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Abstract

We consider the following variant of contextual linear bandits motivated by routing
applications in navigational engines and recommendation systems. We wish to
learn a hidden d-dimensional value w∗. Every round, we are presented with a
subset Xt ⊆ Rd of possible actions. If we choose (i.e. recommend to the user)
action xt, we obtain utility 〈xt, w∗〉 but only learn the identity of the best action
arg maxx∈Xt

〈x,w∗〉.
We design algorithms for this problem which achieve regret O(d log T ) and
exp(O(d log d)). To accomplish this, we design novel cutting-plane algorithms
with low “regret” – the total distance between the true point w∗ and the hyperplanes
the separation oracle returns.
We also consider the variant where we are allowed to provide a list of several
recommendations. In this variant, we give an algorithm with O(d2 log d) regret
and list size poly(d). Finally, we construct nearly tight algorithms for a weaker
variant of this problem where the learner only learns the identity of an action that
is better than the recommendation. Our results rely on new algorithmic techniques
in convex geometry (including a variant of Steiner’s formula for the centroid of a
convex set) which may be of independent interest.

1 Introduction

Consider the following problem faced by a geographical query service (e.g. Google Maps). When
a user searches for a path between two endpoints, the service must return one route out of a set of
possible routes. Each route has a multidimensional set of features associated with it, such as (i)
travel time, (ii) amount of traffic, (iii) how many turns it has, (iv) total distance, etc. The service
must recommend one route to the user, but doesn’t a priori know how the user values these features
relative to one another. However, when the service recommends a route, the service can observe some
feedback from the user: whether or not the user followed the recommended route (and if not, which
route the user ended up taking). How can the service use this feedback to learn the user’s preferences
over time?

Similar problems are faced by recommendation systems in general, where every round a user arrives
accompanied by some contextual information (e.g. their current search query, recent activity, etc.),
the system makes a recommendation to the user, and the system can observe the eventual action (e.g.
the purchase of a specific item) by the user. These problems can be viewed as specific cases of a
variant of linear contextual bandits that we term contextual recommendation.

In contextual recommendation, there is a hidden vector w∗ ∈ Rd (e.g. representing the values of the
user for different features) that is unknown to the learner. Every round t (for T rounds), the learner is
presented with an adversarially chosen (and potentially very large) set of possible actions Xt. Each
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element xt of Xt is also an element of Rd (visible to the learner); playing action xt results in the
learner receiving a reward of 〈xt, w∗〉. The learner wishes to incur low regret compared to the best
possible strategy in hindsight – i.e. the learner wishes to minimize

Reg =
∑T
t=1 (〈x∗t , w∗〉 − 〈xt, w∗〉) , (1)

where x∗t = arg maxx∈Xt〈x,w∗〉 is the best possible action at time t. In our geographical query
example, this regret corresponds to the difference between the utility of a user that always blindly
follows our recommendation and the utility of a user that always chooses the optimal route.

Thus far this agrees with the usual set-up for contextual linear bandits (see e.g. [4]). Where contextual
recommendation differs from this is in the feedback available to the learner: whereas classically
in contextual linear bandits the learner learns (a possibly noisy version of) the reward they receive
each round, in contextual recommendation the learner instead learns the identity of the best arm x∗t .
This altered feedback makes it difficult to apply existing algorithms for linear contextual bandits. In
particular, algorithms like LINUCB and LIN-Rel [1, 4] all require estimates of 〈xt, w∗〉 in order to
learn w∗ over time, and our feedback prevents us from obtaining any such absolute estimates.

In this paper we design low-regret algorithms for this problem. We present two algorithms for this
problem: one with regret O(d log T ) and one with regret exp(O(d log d)) (Theorems 4.1 and 4.2).
Note that both regret guarantees are independent of the number of offered actions |Xt| (the latter
even being independent of the time horizon T ). Moreover both of these algorithms are efficiently
implementable given an efficient procedure for optimizing a linear function over the sets Xt. This
condition holds e.g. in the example of recommending shortest paths that we discussed earlier.

