{r}\right)>0$ for all $v_{r} \in[0,1]$, we set $v^{\diamond}=1$. Note that P and g are continuous functions of $\sigma_{w}^{2} \geq 0$ whenever $v_{r} \neq 0$. Let $\epsilon \in\left(0, v^{\diamond}\right)$ be an arbitrary constant. By continuity, for sufficiently small σ_{w}^{2}, we have

$$
\begin{equation*}
P\left(v_{r}, \sigma_{w}^{2}\right)>0, \quad \forall v_{r} \in(\epsilon, 1) \tag{71}
\end{equation*}
$$

and

$$
\begin{equation*}
g\left(\epsilon, \sigma_{w}^{2}\right)<0 \tag{72}
\end{equation*}
$$

Since $g\left(0, \sigma_{w}^{2}\right)=1, g\left(v_{r}, \sigma_{w}^{2}\right)=0$ has at least one solution in $v_{r} \in(0, \epsilon)$. Let $v_{\epsilon}^{\diamond}\left(\sigma_{w}^{2}\right)$ be the largest one, i.e.,

$$
\begin{equation*}
v_{\epsilon}^{\diamond}\left(\sigma_{w}^{2}\right) \triangleq \sup \left\{v \in(0, \epsilon): g\left(v_{r}, \sigma_{w}^{2}\right)=0\right\} \tag{73}
\end{equation*}
$$

This definition ensures $g\left(v_{r}, \sigma_{w}^{2}\right)<0, \forall v_{r} \in\left(v_{\epsilon}^{\diamond}\left(\sigma_{w}^{2}\right), \epsilon\right)$ (see (72)). This further ensures $P\left(v_{r}, \sigma_{w}^{2}\right)>0$ for $v_{r} \in\left(v_{\epsilon}\left(\sigma_{w}^{2}\right), \epsilon\right)$, since the first term in 69b is positive. Together with (71), we have

$$
\begin{equation*}
P\left(v_{r}, \sigma_{w}^{2}\right)>0 \quad \forall v_{r} \in\left(v_{\epsilon}^{\diamond}\left(\sigma_{w}^{2}\right), 1\right) \tag{74}
\end{equation*}
$$

Now, let us define

$$
\begin{equation*}
v_{r}^{\star}\left(\sigma_{w}^{2}\right)=\sup \left\{v \in[0,1]: P\left(v_{r}, \sigma_{w}^{2}\right)=0\right\} \tag{75}
\end{equation*}
$$

which is the fixed point reached by the state evolution. As a consequence of (74) and (75), we have (for small enough σ_{w}^{2})

$$
v_{r}^{\star}\left(\sigma_{w}^{2}\right) \leq v_{\epsilon}^{\diamond}\left(\sigma_{w}^{2}\right)
$$

By the monotonicity of $\phi\left(v_{r}, \sigma_{w}^{2}\right)$ with respect to v_{r} (see Lemma 21, we have the following for small σ_{w}^{2}

$$
\begin{align*}
\phi\left(v_{r}^{\star}\left(\sigma_{w}^{2}\right), \sigma_{w}^{2}\right) & \leq \phi\left(v_{\epsilon}^{\diamond}\left(\sigma_{w}^{2}\right), \sigma_{w}^{2}\right) \\
& \stackrel{(a)}{=}(\delta-1) \cdot v_{\epsilon}^{\diamond}\left(\sigma_{w}^{2}\right) \tag{76}\\
& \stackrel{(b)}{\leq}(\delta-1) \cdot C(\delta, f) \cdot \sigma_{w}^{2},
\end{align*}
$$

where step (a) follows from (69a) and the fact that $v_{\epsilon}^{\diamond}\left(\sigma_{w}^{2}\right)$ is a solution to $g\left(v_{r}, \sigma_{w}^{2}\right)=0$, and step (b) is due to Lemma 14 Together with Lemma 21, we finally have

$$
\begin{equation*}
\sigma_{w}^{2} \leq \phi\left(v^{\star}\left(\sigma_{w}^{2}\right), \sigma_{w}^{2}\right) \leq(\delta-1) \cdot C(\delta, f) \cdot \sigma_{w}^{2} \tag{77}
\end{equation*}
$$

In Section G.2, we will prove that (see Lemma 14, the following holds for small σ_{w}^{2} :

$$
\begin{equation*}
v_{\epsilon}^{\diamond}\left(\sigma_{w}^{2}\right) \leq C(\delta, f) \cdot \sigma_{w}^{2}, \tag{78}
\end{equation*}
$$

where $C(\delta, f)$ is some constant depending on δ and the nonlinear measure function f.
Finally, for small σ_{w}^{2}, the MSE is given by

$$
\begin{aligned}
\operatorname{MSE}_{\lambda}^{\star}\left(\sigma_{w}^{2}, \lambda\right) & =\mathbb{E}\left[\frac{\phi\left(v_{r}^{\star}\left(\sigma_{w}^{2}\right), \sigma_{w}^{2}\right)}{\phi\left(v_{r}^{\star}\left(\sigma_{w}^{2}\right), \sigma_{w}^{2}\right)+\lambda}\right] \\
& =\phi\left(v^{\star}\left(\sigma_{w}^{2}\right), \sigma_{w}^{2}\right) \cdot\left(\mathbb{E}\left[\lambda^{-1}\right]+o(1)\right) .
\end{aligned}
$$

From (77), we have

$$
\sigma_{w}^{2} \cdot\left(\mathbb{E}\left[\lambda^{-1}\right]+o(1)\right) \leq \operatorname{MSE}_{\lambda}^{\star}\left(\sigma_{w}^{2}, \lambda\right) \leq(\delta-1) \cdot C(\delta, f) \cdot \sigma_{w}^{2} \cdot\left(\mathbb{E}\left[\lambda^{-1}\right]+o(1)\right)
$$

This completes our proof.

G. 2 Auxiliary Results

Lemma 14. Suppose $\sigma_{w}^{2} \neq 0$ and $\delta>\delta_{\lambda}^{\mathrm{p}} \geq 1 /(1-\mathscr{D}(Z \mid f(Z)))$, where $Z \sim \mathcal{N}(0,1)$. Define $v^{\diamond} \triangleq \inf \left\{v \in[0,1]: g\left(v_{r}\right)=0\right\}$. For arbitrary $\epsilon \in\left(0, v^{\diamond}\right)$, define

$$
\begin{equation*}
v_{\epsilon}^{\diamond}\left(\sigma_{w}^{2}\right) \triangleq \sup \left\{v \in(0, \epsilon): \operatorname{mmse}_{z}\left(v_{r}, \sigma_{w}^{2}\right)=\left(1-\frac{1}{\delta}\right) v_{r}\right\} \tag{79}
\end{equation*}
$$

where $\operatorname{mmse}_{z}\left(v_{r}, \sigma_{w}^{2}\right)$ is defined in (109). Then, the following holds as $\sigma_{w}^{2} \rightarrow 0$

$$
\begin{equation*}
v_{\epsilon}^{\diamond}\left(\sigma_{w}^{2}\right) \leq C(\delta, f) \cdot \sigma_{w}^{2}, \tag{80}
\end{equation*}
$$

where $0<C(\delta, f)<\infty$ is a constant depending on δ and f.
Proof. Our proof is mainly concerned with proving the following upper bound of mmse ${ }_{z}\left(v_{r}, \sigma_{w}^{2}\right)$ as $v_{r}+\sigma_{w}^{2} \rightarrow 0:$

$$
\begin{equation*}
\operatorname{mmse}_{z}\left(v_{r}, \sigma_{w}^{2}\right) \leq v_{r} \cdot \mathscr{D}(Z \mid f(Z))+o\left(v_{r}\right)+C \cdot \sigma_{w}^{2} \tag{81}
\end{equation*}
$$

where C is some constant depending on δ and f. Using this, we can upper bound $v_{\epsilon}^{\diamond}\left(\sigma_{w}^{2}\right)$ by the solution to the solution to the following equation:

$$
\begin{equation*}
v_{r} \cdot \mathscr{D}(Z \mid f(Z))+o\left(v_{r}\right)+C \cdot \sigma_{w}^{2}=\left(1-\frac{1}{\delta}\right) v_{r} \tag{82}
\end{equation*}
$$

Namely,

$$
v_{\epsilon}^{\diamond}\left(\sigma_{w}^{2}\right) \leq \frac{C \sigma_{w}^{2}}{1-\frac{1}{\delta}-\mathscr{D}(Z \mid f(Z))-o(1)},
$$

which yields the desired result.

