A Q-value convergence

We here show that if a tabular agent converges to a policy π_{∞} in a continuous NDP then Q_{t} converges to $q_{\pi_{\infty}}$, assuming that the agent updates its Q-values in an appropriate way. To prove this we will use the following lemma:
Lemma 10. Let $\left\langle\zeta_{t}, \delta_{t}, F_{t}\right\rangle$ be a stochastic process where $\zeta_{t}, \delta_{t}, F_{t}: X \rightarrow \mathbb{R}$ satisfy

$$
\delta_{t+1}(x)=\left(1-\zeta_{t}\left(x_{t}\right)\right) \cdot \delta_{t}\left(x_{t}\right)+\zeta_{t}\left(x_{t}\right) \cdot F_{t}\left(x_{t}\right)
$$

with $x_{t} \in X$ and $t \in \mathbb{N}$. Let P_{t} be a sequence of increasing σ-fields such that ζ_{0} and δ_{0} are $P_{0}-$ measurable and ζ_{t}, δ_{t} and F_{t-1} are P_{t}-measurable, $t \geq 1$. Then δ_{t} converges to 0 with probability 1 if the following conditions hold:

1. X is finite.

2. $\zeta_{t}\left(x_{t}\right) \in[0,1]$ and $\forall x \neq x_{t}: \zeta_{t}(x)=0$.
3. $\sum_{t} \zeta_{t}\left(x_{t}\right)=\infty$ and $\sum_{t} \zeta_{t}\left(x_{t}\right)^{2}<\infty$ with probability 1 .
4. $\operatorname{Var}\left\{F_{t}\left(x_{t}\right) \mid P_{t}\right\} \leq K\left(1+\kappa\left\|\delta_{t}\right\|_{\infty}\right)^{2}$ for some $K \in \mathbb{R}$ and $\kappa \in[0,1)$.
5. $\left\|\mathbb{E}\left\{F_{t} \mid P_{t}\right\}\right\|_{\infty} \leq \kappa\left\|\delta_{t}\right\|_{\infty}+c_{t}$, where $c_{t} \rightarrow 0$ with probability 1 as $t \rightarrow \infty$.
where $\|.\|_{\infty}$ is a (potentially weighted) maximum norm.
Proof. See Singh et al. (2000).

We say that a Q-value update rule is appropriate if it has the following form;

$$
Q_{t+1}\left(a_{t} \mid s_{t}\right) \leftarrow\left(1-\alpha_{t}\left(a_{t}, s_{t}\right)\right) \cdot Q_{t}\left(a_{t} \mid s_{t}\right)+\alpha_{t}\left(a_{t}, s_{t}\right) \cdot\left(r_{t}+\gamma \cdot \hat{v}_{t+1}\left(s_{t+1}\right)\right),
$$

where $\hat{v}_{t}(s)$ is an estimate of the value of s, and if moreover

$$
\lim _{t \rightarrow \infty} \mathbb{E}\left[\hat{v}_{t}(s)-\max _{a} Q_{t}(a \mid s)\right]=0
$$

Q-learning is of course appropriate. Moreover, SARSA and Expected SARSA are also both appropriate, if the agent is greedy in the limit. Note that since R is bounded, $Q_{t}(a \mid s)$ has bounded support. This means that if for all $\delta>0, \mathbb{P}\left(Q_{t}\left(\pi_{t}(s) \mid s\right) \leq \max _{a} Q_{t}(a \mid s)-\delta\right) \rightarrow 0$ as $t \rightarrow \infty$, then $\mathbb{E}_{a \sim \pi_{t}}\left[Q_{t}(a \mid s)\right] \rightarrow \max _{a} Q_{t}(a \mid s)$ as $t \rightarrow \infty$.
Theorem 11. In any continuous NDP $\langle S, A, T, R, \gamma\rangle$, if a tabular agent converges to a policy π_{∞} then Q_{t} converges to $q_{\pi_{\infty}}$, if the following conditions hold:

1. The agent updates its Q-values with an appropriate update rule.
2. The update rates $\alpha_{t}(a, s)$ are in $[0,1)$, and for all $s \in S$ and $a \in A$ we have that $\sum_{t} \alpha_{t}(a, s)=\infty$ and $\sum_{t} \alpha_{t}(a, s)^{2}<\infty$ with probability 1 .

Note that condition 2 requires that the agent takes every action in every state infinitely many times
Proof. Let

- $X=S \times A$
- $\zeta_{t}(a, s)=\alpha_{t}(a, s)$
- $\delta_{t}(a, s)=Q_{t}(a \mid s)-q_{\pi_{\infty}}(a \mid s)$
- $F_{t}(a, s)=r_{t}+\gamma \hat{v}_{t+1}\left(s_{t+1}\right)-q_{\pi_{\infty}}(a \mid s)$

Since S and A are finite, and since R is bounded, we have that condition 1 and 4 in Lemma 10 are satisfied. Moreover, assumption 2 of this theorem corresponds to condition 2 and 3 in Lemma 10. It remains to show that condition 5 is satisfied, which we can do algebraically:

$$
\begin{aligned}
& \left\|\mathbb{E}\left\{F_{t} \mid P_{t}\right\}\right\|_{\infty} \\
= & \max _{s, a}\left|\mathbb{E}\left[r_{t}+\gamma \hat{v}_{t}\left(s_{t+1}\right)-q_{\pi_{\infty}}(a \mid s)\right]\right| \\
= & \max _{s, a}\left|\mathbb{E}\left[r_{t}+\gamma \max _{a^{\prime}} Q_{t}\left(a^{\prime} \mid s_{t+1}\right)-q_{\pi_{\infty}}(a \mid s)+\gamma \hat{v}_{t}\left(s_{t+1}\right)-\gamma \max _{a^{\prime}} Q_{t}\left(a^{\prime} \mid s_{t+1}\right)\right]\right| \\
\leq & \max _{s, a}\left|\mathbb{E}\left[r_{t}+\gamma \max _{a^{\prime}} Q_{t}\left(a^{\prime} \mid s_{t+1}\right)-q_{\pi_{\infty}}(a \mid s)\right]\right|+\max _{s, a}\left|\mathbb{E}\left[\gamma \hat{v}_{t}\left(s_{t+1}\right)-\gamma \max _{a^{\prime}} Q_{t}\left(a^{\prime} \mid s_{t+1}\right)\right]\right|
\end{aligned}
$$