In addition to this, we consider two natural extensions of contextual recommendation where the
learner is allowed to recommend a bounded subset of actions instead of just a single action (as is often
the case in practice). In the first variant, which we call list contextual recommendation, each round
the learner recommends a set of at most L (for some fixed L) actions to the learner. The learner still
observes the user’s best action each round, but the loss of the learner is now the difference between
the utility of the best action for the user and the best action offered by the learner (capturing the
difference in utility between a user playing an optimal action and a user that always chooses the best
action the learner offers).

In list contextual recommendation, the learner has the power to cover multiple different user prefer-
ences simultaneously (e.g. presenting the user with the best route for various different measures). We
show how to use this power to construct an algorithm for the learner which offers poly(d) actions
each round and obtain a total regret of poly(d).

In the second variant, we relax an assumption of both previous models: that the user will always
choose their best possible action (and hence that we will observe their best possible action). To relax
this assumption, we also consider the following weaker version of contextual recommendation we
call local contextual recommendation.

In this problem, the learner again recommends a set of at most L actions to the learner (for some
L > 1)1. The user then chooses an action which is at least as good as the best action in our list, and
we observe this action. In other words, we assume the learner at least looks at all the options we offer,
so if they choose an external option, it must be better than any offered option (but not necessarily the
global optimum). Our regret in this case is the difference between the total utility of a learner that
always follows the best recommendation in our list and the total utility of a learner that always plays
their optimal action2.

Let A = maxt |Xt| be a bound on the total number of actions offered in any round, and let γ =
A/(L− 1). We construct algorithms for local contextual recommendation with regret O(γd log T )
and γ · exp(O(d log d)). We further show that the first bound is “nearly tight” (up to poly(d)
factors) in some regimes; in particular, we demonstrate an instance where L = 2 and K = 2Ω(d)

1Unlike in the previous two variants, it is important in local contextual recommendation that L > 1; if L = 1
then the user can simply report the action the learner recommended and the learner receives no meaningful
feedback.

2In fact, our algorithms all work for a slightly stronger notion of regret, where the benchmark is the utility of
a learner that always follows the first (i.e. a specifically chosen) recommendation on our list. With this notion of
regret, contextual recommendation reduces to local contextual recommendation with L = max |Xt|.
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where any algorithm must incur regret at least min(2Ω(d),Ω(T )). The results for local contextual
recommendation are included in the Supplementary Material.

1.1 Low-regret cutting plane methods and contextual search

To design these low-regret algorithms, we reduce the problem of contextual recommendation to a
geometric online learning problem (potentially of independent interest). We present two different
(but equivalent) viewpoints on this problem: one motivated by designing separation-oracle-based
algorithms for convex optimization, and the other by contextual search.

1.1.1 Separation oracles and cutting-plane methods

Separation oracle methods (or “cutting-plane methods”) are an incredibly well-studied class of
algorithms for linear and convex optimization. For our purposes, it will be convenient to describe
cutting-plane methods as follows.

Let B = {w ∈ Rd | ‖w‖ ≤ 1} be the unit ball in Rd. We are searching for a hidden point w∗ ∈ B.
Every round we can choose a point pt ∈ B and submit this point to a separation oracle. The
separation oracle then returns a half-space separating pt from w∗; in particular, the oracle returns a
direction vt such that 〈w∗, vt〉 ≥ 〈pt, vt〉.
Traditionally, cutting-plane algorithms have been developed to minimize the number of calls to the
separation oracle until the oracle returns a hyperplane that passes within some distance δ of w∗. For
example, the ellipsoid method (which always queries the center of the currently-maintained ellipse)
has the guarantee that it makes at most O(d2 log 1/δ) oracle queries before finding such a hyperplane.

In our setting, instead of trying to minimize the number of separation oracle queries before finding
a “close” hyperplane, we would like to minimize the total (over all T rounds) distance between the
returned hyperplanes and the hidden point w∗. That is, we would like to minimize the expression

Reg′ =
∑T
t=1 (〈w∗, vt〉 − 〈pt, vt〉) . (2)

Due to the similarity between (2) and (1), we call this quantity the regret of a cutting-plane algorithm.
We show that, given any low-regret cutting-plane algorithm, there exists a low-regret algorithm for
contextual recommendation.
Theorem 1.1 (Restatement of Theorem 3.1). Given a low-regret cutting-plane algorithm A with
regret ρ, we can construct an O(ρ)-regret algorithm for contextual recommendation.