The rest of this section is devoted to the proof of (81). Define

$$
\begin{align*}
Y_{\sigma} & =f\left(Z+\sigma_{w} W\right) \\
U_{\sigma} & =Z+\sigma_{w} W \\
Z_{r} & =\left(1-v_{r}\right) Z+\sqrt{v_{r}\left(1-v_{r}\right)} N \tag{83}\\
R & =\sqrt{v}_{r} Z-\sqrt{1-v_{r}} N
\end{align*}
$$

where Z, N, W, R are standard Gaussian RVs, and (Z, N, W) are mutually independent and $R \Perp$ $\left(Z_{r}, W\right)$. (Here, $A \Perp B$ denotes A, B are independent RVs.) Notice that

$$
Z=Z_{r}+\sqrt{v_{r}} R
$$

Lemma 15 (at the end of this section) shows that the following holds

$$
\lim _{v_{r}+\sigma_{w}^{2} \rightarrow 0} \frac{1}{v_{r}}\left(\operatorname{mmse}\left(v_{r}, \sigma_{w}^{2}\right)-\operatorname{mmse}_{\mathrm{app}}\left(v_{r}, \sigma_{w}^{2}\right)\right)=0 .
$$

As a consequence,

$$
\begin{equation*}
\operatorname{mmse}_{z}\left(v_{r}, \sigma_{w}^{2}\right)=\text { mmse }_{\text {app }}\left(v_{r}, \sigma_{w}^{2}\right)+o(1) \cdot v_{r} . \tag{84}
\end{equation*}
$$

In what follows, we prove that the following holds for all $v_{r} \in(0,1)$

$$
\begin{equation*}
\operatorname{mmse}_{\mathrm{app}}\left(v_{r}, \sigma_{w}^{2}\right)=\text { mmse }_{\text {app }}\left(v_{r}, 0\right)+O\left(\sigma_{w}^{2}\right) \tag{85}
\end{equation*}
$$

We first recall that mmse $_{\text {app }}$ is defined as

$$
\begin{equation*}
\text { mmse }_{\mathrm{app}}\left(v_{r}, \sigma_{w}^{2}\right) \triangleq \underbrace{v_{r} \mathbb{E}\left(\left(\frac{\sigma_{w}^{2} R}{v_{r}+\sigma_{w}^{2}}-\frac{\sqrt{v} \sigma_{w} W}{v_{r}+\sigma_{w}^{2}}\right)^{2} \mathbb{I}\left(\mathcal{E}_{1}\right)\right)}_{\text {Part 1 }}+\underbrace{v_{r} \mathbb{E}\left(R^{2} \mathbb{I}\left(\mathcal{E}_{1}^{c}\right)\right)}_{\text {Part 2 }} \tag{86}
\end{equation*}
$$

Clearly, Part one is $O\left(\sigma_{w}^{2}\right)$. We next show that the difference between Part two and mmse ${ }_{\text {app }}\left(v_{r}, 0\right)$ is $O\left(\sigma_{w}^{2}\right)$. To this end, notice that R is correlated with U_{σ}, and it is convenient to decompose it as

$$
R=\frac{\sqrt{v_{r}}}{1+\sigma_{w}^{2}} U_{\sigma}+\sqrt{\frac{1-v_{r}+\sigma_{w}^{2}}{1+\sigma_{w}^{2}}} S
$$

where $S \sim \mathcal{N}(0,1)$ and $S \Perp U_{\sigma}$. Then,

$$
\begin{aligned}
\text { Part } 2 & =v_{r} \mathbb{E}\left(R^{2} \mathbb{I}\left(\mathcal{E}_{1}^{c}\right)\right) \\
& =v_{r} \mathbb{E}\left(\left(\frac{\sqrt{v_{r}}}{1+\sigma_{w}^{2}} U_{\sigma}+\sqrt{\frac{1-v_{r}+\sigma_{w}^{2}}{1+\sigma_{w}^{2}}} S\right)^{2} \mathbb{I}\left(\mathcal{E}_{1}^{c}\right)\right) \\
& =\frac{v_{r}^{2}}{1+\sigma_{w}^{2}} \mathbb{E}\left(U_{\sigma}^{2} \mathbb{I}\left(\mathcal{E}_{1}^{c}\right)\right)+\frac{v_{r}\left(1-v_{r}+\sigma_{w}^{2}\right)}{1+\sigma_{w}^{2}} \cdot \mathbb{P}\left(\mathcal{E}_{1}^{c}\right)
\end{aligned}
$$

We notice the following facts: (i) $U_{\sigma}=Z+\sigma_{w} W$; (ii) $\mathcal{E}_{1}^{c}=\mathbb{I}\left(U_{\sigma} \in\left\{x: f^{-1}(f(x))\right.\right.$ is an interval $\}$). It can be shown that there exists a constant $C<\infty$ such that the following hold for all $v_{r} \in(0,1)$

$$
\begin{aligned}
\mathbb{E}\left(U_{\sigma}^{2} \mathbb{I}\left(\mathcal{E}_{1}^{c}\right)\right) & \leq\left.\mathbb{E}\left(U_{\sigma}^{2} \mathbb{I}\left(\mathcal{E}_{1}^{c}\right)\right)\right|_{\sigma_{w}=0}+C \cdot \sigma_{w}^{2}, \\
\mathbb{P}\left(\mathcal{E}_{1}^{c}\right) & \leq\left.\mathbb{P}\left(\mathcal{E}_{1}^{c}\right)\right|_{\sigma_{w}=0}+C \cdot \sigma_{w}^{2},
\end{aligned}
$$

as $\sigma_{w}^{2} \rightarrow 0$. We skip the details here. Combining the above arguments proves 85).
Finally, combining (84) and 85), we have

$$
\operatorname{mmse}_{z}\left(v_{r}, \sigma_{w}^{2}\right)=\operatorname{mmse}_{\text {app }}\left(v_{r}, \sigma_{w}=0\right)+o(1) v_{r}+O\left(\sigma_{w}^{2}\right)
$$

as $v_{r}+\sigma_{w}^{2} \rightarrow 0$. Notice that

$$
\operatorname{mmse}_{\mathrm{app}}\left(v_{r}, \sigma_{w}=0\right)=\mathbb{E}\left(v_{r} Z-\sqrt{v_{r}\left(1-v_{r}\right)} N\right)^{2} \mathbb{I}\left(\mathcal{E}_{1}^{c}\right)
$$

where without slight abuse of notation $\mathcal{E}_{1}^{c}=\mathbb{I}\left(Z \in\left\{x: f^{-1}(f(x))\right.\right.$ is an interval $\}$) (namely, it is the previous defined \mathcal{E}_{1}^{c} at $\sigma_{w}=0$). This term has the same behavior as mmse $z_{z}\left(v_{r}\right)$ for small v_{r}. Here, the $O\left(v_{r}\right)$ term is

$$
v_{r}\left(1-v_{r}\right) \cdot \mathbb{E}\left[N^{2} \mathbb{I}\left(\mathcal{E}_{1}^{c}\right)\right]=v_{r}\left(1-v_{r}\right) \cdot \mathscr{D}(Z \mid f(Z))
$$

Hence, overall we have

$$
\operatorname{mmse}_{z}\left(v_{r}, \sigma_{w}^{2}\right) \leq v_{r} \cdot \mathscr{D}(Z \mid f(Z))+o\left(v_{r}\right)+C \cdot \sigma_{w}^{2},
$$

as $v_{r}+\sigma_{w}^{2} \rightarrow 0$.

Lemma 15. Let $\operatorname{mmse}_{z}\left(v_{r}, \sigma_{w}^{2}\right)$ be the noisy MMSE defined in (109)). Define

$$
\begin{equation*}
\operatorname{mmse}_{\mathrm{app}}\left(v_{r}, \sigma_{w}^{2}\right) \triangleq v_{r} \mathbb{E}\left(\left(\frac{\sigma_{w}^{2} R}{v_{r}+\sigma_{w}^{2}}-\frac{\sqrt{v} \sigma_{w} W}{v_{r}+\sigma_{w}^{2}}\right)^{2} \mathbb{I}\left(\mathcal{E}_{1}\right)\right)+v_{r} \mathbb{E}\left(R^{2} \mathbb{I}\left(\mathcal{E}_{1}^{c}\right)\right) . \tag{87}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathcal{E}_{1} \triangleq\left\{U_{\sigma} \in \mathbb{R} \backslash \mathcal{Q}_{f}\right\} \tag{88}
\end{equation*}
$$

$U_{\sigma}=Z+\sigma_{w} N$ and \mathcal{E}_{1}^{c} is the complement of \mathcal{E}_{1}. Then, the following holds

$$
\begin{equation*}
\lim _{v_{r}+\sigma_{w}^{2} \rightarrow 0} \frac{1}{v_{r}} \cdot\left(\operatorname{mmse}_{z}\left(v_{r}, \sigma_{w}^{2}\right)-\mathrm{mmse}_{\mathrm{app}}\left(v_{r}, \sigma_{w}^{2}\right)\right)=0 . \tag{89}
\end{equation*}
$$

