A *Q*-value convergence

We here show that if a tabular agent converges to a policy π_{∞} in a continuous NDP then Q_t converges to $q_{\pi_{\infty}}$, assuming that the agent updates its Q-values in an appropriate way. To prove this we will use the following lemma:

Lemma 10. Let $\langle \zeta_t, \delta_t, F_t \rangle$ be a stochastic process where $\zeta_t, \delta_t, F_t : X \to \mathbb{R}$ satisfy

$$\delta_{t+1}(x) = (1 - \zeta_t(x_t)) \cdot \delta_t(x_t) + \zeta_t(x_t) \cdot F_t(x_t)$$

with $x_t \in X$ and $t \in \mathbb{N}$. Let P_t be a sequence of increasing σ -fields such that ζ_0 and δ_0 are P_0 -measurable and ζ_t , δ_t and F_{t-1} are P_t -measurable, $t \ge 1$. Then δ_t converges to 0 with probability 1 if the following conditions hold:

1. X is finite.

- 2. $\zeta_t(x_t) \in [0, 1]$ and $\forall x \neq x_t : \zeta_t(x) = 0$.
- 3. $\sum_t \zeta_t(x_t) = \infty$ and $\sum_t \zeta_t(x_t)^2 < \infty$ with probability 1.
- 4. Var $\{F_t(x_t) \mid P_t\} \leq K(1+\kappa \|\delta_t\|_{\infty})^2$ for some $K \in \mathbb{R}$ and $\kappa \in [0,1)$.
- 5. $\|\mathbb{E}\{F_t \mid P_t\}\|_{\infty} \leq \kappa \|\delta_t\|_{\infty} + c_t$, where $c_t \to 0$ with probability 1 as $t \to \infty$.

where $\|.\|_{\infty}$ is a (potentially weighted) maximum norm.

Proof. See Singh et al. (2000).

We say that a Q-value update rule is *appropriate* if it has the following form;

$$Q_{t+1}(a_t \mid s_t) \leftarrow (1 - \alpha_t(a_t, s_t)) \cdot Q_t(a_t \mid s_t) + \alpha_t(a_t, s_t) \cdot (r_t + \gamma \cdot \hat{v}_{t+1}(s_{t+1})),$$

where $\hat{v}_t(s)$ is an estimate of the value of s, and if moreover

$$\lim_{t \to \infty} \mathbb{E} \left[\hat{v}_t(s) - \max_a Q_t(a \mid s) \right] = 0.$$

Q-learning is of course appropriate. Moreover, SARSA and Expected SARSA are also both appropriate, if the agent is greedy in the limit. Note that since *R* is bounded, $Q_t(a \mid s)$ has bounded support. This means that if for all $\delta > 0$, $\mathbb{P}(Q_t(\pi_t(s) \mid s) \leq \max_a Q_t(a \mid s) - \delta) \to 0$ as $t \to \infty$, then $\mathbb{E}_{a \sim \pi_t}[Q_t(a \mid s)] \to \max_a Q_t(a \mid s)$ as $t \to \infty$.

Theorem 11. In any continuous NDP (S, A, T, R, γ) , if a tabular agent converges to a policy π_{∞} then Q_t converges to $q_{\pi_{\infty}}$, if the following conditions hold:

- 1. The agent updates its Q-values with an appropriate update rule.
- 2. The update rates $\alpha_t(a, s)$ are in [0, 1), and for all $s \in S$ and $a \in A$ we have that $\sum_t \alpha_t(a, s) = \infty$ and $\sum_t \alpha_t(a, s)^2 < \infty$ with probability 1.

Note that condition 2 requires that the agent takes every action in every state infinitely many times

Proof. Let

•
$$X = S \times A$$

- $\zeta_t(a,s) = \alpha_t(a,s)$
- $\delta_t(a,s) = Q_t(a \mid s) q_{\pi_\infty}(a \mid s)$
- $F_t(a,s) = r_t + \gamma \hat{v}_{t+1}(s_{t+1}) q_{\pi_\infty}(a \mid s)$