Note that the second term in this expression is bounded above by

$$
\max _{s}\left|\mathbb{E}\left[\hat{v}_{t}(s)-\max _{a} Q_{t}(a \mid s)\right]\right|
$$

Let us use k_{t} to denote this expression. Since the Q-value update rule is appropriate we have that $k_{t} \rightarrow 0$ as $t \rightarrow \infty$. We thus have:

$$
=\max _{s, a}\left|\mathbb{E}\left[r_{t}+\gamma \max _{a^{\prime}} Q_{t}\left(a^{\prime} \mid s_{t+1}\right)-q_{\pi_{\infty}}(a \mid s)\right]\right|+k_{t}
$$

We can now expand the expectations, and rearrange the terms:

$$
\begin{aligned}
&=\max _{s, a} \mid \sum_{s^{\prime} \in S} \mathbb{P}\left(T\left(s, a, \pi_{t}\right)=s^{\prime}\right) \\
&\left(\mathbb{E}\left[R\left(s, a, s^{\prime}, \pi_{t}\right)\right]+\gamma \max _{a^{\prime}} Q_{t}\left(a^{\prime} \mid s^{\prime}\right)\right) \\
&- \sum_{s^{\prime} \in S} \mathbb{P}\left(T\left(s, a, \pi_{\infty}\right)=s^{\prime}\right) \\
&\left(\mathbb{E}\left[R\left(s, a, s^{\prime}, \pi_{\infty}\right)\right]+\gamma \max _{a^{\prime}} q_{\pi_{\infty}}\left(a^{\prime} \mid s^{\prime}\right)\right) \mid+k_{t} \\
&=\max _{s, a} \mid \sum_{s^{\prime} \in S} \mathbb{P}\left(T\left(s, a, \pi_{\infty}\right)=s^{\prime}\right) \\
&\left(\mathbb{E}\left[R\left(s, a, s^{\prime}, \pi_{t}\right)\right]+\gamma \max _{a^{\prime}} Q_{t}\left(a^{\prime} \mid s^{\prime}\right)-\right. \\
&\left.\mathbb{E}\left[R\left(s, a, s^{\prime}, \pi_{\infty}\right)\right]-\gamma \max _{a^{\prime}} q_{\pi_{\infty}}\left(a^{\prime} \mid s^{\prime}\right)\right) \\
&+ \sum_{s^{\prime} \in S}\left(\mathbb{P}\left(T\left(s, a, \pi_{t}\right)=s^{\prime}\right)-\right. \\
&\left.\mathbb{P}\left(T\left(s, a, \pi_{\infty}\right)=s^{\prime}\right)\right) \cdot X \mid+k_{t}
\end{aligned}
$$

where $X=\mathbb{E}\left[R\left(s, a, s^{\prime}, \pi_{t}\right)\right]+\gamma \max _{a^{\prime}} Q_{t}\left(a^{\prime} \mid s^{\prime}\right)$. Let $d_{t}(s, a)$ be the second term in this expression, and let $b_{t}\left(s, a, s^{\prime}\right)=\mathbb{E}\left[R\left(s, a, s^{\prime}, \pi_{t}\right)\right]-\mathbb{E}\left[R\left(s, a, s^{\prime}, \pi_{\infty}\right)\right]$. Since $\pi_{t} \rightarrow \pi_{\infty}$, and since T and R are continuous, we have that $b_{t}\left(s, a, s^{\prime}\right) \rightarrow 0$ and $d_{t}(s, a) \rightarrow 0$ as $t \rightarrow \infty$ (for any s, a, and s^{\prime}). We
thus have:

$$
\begin{aligned}
&=\max _{s, a} \mid \sum_{s^{\prime} \in S} \mathbb{P}\left(T\left(s, a, \pi_{\infty}\right)=s^{\prime}\right) \\
&\left(\gamma \max _{a^{\prime}} Q_{t}\left(a^{\prime} \mid s^{\prime}\right)-\gamma \max _{a^{\prime}} q_{\pi_{\infty}}\left(a^{\prime} \mid s^{\prime}\right)+\right. \\
&\left.b_{t}\left(s, a, s^{\prime}\right)\right)+d_{t}(s, a) \mid+k_{t} \\
& \leq \gamma \max _{s, a}\left|Q_{t}(a \mid s)-q_{\pi_{\infty}}(a \mid s)\right|+ \\
& \max _{s, a, s^{\prime}}\left|b_{t}\left(s, a, s^{\prime}\right)+d_{t}(s, a)+k_{t}\right| \\
&=\gamma \max _{s, a}|\delta(s, a)|+c_{t}=\gamma\left\|\delta_{t}\right\|_{\infty}+c_{t}
\end{aligned}
$$

where $c_{t}=\max _{s, a, s^{\prime}}\left|b_{t}\left(s, a, s^{\prime}\right)+d_{t}(s, a)+k_{t}\right|$. This means that

$$
\left\|\mathbb{E}\left\{F_{t} \mid P_{t}\right\}\right\|_{\infty} \leq \gamma\left\|\delta_{t}\right\|_{\infty}+c_{t}
$$

where $\gamma \in[0,1)$ and $c_{t} \rightarrow 0$ as $t \rightarrow \infty$. Thus by lemma 10 we have that Q_{t} converges to $q_{\pi_{\infty}}$.