Proof. By the definitions of mmse_{z} and $\mathrm{mmse}_{\text {app }}$, we have

$$
\begin{aligned}
& \frac{1}{v_{r}}\left(\operatorname{mmse}_{z}\left(v_{r}, \sigma_{w}^{2}\right)-\operatorname{mmse}_{\mathrm{app}}\left(v_{r}, \sigma_{w}^{2}\right)\right) \\
& =\mathbb{E}\left[\frac{1}{v_{r}}\left(Z-\mathbb{E}\left[Z \mid Y_{\sigma}, Z_{r}\right]\right)^{2}-\left(\frac{\sigma_{w}^{2} R}{v_{r}+\sigma_{w}^{2}}-\frac{\sqrt{v_{r}} \sigma_{w} W}{v_{r}+\sigma_{w}^{2}}\right)^{2} \mathbb{I}\left(\mathcal{E}_{1}\right)-R^{2} \mathbb{I}\left(\mathcal{E}_{1}^{c}\right)\right] .
\end{aligned}
$$

We bound the term inside the expectation by

$$
\begin{align*}
& \quad\left|\frac{1}{v_{r}}\left(Z-\mathbb{E}\left[Z \mid Y_{\sigma}, Z_{r}\right]\right)^{2}-\left(\frac{\sigma_{w}^{2} R}{v_{r}+\sigma_{w}^{2}}-\frac{\sqrt{v_{r}} \sigma_{w} W}{v_{r}+\sigma_{w}^{2}}\right)^{2} \mathbb{I}\left(\mathcal{E}_{1}\right)-R^{2} \mathbb{I}\left(\mathcal{E}_{1}^{c}\right)\right| \\
& \stackrel{(a)}{=}\left|\left(R-\mathbb{E}\left[R \mid Y_{\sigma}, Z_{r}\right]\right)^{2}-\left(\frac{\sigma_{w}^{2} R}{v_{r}+\sigma_{w}^{2}}-\frac{\sqrt{v_{r}} \sigma_{w} W}{v_{r}+\sigma_{w}^{2}}\right)^{2} \mathbb{I}\left(\mathcal{E}_{1}\right)-R^{2} \mathbb{I}\left(\mathcal{E}_{1}^{c}\right)\right| \tag{90}\\
& \leq 2\left(R^{2}+\mathbb{E}^{2}\left[R \mid Y_{\sigma}, Z_{r}\right]\right)+\left(\frac{\sigma_{w}^{2} R}{v_{r}+\sigma_{w}^{2}}-\frac{\sqrt{v_{r}} \sigma_{w} W}{v_{r}+\sigma_{w}^{2}}\right)^{2} \mathbb{I}\left(\mathcal{E}_{1}\right)+R^{2} \mathbb{I}\left(\mathcal{E}_{1}^{c}\right) \\
& \leq 2\left(R^{2}+\mathbb{E}^{2}\left[R \mid Y_{\sigma}, Z_{r}\right]\right)+2\left(R^{2}+\frac{1}{4} W^{2}\right)+R^{2}
\end{align*}
$$

where step (a) follows from the definition $Z=Z_{r}+\sqrt{v_{r}} R$. Since

$$
\mathbb{E}\left[2\left(R^{2}+\mathbb{E}^{2}\left[R \mid Y_{\sigma}, Z_{r}\right]\right)+\left(R^{2}+\frac{1}{4} W^{2}\right)+R^{2}\right]<\infty
$$

by dominated convergence theorem we have

$$
\begin{aligned}
& \lim _{v_{r}+\sigma_{w}^{2} \rightarrow 0} \frac{1}{v_{r}} \operatorname{mmse}_{z}\left(v_{r}, \sigma_{w}^{2}\right)-\text { mmse }_{\mathrm{app}}\left(v_{r}, \sigma_{w}^{2}\right) \\
& =\lim _{v_{r}+\sigma_{w}^{2} \rightarrow 0} \frac{1}{v_{r}} \mathbb{E}\left(Z-\mathbb{E}\left[Z \mid Y_{\sigma}, Z_{r}\right]\right)^{2}-\text { mmse }_{\mathrm{app}}\left(v_{r}, \sigma_{w}^{2}\right) \\
& =\mathbb{E}\left[\lim _{v_{r}+\sigma_{w}^{2} \rightarrow 0} \frac{1}{v_{r}}\left(Z-\mathbb{E}\left[Z \mid Y_{\sigma}, Z_{r}\right]\right)^{2}-\left(\frac{\sigma_{w}^{2} R}{v_{r}+\sigma_{w}^{2}}-\frac{\sqrt{v} \sigma_{w} W}{v_{r}+\sigma_{w}^{2}}\right)^{2} \mathbb{I}\left(\mathcal{E}_{1}\right)-R^{2} \mathbb{I}\left(\mathcal{E}_{1}^{c}\right)\right] \\
& =\mathbb{E}\left[T_{1}\right]+\mathbb{E}\left[T_{2}\right]
\end{aligned}
$$

where

$$
\begin{align*}
& T_{1} \triangleq \lim _{v_{r}+\sigma_{w}^{2} \rightarrow 0} \frac{1}{v_{r}}\left(Z-\mathbb{E}\left[Z \mid Y_{\sigma}, Z_{r}\right]\right)^{2} \mathbb{I}\left(\mathcal{E}_{1}\right)-\left(\frac{\sigma_{w}^{2} R}{v_{r}+\sigma_{w}^{2}}-\frac{\sqrt{v} \sigma_{w} W}{v_{r}+\sigma_{w}^{2}}\right)^{2} \mathbb{I}\left(\mathcal{E}_{1}\right) \tag{91}\\
& T_{2} \triangleq \lim _{v_{r}+\sigma_{w}^{2} \rightarrow 0} \frac{1}{v_{r}}\left(Z-\mathbb{E}\left[Z \mid Y_{\sigma}, Z_{r}\right]\right)^{2} \mathbb{I}\left(\mathcal{E}_{1}^{c}\right)-R^{2} \mathbb{I}\left(\mathcal{E}_{1}^{c}\right)
\end{align*}
$$

We next prove $\mathbb{E}\left[T_{1}\right]=0$ and $\mathbb{E}\left[T_{2}\right]=0$ separately.
Analysis of T_{1} : Direct calculations yield

$$
\begin{align*}
\mathbb{E}\left[Z \mid Y_{\sigma}=y, Z_{r}=z_{r}\right] & =\frac{\int_{f^{-1}(y)} \mathcal{N}\left(u ; z_{r}, v_{r}+\sigma_{w}^{2}\right) \frac{v_{r} u+\sigma_{w}^{2} z_{r}}{v_{r}+\sigma_{w}^{2}} \mathrm{~d} u}{\int_{f^{-1}(y)} \mathcal{N}\left(u ; z_{r}, v_{r}+\sigma_{w}^{2}\right) \mathrm{d} u} \tag{92a}\\
& =z_{r}+\frac{v_{r}}{v_{r}+\sigma_{w}^{2}} \frac{\int_{\mathcal{I}} u \mathcal{N}\left(u ; 0, v_{r}+\sigma_{w}^{2}\right) \mathrm{d} u}{\int_{\mathcal{I}} \mathcal{N}\left(u ; 0, v_{r}+\sigma_{w}^{2}\right) \mathrm{d} u} \tag{92b}
\end{align*}
$$

where $\mathcal{N}(x ; m, v) \triangleq \frac{1}{\sqrt{2 \pi v}} \exp \left(-\frac{(x-m)^{2}}{2 v}\right), \mathcal{I} \triangleq f^{-1}(y)-z_{r}$, and the second step is due to a change of variable. We emphasize that \mathcal{I} is indexed by y and z_{r}, but to make notation light we did not make such dependency explicit. When $f^{-1}(y)$ is a discrete set, the integration is simply replaced by a summation.