This poses a natural question: what regret bounds are possible for cutting-plane methods? One
might expect guarantees on existing cutting-plane algorithms to transfer over to regret bounds, but
interestingly, this does not appear to be the case. In particular, most existing cutting-plane methods
and analysis suffers from the following drawback: even if the method is likely to find a hyperplane
within distance δ relatively quickly, there is no guarantee that subsequent calls to the oracle will
return low-regret hyperplanes.

In this paper, we will show how to design low-regret cutting-plane methods. Although our final
algorithms will bear some resemblance to existing cutting-plane algorithms (e.g. some involve cutting
through the center-of-gravity of some convex set), our analysis will instead build off more recent
work on the problem of contextual search.

1.1.2 Contextual search

Contextual search is an online learning problem initially motivated by applications in pricing [6].
The basic form of contextual search can be described as follows. As with the previously mentioned
problems, there is a hidden vector w∗ ∈ [0, 1]d that we wish to learn over time. Every round the
adversary provides the learner with a vector vt (the “context”). In response, the learner must guess
the value of 〈vt, w∗〉, submitting a guess yt. The learner then incurs a loss of |〈vt, w∗〉 − yt| (the
distance between their guess and the true value of the inner product), but only learns whether 〈vt, w∗〉
is larger or smaller than their guess.

The problem of designing low-regret cutting plane methods can be interpreted as a “context-free”
variant of contextual search. In this variant, the learner is no longer provided the context vt at the
beginning of each round, and instead of guessing the value of 〈vt, w∗〉, they are told to directly
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submit a guess pt for the point w∗. The context vt is then revealed to them after they submit their
guess, where they are then told whether 〈pt, w∗〉 is larger or smaller than 〈vt, w∗〉 and incur loss
|〈vt, w∗〉−〈pt, w∗〉|. Note that this directly corresponds to querying a separation oracle with the point
pt, and the separation oracle returning either the halfspace vt (in the case that 〈w∗, vt〉 ≥ 〈w∗, pt〉) or
the halfspace −vt (in the case that 〈w∗, vt〉 ≤ 〈w∗, pt〉).
One advantage of this formulation is that (unlike in standard analyses of cutting-plane methods) the
total loss in contextual search directly matches the expression in (2) for the regret of a cutting-plane
method. In fact, were there to already exist an algorithm for contextual search which operated in the
above manner – guessing 〈vt, w∗〉 by first approximating w∗ and then computing the inner product
– we could just apply this algorithm verbatim and get a cutting-plane method with the same regret
bound. Unfortunately, both the algorithms of [7] and [6] explicitly require knowledge of the direction
vt.

This formulation also raises an interesting subtlety in the power of the separation oracle: specifically,
whether the direction vt is fixed (up to sign) ahead of time or is allowed to depend on the point
p. Specifically, we consider two different classes of separation oracles. For (strong) separation
oracles, the direction vt is allowed to freely depend on the point pt (as long as it is indeed true that
〈w∗, vt〉 ≥ 〈pt, vt〉). For weak separation oracles, the adversary fixes a direction ut at the beginning
of the round, and then returns either vt = ut or vt = −ut (depending on the sign of 〈w∗ − pt, ut〉).
The strong variant is most natural when comparing to standard separation oracle guarantees (and
is necessary for the reduction in Theorem 1.1), but for many standalone applications (especially
those motivated by contextual search) the weak variant suffices. In addition, the same techniques we
use to construct a cutting-plane algorithm for weak separation oracles will let us design low-regret
algorithms for list contextual recommendation.

1.2 Our results and techniques

We design the following low-regret cutting-plane algorithms:

1. An exp(O(d log d))-regret cutting-plane algorithm for strong separation oracles.

2. An O(d log T )-regret cutting-plane algorithm for strong separation oracles.

3. An O(poly(d))-regret cutting-plane algorithm for weak separation oracles.

All three algorithms are efficiently implementable (in poly(d, T ) time). Through Theorem 1.1, points
(1) and (2) immediately imply the algorithms with regret exp(O(d)) and O(d log T ) for contextual
recommendation. Although we do not have a blackbox reduction from weak separation oracles to
algorithms for list contextual recommendation, we show how to apply the same ideas in the algorithm
in point (3) to construct an O(d2 log d)-regret algorithm for list contextual recommendation with
L = poly(d).