Since S and A are finite, and since R is bounded, we have that condition 1 and 4 in Lemma 10 are satisfied. Moreover, assumption 2 of this theorem corresponds to condition 2 and 3 in Lemma 10. It remains to show that condition 5 is satisfied, which we can do algebraically:

$$\begin{split} \|\mathbb{E}\{F_{t} \mid P_{t}\}\|_{\infty} \\ &= \max_{s,a} \left| \mathbb{E}\Big[r_{t} + \gamma \hat{v}_{t}(s_{t+1}) - q_{\pi_{\infty}}(a \mid s)\Big] \right| \\ &= \max_{s,a} \left| \mathbb{E}\Big[r_{t} + \gamma \max_{a'} Q_{t}(a' \mid s_{t+1}) - q_{\pi_{\infty}}(a \mid s) + \gamma \hat{v}_{t}(s_{t+1}) - \gamma \max_{a'} Q_{t}(a' \mid s_{t+1})\Big] \right| \\ &\leq \max_{s,a} \left| \mathbb{E}\Big[r_{t} + \gamma \max_{a'} Q_{t}(a' \mid s_{t+1}) - q_{\pi_{\infty}}(a \mid s)\Big] \right| + \max_{s,a} \left| \mathbb{E}\Big[\gamma \hat{v}_{t}(s_{t+1}) - \gamma \max_{a'} Q_{t}(a' \mid s_{t+1})\Big] \right| \end{split}$$

Note that the second term in this expression is bounded above by

$$\max_{s} \left| \mathbb{E} \left[\hat{v}_t(s) - \max_a Q_t(a \mid s) \right] \right.$$

Let us use k_t to denote this expression. Since the Q-value update rule is appropriate we have that $k_t \to 0$ as $t \to \infty$. We thus have:

$$= \max_{s,a} \left| \mathbb{E}[r_t + \gamma \max_{a'} Q_t(a' \mid s_{t+1}) - q_{\pi_{\infty}}(a \mid s)] \right| + k_t$$

We can now expand the expectations, and rearrange the terms:

$$= \max_{s,a} \left| \sum_{s' \in S} \mathbb{P}(T(s, a, \pi_t) = s') \right|$$

$$\left(\mathbb{E}[R(s, a, s', \pi_t)] + \gamma \max_{a'} Q_t(a' \mid s') \right)$$

$$- \sum_{s' \in S} \mathbb{P}(T(s, a, \pi_\infty) = s')$$

$$\left(\mathbb{E}[R(s, a, s', \pi_\infty)] + \gamma \max_{a'} q_{\pi_\infty}(a' \mid s') \right) \right| + k_t$$

$$= \max_{s,a} \left| \sum_{s' \in S} \mathbb{P}(T(s, a, \pi_\infty) = s') \right|$$

$$\left(\mathbb{E}[R(s, a, s', \pi_t)] + \gamma \max_{a'} Q_t(a' \mid s') - \mathbb{E}[R(s, a, s', \pi_\infty)] - \gamma \max_{a'} q_{\pi_\infty}(a' \mid s') \right)$$

$$+ \sum_{s' \in S} \left(\mathbb{P}(T(s, a, \pi_t) = s') - \mathbb{P}(T(s, a, \pi_\infty) = s') \right) \cdot X \right| + k_t$$

where $X = \mathbb{E}[R(s, a, s', \pi_t)] + \gamma \max_{a'} Q_t(a' | s')$. Let $d_t(s, a)$ be the second term in this expression, and let $b_t(s, a, s') = \mathbb{E}[R(s, a, s', \pi_t)] - \mathbb{E}[R(s, a, s', \pi_\infty)]$. Since $\pi_t \to \pi_\infty$, and since T and Rare continuous, we have that $b_t(s, a, s') \to 0$ and $d_t(s, a) \to 0$ as $t \to \infty$ (for any s, a, and s'). We thus have:

$$= \max_{s,a} \left| \sum_{s' \in S} \mathbb{P}(T(s, a, \pi_{\infty}) = s') \right| \\ \left(\gamma \max_{a'} Q_t(a' \mid s') - \gamma \max_{a'} q_{\pi_{\infty}}(a' \mid s') + b_t(s, a, s') \right) + d_t(s, a) \right| + k_t \\ \leq \gamma \max_{s,a} \left| Q_t(a \mid s) - q_{\pi_{\infty}}(a \mid s) \right| + \\ \max_{s,a,s'} \left| b_t(s, a, s') + d_t(s, a) + k_t \right| \\ = \gamma \max_{s,a} \left| \delta(s, a) \right| + c_t = \gamma \|\delta_t\|_{\infty} + c_t$$

where $c_t = \max_{s,a,s'} \left| b_t(s,a,s') + d_t(s,a) + k_t \right|$. This means that

$$\|\mathbb{E}\{F_t \mid P_t\}\|_{\infty} \le \gamma \|\delta_t\|_{\infty} + c_t$$

where $\gamma \in [0,1)$ and $c_t \to 0$ as $t \to \infty$. Thus by lemma 10 we have that Q_t converges to $q_{\pi_{\infty}}$. \Box

B Proof of Theorem 2

Theorem 2. Let A be a model-free reinforcement learning agent, and let π_t and Q_t be A's policy and Q-function at time t. Let A satisfy the following in a given NDP:

- A is greedy in the limit, i.e. for all δ > 0, P (Q_t(π_t(s))≤ max_a Q_t(a | s) − δ) → 0 as t → ∞.
 A is Q-values are accurate in the limit, i.e. if π_t → π_∞ as t → ∞, then Q_t → q_{π∞} as t → ∞.