B Proof of Theorem 2

Theorem 2. Let \mathcal{A} be a model-free reinforcement learning agent, and let π_{t} and Q_{t} be \mathcal{A} 's policy and Q-function at time t. Let \mathcal{A} satisfy the following in a given NDP:

- \mathcal{A} is greedy in the limit, i.e. for all $\delta>0, \mathbb{P}\left(Q_{t}\left(\pi_{t}(s)\right) \leq \max _{a} Q_{t}(a \mid s)-\delta\right) \rightarrow 0$ as $t \rightarrow \infty$.
- \mathcal{A} 's Q-values are accurate in the limit, i.e. if $\pi_{t} \rightarrow \pi_{\infty}$ as $t \rightarrow \infty$, then $Q_{t} \rightarrow q_{\pi_{\infty}}$ as $t \rightarrow \infty$.

Then if \mathcal{A} 's policy converges to π_{∞} then π_{∞} is strongly ratifiable on the states that are visited infinitely many times.

Proof. Let $\pi_{t} \rightarrow \pi_{\infty}$ and hence $Q_{t} \rightarrow q_{\pi_{\infty}}$. For strong ratifiability, we have to show that for all actions a^{\prime} and states s, if a^{\prime} is suboptimal (in terms of true q values) given π_{∞} in s, then $\pi_{\infty}\left(a^{\prime} \mid s\right)=0$.
If a^{\prime} is suboptimal in this way, then there is $\delta>0$ s.t.

$$
q_{\pi_{\infty}}\left(a^{\prime} \mid s\right) \leq \max _{a} q_{\pi_{\infty}}(a \mid s)-\delta
$$

Thus, since $Q_{t} \rightarrow q_{\pi_{\infty}}$, it is for large enough t,

$$
Q_{t}\left(a^{\prime} \mid s\right) \leq \max _{a} Q_{t}(a \mid s)-\frac{\delta}{2}
$$

By the greedy-in-the-limit condition, $\pi_{t}\left(a^{\prime} \mid s\right) \rightarrow 0$. Because $\pi_{t} \rightarrow \pi_{\infty}$, it follows that $\pi_{\infty}\left(a^{\prime} \mid\right.$ $s)=0$, as claimed.

C Proof of Theorem 3

Lemma 12 (Kakutani's Fixed-Point Theorem). Let X be a non-empty, compact, and convex subset of some Euclidean space \mathbb{R}^{n}, and let $\phi: X \rightarrow 2^{X}$ be a set-valued function s.t. ϕ has a closed graph and s.t. $\phi(x)$ is non-empty and convex for all $x \in X$. Then ϕ has a fixed point.

Proof. See Kakutani (1941).
Theorem 3. Every continuous NDP has a strongly ratifiable policy.

Proof. Let $N=\left\langle S, A, T_{N}, R_{N}, \gamma\right\rangle$ be a continuous NDP, and let N_{π} be the MDP $\left\langle S, A, T_{N_{\pi}}, R_{N_{\pi}}, \gamma\right\rangle$ that is obtained by fixing the dynamics in N according to $\pi-$ that is, $T_{N_{\pi}}(s, a)=T_{N}(s, a, \pi)$, and $R_{N_{\pi}}\left(s, a, s^{\prime}\right)=R_{N}\left(s, a, s^{\prime}, \pi\right)$. Let $\phi_{N}:(S \rightsquigarrow A) \rightarrow 2^{(S \rightsquigarrow A)}$ be the set-valued function s.t. $\phi_{N}(\pi)$ is the set of all policies that are optimal in N_{π}. We will show that the graph of ϕ_{N} is closed and apply Kakutani's fixed point theorem.
Suppose $\left(\pi_{i}\right)$ is a sequence of policies converging to π_{0} and suppose $\lambda_{i} \in \phi_{N}\left(\pi_{i}\right)$ is a sequence converging to λ_{0}. For all sufficiently large $i, \operatorname{supp}\left(\lambda_{0}\right) \subseteq \operatorname{supp}\left(\lambda_{i}\right)$ (as the state and action spaces are finite). Therefore for sufficiently large $i, \lambda_{0} \in \phi_{N}\left(\pi_{i}\right)$. By the continuity with respect to π of $\mathbb{E}\left[R \mid \lambda_{0}\right]$ in $N_{\pi}, \lambda_{0} \in \phi_{N}\left(\pi_{0}\right)$. Therefore, the graph of ϕ_{N} is closed.
The domain of ϕ_{N} is a non-empty, compact, convex subset of Euclidean space. Any MDP always has an optimal policy, and so $\phi_{N}(\cdot)$ is non-empty. Since N_{π} is an MDP $\phi_{N}(\pi)$ is a set of deterministic policies and all their convex combinations, and so $\phi_{N}(\cdot)$ is convex. Hence, by Kakutani's Fixed Point Theorem, there must be a π s.t. $\pi \in \phi_{N}(\pi)$. Then π is strongly ratifiable in N. Hence every continuous NDP has a strongly ratifiable policy.