To understand how these algorithms work, it is useful to have a high-level understanding of the
algorithm of [7] for contextual search. That algorithm relies on a multiscale potential function
the authors call the Steiner potential. The Steiner potential at scale r is given by the expression
Vol(Kt + rB), where Kt (the “knowledge set”) is the current set of possibilities for the hidden point
w∗, B is the unit ball, and addition denotes Minkowsi sum; in other words, this is the volume of the
set of points within distance r of Kt. The authors show that by choosing their guess yt carefully, they
can decrease the r-scale Steiner potential (for some r roughly proportional to the width of Kt in the
current direction vt) by a constant factor. In particular, they show that this is achieved by choosing yt
so to divide the expanded set Kt + rB exactly in half by volume. Since the Steiner potential at scale
r is bounded below by Vol(rB), this allows the authors to bound the total number of mistakes at this
scale. (A more detailed description of this algorithm is provided in Section 2.2).

In the separation oracle setting, we do not know vt ahead of time, and thus cannot implement this
algorithm as written. For example, we cannot guarantee our hyperplane splits Kt + rB exactly in
half. We partially work around this by using (approximate variants of) Grunbaum’s theorem, which
guarantees that any hyperplane through the center-of-gravity of a convex set splits that convex set
into two pieces of roughly comparable volume. In other words, everywhere where the contextual
search algorithm divides the volume of Kt + rB in half, Grunbaum’s theorem implies we obtain
comparable results by choosing any hyperplane passing through the center-of-gravity of Kt + rB.
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Unfortunately, we still cannot quite implement this in the separation oracle setting, since the choice
of r in the contextual search algorithm depends on the input vector vt. Nonetheless, by modifying
the analysis of contextual search we can still get some guarantees via simple methods of this form. In
particular we show that always querying the center-of-gravity of Kt (alternatively, the center of the
John ellipsoid of Kt) results in an exp(O(d log d))-regret cutting-plane algorithm, and that always
querying the center of gravity of Kt + 1

T B results in an O(d log T )-regret cutting-plane algorithm.

Our cutting-plane algorithm for weak separation oracles requires a more nuanced understanding of
the family of sets of the form Kt + rB. This family of sets has a number of surprising algebraic
properties. One such property (famous in convex geometry and used extensively in earlier algorithms
for contextual search) is Steiner’s formula, which states that for any convex K, Vol(K + rB) is
actually a polynomial in r with nonnegative coefficients. These coefficients are called intrinsic
volumes and capture various geometric measures of the set K (including the volume and surface area
of K).

There exists a lesser-known analogue of Steiner’s formula for the center-of-gravity of K + rB,
which states that each coordinate of cg(K + rB) is a rational function of degree at most d; in other
words, the curve cg(K + rB) for r ∈ [0,∞) is a rational curve. Moreover, this variant of Steiner’s
formula states that each point cg(K + rB) can be written as a convex combination of d+ 1 points
contained within K known as the curvature centroids of K. Motivated by this, we call the curve
ρK(r) = cg(K + rB) the curvature path of K.

Since the curvature path ρK is both bounded in algebraic degree and bounded in space (having to lie
within the convex hull of the curvature centers), we can bound the total length of the curvature path
ρK by a polynomial in d (since it is bounded in degree, each component function of ρK can switch
from increasing to decreasing a bounded number of times). This means that we can discretize the
curvature path to within precision ε while only using poly(d)/ε points on the path.

Our algorithms against weak separation oracles and for list contextual recommendation both make
extensive use of such a discretization. For example, we show that in order to construct a low-regret
algorithm against a weak separation oracle, it suffices to discretize ρKt into O(d4) points and then
query a random point; with probability at least O(d−4), we will closely enough approximate the point
ρ(r) = cg(K + rB) that our above analogue of contextual search would have queried. We show this
results in poly(d) total regret3. A similar strategy works for list contextual recommendation: there
we discretize the curvature path for the knowledge set Kt into poly(d) candidate values for w∗, and
then submit as our set of actions the best response for each of these candidates.