Then if \mathcal{A} 's policy converges to π_{∞} then π_{∞} is strongly ratifiable on the states that are visited infinitely many times.

Proof. Let $\pi_t \to \pi_\infty$ and hence $Q_t \to q_{\pi_\infty}$. For strong ratifiability, we have to show that for all actions a' and states s, if a' is suboptimal (in terms of true q values) given π_∞ in s, then $\pi_\infty(a' \mid s) = 0$.

If a' is suboptimal in this way, then there is $\delta > 0$ s.t.

$$q_{\pi_{\infty}}(a' \mid s) \le \max q_{\pi_{\infty}}(a \mid s) - \delta$$

Thus, since $Q_t \to q_{\pi_{\infty}}$, it is for large enough t,

$$Q_t(a' \mid s) \le \max_a Q_t(a \mid s) - \frac{\delta}{2}.$$

By the greedy-in-the-limit condition, $\pi_t(a' \mid s) \to 0$. Because $\pi_t \to \pi_\infty$, it follows that $\pi_\infty(a' \mid s) = 0$, as claimed.

C Proof of Theorem 3

Lemma 12 (Kakutani's Fixed-Point Theorem). Let X be a non-empty, compact, and convex subset of some Euclidean space \mathbb{R}^n , and let $\phi : X \to 2^X$ be a set-valued function s.t. ϕ has a closed graph and s.t. $\phi(x)$ is non-empty and convex for all $x \in X$. Then ϕ has a fixed point.

Proof. See Kakutani (1941).

Theorem 3. Every continuous NDP has a strongly ratifiable policy.

Proof. Let $N = \langle S, A, T_N, R_N, \gamma \rangle$ be a continuous NDP, and let N_{π} be the MDP $\langle S, A, T_{N_{\pi}}, R_{N_{\pi}}, \gamma \rangle$ that is obtained by fixing the dynamics in N according to π – that is, $T_{N_{\pi}}(s, a) = T_N(s, a, \pi)$, and $R_{N_{\pi}}(s, a, s') = R_N(s, a, s', \pi)$. Let $\phi_N : (S \rightsquigarrow A) \rightarrow 2^{(S \rightsquigarrow A)}$ be the set-valued function s.t. $\phi_N(\pi)$ is the set of all policies that are optimal in N_{π} . We will show that the graph of ϕ_N is closed and apply Kakutani's fixed point theorem.

Suppose (π_i) is a sequence of policies converging to π_0 and suppose $\lambda_i \in \phi_N(\pi_i)$ is a sequence converging to λ_0 . For all sufficiently large i, $\operatorname{supp}(\lambda_0) \subseteq \operatorname{supp}(\lambda_i)$ (as the state and action spaces are finite). Therefore for sufficiently large i, $\lambda_0 \in \phi_N(\pi_i)$. By the continuity with respect to π of $\mathbb{E}[R \mid \lambda_0]$ in N_{π} , $\lambda_0 \in \phi_N(\pi_0)$. Therefore, the graph of ϕ_N is closed.

The domain of ϕ_N is a non-empty, compact, convex subset of Euclidean space. Any MDP always has an optimal policy, and so $\phi_N(\cdot)$ is non-empty. Since N_{π} is an MDP $\phi_N(\pi)$ is a set of deterministic policies and all their convex combinations, and so $\phi_N(\cdot)$ is convex. Hence, by Kakutani's Fixed Point Theorem, there must be a π s.t. $\pi \in \phi_N(\pi)$. Then π is strongly ratifiable in N. Hence every continuous NDP has a strongly ratifiable policy.

D Proof of Theorem 6

To prove Theorem 6, we first need to prove the following lemma.