With slight abuse of notations, let $\left(z, w, n, y, z_{r}\right)$ be an instance of $\left(Z, W, N, Y_{\sigma}, Z_{r}\right)$. From 83), we have $z_{r}=\left(1-v_{r}\right) z+\sqrt{v_{r}\left(1-v_{r}\right)} n$ and $y=f\left(z+\sigma_{w} w\right)$. Then,

$$
\begin{align*}
\frac{1}{v_{r}}\left(z-\mathbb{E}\left[Z \mid Y_{\sigma}=y, Z_{r}=z_{r}\right]\right)^{2} & =\frac{1}{v_{r}}\left(z-z_{r}-\frac{v_{r}}{v_{r}+\sigma_{w}^{2}} \frac{\int_{\mathcal{I}} u \mathcal{N}\left(u ; 0, v_{r}+\sigma_{w}^{2}\right) \mathrm{d} u}{\int_{\mathcal{I}} \mathcal{N}\left(u ; 0, v_{r}+\sigma_{w}^{2}\right) \mathrm{d} u}\right)^{2} \\
& =\frac{1}{v_{r}}\left(v_{r} z-\sqrt{v_{r}\left(1-v_{r}\right)} n-\frac{v_{r}}{v_{r}+\sigma_{w}^{2}} \frac{\int_{\mathcal{I}} u \mathcal{N}\left(u ; 0, v_{r}+\sigma_{w}^{2}\right) \mathrm{d} u}{\int_{\mathcal{I}} \mathcal{N}\left(u ; 0, v_{r}+\sigma_{w}^{2}\right) \mathrm{d} u}\right)^{2} \\
& =\left(\sqrt{v_{r}} z-\sqrt{1-v_{r}} n-\frac{\sqrt{v_{r}}}{v_{r}+\sigma_{w}^{2}} \frac{\int_{\mathcal{I}} u \mathcal{N}\left(u ; 0, v_{r}+\sigma_{w}^{2}\right) \mathrm{d} u}{\int_{\mathcal{I}} \mathcal{N}\left(u ; 0, v_{r}+\sigma_{w}^{2}\right) \mathrm{d} u}\right)^{2} \\
& =\left(r-\frac{\sqrt{v_{r}}}{v_{r}+\sigma_{w}^{2}} \frac{\int_{\mathcal{I}} u \mathcal{N}\left(u ; 0, v_{r}+\sigma_{w}^{2}\right) \mathrm{d} u}{\int_{\mathcal{I}} \mathcal{N}\left(u ; 0, v_{r}+\sigma_{w}^{2}\right) \mathrm{d} u}\right)^{2} \tag{93}
\end{align*}
$$

where the last step is due to the definition of the r.v. R in (83). Recall that $\mathcal{E}_{1}=\left\{Z+\sigma_{\sigma} W \in \mathbb{R} \backslash \mathcal{Q}_{f}\right\}$, where $\mathcal{Q}_{f}=\left\{z: f^{-1}(f(z))\right.$ contains an interval $\}$. Conditioned on $\mathcal{E}_{1}, f^{-1}(y)$ is a discrete set, and so is $\mathcal{I} \triangleq f^{-1}(y)-z_{r}$. Hence, conditioned on \mathcal{E}_{1}, the integration in the above formula is replaced by summation over the elements in \mathcal{I}. Since $y=f\left(z+\sigma_{w} w\right)$, we have $z+\sigma_{w} w \in f^{-1}(y)$. Further, $z=z_{r}+\sqrt{v_{r}} r$, and thus

$$
z+\sigma_{w} w-z_{r}=\sqrt{v_{r}} r+\sigma_{w} w \in f^{-1}(y)-z_{r}=\mathcal{I} .
$$

Let \mathcal{E}_{2} be the event that there does not exist $x \in f^{-1}(y)$ and $x \neq z+\sigma_{w} w$ such that $\left|z+\sigma_{w} w\right|=$ $\left|x-z_{r}\right|$. Then, on the event $\mathcal{E}_{1} \cap \mathcal{E}_{2}$,

$$
\lim _{v_{r}+\sigma_{w}^{2} \rightarrow 0} \frac{\int_{\mathcal{I}} u \mathcal{N}\left(u ; 0, v_{r}+\sigma_{w}^{2}\right) \mathrm{d} u}{\int_{\mathcal{I}} \mathcal{N}\left(u ; 0, v_{r}+\sigma_{w}^{2}\right) \mathrm{d} u}-\left(\sqrt{v_{r}} r+\sigma_{w} w\right)=0 .
$$

This is due to the fact that \mathcal{I} is a discrete set and the term with minimum exponent dominates. Hence,

$$
\lim _{v_{r}+\sigma_{w}^{2} \rightarrow 0} \frac{\sqrt{v_{r}}}{v_{r}+\sigma_{w}^{2}} \frac{\int_{\mathcal{I}} u \mathcal{N}\left(u ; 0, v_{r}+\sigma_{w}^{2}\right) \mathrm{d} u}{\int_{\mathcal{I}} \mathcal{N}\left(u ; 0, v_{r}+\sigma_{w}^{2}\right) \mathrm{d} u}-\frac{\sqrt{v_{r}}\left(\sqrt{v_{r}} r+\sigma_{w} w\right)}{v_{r}+\sigma_{w}^{2}}=0
$$

Hence, conditioned $\mathcal{E}_{1} \cap \mathcal{E}_{2}$, we have (see 93)

$$
\begin{aligned}
\frac{1}{v_{r}}\left(z-\mathbb{E}\left[Z \mid Y_{\sigma}=y, Z_{r}=z_{r}\right]\right)^{2} & =\left(r-\frac{\sqrt{v_{r}}}{v_{r}+\sigma_{w}^{2}} \frac{\int_{\mathcal{I}} u \mathcal{N}\left(u ; 0, v_{r}+\sigma_{w}^{2}\right) \mathrm{d} u}{\int_{\mathcal{I}}\left(u ; 0, v_{r}+\sigma_{w}^{2}\right) \mathrm{d} u}\right)^{2}+o\left(v_{r}+\sigma_{w}^{2}\right) \\
& =\left(r-\frac{\sqrt{v_{r}}\left(\sqrt{v_{r}} r+\sigma_{w} w\right)}{v_{r}+\sigma_{w}^{2}}\right)^{2}+o\left(v_{r}+\sigma_{w}^{2}\right) \\
& =\left(\frac{\sigma_{w}^{2} r-\sqrt{v_{r}} \sigma_{w} w}{v_{r}+\sigma_{w}^{2}}\right)^{2}+o\left(v_{r}+\sigma_{w}^{2}\right)
\end{aligned}
$$

Since $\mathbb{P}\left(\mathcal{E}_{2}^{c}\right)=0$, overall we have

$$
\begin{aligned}
\mathbb{P}\left(T_{1}=0\right) & =\mathbb{P}\left\{\lim _{v_{r}+\sigma_{w}^{2} \rightarrow 0} \mathbb{I}\left(\mathcal{E}_{1}\right) \cdot\left[\frac{1}{v_{r}}\left(Z-\mathbb{E}\left[Z \mid Y_{\sigma}, Z_{r}\right]\right)^{2}-\left(\frac{\sigma_{w}^{2} R}{v_{r}+\sigma_{w}^{2}}-\frac{\sqrt{v} \sigma_{w} W}{v_{r}+\sigma_{w}^{2}}\right)^{2}\right]=0\right\} \\
& =1
\end{aligned}
$$

Hence, $\mathbb{E}\left[T_{1}\right]=0$.
Analysis of T_{2} : Let $\left(z, n, w, r, y, z_{r}\right)$ be an instance of $\left(Z, N, W, R, Y_{\sigma}, Z_{r}\right)$. From (93), we have

$$
\begin{align*}
\frac{1}{v_{r}}\left(z-\mathbb{E}\left[Z \mid y, z_{r}\right]\right)^{2} & =\left(\sqrt{v_{r}} z-\sqrt{1-v_{r}} n-\frac{\sqrt{v_{r}}}{v_{r}+\sigma_{w}^{2}} \frac{\int_{\mathcal{I}} u \mathcal{N}\left(u ; 0, v_{r}+\sigma_{w}^{2}\right) \mathrm{d} u}{\int_{\mathcal{I}} \mathcal{N}\left(u ; 0, v_{r}+\sigma_{w}^{2}\right) \mathrm{d} u}\right)^{2} \tag{94a}\\
& =\left(\sqrt{v_{r}} z-\sqrt{1-v_{r}} n-\frac{\sqrt{v_{r}}}{v_{r}+\sigma_{w}^{2}} \frac{\int_{\hat{\mathcal{I}}} u \mathcal{N}(u ; 0,1) \mathrm{d} u}{\int_{\hat{\mathcal{I}}} \mathcal{N}(u ; 0,1) \mathrm{d} u}\right)^{2} \tag{94b}
\end{align*}
$$

where $\hat{\mathcal{I}} \triangleq \frac{\mathcal{I}}{\sqrt{v_{r}+\sigma_{w}^{2}}}=\frac{f^{-1}(y)-z_{r}}{\sqrt{v_{r}+\sigma_{w}^{2}}}$. Let \mathcal{E}_{3} be the event that z_{r} is not on the boundary of $f^{-1}(y)$.
Consider the third term in 94 b under $\mathcal{E}_{1}^{c} \cap \mathcal{E}_{3}$. From the definition of $\mathcal{E}_{1}^{c}, \hat{\mathcal{I}}$ only consists of intervals. If 0 is an interior point of $\hat{\mathcal{I}}$, we have

$$
\left|\int_{\hat{\mathcal{I}}} \mathcal{N}(u ; 0,1) \mathrm{d} u-1\right| \leq \int_{\hat{\mathcal{I}}^{c}} \mathcal{N}(u ; 0,1) \mathrm{d} u=O\left(e^{\left.-c /\left(v_{r}+\sigma_{w}^{2}\right)\right)}\right) .
$$

where $\hat{\mathcal{I}}^{c}=\mathbb{R} \backslash \hat{\mathcal{I}}$ and $c>0$ is some constant. Similarly, for the numerator,

$$
\left|\int_{\hat{\mathcal{I}}} u \mathcal{N}(u ; 0,1) \mathrm{d} u\right| \leq \int_{\hat{\mathcal{I}}^{c}}|u| \mathcal{N}(u ; 0,1) \mathrm{d} u=O\left(e^{\left.-c /\left(v_{r}+\sigma_{w}^{2}\right)\right)}\right) .
$$