Related work We include a survey of related work in the Supplementary Material.

2 Model and preliminaries

We begin by briefly reviewing the problems of contextual recommendation and designing low-regret
cutting plane algorithms. In all of the below problems, B = {w ∈ Rd | ‖w‖2 ≤ 1} is the ball of
radius 1 (and generally, all vectors we consider will be bounded to lie in this ball).

Contextual recommendation. In contextual recommendation there is a hidden point w∗ ∈ B.
Each round t (for T rounds) we are given a set of possible actions Xt ⊆ B. If we choose
action xt ∈ Xt we obtain reward 〈xt, w∗〉 (but do not learn this value). Our feedback is
x∗t = arg maxx∈Xt

〈x,w∗〉, the identity of the best action4. Our goal is to minimize the total
expected regret E[Reg] = E

[∑T
t=1〈x∗t − xt, w∗〉

]
. Note that since the feedback is deterministic,

this expectation is only over the randomness of the learner’s algorithm.

It will be useful to establish some additional notation for discussing algorithms for contextual
recommendation. We define the knowledge set Kt to be the set of possible values for w∗ given the
knowledge we have obtained by round t. Note that the knowledge set Kt is always convex, since
the feedback we receive each round (that 〈x∗t , w∗〉 ≥ 〈xt, w∗〉 for all x ∈ Xt) can be written as an

3The reason this type of algorithm does not work against strong separation oracles is that each point in this
discretization could return a different direction vt, in turn corresponding to a different value of r

4If this argmax is multi-valued, the adversary may arbitrarily return any element of this argmax.

5



intersection of several halfspaces (and the initial knowledge set K1 = B is convex). In fact, we can
say more.

Given a w ∈ Kt, let BRt(w) = arg maxx∈Xt
〈x,w〉 be the set of optimal actions in Xt if the hidden

point was w. Then: Kt+1 = {w ∈ Kt|x∗t ∈ BRt(w)}.
We also consider two other variants of contextual recommendation in this paper (list contextual
recommendation and local contextual recommendation). A formal definition can be found in Sections
5 and the full version in the supplementary materials.

Designing low-regret cutting-plane algorithms. In a low-regret cutting-plane algorithm, we
again have a hidden point w∗ ∈ B. Each round t (for T rounds) we can query a separation oracle
with a point pt in B. The separation oracle then provides us with an adversarially chosen direction vt
(with ‖vt‖ = 1) that satisfies 〈w∗, vt〉 ≥ 〈pt, vt〉. The regret in round t is equal to 〈w∗ − pt, vt〉, and
our goal is to minimize the total expected regret E[Reg] = E

[∑T
t=1〈w∗ − pt, vt〉

]
. Again, since the

feedback is deterministic, the expectation is only over the randomness of the learner’s algorithm.

As with contextual recommendation, it will be useful to consider the knowledge set Kt, consisting of
possibilities for w∗ which are still feasible by the beginning of round t. Again as with contextual
recommendation, Kt is always convex; here we intersect Kt with the halfspace provided by the
separation oracle every round (i.e. Kt+1 = Kt ∩ {〈w − pt, vt〉 ≥ 0}).
Unless otherwise specified, the separation oracle can arbitrarily choose vt as a function of the query
point pt. For obtaining low-regret algorithms for list contextual recommendation, it will be useful
to consider a variant of this problem where the separation oracle must commit to vt (up to sign) at
the beginning of round t. Specifically, at the beginning of round t (before observing the query point
pt), the oracle fixes a direction ut. Then, on query pt, the separation oracle returns the direction
vt = ut if 〈w − pt, ut〉 ≥ 0, and the direction vt = −ut otherwise. We call such a separation oracle
a weak separation oracle; an algorithm that only works against such separation oracles is a low-regret
cutting-plane algorithm for weak separation oracles. Note that this distinction only matters when the
learner is using a randomized algorithm; if the learner is deterministic, the adversary can predict all
the directions vt in advance.