Lemma 13. Let X_t be a non-negative discrete stochastic process, indexed by t, and let \mathcal{F}_t denote the history upto time t. Suppose X_t is bounded, i.e. there exists B such that $X_t \leq B$, and further that $|X_{t+1} - X_t| < B/t$. Suppose also that there exists $\epsilon > 0$ and b > 0 such that whenever $X_t < b$,

$$Var(X_{t+1}|\mathcal{F}_t) \ge \frac{\epsilon}{t^2}$$
(4)

and

$$\mathbb{E}[X_{t+1}|\mathcal{F}_t] - X_t \ge 0. \tag{5}$$

Then $\mathbb{P}(X_t \to 0) = 0.$

Proof. Let $a_n = 2^{2^n}$ and define the following sequences of events. Firstly, letting s_n denote $2^n \sqrt{4B^2 \sum_{t=a_{n+1}}^{\infty} \frac{1}{t^2}}$,

$$A_n = \left\{ X_{a_{n+1}} > s_n \right\} \tag{6}$$

and

$$A'_{n} = A_{n} \lor \{ \exists t \in [a_{n}, a_{n+1}] \text{ s.t. } X_{t} \ge b \},$$
(7)

which tell us that at some point after time a_n , but not after a_{n+1} , the value of X_t isn't very small and secondly

$$B_n = \{X_t < b \forall t \ge a_n\}.$$
(8)

This event is useful because it is implied by convergence to 0 and tells us that Equation 5 can be applied.

We will show that two properties hold. Firstly that $\mathbb{P}(A'_n \wedge B_n \wedge \{X_t \to 0\}) \leq 2^{-2n}$ and secondly that $\mathbb{P}(A'_n | \mathcal{F}_{a_n}) \geq 2/5$ for all sufficiently large n.

From the second of these properties, and the fact that A'_n is $\mathcal{F}_{a_{n+1}}$ measurable, it is immediate by the argument of the Borel-Cantelli Lemma that, almost surely, A'_n occurs infinitely often (i.o.) i.e. for infinitely many n. From this and the fact that $X_t \to 0 \implies (B_n \forall n \text{ sufficiently large})$ we can deduce the following

$$\mathbb{P}(X_t \to 0) \tag{9}$$

$$= \mathbb{P}(B_n \land \{X_t \to 0\} \forall n \text{ sufficiently large})$$
(10)

$$=\mathbb{P}((A'_n \wedge B_n \wedge \{X_t \to 0\}) \text{ i.o.}) \tag{11}$$

$$\leq \mathbb{P}(\exists n > m \text{ s.t. } A'_n \land B_n \land \{X_t \to 0\})$$
(12)

$$\leq \sum_{n=m}^{\infty} \mathbb{P}(A'_n \wedge B_n \wedge \{X_t \to 0\}).$$
(13)

 ∞

It is immediate from the first fact that this sum is convergent, and thus it must converge to zero as $m \to \infty$, but m was arbitrary so $\mathbb{P}(X_t \to 0) = 0$.

We now prove the first property. Note that if B_n occurs then A'_n can only occur if A_n occurs. Thus $\mathbb{P}(A'_n \wedge B_n \wedge \{X_t \to 0\}) \leq \mathbb{P}(B_n \wedge \{X_t \to 0\} | A_n)$. To see this is small, we consider an augmentation of X_t given by

$$Y_t = \begin{cases} X_t & t \le a_{n+1} \\ Y_{t-1} + (X_t - X_{t-1}) & \\ & -\mathbb{E}[X_t - X_{t-1}] \end{cases} \quad t > a_{n+1}.$$
(14)

Note that this process is a martingale (for $t > a_{n+1}$), i.e. $\mathbb{E}[Y_{t+1}|\mathcal{F}_t] = Y_t$ for all $t > a_{n+1}$, and that if B_n occurs then $Y_t \leq X_t$ for all t (by Equation 5). As Y is a martingale $\mathbb{E}[Y_t|\mathcal{F}_{a_{n+1}}] = Y_{a_{n+1}}$. Furthermore we can compute as follows

$$\operatorname{Var}(Y_t | \mathcal{F}_{a_{n+1}}) \tag{15}$$

$$=\mathbb{E}[(Y_t - Y_{a_{n+1}})^2 | \mathcal{F}_{a_{n+1}}]$$
(16)

$$=\mathbb{E}[(\sum_{r=a_{n+1}}^{t} Y_{r+1} - Y_r)^2 | \mathcal{F}_{a_{n+1}}]$$
(17)

$$=\mathbb{E}\left[\sum_{r=a_{n+1}}^{t-1}\sum_{s=a_{n+1}}^{t-1}(Y_{r+1}-Y_r)(Y_{s+1}-Y_s)|\mathcal{F}_{a_{n+1}}\right]$$
(18)

$$=\sum_{r=a_{n+1}}^{t-1}\sum_{s=a_{n+1}}^{t-1}\mathbb{E}[(Y_{r+1}-Y_r)(Y_{s+1}-Y_s)|\mathcal{F}_{a_{n+1}}].$$
(19)