D Proof of Theorem 6

To prove Theorem 6, we first need to prove the following lemma.
Lemma 13. Let X_{t} be a non-negative discrete stochastic process, indexed by t, and let \mathcal{F}_{t} denote the history upto time t. Suppose X_{t} is bounded, i.e. there exists B such that $X_{t} \leq B$, and further that $\left|X_{t+1}-X_{t}\right|<B / t$. Suppose also that there exists $\epsilon>0$ and $b>0$ such that whenever $X_{t}<b$,

$$
\begin{equation*}
\operatorname{Var}\left(X_{t+1} \mid \mathcal{F}_{t}\right) \geq \frac{\epsilon}{t^{2}} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbb{E}\left[X_{t+1} \mid \mathcal{F}_{t}\right]-X_{t} \geq 0 \tag{5}
\end{equation*}
$$

Then $\mathbb{P}\left(X_{t} \rightarrow 0\right)=0$.

Proof. Let $a_{n}=2^{2^{n}}$ and define the following sequences of events. Firstly, letting s_{n} denote $2^{n} \sqrt{4 B^{2} \sum_{t=a_{n+1}}^{\infty} \frac{1}{t^{2}}}$,

$$
\begin{equation*}
A_{n}=\left\{X_{a_{n+1}}>s_{n}\right\} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{n}^{\prime}=A_{n} \vee\left\{\exists t \in\left[a_{n}, a_{n+1}\right] \text { s.t. } X_{t} \geq b\right\} \tag{7}
\end{equation*}
$$

which tell us that at some point after time a_{n}, but not after a_{n+1}, the value of X_{t} isn't very small and secondly

$$
\begin{equation*}
B_{n}=\left\{X_{t}<b \forall t \geq a_{n}\right\} \tag{8}
\end{equation*}
$$

This event is useful because it is implied by convergence to 0 and tells us that Equation 5 can be applied.
We will show that two properties hold. Firstly that $\mathbb{P}\left(A_{n}^{\prime} \wedge B_{n} \wedge\left\{X_{t} \rightarrow 0\right\}\right) \leq 2^{-2 n}$ and secondly that $\mathbb{P}\left(A_{n}^{\prime} \mid \mathcal{F}_{a_{n}}\right) \geq 2 / 5$ for all sufficiently large n.
From the second of these properties, and the fact that A_{n}^{\prime} is $\mathcal{F}_{a_{n+1}}$ measurable, it is immediate by the argument of the Borel-Cantelli Lemma that, almost surely, A_{n}^{\prime} occurs infinitely often (i.o.) i.e. for infinitely many n. From this and the fact that $X_{t} \rightarrow 0 \Longrightarrow$ ($B_{n} \forall n$ sufficiently large) we can deduce the following

$$
\begin{align*}
& \mathbb{P}\left(X_{t} \rightarrow 0\right) \tag{9}\\
= & \mathbb{P}\left(B_{n} \wedge\left\{X_{t} \rightarrow 0\right\} \forall n \text { sufficiently large }\right) \tag{10}\\
= & \mathbb{P}\left(\left(A_{n}^{\prime} \wedge B_{n} \wedge\left\{X_{t} \rightarrow 0\right\}\right) \text { i.o. }\right) \tag{11}\\
\leq & \mathbb{P}\left(\exists n>m \text { s.t. } A_{n}^{\prime} \wedge B_{n} \wedge\left\{X_{t} \rightarrow 0\right\}\right) \tag{12}\\
\leq & \sum_{n=m}^{\infty} \mathbb{P}\left(A_{n}^{\prime} \wedge B_{n} \wedge\left\{X_{t} \rightarrow 0\right\}\right) \tag{13}
\end{align*}
$$

It is immediate from the first fact that this sum is convergent, and thus it must converge to zero as $m \rightarrow \infty$, but m was arbitrary so $\mathbb{P}\left(X_{t} \rightarrow 0\right)=0$.
We now prove the first property. Note that if B_{n} occurs then A_{n}^{\prime} can only occur if A_{n} occurs. Thus $\mathbb{P}\left(A_{n}^{\prime} \wedge B_{n} \wedge\left\{X_{t} \rightarrow 0\right\}\right) \leq \mathbb{P}\left(B_{n} \wedge\left\{X_{t} \rightarrow 0\right\} \mid A_{n}\right)$. To see this is small, we consider an augmentation of X_{t} given by

$$
Y_{t}= \begin{cases}X_{t} & t \leq a_{n+1} \tag{14}\\ Y_{t-1}+\left(X_{t}-X_{t-1}\right) & t>a_{n+1} \\ -\mathbb{E}\left[X_{t}-X_{t-1}\right]\end{cases}
$$

Note that this process is a martingale (for $t>a_{n+1}$), i.e. $\mathbb{E}\left[Y_{t+1} \mid \mathcal{F}_{t}\right]=Y_{t}$ for all $t>a_{n+1}$, and that if B_{n} occurs then $Y_{t} \leq X_{t}$ for all t (by Equation 5). As Y is a martingale $\mathbb{E}\left[Y_{t} \mid \mathcal{F}_{a_{n+1}}\right]=Y_{a_{n+1}}$. Furthermore we can compute as follows

$$
\begin{align*}
& \operatorname{Var}\left(Y_{t} \mid \mathcal{F}_{a_{n+1}}\right) \tag{15}\\
= & \mathbb{E}\left[\left(Y_{t}-Y_{a_{n+1}}\right)^{2} \mid \mathcal{F}_{a_{n+1}}\right] \tag{16}\\
= & \mathbb{E}\left[\left(\sum_{r=a_{n+1}}^{t-1} Y_{r+1}-Y_{r}\right)^{2} \mid \mathcal{F}_{a_{n+1}}\right] \tag{17}\\
= & \mathbb{E}\left[\sum_{r=a_{n+1}}^{t-1} \sum_{s=a_{n+1}}^{t-1}\left(Y_{r+1}-Y_{r}\right)\left(Y_{s+1}-Y_{s}\right) \mid \mathcal{F}_{a_{n+1}}\right] \tag{18}\\
= & \sum_{r=a_{n+1}}^{t-1} \sum_{s=a_{n+1}}^{t-1} \mathbb{E}\left[\left(Y_{r+1}-Y_{r}\right)\left(Y_{s+1}-Y_{s}\right) \mid \mathcal{F}_{a_{n+1}}\right] \tag{19}
\end{align*}
$$