Hence, when 0 is an interior point of $\hat{\mathcal{I}}$, we have

$$
\lim _{v_{r}+\sigma_{w}^{2} \rightarrow 0} \frac{\sqrt{v_{r}}}{v_{r}+\sigma_{w}^{2}} \frac{\int_{\hat{\mathcal{I}}} u \mathcal{N}(u ; 0,1) \mathrm{d} u}{\int_{\hat{\mathcal{I}}} \mathcal{N}(u ; 0,1) \mathrm{d} u}=0 .
$$

Next, we decompose $S \triangleq\left(z-\mathbb{E}\left[Z \mid y, z_{r}\right]\right)^{2} / v_{r}$ as

$$
S=S \cdot \mathbb{I}\left(0 \in\left(f^{-1}(y)-z_{r}\right)\right)+S \cdot \mathbb{I}\left(0 \notin\left(f^{-1}(y)-z_{r}\right)\right)
$$

We note that as $v_{r}+\sigma_{w}^{2} \rightarrow 0$, we have $z_{r} \rightarrow z$. Further, $z \in f^{-1}(y)$. Therefore,

$$
\lim _{v_{r}+\sigma_{w}^{2} \rightarrow 0} \mathbb{I}\left(0 \in\left(f^{-1}(y)-z_{r}\right)\right)=1
$$

We have shown in (90) that $S<\infty$. Hence,

$$
\begin{aligned}
\lim _{v_{r}+\sigma_{w}^{2} \rightarrow 0} \frac{1}{v_{r}}\left(z-\mathbb{E}\left[Z \mid y, z_{r}\right]\right)^{2} & =\lim _{v_{r}+\sigma_{w}^{2} \rightarrow 0} S \cdot \mathbb{I}\left(0 \in\left(f^{-1}(y)-z_{r}\right)\right)+\lim _{v_{r}+\sigma_{w}^{2} \rightarrow 0} S \cdot \mathbb{I}\left(0 \notin\left(f^{-1}(y)-z_{r}\right)\right) \\
& =\lim _{v_{r}+\sigma_{w}^{2} \rightarrow 0} S \cdot \mathbb{I}\left(0 \in\left(f^{-1}(y)-z_{r}\right)\right) \\
& =\left(\sqrt{v_{r}} z-\sqrt{1-v_{r}} n\right)^{2} .
\end{aligned}
$$

Since $\mathbb{P}\left(\mathcal{E}_{3}^{c}\right)=0$, we have

$$
\begin{aligned}
\mathbb{P}\left(T_{2}=0\right) & =\mathbb{P}\left(\lim _{v_{r}+\sigma_{w}^{2} \rightarrow 0} \frac{1}{v_{r}}\left(z-\mathbb{E}\left[Z \mid y, z_{r}\right]\right)^{2} \mathbb{I}\left(\mathcal{E}_{2}\right)=\frac{1}{v_{r}}\left(v_{r} z-\sqrt{v_{r}\left(1-v_{r}\right)} n\right)^{2} \mathbb{I}\left(\mathcal{E}_{2}\right)\right) \\
& =1
\end{aligned}
$$

H Some Auxiliary Results

In this section, after introducing the conditional MMSE dimension $\mathscr{D}(Z \mid Y)$, we present a few properties of $\mathrm{mmse}_{z}(\cdot)$ and the SE maps $\phi(\cdot), \Phi(\cdot)$.

H. 1 MMSE Dimension and information dimension

The MMSE dimension $\mathscr{D}(Z)$ defined below characterizes the high SNR behavior of the MMSE mmse $(Z$, snr). Similarly, $\mathscr{D}(Z \mid U)$ characterizes the high SNR behavior of mmse $(Z$, $\operatorname{snr} \mid U)$.
Definition 6 (MMSE dimension [64]). The following limits, if exist, is called the MMSE dimension (resp. conditional MMSE dimension):

$$
\begin{align*}
\mathscr{D}(Z) & =\lim _{\mathrm{snr} \rightarrow \infty} \mathrm{snr} \cdot \operatorname{mmse}(Z, \mathrm{snr}), \tag{95}\\
\mathscr{D}(Z \mid U) & =\lim _{\mathrm{snr} \rightarrow \infty} \mathrm{snr} \cdot \operatorname{mmse}(Z, \mathrm{snr} \mid U) .
\end{align*}
$$

The following lemma establishes the connection between the conditional MMSE dimension $\mathscr{D}(Z \mid Y)$ and the information dimension $d(Y)$ (see Section 1.3).

Lemma 16. Suppose Assumption (A.3) holds. Let $Z \sim \mathcal{N}(0,1)$ and $Y=f(Z)$. We have

$$
d(Y)=1-\mathscr{D}(Z \mid Y)
$$

Proof. The conditional MMSE dimension can be calculated as follows:

$$
\begin{align*}
\mathscr{D}(Z \mid Y) & =\lim _{\mathrm{snr} \rightarrow \infty} \mathrm{snr} \cdot \operatorname{mmse}(Z, \mathrm{snr} \mid Y) \\
& =\lim _{\mathrm{snr} \rightarrow \infty} \mathrm{snr} \cdot \mathbb{E}\left[(Z-\mathbb{E}[Z \mid \sqrt{\mathrm{snr}} Z+N, Y=y])^{2}\right] \\
& \stackrel{a}{=} \lim _{\operatorname{snr} \rightarrow \infty} \mathrm{snr} \cdot \mathbb{E}\left[\left(Z-\mathbb{E}\left[Z_{y} \mid \sqrt{\mathrm{snr}} Z_{y}+N\right]\right)^{2}\right] \tag{96}\\
& \triangleq \lim _{\operatorname{snr} \rightarrow \infty} \mathrm{snr} \cdot \mathbb{E}_{Y}\left[\operatorname{mmse}\left(Z_{y}, \mathrm{snr}\right)\right]
\end{align*}
$$

where $Z_{y} \sim P_{Z \mid Y=y}=P_{Z \mid Z \in f^{-1}(y)}$ denotes a random variable indexed by y, and N is independent of Z. Note that $\mathrm{mmse}\left(Z_{y}\right.$, snr $) \leq \mathrm{snr}^{-1}[30]^{5}$ and so $\mathrm{snr} \cdot \mathrm{mmse}\left(Z_{u}, \mathrm{snr}\right) \leq 1$. Hence, by Lebesgue's dominated convergence theorem we have

$$
\begin{align*}
\mathscr{D}(Z \mid Y) & =\mathbb{E}_{Y}\left[\lim _{\operatorname{snr} \rightarrow \infty} \operatorname{snr} \cdot \operatorname{mmse}\left(Z_{y}, \text { snr }\right)\right] \tag{97}\\
& =\mathbb{E}_{Y}\left[\mathscr{D}\left(Z_{y}\right)\right]
\end{align*}
$$

provided that $\lim _{\text {snr } \rightarrow \infty} \mathrm{snr} \cdot \mathrm{mmse}\left(Z_{y}\right.$, snr) exists almost surely. From [64, Theorem 10 and Theorem 11],

$$
\mathscr{D}\left(Z_{y}\right)= \begin{cases}0 & \text { if } P_{Z \mid Y=y} \text { is discrete } \\ 1 & \text { if } P_{Z \mid Y=y} \text { is absolutely continuous w.r.t. Lebesgue measure }\end{cases}
$$

This implies that

$$
\mathscr{D}\left(Z_{y}\right)= \begin{cases}0 & \text { if } y \in \mathbb{R} \backslash \mathcal{Q}_{f} \\ 1 & \text { if } y \in \mathcal{Q}_{f}\end{cases}
$$

Hence,

$$
\mathscr{D}(Z \mid Y)=\mathbb{P}\left\{f(Z) \in \mathcal{Q}_{f}\right\}=1-d(Y)
$$