As Y is a martingale we have that this final expectation is zero unless r = s. To see this assume WLOG that r > s and note that

$$\mathbb{E}[(Y_{r+1} - Y_r)(Y_{s+1} - Y_s)|\mathcal{F}_{a_{n+1}}]$$
(20)

$$=\mathbb{E}[\mathbb{E}[(Y_{r+1} - Y_r)(Y_{s+1} - Y_s)|\mathcal{F}_r]|\mathcal{F}_{a_{n+1}}]$$
(21)

$$=\mathbb{E}[\mathbb{E}[(Y_{r+1} - Y_r)|\mathcal{F}_r)(Y_{s+1} - Y_s)|\mathcal{F}_{a_{n+1}}]$$
(22)
$$\mathbb{E}[0(Y_{s+1} - Y_s)|\mathcal{F}_{a_{n+1}}]$$
(22)

$$= \mathbb{E}[0(Y_{s+1} - Y_s)|\mathcal{F}_{a_{n+1}}]$$
(23)

$$=0.$$
 (24)

Putting these together, along with the fact that $Y_{r+1} - Y_r \le 2B/r$ (which follows from the similar bound on difference in X), we get that

$$\operatorname{Var}(Y_t | \mathcal{F}_{a_{n+1}}) = \sum_{r=a_{n+1}}^{t-1} \mathbb{E}[(Y_{r+1} - Y_r)^2 | \mathcal{F}_{a_{n+1}}]$$
(25)

$$\leq 4B^2 \sum_{r=a_{n+1}}^{\infty} r^{-2}.$$
 (26)

Thus, for all $t \ge a_{n+1}$, by Chebyshev's inequality,

$$\mathbb{P}(Y_t < 0|A_n) \le \mathbb{P}(|Y_t - Y_{a_{n+1}}| > Y_{a_{n+1}}|A_n)$$
(27)

$$\leq \mathbb{P}\left(|Y_t - Y_{a_{n+1}}| > s_n | A_n\right) \tag{28}$$

$$\leq \frac{\operatorname{Var}(Y_t | \mathcal{F}_{a_{n+1}})}{s_n^2} \tag{29}$$

$$\leq 2^{-2n}.\tag{30}$$

Whilst by the final property if B_n occurs and $X_t \to 0$ then $Y_t < \eta$ for all sufficiently large t for all $\eta > 0$. Thus $\mathbb{P}(B_n \wedge \{X_t \to 0\} | A_n) \le 2^{-2n}$ and $\mathbb{P}(A'_n \wedge B_n \wedge \{X_t \to 0\}) \le 2^{-2n}$.

We now prove that $\mathbb{P}(A'_{n+1}|\mathcal{F}_{a_{n+1}}) \geq 2/5$ for sufficiently large n, where we have replaced n by n+1 for convenience. We again define Y_t exactly as for the previous property and note again that

it is a martingale and that, for $t \ge a_{n+1}$, $4B^2/t^2 \ge \operatorname{Var}(Y_{t+1}|\mathcal{F}_t) \ge \epsilon/t^2$. Thus we can apply the martingale central limit theorem (Hall and Heyde, 1980, Theorem 5.4) to conclude that, setting $\sigma_n^2 = \operatorname{Var}(Y_{a_{n+1}} - Y_{a_n}|\mathcal{F}_{a_n})$, the distribution conditioned on $\mathcal{F}_{a_{n+1}}$ of $(Y_{a_{n+2}} - Y_{a_{n+1}})/\sigma_{n+1}$ converges to a standard normal distribution as $n \to \infty$. Let Z have a standard normal distribution.

$$\mathbb{P}(Y_{a_{n+2}} > s_{n+1}) = \mathbb{P}((Y_{a_{n+2}} - Y_{a_{n+1}})/\sigma_{n+1} > (s_{n+1} - Y_{a_{n+1}})/\sigma_{n+1})$$