As Y is a martingale we have that this final expectation is zero unless $r=s$. To see this assume WLOG that $r>s$ and note that

$$
\begin{align*}
& \mathbb{E}\left[\left(Y_{r+1}-Y_{r}\right)\left(Y_{s+1}-Y_{s}\right) \mid \mathcal{F}_{a_{n+1}}\right] \tag{20}\\
= & \mathbb{E}\left[\mathbb{E}\left[\left(Y_{r+1}-Y_{r}\right)\left(Y_{s+1}-Y_{s}\right) \mid \mathcal{F}_{r}\right] \mid \mathcal{F}_{a_{n+1}}\right] \tag{21}\\
= & \mathbb{E}\left[\mathbb{E}\left[\left(Y_{r+1}-Y_{r}\right) \mid \mathcal{F}_{r}\right)\left(Y_{s+1}-Y_{s}\right) \mid \mathcal{F}_{a_{n+1}}\right] \tag{22}\\
= & \mathbb{E}\left[0\left(Y_{s+1}-Y_{s}\right) \mid \mathcal{F}_{a_{n+1}}\right] \tag{23}\\
= & 0 . \tag{24}
\end{align*}
$$

Putting these together, along with the fact that $Y_{r+1}-Y_{r} \leq 2 B / r$ (which follows from the similar bound on difference in X), we get that

$$
\begin{align*}
\operatorname{Var}\left(Y_{t} \mid \mathcal{F}_{a_{n+1}}\right) & =\sum_{r=a_{n+1}}^{t-1} \mathbb{E}\left[\left(Y_{r+1}-Y_{r}\right)^{2} \mid \mathcal{F}_{a_{n+1}}\right] \tag{25}\\
& \leq 4 B^{2} \sum_{r=a_{n+1}}^{\infty} r^{-2} \tag{26}
\end{align*}
$$

Thus, for all $t \geq a_{n+1}$, by Chebyshev's inequality,

$$
\begin{align*}
\mathbb{P}\left(Y_{t}<0 \mid A_{n}\right) & \leq \mathbb{P}\left(\left|Y_{t}-Y_{a_{n+1}}\right|>Y_{a_{n+1}} \mid A_{n}\right) \tag{27}\\
& \leq \mathbb{P}\left(\left|Y_{t}-Y_{a_{n+1}}\right|>s_{n} \mid A_{n}\right) \tag{28}\\
& \leq \frac{\operatorname{Var}\left(Y_{t} \mid \mathcal{F}_{a_{n+1}}\right)}{s_{n}^{2}} \tag{29}\\
& \leq 2^{-2 n} \tag{30}
\end{align*}
$$

Whilst by the final property if B_{n} occurs and $X_{t} \rightarrow 0$ then $Y_{t}<\eta$ for all sufficiently large t for all $\eta>0$. Thus $\mathbb{P}\left(B_{n} \wedge\left\{X_{t} \rightarrow 0\right\} \mid A_{n}\right) \leq 2^{-2 n}$ and $\mathbb{P}\left(A_{n}^{\prime} \wedge B_{n} \wedge\left\{X_{t} \rightarrow 0\right\}\right) \leq 2^{-2 n}$.
We now prove that $\mathbb{P}\left(A_{n+1}^{\prime} \mid \mathcal{F}_{a_{n+1}}\right) \geq 2 / 5$ for sufficiently large n, where we have replaced n by $n+1$ for convenience. We again define Y_{t} exactly as for the previous property and note again that
it is a martingale and that, for $t \geq a_{n+1}, 4 B^{2} / t^{2} \geq \operatorname{Var}\left(Y_{t+1} \mid \mathcal{F}_{t}\right) \geq \epsilon / t^{2}$. Thus we can apply the martingale central limit theorem (Hall and Heyde, 1980, Theorem 5.4) to conclude that, setting $\sigma_{n}^{2}=\operatorname{Var}\left(Y_{a_{n+1}}-Y_{a_{n}} \mid \mathcal{F}_{a_{n}}\right)$, the distribution conditioned on $\mathcal{F}_{a_{n+1}}$ of $\left(Y_{a_{n+2}}-Y_{a_{n+1}}\right) / \sigma_{n+1}$ converges to a standard normal distribution as $n \rightarrow \infty$. Let Z have a standard normal distribution.

$$
\begin{aligned}
\mathbb{P}\left(Y_{a_{n+2}}>s_{n+1}\right) & =\mathbb{P}\left(\left(Y_{a_{n+2}}-Y_{a_{n+1}}\right) / \sigma_{n+1}>\left(s_{n+1}-Y_{a_{n+1}}\right) / \sigma_{n+1}\right) \\
& =\mathbb{P}\left(\left(Y_{a_{n+2}}-Y_{a_{n+1}}\right) / \sigma_{n+1}>\left(s_{n+1}-X_{a_{n+1}}\right) / \sigma_{n+1}\right) \\
& \geq \mathbb{P}\left(\left(Y_{a_{n+2}}-Y_{a_{n+1}}\right) / \sigma_{n+1}>s_{n+1} / \sigma_{n+1}\right) \\
& \rightarrow \mathbb{P}\left(Z>\lim _{n \rightarrow \infty} s_{n+1} / \sigma_{n+1}\right) \\
& =\mathbb{P}(Z>0)=\frac{1}{2}
\end{aligned}
$$