H. 2 A property of mmse $_{z}\left(v_{r}\right)$

Note that $\eta_{z}\left(z_{r}, y, v\right)$ in GLM-EP (see 6 (6f) is an MMSE estimator:

$$
\begin{equation*}
\eta_{z}\left(z_{r}, y, v\right)=\mathbb{E}\left[Z \mid Y=y, Z_{r}=z_{r}\right]=\frac{\int_{f^{-1}(y)} u \cdot \mathcal{N}\left(u ; z_{r}, v\right) d u}{\int_{f^{-1}(y)} \mathcal{N}\left(u ; z_{r}, v\right) d u} \tag{98}
\end{equation*}
$$

where $\left(Z, Z_{r}\right) \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma})$ where

$$
\boldsymbol{\Sigma} \triangleq\left[\begin{array}{cc}
1 & 1-v_{r} \tag{99}\\
1-v_{r} & 1-v_{r}
\end{array}\right]
$$

and $Y=f(Z)$. Recall that mmse $_{z}\left(v_{r}\right)$ is defined as

$$
\begin{equation*}
\operatorname{mmse}_{z}\left(v_{r}\right)=\mathbb{E}\left(Z-\mathbb{E}\left[Z \mid Z_{r}, Y\right]\right)^{2} \tag{100}
\end{equation*}
$$

Lemma 17 below is a consequence of the covariance structure of $\left(Z, Z_{r}\right)$ defined in 99 .
Lemma 17. Let mmse $_{z}\left(v_{r}\right)$ be the MMSE defined in 100). Let $Z \sim \mathcal{N}(0,1), Y=f(Z)$ and $v_{r} \in(0,1]$. We have

$$
\operatorname{mmse}_{z}\left(v_{r}\right)=\operatorname{mmse}\left(Z, v_{r}^{-1}-1 \mid Y\right),
$$

where the right hand side is a conditional MMSE defined in (2).

[^4]
H. 3 Properties of the SE maps

In this appendix, we discuss a few properties of the maps ϕ and Φ in (7):

$$
\begin{align*}
& \phi\left(v_{r}\right)=\left(\frac{1}{\operatorname{mmse}_{z}\left(v_{r}\right)}-\frac{1}{v_{r}}\right)^{-1} \tag{101a}\\
& \Phi\left(v_{l}\right)=\left(\frac{1}{\frac{1}{\delta} \cdot \mathbb{E}\left[\frac{v_{l} \lambda}{v_{l}+\lambda}\right]}-\frac{1}{v_{l}}\right)^{-1} \tag{101b}
\end{align*}
$$

where the expectation in Φ is over λ, which is distributed according to the asymptotic eigenvalue distribution of $\boldsymbol{A}^{\top} \boldsymbol{A}$, and

$$
\operatorname{mmse}_{z}\left(v_{r}\right) \triangleq \operatorname{mmse}\left(Z, v_{r}^{-1}-1 \mid f(Z)\right)
$$

The following lemmas collect some useful properties of the MMSE [29], and the maps ϕ, Φ.
Lemma 18 (Properties of mmse $(Z, \operatorname{snr} \mid U)$). The following hold:
(i) Assume $Z \sim \mathcal{N}(0,1)$. Then, $\mathrm{mmse}(Z, \mathrm{snr} \mid U) \leq \frac{1}{1+\mathrm{snr}}, \forall \mathrm{snr}>0$. Further, the inequality is strict if U is not independent of Z.
(ii) $\frac{\mathrm{d}}{\mathrm{dsnr}} \operatorname{mmse}(Z, \mathrm{snr} \mid U)=-\mathbb{E}\left(\operatorname{var}^{2}[Z \mid \sqrt{\mathrm{snr}} Z+N, U]\right)$, where $\operatorname{var}[Z \mid \sqrt{\mathrm{snr}} Z+N, U] \triangleq$ $\mathbb{E}\left[Z^{2} \mid \sqrt{\mathrm{snr}} Z+N, U\right]-\mathbb{E}^{2}[Z \mid \sqrt{\mathrm{snr}} Z+N, U]$, and $N \sim \mathcal{N}(0,1)$ is independent of (Z, U).

Lemma 19 (Properties of ϕ and Φ). The functions ϕ and Φ defined in 101) have the following properties:
(i) $\phi\left(v_{r}\right)$ is continuous and non-decreasing in $v_{r} \in(0,1)$. If $f(z)$ is not an invertible function, $\phi\left(v_{r}\right)$ is strictly increasing. Suppose that $f(Z)$ is not independent of $Z \sim \mathcal{N}(0,1)$. Then, $0 \leq \phi\left(v_{r}\right)<\infty$ and $\phi(0)=0$ if $d(f(Z)) \neq 0$, and $\phi(1)<\infty$ if $\mathbb{E}[Z \mid f(Z)] \neq 0 ;$
(ii) $\Phi\left(v_{l}\right)$ is continuous and strictly increasing in $v_{l} \in(0, \infty)$. Further, $\Phi(0)=0$ and $\Phi(\infty)=$ 1.

Proof. Proof of (i) : The continuity of $\phi\left(v_{r}\right)$ is due to the continuity of the function mmse $_{z}\left(v_{r}\right)=$ $\operatorname{mmse}(Z, \mathrm{snr} \mid Y)$, where $\mathrm{snr}=v_{r}^{-1}-1$ [29].
We next prove that ϕ is strictly increasing. Differentiation yields (see 101))

$$
\begin{equation*}
\phi^{\prime}\left(v_{r}\right)=\frac{v_{r}^{2} \cdot \mathrm{mmse}_{z}^{\prime}\left(v_{r}\right)-\mathrm{mmse}_{z}^{2}\left(v_{r}\right)}{\left(v_{r}-\mathrm{mmse}_{z}\left(v_{r}\right)\right)^{2}} . \tag{102a}
\end{equation*}
$$

Hence, we only need to prove

$$
\begin{equation*}
\operatorname{mmse}_{z}^{\prime}\left(v_{r}\right)>\frac{1}{v_{r}^{2}} \cdot \operatorname{mmse}_{z}^{2}\left(v_{r}\right), \quad \forall v_{r} \in(0,1] \tag{103a}
\end{equation*}
$$

Recall the definition

$$
\operatorname{mmse}_{z}\left(v_{r}\right)=\operatorname{mmse}(Z, \operatorname{snr} \mid Y), \quad \operatorname{snr} \triangleq v_{r}^{-1}-1
$$

and the derivative formula of the conditional MMSE in Lemma 18 , we have

$$
\begin{equation*}
\operatorname{mmse}_{z}^{\prime}\left(v_{r}\right)=\frac{1}{v_{r}^{2}} \cdot \mathbb{E}\left(\operatorname{var}^{2}[Z \mid \sqrt{\mathrm{snr}} Z+N, Y]\right), \quad \forall v_{r} \in(0,1] \tag{104}
\end{equation*}
$$

Further,

$$
\begin{equation*}
\operatorname{mmse}_{z}\left(v_{r}\right)=\operatorname{mmse}(Z, \operatorname{snr} \mid Y)=\mathbb{E}(\operatorname{var}[Z \mid \sqrt{\mathrm{snr}} Z+N, Y]) \tag{105}
\end{equation*}
$$

Combining (104) and (105), and applying Jensen's inequality proves $\mathrm{mmse}_{z}^{\prime}\left(v_{r}\right) \geq \frac{1}{v_{r}^{2}} \cdot \operatorname{mmse}_{z}^{2}\left(v_{r}\right)$, and equality holds only when $\operatorname{var}[Z \mid \sqrt{\mathrm{snr}} Z+N, Y]$ is constant with respect to realizations of $\sqrt{\mathrm{snr}} Z+N$ and Y. This is only possible when $Z_{y} \sim P_{Z \mid Y=y}$ is Gaussian with var[$\left.Z_{y}\right]$ invariant to y (including the degenerate case where $\operatorname{var}\left[Z_{y}\right]=0$). Again, this is only possible when $f(z)$ is an
invertible function for which Z_{y} is a constant and $\operatorname{var}\left[Z_{y}\right]=0$). To summarize, when $f(z)$ is not an invertible function, 103a holds and so ϕ is a strictly increasing function.
Finally, we verify $\phi(0)$ and $\phi(1)$. First, for any $v_{r} \in(0,1)$, we have

$$
\begin{align*}
\operatorname{mmse}_{z}\left(v_{r}\right) & =\operatorname{mmse}(Z, \mathrm{snr} \mid Y) \quad\left(\mathrm{snr}=v_{r}^{-1}-1\right) \\
& \stackrel{(a)}{\leq} \operatorname{mmse}(Z, \mathrm{snr}) \tag{106}\\
& =\frac{1}{1+\mathrm{snr}} \\
& =v_{r}
\end{align*}
$$

where step (a) is from the fact that conditioning reduces MMSE [29, Proposition 11]. Further, the inequality is strict for $v_{r} \neq 1(\mathrm{snr}>0)$ whenever $f(Z)$ is not independent of Z. It follows that

$$
\phi\left(v_{r}\right)=\left(\frac{1}{\operatorname{mmse}_{z}\left(v_{r}\right)}-\frac{1}{v_{r}}\right)^{-1} \in[0, \infty), \quad \forall v_{r} \in(0,1)
$$