= $\mathbb{P}((Y_{a_{n+2}} - Y_{a_{n+1}})/\sigma_{n+1} > (s_{n+1} - X_{a_{n+1}})/\sigma_{n+1})$
 $\geq \mathbb{P}((Y_{a_{n+2}} - Y_{a_{n+1}})/\sigma_{n+1} > s_{n+1}/\sigma_{n+1})$
 $\rightarrow \mathbb{P}(Z > \lim_{n \to \infty} s_{n+1}/\sigma_{n+1})$
= $\mathbb{P}(Z > 0) = \frac{1}{2}$

Where the limit in the probability was zero because $s_{n+1} = O(2^{n+1-3\cdot 2^{n+1}})$ and $\sigma_{n+1} = \Omega(2^{-3\cdot 2^n})$. Finally note that, $X_t \ge Y_t$ for all $t \le a_{n+2}$ unless the event $\{\exists a_{n+1} \le t \le a_{n+2} \text{s.t.} X_t \ge b\}$ occurs. So for sufficiently large n either $\{\exists a_{n+1} \le t \le a_{n+2} \text{s.t.} X_t \ge b\}$ or, with probability at least 2/5, A_{n+1} occurs. Therefore, for sufficiently large n, $\mathbb{P}(A'_{n+1}|\mathcal{F}_{a_{n+1}}) \ge 2/5$ and the proof is complete.

Theorem 6. Let A be an agent that plays the Repellor Problem, explores infinitely often, and updates its Q-values with a learning rate α_t that is constant across actions, and let π_t and Q_t be A's policy and Q-function at time t. Assume also that for $j \neq i$, if $\pi_t(a_i)$, $\pi_t(a_j)$ both converge to positive values, then

$$\frac{\pi_t(a_i) - \pi_t(a_j)}{Q_t(a_i) - Q_t(a_j)} \xrightarrow[a.s.]{} \infty$$
(2)

as $t \to \infty$. Then π_t almost surely does not converge.

Proof. We first need to establish the fact that (1/3, 1/3, 1/3) is the only strongly ratifiable policy. First, if $\pi(a_j) \leq 1/4$ for some j then $\mathbb{E}[R(a_i, \pi)] = \pi(a_{i+1})$. It is easy to see that for this reward function, there is no strongly ratifiable policy other than the symmetric (1/3, 1/3, 1/3).

The other case of $\pi(a_j) > 1/4$ for all j is harder. Finding strongly ratifiable policies in this range gives rise to the following system of polynomial equations, constrained to $p_1, p_2, p_3 \in [1/4, 1]$:

$$p_{1} + 4 \cdot 13^{3} p_{2} \left(p_{1} - \frac{1}{4} \right) \left(p_{2} - \frac{1}{4} \right) \left(p_{3} - \frac{1}{4} \right) = x$$

$$p_{2} + 4 \cdot 13^{3} p_{3} \left(p_{1} - \frac{1}{4} \right) \left(p_{2} - \frac{1}{4} \right) \left(p_{3} - \frac{1}{4} \right) = x$$

$$p_{3} + 4 \cdot 13^{3} p_{1} \left(p_{1} - \frac{1}{4} \right) \left(p_{2} - \frac{1}{4} \right) \left(p_{3} - \frac{1}{4} \right) = x$$

$$p_{1} + p_{2} + p_{3} = 1$$

Although this is non-trivial, it can be solved by computer algebra system.³ For completeness, we would like to give a more human argument here. Consider the simpler system

$$p_1 + Kp_2 = p_2 + Kp_3 = p_3 + Kp_1 \tag{31}$$

$$p_1 + p_2 + p_3 = 1 \tag{32}$$

Note that for p_1, p_2, p_3 to satisfy the original system of equations, it has to satisfy the above system of equations for a particular K > 0. It turns out that even without knowing K, the unique solution to this equation system is the symmetric $p_1 = p_2 = p_3$. To prove this, assume that the three are not the same. WLOG we can assume that p_1 is among the maxima of $\{p_1, p_2, p_3\}$. Then we can distinguish two cases: First, imagine that $p_1 \ge p_2 \ge p_3$, where at least one of the two inequalities is strict. Then because K > 0, it is $p_1 + Kp_2 > p_2 + Kp_3$, contradicting the first equality in line 31. Second, imagine that $p_1 \ge p_2 \ge p_2$, where at least one of the inequalities is strict. Then it

³For example, in Mathematica, the following code identifies the unique solution (1/3, 1/3, 1/3): Solve[(4*13^3) * p1 * ((p1-1/4)*(p2-1/4)*(p3-1/4)) + p2 == (4*13^3) * p2 *

 $⁽⁽p1-1/4)*(p2-1/4)*(p3-1/4)) + p3 == (4*13^3) * p3 * ((p1-1/4) * (p2-1/4)*(p3-1/4)) + p1 & p1+p2+p3==1 & p1>=1/4 & p2>=1/4 & p3>=1/4, p1,p2,p3]$

is $p_2 + Kp_3 < p_3 + Kp_1$, contradicting the second equality in line 31. In conclusion, it must be $p_1 = p_2 = p_3$ as claimed.