2.1 Convex geometry preliminaries and notation

We will denote by Convd the collection of all convex bodies in Rd. Given a convex body K ∈ Convd,
we will use Vol(K) =

∫
K

1dx to denote its volume (the standard Lebesgue measure). Given two
sets K and L in Rd, their Minkowski sum is given by K + L = {x + y;x ∈ K, y ∈ L}. Let Bd

denote the unit ball in Rd, let Sd−1 = {x ∈ Rd; ‖x‖2 = 1} denote the unit sphere in Rd and let
κd = Vol(Bd) be the volume of the i-th dimensional unit ball. When clear from context, we will
omit the superscripts on Bd and Sd−1.

We will write cg(K) = (
∫
K
xdx)/(

∫
K

1dx) to denote the center of gravity (alternatively, centroid)
of K. Given a direction u ∈ Sd−1 and convex set K ∈ Convd we define the width of K in the
direction u as: width(K;u) = maxx∈K〈u, x〉 −minx∈K〈u, x〉.

Approximate Grunbaum and John’s Theorem Finally, we state two fundamental theorems in
convex geometry. Grunbaum’s Theorem bounds the volume of the convex set in each side of a
hyperplane passing through the centroid. For our purposes it will be also important to bound a cut
that passes near, but not exactly at the centroid. The bound given in the following paragraph comes
from a direct combination of Lemma B.4 and Lemma B.5 in Bubeck et al. [3].

We will use the notation Hu(p) = {x | 〈x, u〉 = 〈p, u〉} to denote the halfspace passing through p
with normal vector u. Similarly, we let H+

u (p) = {x | 〈x, u〉 ≥ 〈p, u〉}.
Theorem 2.1 (Approximate Grunbaum [2, 3]). Let K ∈ Convd, c = cg(K) and u ∈ Sd−1. Then
consider the semi-space H+ = {x ∈ Rd; 〈u, x− c〉 ≥ t} for some t ∈ R+. Then:

Vol(K∩H+)
Vol(K) ≥ 1

e −
2t(d+1)

width(K;u)

John’s theorem shows that for any convex set K ∈ Convd, we can find an ellipsoid E contained in K
such that K is contained in (some translate of) a dilation of E by a factor of d.
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Theorem 2.2 (John’s Theorem). Given K ∈ Convd, there is a point q ∈ K and an invertible
linear transformation A : Rd → Rd such that q + B ⊆ A(K) ⊆ q + dB. We call the ellipsoid
E = A−1(q + B) the John ellipsoid of K.

2.2 Contextual search

In this section, we briefly sketch the algorithm and analysis of [7] for the standard contextual search
problem. We will never use this algorithm directly, but many pieces of the analysis will prove useful
in our constructions of low-regret cutting-plane algorithms.

Recall that in contextual search, each round the learner is given a direction vt. The learner is
trying to learn the location of a hidden point w∗, and at time t has narrowed down the possibilities
of w∗ to a knowledge set Kt. The algorithm of [7] runs the following steps: 1. Compute the
width w = width(Kt; vt) of Kt in the direction vt. 2. Let r = 2dlg(w/10d)e (rounding w/10d to
a nearby power of two). 3. Consider the set K̃ = Kt + rB. Choose yt so that the hyperplane
H = {w | 〈vt, w〉 = yt} divides the set K̃ into two pieces of equal volume.

We can understand this algorithm as follows. Classic cutting-plane methods try to decrease Vol(Kt)
by a constant factor every round (arguing that this decrease can only happen so often before one of
our hyperplanes passes within some small distance to our feasible region). The above algorithm can
be thought of as a multi-scale variant of this approach: they show that if we incur loss w ≈ dr in a
round (since loss in a round is at most the width), the potential function Vol(Kt + rB) must decrease
by a constant factor. Since Vol(Kt + rB) ≥ Vol(rB) = rdκd, we can incur a loss of this size at most
O(d log(2/r)) times. Summing over all possible discretized values of r (i.e. powers of 2 less than 1),
we arrive at an O(d log d) regret bound.

3 From Cutting-Plane Algorithms to Contextual Recommendation

We begin by proving a reduction from designing low-regret cutting plane algorithms to contextual
recommendation. Specifically, we will show that given a regret ρ cutting-plane algorithm, we can use
it to construct an O(ρ)-regret algorithm for contextual recommendation.