Further, $\phi\left(v_{r}\right)$ is continuously increasing in $(0,1)$ and so the limit $\lim _{v_{r} \rightarrow 0_{+}} \phi\left(v_{r}\right)$ exists (which is defined to be $\phi(0)$). Hence, $\phi(0) \geq 0$.
Lemma 16 shows $d(Y)=1-\mathscr{D}(Z \mid Y)$. Hence, if $d(Y) \neq 0$, we would have

$$
\mathscr{D}(Z \mid Y) \triangleq \lim _{\operatorname{snr} \rightarrow \infty} \mathrm{snr} \cdot \operatorname{mmse}(Z, \mathrm{snr} \mid Y)<1
$$

Then,

$$
\begin{aligned}
\phi(0) & \triangleq \lim _{v_{r} \rightarrow 0} \phi\left(v_{r}\right) \\
& =\lim _{v_{r} \rightarrow 0} \frac{\mathrm{mmse}_{z}\left(v_{r}\right)}{1-\frac{\mathrm{mmse}_{z}\left(v_{r}\right)}{v_{r}}} \\
& \stackrel{(a)}{=} \lim _{\operatorname{snr}_{\rightarrow \infty}} \frac{\mathrm{mmse}(Z, \mathrm{snr} \mid Y)}{1-(\operatorname{snr}+1) \operatorname{mmse}(Z, \mathrm{snr} \mid Y)} \quad\left(\mathrm{snr}=v_{r}^{-1}-1\right) \\
& =0
\end{aligned}
$$

where step (a) follows from the definition of mmse $_{z}$ below (7), and the fact that $\lim _{\mathrm{snr} \rightarrow \infty} \operatorname{mmse}(Z, \mathrm{snr} \mid Y)=0$ and $\lim _{\mathrm{snr} \rightarrow \infty} \mathrm{snr} \cdot \operatorname{mmse}(Z, \operatorname{snr} \mid Y)=\mathscr{D}(Z \mid Y)<1$.
Finally,

$$
\begin{align*}
\phi(1) & =\left(\frac{1}{\operatorname{mmse}_{z}(1)}-1\right)^{-1} \\
& =\left(\frac{1}{\operatorname{mmse}(Z, \mathrm{snr}=0 \mid Y)}-1\right)^{-1} \\
& =\left(\frac{1}{\mathbb{E}(\operatorname{var}[Z \mid Y])}-1\right)^{-1} \tag{107}\\
& =\left(\frac{1}{\mathbb{E}\left(\mathbb{E}\left[Z^{2} \mid Y\right]-\mathbb{E}^{2}[Z \mid Y]\right)}-1\right)^{-1} \\
& =\left(\frac{1}{1-\mathbb{E}\left(\mathbb{E}^{2}[Z \mid Y]\right)}-1\right)^{-1} \quad\left(\mathbb{E}\left[Z^{2}\right]=1\right)
\end{align*}
$$

where $\mathbb{E}\left[Z^{2}\right]=1$ since $Z \sim \mathcal{N}(0,1)$. Hence, $\phi(1) \geq 0$ and $\phi(1)<\infty$ if $\mathbb{E}[Z \mid Y] \neq 0$.
Proof of (ii): Similar to the proof of part (i), to prove $\Phi\left(v_{l}\right)$ is increasing, we only need to verify

$$
\begin{equation*}
\frac{1}{\delta} \mathbb{E}\left[\left(\frac{v_{l} \lambda}{v_{l}+\lambda}\right)^{2}\right]>\left(\frac{1}{\delta} \mathbb{E}\left[\frac{v_{l} \lambda}{v_{l}+\lambda}\right]\right)^{2}, \quad \forall v_{r} \in(0,1] \tag{108}
\end{equation*}
$$

When $\delta>1$, Jensen's inequality yields the result:

$$
\frac{1}{\delta} \mathbb{E}\left[\left(\frac{v_{l} \lambda}{v_{l}+\lambda}\right)^{2}\right]>\frac{1}{\delta}\left(\mathbb{E}\left[\frac{v_{l} \lambda}{v_{l}+\lambda}\right]\right)^{2}>\left(\frac{1}{\delta} \mathbb{E}\left[\frac{v_{l} \lambda}{v_{l}+\lambda}\right]\right)^{2}, \quad \forall v_{r} \in(0,1]
$$

For $\delta \leq 1$, note that $P_{\lambda}=(1-\delta) P_{0}+\delta P_{\tilde{\lambda}}$ where $P_{\tilde{\lambda}}$ denotes the asymptotic eigenvalue distribution of $\boldsymbol{A} \boldsymbol{A}^{\top}$ (we have $\mathbb{E}\left[\tilde{\lambda}^{2}\right]=1$). Hence, 108) can be reformulated as

$$
\mathbb{E}\left[\left(\frac{v_{l} \tilde{\lambda}}{v_{l}+\tilde{\lambda}}\right)^{2}\right]>\left(\mathbb{E}\left[\frac{v_{l} \tilde{\lambda}}{v_{l}+\tilde{\lambda}}\right]\right)^{2}, \quad \forall v_{r} \in(0,1]
$$

and holds due to Jensen's inequality.
Lemma 20. If $f(z)=f(-z), \forall z$, then $\operatorname{mmse}_{z}(1)=1$. Further, $\left(V_{r}, V_{l}\right)=(1, \infty)$ is a fixed point of the state evolution equations in (7).

Proof. Recall that $\operatorname{mmse}_{z}\left(v_{r}\right)=\operatorname{mmse}\left(Z, v_{r}^{-1}-1 \mid Y\right)$. Hence, $\operatorname{mmse}_{z}(1)=\operatorname{mmse}(Z, \mathrm{snr}=0 \mid Y)$ and

$$
\begin{aligned}
\operatorname{mmse}(Z, \mathrm{snr}=0 \mid Y) & =\mathbb{E}\left(\mathbb{E}\left[|Z|^{2} \mid Y\right]-\mathbb{E}^{2}[Z \mid Y]\right) \\
& =\mathbb{E}\left(\mathbb{E}\left[|Z|^{2} \mid Y\right]\right) \\
& =\mathbb{E}\left[|Z|^{2}\right]=1
\end{aligned}
$$

A simple calculation shows that $\left(V_{r}, V_{l}\right)=(1,0)$ is a fixed point of (7).

The following lemma summarizes a few useful properties of $\phi\left(v_{r}, \sigma_{w}^{2}\right)$ (which is the noisy counterpart of $\phi\left(v_{r}\right)$).

Lemma 21. Define

$$
\begin{equation*}
\operatorname{mmse}_{z}\left(v_{r}, \sigma_{w}^{2}\right) \triangleq \mathbb{E}\left[\left(\mathbb{E}\left[Z \mid Y_{\sigma}, Z_{r}\right]-Z\right)^{2}\right] \tag{109}
\end{equation*}
$$

where $Z_{r}=\left(1-v_{r}\right) Z+\sqrt{v_{r}\left(1-v_{r}\right)} N, Y_{\sigma}=f\left(Z+\sigma_{w} W\right), Z, W, N$ are mutually independent standar Gaussian RVs. Define

$$
\begin{equation*}
\phi\left(v_{r}, \sigma_{w}^{2}\right)=\left(\frac{1}{\operatorname{mmse}_{z}\left(v_{r}, \sigma_{w}^{2}\right)}-\frac{1}{v_{r}}\right)^{-1} . \tag{110}
\end{equation*}
$$

For any $\sigma_{w}>0$ and $v_{r} \in(0,1), \phi\left(v_{r}, \sigma_{w}^{2}\right)$ satisfies the following:
(i) $\phi\left(v_{r}, \sigma_{w}^{2}\right)$ is continuous and increasing in $v_{r} \in[0,1)$. Further, $\phi\left(v_{r}, \sigma_{w}^{2}\right) \geq 0$;
(ii) $\sigma_{w}^{2} \leq \phi\left(v_{r}, \sigma_{w}^{2}\right)<\infty, \forall v_{r} \in[0,1)$.