Now that we have shown that (1/3, 1/3, 1/3) is the only strongly ratifiable policy, we can conclude by Theorem 2, that π_t almost surely does not converge to any policy other than (1/3, 1/3, 1/3). It now only remains to show that π_t almost surely does not converge to (1/3, 1/3, 1/3).

To show that π_t cannot converge to (1/3, 1/3, 1/3), we will analyze the history of what we will call *relative (empirical) Q-values*, which we will denote by $D_t(a_j, a_i) = Q_t(a_j) - Q_t(a_i)$. In order to converge to (1/3, 1/3, 1/3), the relative Q-values must all converge to 0. In particular, it has to be

$$X_t \coloneqq \sum_{a_i, a_j: i < j} |D_t(a_j, a_i)| \to 0, \tag{33}$$

as $t \to \infty$.

We will show, however, that these values almost surely do not converge to 0 if the policies converge to (1/3, 1/3, 1/3). Roughly, we show that when the relative Q-values are close to 0 and the agent acts according to a policy that is close to (1/3, 1/3, 1/3), the Q-values will in expectation be updated toward the action that is currently most likely to be taken. Thus for large enough t, X_t will always increase in expectation. With some other easy-to-verify properties of X_t , we can then apply Lemma 13, which gives us that almost surely the X_t do not converge to 0 as $t \to \infty$.

In order to prove that $\mathbb{E}[X_t | \mathcal{F}_{t-1}] - X_{t-1} > 0$ for large enough t and assuming X_t is close to 0 and π_t close to (1/3, 1/3, 1/3), let $a^* \in \arg \max_a \pi_t(a)$. Because of stochasticity of the rewards and by line 2, it is $\pi_t(a^*) > 1/3$ for large enough t. Further, let $a^- \in \arg \min_a \pi_t(a)$. It is $\pi_t(a^-) \le 1/3$. Finally, let $\epsilon = \pi_t(a^*) - \pi_t(a^-)$.

The $X_t - X_{t-1}$ can be seen as the sum of three differences $|D_t(a_j, a_i)| - |D_{t-1}(a_j, a_i)|$. We start with the difference for a^* and a^- . It is

$$\mathbb{E}\left[|D_{t}(a^{*},a^{-})| | \mathcal{F}_{t-1}\right] - |D_{t-1}(a^{*},a^{-})| \\
= \alpha_{t} \left(\mathbb{E}\left[R(a^{*},\pi_{t})\right] - \mathbb{E}\left[R(a^{-},\pi_{t})\right]\right) - \alpha_{t} \left(Q_{t-1}(a^{*}) - Q_{t-1}(a^{-})\right) \tag{34}$$

Now, assuming that π is close enough to (1/3, 1/3, 1/3) that $\pi(a_j) \ge 1/4 + 1/13$ for all j, it is

$$\mathbb{E}\left[R(a^*, \pi_t)\right] - \mathbb{E}\left[R(a^-, \pi_t)\right] \tag{35}$$

$$= (\pi(a^*) - \pi(a^-)) \cdot 4 \prod_j 13 \left(\pi(a_j) - \frac{1}{4} \right) + \pi(a^*_{+1}) - \pi(a^-_{+1})$$
(36)

$$\geq 4\epsilon - \epsilon$$
 (37)

It is left to estimate the other summands in the expectation of $X_t - X_{t-1}$. Consider any pair of actions a_i, a_j with i > j. Because $|D_t(a_i, a_j)| = |D_t(a_j, a_i)|$, we can assume WLOG that $Q_{t-1}(a_i) > Q_{t-1}(a_j)$, which for large enough t also means $\pi_t(a_i) > \pi_t(a_j)$. Thus, by similar reasoning as before,

$$\mathbb{E}\left[|D_{t}(a_{i},a_{j})| \mid \mathcal{F}_{t-1}\right] - |D_{t-1}(a_{i},a_{j})| \\
= \alpha_{t} \left(\mathbb{E}\left[R(a_{i},\pi_{t})\right] - \mathbb{E}\left[R(a_{j},\pi_{t})\right]\right) - \alpha_{t} \left(Q_{t-1}(a_{i}) - Q_{t-1}(a_{j})\right).$$
(38)

and

$$\mathbb{E}\left[R(a_i, \pi_t)\right] - \mathbb{E}\left[R(a_j, \pi_t)\right] \ge -\epsilon.$$
(39)