Note that while these two problems are similar in many ways (e.g. they both involve searching for an
unknown point w∗), they are not completely identical. Among other things, the formulation of regret
although similar is qualitatively different between the two problems (i.e. between expressions (1) and
(2)). In particular, in contextual recommendation, the regret each round is 〈x∗t − xt, w∗〉, whereas for
cutting-plane algorithms, the regret is given by 〈w∗ − pt, vt〉. Nonetheless, we will be able to relate
these two notions of regret by considering a separation oracle that always returns a halfspace in the
direction of x∗t − xt.
Theorem 3.1. Given a low-regret cutting-plane algorithm A with regret ρ, we can construct an
O(ρ)-regret algorithm for contextual recommendation.

The reduction in Theorem 3.1 is efficient as long as we have an efficient method for optimizing a
linear function over Xt (i.e. for computing BRt(w)). In particular, this means that this reduction can
be practical even in settings where Xt may be combinatorially large (e.g. the set of s-t paths in some
graph).

Note also that this reduction does not work if A is only low-regret against weak separation oracles.
This is since the direction vt we choose does depend non-trivially on the point pt (in particular, in
the reduction we choose xt ∈ BRt(pt)). Later in Section 5.3, we will see how to use ideas from
designing cutting-plane methods for weak separation oracles to construct low-regret algorithms for
list contextual recommendation – however we do not have a black-box reduction in that case, and our
construction will be more involved.

4 Designing Low-Regret Cutting-Plane Algorithms

In this section we will describe how to construct low-regret cutting-plane algorithms for strong
separation oracles.
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4.1 An exp(O(d log d))-regret cutting-plane algorithm

We begin by showing that always querying the center of the John ellipsoid of Kt leads to a
exp(O(d log d))-regret cutting-plane algorithm. Interestingly, although this corresponds to the
classical ellipsoid algorithm, our analysis proceeds along the lines of the analysis of the contextual
search algorithm summarized in Section 2.2. In particular, we show that for each round t, there’s
some r (roughly proportional to the current width) where Vol(Kt+ rB) decreases by a multiplicative
factor of (1− d−O(d)). Doing so allows us to prove the following theorem.

Theorem 4.1. The cutting-plane algorithm which always queries the center of the John ellipsoid of
Kt incurs exp(O(d log d)) regret.

The remaining algorithms we study will generally query the center-of-gravity of some convex set, as
opposed to the center of the John ellipsoid. This leads to the following natural question: what is the
regret of the cutting-plane algorithm which always queries the center-of-gravity of Kt?

Kannan, Lovasz, and Simonovits (Theorem 4.1 of [5]) show that it is possible to choose an ellipsoid
E satisfying E ⊆ K ⊆ dE such that E is centered at cg(K), so our proof of Theorem 4.1 shows
that this algorithm is also an exp(O(d log d)) algorithm. However, for both this algorithm and the
ellipsoid algorithm of Theorem 4.1, we have no non-trivial lower bound on the regret. It is an
interesting open question to understand what regret these algorithms actually obtain (for example, do
either of these algorithms achieve poly(d) regret?).

4.2 An O(d log T )-regret cutting-plane algorithm

We will now show how to obtain an O(d log T )-regret cutting plane algorithm. Our algorithm will
simply query the center-of-gravity of Kt + 1

T B each round. The advantage of doing this is that we
only need to examine one scale of the contextual search potential (namely the value of Vol(Kt+

1
T B)).

By doing this, we prove that the above algorithm achieves O(d log T ) regret.

Theorem 4.2. The cutting-plane algorithm which queries the point pt = cg
(
Kt + 1

T B
)

incurs
O(d log T ) regret.

5 List contextual recommendation, weak separation oracles, and the
curvature path

In this section, we present two algorithms: 1. a poly(d) expected regret cutting-plane algorithm for
weak separation oracles, and 2. an O(d2 log d) regret algorithm for list contextual recommendation
with list size L = poly(d).

The unifying feature of both algorithms is that they both involve analyzing a geometric object we call
the curvature path of a convex body. The curvature path of K is a bounded-degree rational curve
contained withinK that connects the center-of-gravity cg(K) with the Steiner point (limr→∞ cg(K+
rB)) of K.