Where the limit in the probability was zero because $s_{n+1}=O\left(2^{n+1-3 \cdot 2^{n+1}}\right)$ and $\sigma_{n+1}=\Omega\left(2^{-3 \cdot 2^{n}}\right)$. Finally note that, $X_{t} \geq Y_{t}$ for all $t \leq a_{n+2}$ unless the event $\left\{\exists a_{n+1} \leq t \leq a_{n+2}\right.$ s.t. $\left.X_{t} \geq b\right\}$ occurs. So for sufficiently large n either $\left\{\exists a_{n+1} \leq t \leq a_{n+2}\right.$ s.t. $\left.X_{t} \geq b\right\}$ or, with probability at least $2 / 5, A_{n+1}$ occurs. Therefore, for sufficiently large $n, \mathbb{P}\left(A_{n+1}^{\prime} \mid \mathcal{F}_{a_{n+1}}\right) \geq 2 / 5$ and the proof is complete.
Theorem 6. Let \mathcal{A} be an agent that plays the Repellor Problem, explores infinitely often, and updates its Q-values with a learning rate α_{t} that is constant across actions, and let π_{t} and Q_{t} be \mathcal{A} 's policy and Q-function at time t. Assume also that for $j \neq i$, if $\pi_{t}\left(a_{i}\right), \pi_{t}\left(a_{j}\right)$ both converge to positive values, then

$$
\begin{equation*}
\frac{\pi_{t}\left(a_{i}\right)-\pi_{t}\left(a_{j}\right)}{Q_{t}\left(a_{i}\right)-Q_{t}\left(a_{j}\right)} \underset{\text { a.s. }}{\rightarrow} \infty \tag{2}
\end{equation*}
$$

as $t \rightarrow \infty$. Then π_{t} almost surely does not converge.
Proof. We first need to establish the fact that $(1 / 3,1 / 3,1 / 3)$ is the only strongly ratifiable policy. First, if $\pi\left(a_{j}\right) \leq 1 / 4$ for some j then $\mathbb{E}\left[R\left(a_{i}, \pi\right)\right]=\pi\left(a_{i+1}\right)$. It is easy to see that for this reward function, there is no strongly ratifiable policy other than the symmetric $(1 / 3,1 / 3,1 / 3)$.
The other case of $\pi\left(a_{j}\right)>1 / 4$ for all j is harder. Finding strongly ratifiable policies in this range gives rise to the following system of polynomial equations, constrained to $p_{1}, p_{2}, p_{3} \in[1 / 4,1]$:

$$
\begin{aligned}
p_{1}+4 \cdot 13^{3} p_{2}\left(p_{1}-\frac{1}{4}\right)\left(p_{2}-\frac{1}{4}\right)\left(p_{3}-\frac{1}{4}\right) & =x \\
p_{2}+4 \cdot 13^{3} p_{3}\left(p_{1}-\frac{1}{4}\right)\left(p_{2}-\frac{1}{4}\right)\left(p_{3}-\frac{1}{4}\right) & =x \\
p_{3}+4 \cdot 13^{3} p_{1}\left(p_{1}-\frac{1}{4}\right)\left(p_{2}-\frac{1}{4}\right)\left(p_{3}-\frac{1}{4}\right) & =x \\
p_{1}+p_{2}+p_{3} & =1
\end{aligned}
$$

Although this is non-trivial, it can be solved by computer algebra system. ${ }^{3}$ For completeness, we would like to give a more human argument here. Consider the simpler system

$$
\begin{gather*}
p_{1}+K p_{2}=p_{2}+K p_{3}=p_{3}+K p_{1} \tag{31}\\
p_{1}+p_{2}+p_{3}=1 \tag{32}
\end{gather*}
$$

Note that for p_{1}, p_{2}, p_{3} to satisfy the original system of equations, it has to satisfy the above system of equations for a particular $K>0$. It turns out that even without knowing K, the unique solution to this equation system is the symmetric $p_{1}=p_{2}=p_{3}$. To prove this, assume that the three are not the same. WLOG we can assume that p_{1} is among the maxima of $\left\{p_{1}, p_{2}, p_{3}\right\}$. Then we can distinguish two cases: First, imagine that $p_{1} \geq p_{2} \geq p_{3}$, where at least one of the two inequalities is strict. Then because $K>0$, it is $p_{1}+K p_{2}>p_{2}+K p_{3}$, contradicting the first equality in line 31. Second, imagine that $p_{1} \geq p_{3} \geq p_{2}$, where at least one of the inequalities is strict. Then it

[^0]is $p_{2}+K p_{3}<p_{3}+K p_{1}$, contradicting the second equality in line 31 . In conclusion, it must be $p_{1}=p_{2}=p_{3}$ as claimed.
Now that we have shown that $(1 / 3,1 / 3,1 / 3)$ is the only strongly ratifiable policy, we can conclude by Theorem 2 , that π_{t} almost surely does not converge to any policy other than $(1 / 3,1 / 3,1 / 3)$. It now only remains to show that π_{t} almost surely does not converge to $(1 / 3,1 / 3,1 / 3)$.
To show that π_{t} cannot converge to ($1 / 3,1 / 3,1 / 3$), we will analyze the history of what we will call relative (empirical) Q-values, which we will denote by $D_{t}\left(a_{j}, a_{i}\right)=Q_{t}\left(a_{j}\right)-Q_{t}\left(a_{i}\right)$. In order to converge to $(1 / 3,1 / 3,1 / 3)$, the relative Q -values must all converge to 0 . In particular, it has to be
\[

$$
\begin{equation*}
X_{t}:=\sum_{a_{i}, a_{j}: i<j}\left|D_{t}\left(a_{j}, a_{i}\right)\right| \rightarrow 0 \tag{33}
\end{equation*}
$$