Thus, overall for large enough t we have

$$\mathbb{E}\left[X_t \mid \mathcal{F}_t\right] - X_{t-1} \ge \alpha_t \epsilon - \alpha_t \left(\sum_{a_i, a_j: i < j} Q_{t-1}(a_i) - Q_{t-1}(a_j)\right)$$
(40)

By line 2, ϵ outgrows the differences in Q-values and therefore this term will be positive for all large enough t, as claimed.

E Proof of Theorem 7

Theorem 7. Assume that there is some sequence of random variables $(\epsilon_t \ge 0)_t$ s.t. $\epsilon_t \xrightarrow[t \to \infty]{a.s.} 0$ and for all $t \in \mathbb{N}$ it is

$$\sum_{a^* \in \arg\max_a Q_t(a)} \pi_t(a^*) \ge 1 - \epsilon_t.$$
(3)

Let $P_t^{\Sigma} \to p^{\Sigma}$ with positive probability as $t \to \infty$. Then across all actions $a \in \text{supp}(p^{\Sigma})$, $q_a(a)$ is constant.

Proof. Consider any $a \in \operatorname{supp}(p^{\Sigma})$ that is played with positive frequency. Because exploration goes to zero, almost all (i.e. frequency 1) of the time that a is played must be from π_t playing a with probability close to 1. Therefore, whenever $P_t^{\Sigma} \xrightarrow[t \to \infty]{} p^{\Sigma}$ it is

$$Q_t(a) \xrightarrow[t \to \infty]{a.s.} q_a(a). \tag{41}$$

Thus $q_a(a)$ must be constant across $a \in \text{supp}(p^{\Sigma})$, since otherwise the actions with lower values of $q_a(a)$ could not be taken in the limit.

F Proof of Theorem 8

Theorem 8. Same assumptions as Theorem 7. If $|\operatorname{supp}(p^{\Sigma})| > 1$ then for all $a \in \operatorname{supp}(p^{\Sigma})$ there exists $a' \in A$ s.t. $q_a(a') \ge q_a(a)$.

Proof. Let $|\operatorname{supp}(p^{\Sigma})| > 1$ and suppose that $\exists a \in \operatorname{supp}(p^{\Sigma})$ s.t.

$$\forall a' \in A - \{a\} \colon q_a(a') < q_a(a). \tag{42}$$

Policies close to π_a are almost surely played infinitely often. Every time T this happens we have that $Q_T(a) \ge Q_T(a')$ for all $a' \in A - \{a\}$. Now it is easy to see that if 42 holds, then there is a K s.t. every such time T, there is a chance of at least K that for all $t \ge T$ it is $Q_t(a) > Q_t(a')$ for all $a' \in A - \{a\}$. Hence almost surely $\operatorname{supp}(p^{\Sigma}) = \{a\}$, which contradicts the assumption that $|\operatorname{supp}(p^{\Sigma})| > 1$.

G Proof of Theorem 9

Theorem 9. Same assumptions as Theorem 7. Let U be the Q-value $q_a(a)$ which (by Theorem 7) is constant across $a \in \operatorname{supp}(p^{\Sigma})$. For any $a' \in A - \operatorname{supp}(p^{\Sigma})$ that is played infinitely often, let frequency 1 of the exploratory plays of a' happen when playing a policy near elements of $\{\pi_a \mid a \in \operatorname{supp}(p^{\Sigma})\}$. Then either there exists $a \in \operatorname{supp}(p^{\Sigma})$ such that $q_a(a') \leq U$; or $q_{a'}(a') < U$.

Proof. Suppose there is an $a' \in A - \operatorname{supp}(p^{\Sigma})$ for which both are false, i.e. $q_a(a') > U$ for all $a \in \operatorname{supp}(p^{\Sigma})$, and $q_{a'}(a') \geq U$. Frequency 1 of the time that a' is played is when the policy is near an element of $\{\pi_a \mid a \in \operatorname{supp}(p^{\Sigma}) \cup \{a'\}\}$, and so $Q_t(a')$ converges to some convex combination of $q_a(a')$ for $a \in \operatorname{supp}(p^{\Sigma}) \cup \{a'\}$. Therefore, in the limit $Q_t(a')$ is bigger than U. But that is inconsistent with a' being played with frequency 0.