In Section 5.1 we formally define the curvature path and demonstrate how to bound its length. In
Section 5.2, we show that randomly querying a point on a discretization of the curvature path leads
to a poly(d) regret cutting-plane algorithm for weak separation oracles. Finally, in Section 5.1, we
show how to transform a discretization of the curvature path of the knowledge set into a list of actions
for list contextual recommendation, obtaining a low regret algorithm.

5.1 The curvature path

An important fact (driving some of the recent results in contextual search, e.g. [6]) is the fact that the
volume Vol(K + rB) is a d-dimensional polynomial in r. This fact is known as the Steiner formula:

Vol(K + rB) =
∑d
i=0 Vd−i(K)κir

i (3)

After normalization by the volume of the unit ball, the coefficients of this polynomial correspond to
the intrinsic volumes of K. The intrinsic volumes are a family of d+ 1 functionals Vi : Convd → R+

for i = 0, 1, . . . , d that associate for each convex K ∈ Convd a non-negative value. Some of these
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functionals have natural interpretations: Vd(K) is the standard volume Vol(K), Vd−1(K) is the
surface area, V1(K) is the average width and V0(K) is 1 whenever K is non-empty and 0 otherwise.

There is an analogue of the Steiner formula for the centroid of K + rB, showing that it admits
a description as a vector-valued rational function. More precisely, there exist d + 1 functions
ci : Convd → Rd for 0 ≤ i ≤ d such that:

cg(K + rB) =
∑d

i=0 Vd−i(K)κir
i·ci(K)∑d

i=0 Vd−i(K)κiri
(4)

The point c0(K) ∈ K corresponds to the usual centroid cg(K) and cd(K) corresponds to the Steiner
point. The functionals ci are called curvature centroids since they can be computing by integrating a
certain curvature measures associated with a convex body (a la Gauss-Bonnet). We refer to Section
5.4 in Schneider [8] for a more thorough discussion discussion. For our purposes, however, the only
important fact will be that each curvature centroid ci(K) is guaranteed to lie within K (note that this
is not at all obvious from their definition).

Motivated by this, given a convex body K ⊆ Rd we define its curvature path to be the following
curve in Rd:

ρK : [0,∞]→ K ρK(r) = cg(K + rB)

The path connects the centroid ρK(0) = cg(K) to the Steiner point ρK(∞). Our main result will
exploit the fact that the coordinates of the curvature path are rational functions of bounded degree to
produce a discretization.
Lemma 5.1. Given K ∈ Convd and a discretization parameter k, there exists a set D =
{p0, p1, . . . , pk} ⊂ K such that for every r there is a point pi ∈ D such that:

|〈ρK(r)− pi, u〉| ≤ 4d3

k · width(K,u), ∀u ∈ Sd−1.

5.2 Low-regret cutting-plane algorithms for weak separation oracles

In this section we use the discretization of the curvature path in Lemma 5.1 to construct a poly(d)-
regret cutting-plane algorithm that works against a weak separation oracle. Recall that a weak
separation oracle is a separation oracle that fixes the direction of the output hyperplane in advance
(up to sign). That is, at the beginning of round t the oracle fixes some direction vt ∈ Sd−1 and returns
either vt or −vt to the learner depending on the learner’s choice of query point qt.
Theorem 5.2. The cutting-plane algorithm which chooses a random point from the discretization
of the curvature path of Kt into d4 pieces achieves a total regret of O(d5 log2 d) against any weak
separation oracle.

5.3 List contextual recommendation

In this section, we consider the problem of list contextual recommendation. In this variant of
contextual recommendation, we are allowed to offer a list of possible actions Lt ⊆ Xt and we
measure regret against the best action in the list: losst = 〈w∗, x∗t 〉 −maxx∈Lt

〈w∗, x〉.
Our main result is that if the list is allowed to be of size O(d4) then it is possible to achieve total
regret O(d2 log d).

The recommended list of actions will be computed as follows: given the knowledge set Kt, let D be
the discretization of the curvature path with parameter k = 200d4 obtained in Lemma 5.1. Then for
each pi ∈ D find an arbitrary xi ∈ BR(pi) := arg maxx∈Xt

〈pi, x〉 and let Lt = {x1, x2, . . . , xk}.
Theorem 5.3. There exists an algorithm which plays the list Lt defined above and incurs a total
regret of at most O(d2 log d).
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