Proof. Part (i): Same as Lemma 19 -(i).
Part (ii): We will show that mmse $\left(v_{r}, \sigma_{w}^{2}\right)$ can be rewritten as

$$
\begin{equation*}
\operatorname{mmse}_{z}\left(v_{r}, \sigma_{w}^{2}\right)=\left(\frac{v_{r}}{v_{r}+\sigma_{w}^{2}}\right)^{2} \cdot \mathbb{E}\left(U-\mathbb{E}\left[U \mid Z_{r}, Y_{\sigma}\right]\right)^{2}+\frac{v_{r} \sigma_{w}^{2}}{v_{r}+\sigma_{w}^{2}} \tag{111}
\end{equation*}
$$

where $U=Z+\sigma_{w} W, Y_{\sigma}=f(U)$, and $\left(U, Z_{r}\right) \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma})$ where

$$
\boldsymbol{\Sigma}=\left[\begin{array}{cc}
1+\sigma_{w}^{2} & 1-v_{r} \\
1-v_{r} & 1-v_{r}
\end{array}\right]
$$

From (111) we have

$$
\operatorname{mmse}_{z}\left(v_{r}, \sigma_{w}^{2}\right) \geq \frac{v_{r} \sigma_{w}^{2}}{v_{r}+\sigma_{w}^{2}}
$$

which together with 110 yields $\phi\left(v_{r}, \sigma_{w}^{2}\right) \geq \sigma_{w}^{2}$. We next prove the boundedness of $\phi\left(v_{r}, \sigma_{w}^{2}\right)$. Substituting (111) into (110) and after straightforward calculations, we have

$$
\phi\left(v_{r}, \sigma_{w}^{2}\right)=\frac{v_{r} \cdot \mathbb{E}\left(U-\mathbb{E}\left[U \mid Z_{r}, Y_{\sigma}\right]\right)^{2}}{v_{r}+\sigma_{w}^{2}-\mathbb{E}\left(U-\mathbb{E}\left[U \mid Z_{r}, Y_{\sigma}\right]\right)^{2}}
$$

Since conditioning reduces MMSE [30, Proposition 11], we have

$$
\mathbb{E}\left(U-\mathbb{E}\left[U \mid Z_{r}, Y_{\sigma}\right]\right)^{2} \leq \mathbb{E}\left(U-\mathbb{E}\left[U \mid Z_{r}\right]\right)^{2}=v_{r}+\sigma_{w}^{2}
$$

where the inequality is strict whenever Y_{σ} is not independent of U. All together, we have $\phi\left(v_{r}, \sigma_{w}^{2}\right)<$ ∞.

It only remains to prove 111 . Let us write $Z=Z_{r}+\tilde{Z}$, where $\tilde{Z} \sim \mathcal{N}\left(0, v_{r}\right)$ is independent of Z_{r}. We have

$$
\tilde{U} \triangleq U-Z_{r}=\tilde{Z}+\sigma_{w} W
$$

Define

$$
\tilde{Z}_{\underset{u}{u}}^{\perp} \triangleq \tilde{Z}-\frac{v_{r}}{v_{r}+\sigma_{w}^{2}} \tilde{U}
$$

By construction, $\tilde{Z}_{\tilde{u}}^{\perp} \Perp \tilde{U}$. We also have $\tilde{Z}_{\tilde{u}}^{\perp} \Perp Z_{r}{ }^{6}$, since $\tilde{Z}_{\tilde{u}}^{\perp}$ a linear combination of \tilde{Z} and W and the latter two RVs are independent of Z_{r}. Also, $Z_{\tilde{u}}^{\perp} \Perp Y_{\sigma}$ according to Lemma 22. Hence,

$$
\begin{aligned}
\mathbb{E}\left[\tilde{Z} \mid Z_{r}, Y_{\sigma}\right] & =\frac{v_{r}}{v_{r}+\sigma_{w}^{2}} \cdot \mathbb{E}\left[\tilde{U} \mid Z_{r}, Y_{\sigma}\right]+\mathbb{E}\left[\tilde{Z}_{\tilde{u}}^{\perp} \mid Z_{r}, Y_{\sigma}\right] \\
& =\frac{v_{r}}{v_{r}+\sigma_{w}^{2}} \cdot \mathbb{E}\left[\tilde{U} \mid Z_{r}, Y_{\sigma}\right]
\end{aligned}
$$

where the last step is due to the independence of $\tilde{Z}_{\tilde{u}}^{\perp}$ and $\left(Z_{r}, Y_{\sigma}\right)$ and the fact that $\tilde{Z}_{\tilde{u}}^{\perp}$ is zero-mean Gaussian. Hence, we have

$$
\begin{aligned}
\mathbb{E}\left(Z-\mathbb{E}\left[Z \mid Z_{r}, Y_{\sigma}\right]\right)^{2} & =\mathbb{E}\left(\tilde{Z}-\mathbb{E}\left[\tilde{Z} \mid Z_{r}, Y_{\sigma}\right]\right)^{2} \\
& =\mathbb{E}\left(\frac{v_{r}}{v_{r}+\sigma_{w}^{2}} \tilde{U}+\tilde{Z}_{\tilde{u}}^{\perp}-\mathbb{E}\left[\tilde{Z} \mid Z_{r}, Y_{\sigma}\right]\right)^{2} \\
& =\mathbb{E}\left(\frac{v_{r}}{v_{r}+\sigma_{w}^{2}} \tilde{U}+\tilde{Z}_{\tilde{u}}^{\perp}-\frac{v_{r}}{v_{r}+\sigma_{w}^{2}} \cdot \mathbb{E}\left[\tilde{U} \mid Z_{r}, Y_{\sigma}\right]\right)^{2} \\
& \stackrel{(a)}{=}\left(\frac{v_{r}}{v_{r}+\sigma_{w}^{2}}\right)^{2} \cdot \mathbb{E}\left(\tilde{U}-\mathbb{E}\left[\tilde{U} \mid Z_{r}, Y_{\sigma}\right]\right)^{2}+\frac{v_{r} \sigma_{w}^{2}}{v_{r}+\sigma_{w}^{2}} \\
& =\left(\frac{v_{r}}{v_{r}+\sigma_{w}^{2}}\right)^{2} \cdot \mathbb{E}\left(U-\mathbb{E}\left[U \mid Z_{r}, Y_{\sigma}\right]\right)^{2}+\frac{v_{r} \sigma_{w}^{2}}{v_{r}+\sigma_{w}^{2}}
\end{aligned}
$$

where step (a) is due to the fact that $\tilde{Z}_{\tilde{u}}^{\perp} \Perp\left(\tilde{U}, Z_{r}, Y_{\sigma}\right)$ and $\mathbb{E}\left[\left(\tilde{Z}_{\tilde{\tilde{u}}}^{\perp}\right)^{2}\right]=\frac{v_{r} \sigma_{w}^{2}}{v_{r}+\sigma_{w}^{2}}$.
Lemma 22. Consider two independent Gaussian RVs: $Z \sim \mathcal{N}(0, \tau)$ and $W \sim \mathcal{N}(0,1)$. Suppose $U=Z+\sigma_{w} W$ and $Y_{\sigma} \sim P_{Y_{\sigma}}$, where $P_{Y_{\sigma}} \propto P_{U} \cdot P_{Y_{\sigma} \mid U}$ and $P_{Y_{\sigma} \mid U}$ is an arbitrary distribution. Define $Z_{u}^{\perp} \triangleq Z-\frac{\tau}{\tau+\sigma_{w}^{2}} U$. Then, we have $Z_{u}^{\perp} \Perp\left(U, Y_{\sigma}\right)$.

Proof. It is straightforward to show $Z_{u}^{\perp} \Perp U$. Since Y_{σ} is generated from U, we also have $Z_{u}^{\perp} \Perp Y_{\sigma}$.

[^5]
[^0]: ${ }^{1}$ The name GLM-EP is chosen because the model (1) is an instance of generalized linear models (GLM).

[^1]: ${ }^{2}$ The notation $\lfloor z\rfloor$ denotes the largest integer that is smaller than z.

[^2]: ${ }^{3}$ Other types of noisy models are possible, e.g., $\boldsymbol{y}=f(\boldsymbol{A} \boldsymbol{x})+\boldsymbol{w}$. Extending our results to these models is beyond the scope of the current paper.

[^3]: ${ }^{4}$ The smoothing parameter σ should not be confused with σ_{w}, which denotes the noise variance in Section 2.3

[^4]: ${ }^{5}$ This is true even when the moments of Z_{u} do not exist. To see this, consider $\tilde{Y}=\sqrt{\operatorname{snr}} Z_{u}+N$ and the linear estimator $\tilde{Y} / \sqrt{\mathrm{snr}}$. The MSE of this linear estimator is snr^{-1} and hence $\mathrm{mmse}\left(Z_{u}, \mathrm{snr}\right) \leq \mathrm{snr}^{-1}$.

[^5]: ${ }^{6}$ Throughout this paper, $A \Perp B$ denotes the random variables A and B are independent