\]

as $t \rightarrow \infty$.
We will show, however, that these values almost surely do not converge to 0 if the policies converge to $(1 / 3,1 / 3,1 / 3)$. Roughly, we show that when the relative Q-values are close to 0 and the agent acts according to a policy that is close to $(1 / 3,1 / 3,1 / 3)$, the Q-values will in expectation be updated toward the action that is currently most likely to be taken. Thus for large enough t, X_{t} will always increase in expectation. With some other easy-to-verify properties of X_{t}, we can then apply Lemma 13, which gives us that almost surely the X_{t} do not converge to 0 as $t \rightarrow \infty$.
In order to prove that $\mathbb{E}\left[X_{t} \mid \mathcal{F}_{t-1}\right]-X_{t-1}>0$ for large enough t and assuming X_{t} is close to 0 and π_{t} close to $(1 / 3,1 / 3,1 / 3)$, let $a^{*} \in \arg \max _{a} \pi_{t}(a)$. Because of stochasticity of the rewards and by line 2 , it is $\pi_{t}\left(a^{*}\right)>1 / 3$ for large enough t. Further, let $a^{-} \in \arg \min _{a} \pi_{t}(a)$. It is $\pi_{t}\left(a^{-}\right) \leq 1 / 3$. Finally, let $\epsilon=\pi_{t}\left(a^{*}\right)-\pi_{t}\left(a^{-}\right)$.
The $X_{t}-X_{t-1}$ can be seen as the sum of three differences $\left|D_{t}\left(a_{j}, a_{i}\right)\right|-\left|D_{t-1}\left(a_{j}, a_{i}\right)\right|$. We start with the difference for a^{*} and a^{-}. It is

$$
\begin{align*}
& \mathbb{E}\left[\left|D_{t}\left(a^{*}, a^{-}\right)\right| \mid \mathcal{F}_{t-1}\right]-\left|D_{t-1}\left(a^{*}, a^{-}\right)\right| \\
& =\alpha_{t}\left(\mathbb{E}\left[R\left(a^{*}, \pi_{t}\right)\right]-\mathbb{E}\left[R\left(a^{-}, \pi_{t}\right)\right]\right)-\alpha_{t}\left(Q_{t-1}\left(a^{*}\right)-Q_{t-1}\left(a^{-}\right)\right) \tag{34}
\end{align*}
$$

Now, assuming that π is close enough to $(1 / 3,1 / 3,1 / 3)$ that $\pi\left(a_{j}\right) \geq 1 / 4+1 / 13$ for all j, it is

$$
\begin{align*}
& \mathbb{E}\left[R\left(a^{*}, \pi_{t}\right)\right]-\mathbb{E}\left[R\left(a^{-}, \pi_{t}\right)\right] \tag{35}\\
= & \left(\pi\left(a^{*}\right)-\pi\left(a^{-}\right)\right) \cdot 4 \prod_{j} 13\left(\pi\left(a_{j}\right)-\frac{1}{4}\right)+\pi\left(a_{+1}^{*}\right)-\pi\left(a_{+1}^{-}\right) \tag{36}\\
\geq & 4 \epsilon-\epsilon \tag{37}
\end{align*}
$$

It is left to estimate the other summands in the expectation of $X_{t}-X_{t-1}$. Consider any pair of actions a_{i}, a_{j} with $i>j$. Because $\left|D_{t}\left(a_{i}, a_{j}\right)\right|=\left|D_{t}\left(a_{j}, a_{i}\right)\right|$, we can assume WLOG that $Q_{t-1}\left(a_{i}\right)>Q_{t-1}\left(a_{j}\right)$, which for large enough t also means $\pi_{t}\left(a_{i}\right)>\pi_{t}\left(a_{j}\right)$. Thus, by similar reasoning as before,

$$
\begin{align*}
& \mathbb{E}\left[\left|D_{t}\left(a_{i}, a_{j}\right)\right| \mid \mathcal{F}_{t-1}\right]-\left|D_{t-1}\left(a_{i}, a_{j}\right)\right| \tag{38}\\
& =\alpha_{t}\left(\mathbb{E}\left[R\left(a_{i}, \pi_{t}\right)\right]-\mathbb{E}\left[R\left(a_{j}, \pi_{t}\right)\right]\right)-\alpha_{t}\left(Q_{t-1}\left(a_{i}\right)-Q_{t-1}\left(a_{j}\right)\right)
\end{align*}
$$

and

$$
\begin{equation*}
\mathbb{E}\left[R\left(a_{i}, \pi_{t}\right)\right]-\mathbb{E}\left[R\left(a_{j}, \pi_{t}\right)\right] \geq-\epsilon \tag{39}
\end{equation*}
$$

Thus, overall for large enough t we have

$$
\begin{equation*}
\mathbb{E}\left[X_{t} \mid \mathcal{F}_{t}\right]-X_{t-1} \geq \alpha_{t} \epsilon-\alpha_{t}\left(\sum_{a_{i}, a_{j}: i<j} Q_{t-1}\left(a_{i}\right)-Q_{t-1}\left(a_{j}\right)\right) \tag{40}
\end{equation*}
$$

By line 2, ϵ outgrows the differences in Q -values and therefore this term will be positive for all large enough t, as claimed.

E Proof of Theorem 7

Theorem 7. Assume that there is some sequence of random variables $\left(\epsilon_{t} \geq 0\right)_{t}$ s.t. $\epsilon_{t} \underset{t \rightarrow \infty}{ }$ a.s. 0 and for all $t \in \mathbb{N}$ it is

$$
\begin{equation*}
\sum_{a^{*} \in \arg \max _{a}} \pi_{t}\left(a^{*}\right) \geq 1-\epsilon_{t} \tag{3}
\end{equation*}
$$

Let $P_{t}^{\Sigma} \rightarrow p^{\Sigma}$ with positive probability as $t \rightarrow \infty$. Then across all actions $a \in \operatorname{supp}\left(p^{\Sigma}\right), q_{a}(a)$ is constant.

Proof. Consider any $a \in \operatorname{supp}\left(p^{\Sigma}\right)$ that is played with positive frequency. Because exploration goes to zero, almost all (i.e. frequency 1) of the time that a is played must be from π_{t} playing a with probability close to 1 . Therefore, whenever $P_{t}^{\Sigma} \underset{t \rightarrow \infty}{\rightarrow} p^{\Sigma}$ it is

$$
\begin{equation*}
Q_{t}(a) \underset{t \rightarrow \infty \text { a.s. }}{\rightarrow} q_{a}(a) \tag{41}
\end{equation*}
$$

Thus $q_{a}(a)$ must be constant across $a \in \operatorname{supp}\left(p^{\Sigma}\right)$, since otherwise the actions with lower values of $q_{a}(a)$ could not be taken in the limit.

F Proof of Theorem 8

Theorem 8. Same assumptions as Theorem 7. If $\left|\operatorname{supp}\left(p^{\Sigma}\right)\right|>1$ then for all $a \in \operatorname{supp}\left(p^{\Sigma}\right)$ there exists $a^{\prime} \in A$ s.t. $q_{a}\left(a^{\prime}\right) \geq q_{a}(a)$.

Proof. Let $\left|\operatorname{supp}\left(p^{\Sigma}\right)\right|>1$ and suppose that $\exists a \in \operatorname{supp}\left(p^{\Sigma}\right)$ s.t.

$$
\begin{equation*}
\forall a^{\prime} \in A-\{a\}: q_{a}\left(a^{\prime}\right)<q_{a}(a) . \tag{42}
\end{equation*}
$$

Policies close to π_{a} are almost surely played infinitely often. Every time T this happens we have that $Q_{T}(a) \geq Q_{T}\left(a^{\prime}\right)$ for all $a^{\prime} \in A-\{a\}$. Now it is easy to see that if 42 holds, then there is a K s.t. every such time T, there is a chance of at least K that for all $t \geq T$ it is $Q_{t}(a)>Q_{t}\left(a^{\prime}\right)$ for all $a^{\prime} \in A-\{a\}$. Hence almost surely $\operatorname{supp}\left(p^{\Sigma}\right)=\{a\}$, which contradicts the assumption that $\left|\operatorname{supp}\left(p^{\Sigma}\right)\right|>1$.

G Proof of Theorem 9

Theorem 9. Same assumptions as Theorem 7. Let U be the Q-value $q_{a}(a)$ which (by Theorem 7) is constant across $a \in \operatorname{supp}\left(p^{\Sigma}\right)$. For any $a^{\prime} \in A-\operatorname{supp}\left(p^{\Sigma}\right)$ that is played infinitely often, let frequency 1 of the exploratory plays of a^{\prime} happen when playing a policy near elements of $\left\{\pi_{a} \mid a \in \operatorname{supp}\left(p^{\Sigma}\right)\right\}$. Then either there exists $a \in \operatorname{supp}\left(p^{\Sigma}\right)$ such that $q_{a}\left(a^{\prime}\right) \leq U$; or $q_{a^{\prime}}\left(a^{\prime}\right)<U$.

Proof. Suppose there is an $a^{\prime} \in A-\operatorname{supp}\left(p^{\Sigma}\right)$ for which both are false, i.e. $q_{a}\left(a^{\prime}\right)>U$ for all $a \in \operatorname{supp}\left(p^{\Sigma}\right)$, and $q_{a^{\prime}}\left(a^{\prime}\right) \geq U$. Frequency 1 of the time that a^{\prime} is played is when the policy is near an element of $\left\{\pi_{a} \mid a \in \operatorname{supp}\left(p^{\Sigma}\right) \cup\left\{a^{\prime}\right\}\right\}$, and so $Q_{t}\left(a^{\prime}\right)$ converges to some convex combination of $q_{a}\left(a^{\prime}\right)$ for $a \in \operatorname{supp}\left(p^{\Sigma}\right) \cup\left\{a^{\prime}\right\}$. Therefore, in the limit $Q_{t}\left(a^{\prime}\right)$ is bigger than U. But that is inconsistent with a^{\prime} being played with frequency 0 .

[^0]: ${ }^{3}$ For example, in Mathematica, the following code identifies the unique solution $(1 / 3,1 / 3,1 / 3)$: Solve $\left[\left(4 * 13^{\wedge} 3\right) * \mathrm{p} 1 *((\mathrm{p} 1-1 / 4) *(\mathrm{p} 2-1 / 4) *(\mathrm{p} 3-1 / 4))+\mathrm{p} 2==\left(4 * 13^{\wedge} 3\right) * \mathrm{p} 2 *\right.$ $((\mathrm{p} 1-1 / 4) *(\mathrm{p} 2-1 / 4) *(\mathrm{p} 3-1 / 4))+\mathrm{p} 3=\left(4 * 13^{\wedge} 3\right) * \mathrm{p} 3 *((\mathrm{p} 1-1 / 4) *(\mathrm{p} 2-1 / 4) *(\mathrm{p} 3-1 / 4))+$ $p 1 \& \& p 1+p 2+p 3==1 \& \& p 1>=1 / 4$ \&\& $p 2>=1 / 4$ \&\& $p 3>=1 / 4, p 1, p 2, p 3]$

